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ON QUADRATIC GENERATION OF IDEALS DEFINING
PROJECTIVE TORIC VARIETIES

SHOETSU OGATA

Abstract

For any ample line bundle L on a projective toric variety of dimension n, it is
known that the line bundle L®’' is normally generated if i is greater than or equal to
n—1. We prove that L® is also normally presented if i is greater than or equal to
n—1. Furthermore we show that L® is normally presented for i > [n/2] +1 if L is
normally generated.

Introduction

Mumford showed in [M] that for ample invertible sheaf L generated by its
global sections on a projective algebraic variety X, the k times twisted sheaf L®*
defines an embedding of X as an intersection of quadrics for sufficiently large
k. In order to describe the precise statement we need recall the definition of
normal generation and normal presentation following Mumford.

DerFINITION.  Let L be an ample invertible sheaf on a projective variety X.
Then L is said to be normally generated if the map

HO(X, L)®" — H(X, L®")

is surjective for all k£ > 1.
A normally generated invertible sheaf L is said to be normally presented if
the map

h(L) ® H(X, L®*) — (L)
is surjective for all k > 2, where I;(L) denotes the kernel of the multiplication
map Sym* HO(X,L) — HO(X,L®"). In other words, the defining ideal I =
@Dy le(L) of the image of X mapped by H(X,L) in P(H°(X,L)") is gen-
erated by quadrics.
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By using vanishing of cohomology groups Mumford proved that for an
ample invertible sheaf L generated by global sections L®* is normally generated
and presented for sufficiently large k. And he proved that for a nonsingular
complete curve X of genus ¢, an invertible sheaf L with deg L > 2g + 1 is nor-
mally generated and that L with deg L > 3g + 1 is normally presented. He also
proved that for an ample invertible sheaf L on an abelian variety X, the tensor
power L®* is normally generated and presented for k > 4. Fujita improved in
[Fj] the case of curves so that L is normally presented if deg L > 2g+ 2.

In this paper we consider only the case that X is a toric variety. When X is
a toric variety of dimension two, Koelman proved in [K1], [K2], [K3] that any
ample invertible sheaf L is normally generated and decided when L is normally
presented. When X is toric and dim X =n > 3, we proved in [NO] that L®’
is normally generated for i > n — 1 and is normally presented for i > n. More
precicely we proved that the multiplication map

H(X,L®)®@ H(X,L) — H°(Xx,L®FD)

is surjective for i >n—1. By employing an analogous argument of [M] we
showed that L®' is normally presented for i > n. Moreover when X is embedded
by T'(L®"1), the ideal defining the image of X has generators of degree at most
three.

In this paper we prove the followings.

THEOREM 1. Let L be an ample invertible sheaf on a projective toric variety
X of dimension n>3. Then L®"V) is normally presented. In other words, the
ideal defining X embedded by the global sections H°(X,L®"~V) is generated by
quadrics.

We shall give a proof of Theorem 1 in Section 2.

THEOREM 2. Let 1<t<n—1 be an integer so that T(L")® (L) —
C(L®WD) s surjective for all i>t. Then L®" is normally presented if r>
max{z, [n/2] + 1}.

Theorem 2 will be proved in Section 3.

1. Preliminaries

Let M be a free Z-module of rank n (n > 3) and let Mp:= M ®; R the
extension of the coefficients to the real numbers. We call the convex hull
Conv{ug,uy,...,u,} in Mg of a finite subset {ug,u,...,u,} = M an integral
convex polytope in Mg. By the theory of toric varieties (see, for instance,
Section 3.5 [Fl], or Section 2.2 [O]) an integral convex polytope P in Mpg
corresponds to a pair (X, L) consisting of a projective toric variety X and an
ample invertible sheaf L on X. Let T := Spec C[M] be an algebraic torus of
dimension n. Then M is considered as the character group of 7, ie., M =
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Homg (M, C*). We denote an element m € M by e(m) as a regular function on
T, which is also a rational function on X. Then we have an isomorphism

(1.1) H'(X,L) = @]MCe(m).

