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ON QUADRATIC GENERATION OF IDEALS DEFINING

PROJECTIVE TORIC VARIETIES

Shoetsu Ogata

Abstract

For any ample line bundle L on a projective toric variety of dimension n, it is

known that the line bundle Lni is normally generated if i is greater than or equal to

n� 1. We prove that Lni is also normally presented if i is greater than or equal to

n� 1. Furthermore we show that Lni is normally presented for ib ½n=2� þ 1 if L is

normally generated.

Introduction

Mumford showed in [M] that for ample invertible sheaf L generated by its
global sections on a projective algebraic variety X, the k times twisted sheaf Lnk

defines an embedding of X as an intersection of quadrics for su‰ciently large
k. In order to describe the precise statement we need recall the definition of
normal generation and normal presentation following Mumford.

Definition. Let L be an ample invertible sheaf on a projective variety X.
Then L is said to be normally generated if the map

H 0ðX ;LÞnk ! H 0ðX ;LnkÞ

is surjective for all kb 1.
A normally generated invertible sheaf L is said to be normally presented if

the map

I2ðLÞnH 0ðX ;Lnðk�2ÞÞ ! IkðLÞ

is surjective for all kb 2, where IkðLÞ denotes the kernel of the multiplication
map Symk H 0ðX ;LÞ ! H 0ðX ;LnkÞ. In other words, the defining ideal I ¼
0

kb0
IkðLÞ of the image of X mapped by H 0ðX ;LÞ in PðH 0ðX ;LÞ�Þ is gen-

erated by quadrics.

137

1991 Mathematics Subject Classification: Primary 14M25; Secondary 14J10, 52B20.

Partly supported by the Grants-in-Aid for Co-operative Research, The Ministry of Education,

Science, Sports and Culture, Japan.

Received May 16, 2001; revised October 23, 2002.



By using vanishing of cohomology groups Mumford proved that for an
ample invertible sheaf L generated by global sections Lnk is normally generated
and presented for su‰ciently large k. And he proved that for a nonsingular
complete curve X of genus g, an invertible sheaf L with deg Lb 2gþ 1 is nor-
mally generated and that L with deg Lb 3gþ 1 is normally presented. He also
proved that for an ample invertible sheaf L on an abelian variety X, the tensor
power Lnk is normally generated and presented for kb 4. Fujita improved in
[Fj] the case of curves so that L is normally presented if deg Lb 2gþ 2.

In this paper we consider only the case that X is a toric variety. When X is
a toric variety of dimension two, Koelman proved in [K1], [K2], [K3] that any
ample invertible sheaf L is normally generated and decided when L is normally
presented. When X is toric and dim X ¼ nb 3, we proved in [NO] that Lni

is normally generated for ib n� 1 and is normally presented for ib n. More
precicely we proved that the multiplication map

H 0ðX ;LniÞnH 0ðX ;LÞ ! H 0ðX ;Lnðiþ1ÞÞ
is surjective for ib n� 1. By employing an analogous argument of [M] we
showed that Lni is normally presented for ib n. Moreover when X is embedded
by GðLnðn�1ÞÞ, the ideal defining the image of X has generators of degree at most
three.

In this paper we prove the followings.

Theorem 1. Let L be an ample invertible sheaf on a projective toric variety
X of dimension nb 3. Then Lnðn�1Þ is normally presented. In other words, the
ideal defining X embedded by the global sections H 0ðX ;Lnðn�1ÞÞ is generated by
quadrics.

We shall give a proof of Theorem 1 in Section 2.

Theorem 2. Let 1a ta n� 1 be an integer so that GðLiÞnGðLÞ !
GðLnðiþ1ÞÞ is surjective for all ib t. Then Lnr is normally presented if rb
maxft; ½n=2� þ 1g.

Theorem 2 will be proved in Section 3.

