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ON GLOBALLY MINIMAL FOLIATION WITH RESPECT TO
LAGRANGIANS ON RIEMANNIAN MANIFOLDS

TraN VIET DUNG

Introduction

A foliation of a Riemann manifold is called minimal with respect to a
functional if each leaf is minimal with respect to that functional. Volume-
minimal foliations of Riemannian manifolds were studied by Harvey, Lawson
[3, 4], Sullivan [7], Oshikiri [5, 6] and others. We are interested in the minimality
of foliations with respect to functionals given by lagrangians. The aim of this
paper is to find sufficient conditions for the existence of a lagrangian on a Rie-
mannian manifold such that a given foliation of the manifold is absolutely (or
homologically) minimal with respect to the corresponding functional.

§1. Preliminaries

Let R" be the Euclidean space of dimension n. Denote by Ay, the dual
spaces of k-vectors and k-covectors respectively. The scalar product (,) in R”
induces scalar products in Ay, and A" which are also denoted by (,). Denote
the corresponding norm in Ag, by |-|. The comass of the k-covector w is
defined by

lo||* = sup{w(¢); & is a simple k-vector, || = 1}
and the mass of the k-vector ¢ is defined by
€]l = sup{w(&);w e A", o] * < 1}.

If & is a simple k-vector then ||&|| = |£|.

Let M be a Riemannian manifold. Denote by EXM the vector space of all
differential k-forms on M, by E; M the space of all k-currents on M with compact
support and finite mass. A lagrangian of degree k£ on M is a continuous map-
ping L : Ay M — R such that its restriction on each fiber Ay M, of the Grassmann
bundle A;M, is positively homogeneous, here M, is the tangent vector space at
the point x € M. Each lagrangian of degree k on M defines a functional J on
E; M as follows
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(L1) J(S) = jL<§x> dIS|(x), SeEM,

where S, is the tangent k-vector of S at x and ||S|| is the variational measure
given by S (see [1]). Each oriented compact k-surface V" on M can be identified
with a k-current [V] by the formula

(1.2) Vio)=| v vertu.
4
In this case the tangent k-vector [F/]  is a simple k-vector associated with the
tangent space V,, i.e. [V'], A v =0 for every ve V; and the orientation of [V], is
correspondent to the orientation of the tangent space V.

DeriNITION 1.1. Let J be a functional on EyM. A current Se ExM
is called absolutely (respectively, homologically) minimal with respect to J if
J(S) < J(T) for every T € E; M such that (S — T) is a closed (respectively, exact)
current. The following theorem is needed for us.

THEOREM 1.1 (see [2]). Let w be an exact (respectively, closed) k-form on M,
J be a functional on ExM given by lagrangian L of degree k on M. Let S be a
k-current in ExM. If the following conditions are satisfied

(&) < L(&)  for every e AxM,

(1.3) - .
o(Sy) = L(Sy),

Sor almost every x € M in the sense of the measure ||S|, then S is absolutely
(respectively, homologically) minimal with respect to J.

In this case, sometime we say that S is minimal with respect to the
lagrangian L.

§2. Globally minimal foliations of a Riemannian manifold

Let M be a Riemannian manifold of dimension n. Denote by G, M, the set
of all oriented k-dimensional subspaces of M,. Put GiM = UX GyM,. Each
element of GyM can be identified with a simple k-vector of mass one. An
oriented k-dimensional distribution P of the manifold M is a section P: M —
G M such that for every x € M there is a neighbourhood U of x and independent
differentiable vector fields X7,..., X; on U being an oriented frame of P. That
is, for each y e U the basis {X;(»),..., Xx(»)} defines the orientation of P(y).
Let the distribution P be integrable, then each maximal connected oriented
integral submanifold is a leaf of a k-dimensional oriented foliation % of M.

DEerINITION 2.1.  Let J be a functional on Gy M. The foliation of dimension
k on M is said to be absolutely (respectively, homologically) minimal with respect
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to J if a compact domain of each leaf is an absolutely (respectively, homologi-
cally) minimal k-current with respect to J.

THEOREM 2.1.  Let F be a k-dimensional foliation of M given by an oriented
distribution P. If there is an exact (respectively, closed) k-form 0 satisfying the
condition O(P(x)) #0 for every xe M then there exists a class of convex dif-
ferentiable lagrangians of degree k on M such that the foliation F is absolutely
(respectively, homologically) minimal with respect to the corresponding functionals.