Let P, P; and P, be integral convex polytopes in Mg. Then we can con-
sider the Minkowski sum P;+ Py := {u; +uy € Mp;u; € P; (i=1,2)} and the
multiplication by scalars rP := {ru € Mg;u € P} for a positive real number r. If
r is a natural number, then rP coincides with the r times sum of P, i.e., rP =
{uy + -+ +u, € Mg;uy,...,u, € P}. The i-fold tensor product L®’ corresponds
to the convex polytope iP. Moreover the multiplication map
(1.2) H(X,L®)® H(X,L) — H°(Xx,L®*D)

transforms e(u;) ® e(uz) for uy € iPNM and u, e PN M to e(u; + up) through
the isomorphism (1.1). Therefore the equality iPNM +PNM = (i+ 1)PNM
means the surjectivity of (1.2).

In [NO] we proved the following proposition.

ProposITION 1.1 (Proposition 1.1 in [NO)). Let P be an integral polytope of
dimension n. Then

IPOM+PNM=((i+1)PNM
for all i=n—1.
In the following we denote H(X,L) simply by I'(L).
DerINITION 1.1, Let F and G be coherent sheaves on a variety X. Define
R(F,G) to be the kernel of the canonical map
I'NF)®T(G) —T(F® G).

By using Proposition 1.1 and an analogous argument of Castelnuovo-
Mumford’s lemma (Theorem 4 in [M]) we proved in [NO] the following
proposition.

ProposITION 1.2 (Corollary 2.2 in [NOJ). Let L be an ample invertible sheaf
on a projective toric variety X of dimension n > 3. Then the multiplication map

(L) ® R(L®', L) — R(L®D L)
is surjective for all i > n.

As a corollary to Proposition 1.2 we proved in [NO] the following.

COROLLARY 1.3 (Proposition 3.2 in [NOJ). L® is normally presented for
i>n. And the defining ideal of X embedded by the global sections T'(L®"1)) is
generated by elements of degree at most three.

In this paper we shall prove that L®"~! is also normally presented.
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2. Normal presentation

In this section we give a proof of Theorem 1. In the following we denote
L® simply by L' and T'(L)® by I'(L)".

DeriNiTION 2.1. Let Ly, L, and L3 be invertible sheaves on a variety X.
Define K(iLi,LY},kL3) to be the kernel of the multiplication map

(L) ®T(L) @T(Ly)* - T(LI @ L ® LY).
When i =0 or k=0, we simply denote K(Lé,kL3) or K(iLhLé), respectively.
In this section we set r =n — 1. Consider the following diagram

I(LY®R(L', L") ——  R(L¥,L")

| l

R(L",L") QT (L") —— (L’ — S T(L*)@T(L")

| | |

R(L",L¥) — —— T(LYQTI(L*) ——  T(L¥).

If the multiplication map I'(L") ® R(L",L") — R(L*,L") is surjective, then we
would have

(2.1) K(L',L",L") =T(L")® R(L",L") + R(L", L") @ T(L").

Unfortunately, we cannot prove the surjectivity of the map I'(L") ® R(L",L") —
R(L*,L") for r=n—1. For a proof of Theorem 1 we shall add one more term
in the right hand side of (2.1), which is isomorphic to R(L",L") @ T'(L") after
exchanging the second and the third factors in T'(L")’.

On the other hand, consider the graded ring S =@, ,S: =@, , (L")
Since S is generated by S, =T(L’), it is isomorphic to the residue ring
Sym I'(L")/I(L"). Eisenbud and Sturmfels [ES] showed that the homogeneous
ideal I(L") is generated by binomials. Here a binomial is a difference of two
monomials. We are now interested whether the degree three part I3(L") is in
L(L")S;. Since a monomial in S; corresponds to a set of three elements in
rPN M, a binomial in I3 corresponds to a pair of two sets consisting of three
elements with the same sum.

DEerFINITION 2.2. For xe (3rP)N M let me call the set of three elements
{v1,v2,v3} in rPNM with x=v,+vy,+v3 as a path to x in rPNM with its
length three. For two paths 7' = {v;,v5,v3} and T’ = {v{,v5, 05} in rPNM to
some x € (3rP)N M, we define an element B = e(v)) ® e(v2) ® e(v3) — e(v]) ®
e(v)) ®e(vy) in K(L",L",L"). This defines a binomial in 5(L"). By abuse of
definition we call B a binomial in K(L",L",L").
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LemmA 2.3. For r=n—1, a binomial in K(L",L" L") can be written as
a sum of an element in K(rL,L",rL) and an element in T(L") ® R(L",L") +
R(L", L") @ T(L").