1. Preliminaries

Let M be a free Z-module of rank n ðnb 3Þ and let MR :¼ MnZ R the
extension of the coe‰cients to the real numbers. We call the convex hull
Convfu0; u1; . . . ; urg in MR of a finite subset fu0; u1; . . . ; urgHM an integral
convex polytope in MR. By the theory of toric varieties (see, for instance,
Section 3.5 [Fl], or Section 2.2 [O]) an integral convex polytope P in MR

corresponds to a pair ðX ;LÞ consisting of a projective toric variety X and an
ample invertible sheaf L on X. Let T :¼ Spec C ½M � be an algebraic torus of
dimension n. Then M is considered as the character group of T, i.e., M ¼
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HomgrðM;C �Þ. We denote an element m A M by eðmÞ as a regular function on
T, which is also a rational function on X. Then we have an isomorphism

H 0ðX ;LÞG 0
m APVM

CeðmÞ:ð1:1Þ

Let P, P1 and P2 be integral convex polytopes in MR. Then we can con-
sider the Minkowski sum P1 þ P2 :¼ fu1 þ u2 A MR; ui A Pi ði ¼ 1; 2Þg and the
multiplication by scalars rP :¼ fru A MR; u A Pg for a positive real number r. If
r is a natural number, then rP coincides with the r times sum of P, i.e., rP ¼
fu1 þ � � � þ ur A MR; u1; . . . ; ur A Pg. The i-fold tensor product Lni corresponds
to the convex polytope iP. Moreover the multiplication map

H 0ðX ;LniÞnH 0ðX ;LÞ ! H 0ðX ;Lnðiþ1ÞÞð1:2Þ
transforms eðu1Þn eðu2Þ for u1 A iPVM and u2 A PVM to eðu1 þ u2Þ through
the isomorphism (1.1). Therefore the equality iPVM þ PVM ¼ ði þ 1ÞPVM
means the surjectivity of (1.2).

In [NO] we proved the following proposition.

Proposition 1.1 (Proposition 1.1 in [NO]). Let P be an integral polytope of
dimension n. Then

iPVM þ PVM ¼ ði þ 1ÞPVM

for all ib n� 1.

In the following we denote H 0ðX ;LÞ simply by GðLÞ.

Definition 1.1. Let F and G be coherent sheaves on a variety X. Define
RðF ;GÞ to be the kernel of the canonical map

GðFÞnGðGÞ ! GðF nGÞ:
By using Proposition 1.1 and an analogous argument of Castelnuovo-

Mumford’s lemma (Theorem 4 in [M]) we proved in [NO] the following
proposition.

Proposition 1.2 (Corollary 2.2 in [NO]). Let L be an ample invertible sheaf
on a projective toric variety X of dimension nb 3. Then the multiplication map

GðLÞnRðLni;LÞ ! RðLnðiþ1Þ;LÞ
is surjective for all ib n.

As a corollary to Proposition 1.2 we proved in [NO] the following.

Corollary 1.3 (Proposition 3.2 in [NO]). Lni is normally presented for
ib n. And the defining ideal of X embedded by the global sections GðLnðn�1ÞÞ is
generated by elements of degree at most three.

In this paper we shall prove that Lnn�1 is also normally presented.
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2. Normal presentation

In this section we give a proof of Theorem 1. In the following we denote

Lni simply by Li and GðLÞni by GðLÞ i.

Definition 2.1. Let L1, L2 and L3 be invertible sheaves on a variety X.
Define KðiL1;L

j
2; kL3Þ to be the kernel of the multiplication map

GðL1Þ i nGðL j
2ÞnGðL3Þk ! GðLi

1 nL
j
2 nLk

3 Þ:

When i ¼ 0 or k ¼ 0, we simply denote KðL j
2; kL3Þ or KðiL1;L

j
2Þ, respectively.