Proof. Let 0 be an exact (respectively, closed) k-form satisfying 6(P(x))
#0. From the continuity of # and P it follows that O(P(x)) has the same sign
on each connected component of M. Denote by w the k-form on M defined by
the formula

{wx =0, if O(P(x)) >0,
oy = —0, if 0(P(x)) <0.

Then the k-form w is exact (respectively, closed). Moreover,

2.1) o(P(x)) >0
for every x e M. Denote by H the hyperplane in A;M, given by the equation
(2.2) wy(&) = wy(P(x)).

There is k-vector w} in AxM, satisfying the relation (w},&) = w,(&) for
every £ e AgM,, here (,) is the scalar product in A;M induced by the Rie-
mannian metric on M. Denote by d(O,, H) the distance from the zero-vector
O, to the hyperplane H. We have

_o(P(x)]
(23) d(Ox,H) = Tl
Put
(24) o = W e AcM,.

For two arbitrary points &;,&, in H we have

o(P(x))

(aX;éZ_él): | *|2 |(w;762)_(w)€7£1)|
_ @)1, (&) - o) = 0.
o]

Thus, the k-vector o, is orthogonal to H. It is easy to see that
(25) |oe| = d(Ox, H).

Put

(2.6) By = P(x) — a,.
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Denote by Cp , the ellipsoid of revolution with focuses O,,2f, and passing
through P(x) in ArM,. We can check that Cp, is tangent to H at
P(x). Consider a mapping L, : Ay M, — R positively homogeneous of degree 1
such that for each ¢ e Cy ,,

(2.7) Ly(&) = o(P(x)).
Obviously, L, is completely defined by its values on Cr . Put
BL,x = {é € AkMx;Lx(f) < w(ﬁ(x))}

Then the set By , is a closed convex domain containing O, in AxM, and
0Br.x = Crx. When x moves in the whole M we obtain a mapping L : Ay M —
R such that

Ly, v, = Ly

Because w(P(x)) > 0 it follows L(¢) > 0 for every & # 0. We will show that
L is differentiable. Actually, for each & # 0, in Ay M, there is a number 4 > 0
such that A& e Cp ,, then
1 -
(28) 1() =5 0(B(x)).

The number A is the positive solution of the equation
(2.9) 146 — O] + 32 — 28, = 2|B(x)|.

It is easy to check that the positive solution 1 = A(&, wy, P(x)) of the equa-
tion (2.9) is differentiably dependent on x,£. From (2.8) we have

o(P(x
(2.10) L&) =—2EX)
A&, o, P(x))
The differentiability of P,w, A implies the differentiability of L. The con-
vexity of L follows the convexity of the set By .. We will prove that

(2.11) o(¢) < L(&)

for every e A M.
Let ¢ be an arbitrary point of Cr . If there is a number ¢# > 0 such that
t¢é € H then t>1 and

(2.12) 0(&) = T(i€) = 1 o(F(x) < o(F()).

From (2.7) and (2.12) it follows

(&) < L(¢).

If there is no number ¢ > 0 such that & € H then there exists ¢ < 0 so that
t¢ € H, or, the straight line {O,, &) is parallel to H. In both of these cases, we
have w(¢) <0. Hence, the innequality w(&) < L(£) is satisfied automatically.
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Thus (2.11) is proved for every ¢ e Cp . This implies that (2.11) is true for
every ¢ € AyM,. By our construction,

(2.13) o(P(x)) = L(P(x)).

According to Theorem 1.1, each compact domain of a leaf of & is abso-
lutely (respectively, homologically) minimal with to the functional given by
lagrangian L.

In fact, we can find a class of lagrangians L,, ¢t > 0 analogously. Each
lagrangian L, can be defined as above when the set C; . is exchanged by a set
Cr.x,: given by the equation
(2.14) &+ 1B + & — 2B, — 1f.| = 2|P(x) + 1]

The set Cy ., is the ellipsoid of revolution with focuses —f,,2f, + if, and
passing through P(x). Using an argument analogous to the previous one we
obtain the lagrangian L, satisfying the conditions

(2.15) (&) < Li(&)
(2.16) o(P(x)) = L(P(x))

Hence, the foliation & is absolutely (respectively, homologically) minimal
with respect to the functional given by L,.
Thus, the theorem is proved.