Proof. A binomial in K(L",L", L") corresponds to a pair of paths 7, T’ to
some x € 3rPNM. Let T = {vi,v2,03} and T’ = {v], v}, vy} with v;,v] e rPOM
and x=uv; +va+0v3 =0 +v5+v) Then the binomial B=e¢(v) ®e(v2) ®
e(v3) —e(v]) ®e(vh) ®e(vy) is in K(L",L",L"). Since v, +v3 € 2rPN M, from
Proposition 1.1 we can choose werPNM and xj,...,x, € PN M such that
m+vy=w+x+---+x. Let Ty ={v;,w,x1,...,x,}. Then the pair T,T)
defines the element

E; =e(v) ®{e(vnn) ®e(v3) —e(w) ®e(x; + -+ x,)}

in I'(L") ® R(L",L"). In the same way we can choose w' e rPN M and xi,...
x, € PN M such that v} +vj =w' +x{ +---+x/, and let T} = {v],w', x],...,x/}.
Then the pair 77, T, also defines the element

Ef = e(v) ® {e(v) ® e(v3) — e(w') @ e(x] + -+ + X))}
in I'(L")® R(L",L"). On the other hand, the pair Tj, 7| defines the element
e(v1) @ e(w) @ e(x1) ® -+~ ®e(x;) — e(v]) @ e(w') @ e(x]) ® -+~ @ e(x;)
in K(L",L",rL), which is mapped to the binomial

)

By =e¢(v) ®@e(w)@e(x) + -+ x,) —e(v]) e(w) ®e(x] + - +x))

in K(L",L",L"). Thus we have B= B, + E; — E| with B, in K(L",L",L") and
E,—E/ in T(L")y® R(L",L"). Here B is coming from K(L",L",rL).

Next we apply the same procedure to v +w and v{ +w’ in 2rPN M. Then
we have B; = B, + E; — Ej such that B, is coming from K(rL,L",rL) and that
E,—Ejisin R(L",L")®I'(L"). This completes the proof.

LemMMA 2.4.
(1) K(L" ', (j+1)L) — K(L", jL) is surjective for j > 1.
(2) T(L) ® K(L', kL) — K(L™ kL) is surjective for i >n and k > 1.

Proof. 1In order to prove (1) we consider the diagram

0 —— K(Lnil,(j-i-l)L) - F(Ln71)®F(L)j+1 N F(LnJrj) .0

| J |

0——  K(L"jL)y —— TULHI(L! —— (L") —0

such that two horizontal sequences are exact. Since the middle vertical arrow is
surjective, we obtain a proof of (1).
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As for (2) we consider the diagram

ML) ®K(L kL) —— K(L*' kL)

| l

R(L,LY®T(L)" —— I'(L)®T (L) @T(L)* —— T(Lit) @I (L)*
) | |
R(L, LK) - ['(L) ® T(L**) - [(LiTk+T),
Since « is surjective for i > n from Proposition 1.2, we obtain a proof of (2).
PROPOSITION 2.5. For r=n—1(=2) we have
K(rL,L",rL) =T(L)" @ K(L",rL) + K(rL,L") @ T(L)"
+T(L)®K((r—1)L,L", L)y®T(L)"".

Proof. Consider the diagram

(L) ®K(L',rL) —— K@, (r—1)L)

J l

K(rL,L",L)® (L) —— (L)’ @T(L®T(L)" —— T(L¥") @I (L)
K(rL,L*) — (L) ® (LY SN (L),

The  homomorphism factors as T(L)"®K(L',rL)—T(L) ®
K(L™' (r—=1)L) — K(L**!',(r = 1)L). Thus f is surjective from Lemma 2.4.
Hence we have

K(rL,L",rL) =T(L) ® K(L",rL) + K(rL,L",L) @ T(L)""".
Next we consider the diagram
I(L)QK((r—1)L,L" L) ——  R(L* L)

l |

K(rL, L") ®T(L) —— T(L)®T(L)®T(L) —— T(L*)QT(L)

| | |

R(L, L)  —— I'(L) @ T(L*) — T,
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The homomorphism 7y factors as I'(L)® K((r—1)L,L",L)—>T(L)®
R(L*-'L) — R(L*,L). Since 2r — 1 = 2n — 3 > n, the map y is surjective from
Lemma 2.4. Hence we have

K(rL,L",L) =T(L) ® K((r — 1)L, L",L) + K(rL,L") @ T(L).

Proof of Theorem 1. From Lemma 2.3 we may consider binomials in
K(L" L" L") coming from K(rL,L",rL). From Proposition 2.5 we may con-
sider the elements in K(L",L",L") coming from I'(L)® K((r—1)L,L", L) ®
(L)™', because an element coming from I'(L)" ® K(L',rL) or K(rL,L") ®
I'(L)" is mapped to an element in T(L")® R(L",L") or R(L",L")® (L"),
respectively. It is easily seen that K((r — 1)L, L", L) is generated by elements of
the form

e(y) @ @e(yr1) @e(w) ®ez) —e(y) ® -~ ®e(y_y) @e(w') ®e(z),

where y;, y/,z and z/ are in PN M and w and w' are in rPN M with y; +---+
V1 +wHz=y{+---+y_, +w 42, by definition of K((r—1)L,L",L).
Let

B=e(x+y1+-+ry-1)@ew) ®@e(z+x;+ - +x)
—e(x+yi+ ) @e(wW) @e(z' + )+ +x)

be a binomial mapped from I'(L) ® K((r — 1)L, L", L) ® T(L)"" to K(L",L", L")
such that x,z,x/, y;, y € PO M and w,w' e rPNM with y; + - +y) +Ww+z =

IR

i+ +y +w 4z Set
Bl ={ez+yi+-+y1) @elw) —e(z' +yi + -+ ) @e(w)}
®e(x+ x4 +x).
Then B’ is in R(L",L") ® I'(L"). Consider the difference B— B’. The differ-
ence of the first terms in B and B’ is
e(X+y1+- -+ 1) @e(w) ®e(z+x) + -+ x,_)
—e(z+yi 4 +ym1) @e(w) @e(x + x4+ x7).
If we delete e(w) from it, then we obtain an element in R(L",L"). Therefore

B— B’ is an element in the image of R(L",L") ® ['(L") after exchanging the
second and the third factors of T'(L")?.

3. Special cases

First we consider a special case that L is normally generated. In this case
we can represent the graded ring @P),_, T'(LY) as the residue ring Sym I'(L)/I(L).
Here I(L) is the homogeneous ideal of Sym I'(L) defining the image of X in
P(T(L)"). Tt is known that I(L) has generators of degree at most n+ 1 (see
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Theorem 13.14 [S], or Theorem 0.3 [NOJ) and that there exists an example whose
generators need elements of degree n+ 1. In this section we want to obtain an
estimate for an integer iy such that L®’ is normally presented, that is, the defining
ideal I(L") is generated by quadrics, for all i > io.

For example, we consider the case that n =35 and L is normally gen-
erated. The image of X in P(I'(L)") has generators of degree at most six.
We may expect that the defining ideal of the image of X in P(I'(L3)") is
generated by quadrics, because this embedding is a composition of the embedding
X — P(I'(L)") and the Veronese embedding P(I'(L)*) — P(I'(L*)"). 1In gen-
eral, we may expect that L®' is normally presented for i > [n/2] when L is
normally generated. We shall show in Proposition 3.1 that this is true. When
n=3, or n=4, the equality n—1=[n/2]+1 holds. Thus we may assume
n=>3.

Example. Let ej,...,es be a Z-basis of M = Z°. Set ug=0, u;=e
(i=1,...,4) and us =e; +--- +e4+3es. Let P= Conv{ug,uj,...,us}. Then
we easily see 4PN M =3PNM + PN M. If P corresponds to the polarized toric
variety (X, L), then we have that ['(L") ® [(L) — T(L™!) are surjective for all
i>3. Thus we have that L3 is normally generated. But L? is not very ample,
because the lattice point ug =¢e; + .-+ es in 3P is not contained in 2P. This
implies that ['(L?) ® T'(L) — I'(L?) is not surjective. From easy calculation we
see that L3 is normally presented.

The example suggests that we may weaken the condition on L from the
normal generation to the surjectivity of the multiplication map I'(L') ® I'(L) —
C(L™Y) for all i > n/2.