§3. G-invariant foliations minimizing lagrangians

In this section we consider foliations invariant with respect to the action of a
connected compact Lie group. We say that the Lie group G acts on the
Riemannian manifold if there is a mapping of class C*

m:G6xM—-M
such that for every g € G the mapping II, : M — M defined by

(3-1) I, (x) = (g, x)

is a diffeomorphism from M into itself. Moreover, Vg,h € G, I, =I1, - I, and
I1, = id); where e is the unity of G. As usual, the notation gx is used instead of
I1(g,x). Each g e G induces a mapping

gs : GxM — G M.
DerINITION 3.1.  Assume that the Lie group G acts transmvely on M. Let

P be a k-dimensional distribution on M. The distribution P is said to be
invariant with respect to the action of G if for every x € M, g € G, the equality

(3.2) P(gx) = g.P(x)
holds.
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In this case the foliation # corresponding to P is said to be invariant with
respect to the action of G (or, G-invariant). Each Il,, g € G, induces a mapping

g"EXM — EFM
and a mapping
Jx : EkM — EkM.

DeriniTION 3.2, A differential k-form w (respectively, k-current S) is said to
be invariant with respect to the action of G if g*w = w (respectively, g..S = S) for
every g € G.

Let L be a lagrangian of degree k on M. The lagrangian L is said to be
G-invariant if L(g.&) = L(&) for every g € G.

In [1] Dao Trong Thi has shown that for a fixed current S e ExM, the
mapping p : G — E,,M given by p(g) = g.S is continuous. For the compact Lie
group G, there exists a bilaterally invariant Haar’s measure on G such that the
measure of the whole G equals to 1. For a k-form we EXM, we put

(3.3) Mo = J g w dy
G

and for k-current S e ExM, put

(3.4) Mew = J g:S dg
G

It is easy to see that IT;w (respectively, Ilgw) is G-invariant. Note that the
action g. (respectively, ¢g*) is comutative with the operator ¢ (respectively, d).
Hence if the k-form o is exact (respectively, closed) then ITjw is also exact
(respectively, closed).

THEOREM 3.1. Let G be a connected compact Lie group which acts transi-
tively on M, F be a k-dimensional foliation of M given by an oriented G-invariant
distribution P. If there exists an exact (respectively, closed) differential k-form
w on M such that w(P(x;)) # 0 for some point xo € M and the sign of w(P(x))
does not exchange in M then there is a class of G-invariant differentiable convex
lagrangians of degree k on M such that F is absolutely (respectively, homologi-
cally), minimal with respect to the corresponding functionals.

Proof. Consider the k-form & =TIl w on M. It is an exact (respectively,
closed) k-form. We have
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Because w(P(x9)) # 0 and the sign of w(P(x)) does not exchange in M,
@(P(x)) #0 for every xe M.

Analogously as in the proof of Theorem 2.1, we can construct a differenti-
able, convex, positively homogeneous function L, ,, on AxM,, for each parameter
t > 0 such that the following conditions are satisfied

(3.5) (&) < L, ()
for every e AM,,, and
(3.6) @(P(x0)) = Li,x (P(x0))

Denote by H,, the subgroup of G consisting of elements that withstand the
point xo. On H,, there exists the Haar’s bilaterally invariant measure such that
the measure of H,, equals 1. Consider the mapping L, ., : Ay M,, — R given by
the formula

(3.7) Lon(®) = j Lio(h&) dh,

Hy,
where e AyM,,. Then L,,, is Hy-invariant. Since & is G-invariant, @y, is
H,,-invariant. From (3.5), it follows

(38) Cbxo (h*é) < Lf,xo(h*é)
for every e Ay M,,, he H,,. Hence,

(3.9) a0 = |

a)(h*é) dh < J Lt,xo (h*é) dh = i’l,xo (é)
H

X0 Hy,
Analogously,
(310) Cbx()(ﬁ(xo)) = Z‘LXO(F(XO))’

The convexity of L, implies the convexity of Z,,XO. Denote by L, a
mapping L, : AyM — R given by

(3.11) Li(9.€) = L1, (¢)

for every ge G, £ € Ay M,,. The mapping L, is defined correctly. Actually, if
g.& =g/ - & then & = (g'"1g).&. Tt is easy to see that (g'"'g) € H,,. Since L,
is H,,-invariant, i,ﬁxO(f' )= L,x(,(f). Thus, L, is dependent on only the product
g¢. Then L, is a G-invariant, convex, differentiable lagrangian. From (3.9),
(3.10) and the G-invariance of @&, L,, V, it follows

(3.12) @(¢) < Li(E)
for every £ e AyM and
(3.13) @(P(x)) = Li(P(x))

According to Theorem 1.1, the foliation is absolutely (respectively, homo-
logically) minimal with respect to the functional corresponding to L,, for each
t>0.

This completes the proof of theorem.
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