AssumPTION 3.1. Let t = #(L) be the smallest positive integer such that the
multiplication map (L") ® T'(L) — ['(L™!) is surjective for all i >¢ From
Proposition 1.1 we see that 1 <f<n—1. We assume that n>5 and that
I<t<n-1

ProPOSITION 3.1. Let t be the integer in Assumption 3.1. Then L' is nor-
mally presented for r > max{t,[n/2] + 1}.

In order to prove Proposition 3.1 we need the following lemma.

LemMA 3.2. For r > max{t,[n/2] + 1}, we have three equalities.

(1) K(rL,L",rL) = K(rL,L",iL) @ T(L)" ' + T(L)' @ K((r — i)L,L",rL) for
I<i<r.

(2) K(rL, L', L) = K(rL, L") ® (L) + (L) ® K((r — 1)L, L", L.

(3) K(rL,L",iL) = K(rL,L", (i — 1)L) ® T (L) + T(L)' ® K((r — i)L, L",iL)
for 2 <i<r.
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Proof. For 1 <i<r and 0 <s <k, consider the diagram

(L) ® K((r—i)L,L", kL) — T(L) @ T(L") @ T(L)* — I'(L)’ @ (L)

| : |

K(L2r+5, (k _ S)L) - F(LZH’S) ® I—-(L) k—s N F(Lz"+k)7

where f and y are surjective. .

First set k =r and s =i. Then we see that Ker = K(rL,L",iL) @ T(L)""
and that o is surjective. This proves (1). Next set k=i=1 and s =0. Then
we see that Ker f = K(rL,L") ® T'(L) and that o is surjective. This proves (2).
Finally if we set k = i and s = i — 1, then we see that Ker f = K(rL,L", (i — 1)L) ®
I'(L) and that o is surjective. This proves (3).

Proof of Proposition 3.1. We note that the ideal defining the image of X
embedded by T'(L") has generators of degree at most three from Proposition
3.2 in [NOJ]. Thus we may consider only K(L", L" L"). Furthermore we may
consider binomials in K(L",L" L") coming from K(rL,L" rL) because in the
proof of Lemma 2.3 we used only the condition r > t.

We shall prove the equality

(3.3) K(rL,L",rL) Zr (r—i)L,L"iL) ® T(L)""

First apply Lemma 3.2 (1) for i=r—1. By applying (3) to the first term
we obtain the sum in (3.3) from i =1 to i =r—1 and the rest. Apply (2) to
the rest.

The term of i =0 or i =r in the right hand side of (3.3) is mapped into
R(L"L"YQ®T(L") or T(L")® R(L",L"), respectively. Let 1 <i<r—1. By
applying the same argument in the proof of Theorem 1, we consider a binomial

B=e(xi+ - +xi+yi+-+yi) @e(w) @e(z1 + - +z+x{+- +x,_)
—eli Xy ) @e(w) @ ez bz N )

such that x;, x] y], ¥;,zj and z; are in F( ) and w,w’ are in I'(L") with y; + -+
Vo1l W42y —|— 4z =y —|— —l—y, +w 4z +---4+z. The binomial B is
in K(L")L",L") coming from F( ) ®K((r— i)L,L" lL) ®F(L)H. Set

B' ={e(yi+-+yitzi+-+2z)®e(w)
—e(yi 4+ Hy_ itz ++z) @e(w)}

®e(x 4 X+ X+ x).
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Thus B’ is in R(L", L") ® T(L"). The difference B— B’ is written as
fe(xi4+-+xi+y+-+y-i)@ew)®e(zi +- -+ zi+x] 4+ +x/_))
—e4 Ayttt z) @ew) ®e(xi -+ x + x4+ x_)}
—{e(xi+- Xty oY) @e(W) @e(z) 4 bz F X+ )
—e(yi+ Ayt tz)®@ew)®@e(xi 4 Fxi+X] -+ X))

Therefore B— B’ is in the image of R(L",L") ® T(L") under the isomor-
phism of T'(L")” defined by exchanging the second and the third factors. Since
K((r—1i)L,L",iL) is generated by elements like binomials

e(r) ®@---e(yr1) ®e(w) ®e(z1) @ - @ e(z)
—e(¥) ® ey ) @e(w) ®elz)) -+ ®elz)),

we obtain the proof.
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