In this section we set r ¼ n� 1. Consider the following diagram

GðLrÞnRðLr;LrÞ ���! RðL2r;LrÞ???y
???y

RðLr;LrÞnGðLrÞ ���! GðLrÞ3 ���! GðL2rÞnGðLrÞ???y
???y

???y
RðLr;L2rÞ ���! GðLrÞnGðL2rÞ ���! GðL3rÞ:

If the multiplication map GðLrÞnRðLr;LrÞ ! RðL2r;LrÞ is surjective, then we
would have

KðLr;Lr;LrÞ ¼ GðLrÞnRðLr;LrÞ þ RðLr;LrÞnGðLrÞ:ð2:1Þ

Unfortunately, we cannot prove the surjectivity of the map GðLrÞnRðLr;LrÞ !
RðL2r;LrÞ for r ¼ n� 1. For a proof of Theorem 1 we shall add one more term
in the right hand side of (2.1), which is isomorphic to RðLr;LrÞnGðLrÞ after
exchanging the second and the third factors in GðLrÞ3.

On the other hand, consider the graded ring S ¼ 0
db0

Sd ¼ 0
db0

GðLdrÞ.
Since S is generated by S1 ¼ GðLrÞ, it is isomorphic to the residue ring
Sym GðLrÞ=IðLrÞ. Eisenbud and Sturmfels [ES] showed that the homogeneous
ideal IðLrÞ is generated by binomials. Here a binomial is a di¤erence of two
monomials. We are now interested whether the degree three part I3ðLrÞ is in
I2ðLrÞS1. Since a monomial in S3 corresponds to a set of three elements in
rPVM, a binomial in I3 corresponds to a pair of two sets consisting of three
elements with the same sum.

Definition 2.2. For x A ð3rPÞVM let me call the set of three elements
fv1; v2; v3g in rPVM with x ¼ v1 þ v2 þ v3 as a path to x in rPVM with its
length three. For two paths T ¼ fv1; v2; v3g and T 0 ¼ fv 01; v 02; v 03g in rPVM to
some x A ð3rPÞVM, we define an element B ¼ eðv1Þn eðv2Þn eðv3Þ � eðv 01Þn
eðv 02Þn eðv 03Þ in KðLr;Lr;LrÞ. This defines a binomial in I3ðLrÞ. By abuse of
definition we call B a binomial in KðLr;Lr;LrÞ.

shoetsu ogata140



Lemma 2.3. For r ¼ n� 1, a binomial in KðLr;Lr;LrÞ can be written as
a sum of an element in KðrL;Lr; rLÞ and an element in GðLrÞnRðLr;LrÞþ
RðLr;LrÞnGðLrÞ.

Proof. A binomial in KðLr;Lr;LrÞ corresponds to a pair of paths T ;T 0 to
some x A 3rPVM. Let T ¼ fv1; v2; v3g and T 0 ¼ fv 01; v 02; v 03g with vi; v

0
i A rPVM

and x ¼ v1 þ v2 þ v3 ¼ v 01 þ v 02 þ v 03. Then the binomial B ¼ eðv1Þn eðv2Þn
eðv3Þ � eðv 01Þn eðv 02Þn eðv 03Þ is in KðLr;Lr;LrÞ. Since v2 þ v3 A 2rPVM, from
Proposition 1.1 we can choose w A rPVM and x1; . . . ; xr A PVM such that
v2 þ v3 ¼ wþ x1 þ � � � þ xr. Let T1 ¼ fv1;w; x1; . . . ; xrg. Then the pair T ;T1

defines the element

E1 ¼ eðv1Þn feðv2Þn eðv3Þ � eðwÞn eðx1 þ � � � þ xrÞg

in GðLrÞnRðLr;LrÞ. In the same way we can choose w 0 A rPVM and x 0
1; . . . ;

x 0
r A PVM such that v 02 þ v 03 ¼ w 0 þ x 0

1 þ � � � þ x 0
r, and let T 0

1 ¼ fv 01;w 0; x 0
1; . . . ; x

0
rg.

Then the pair T 0;T 0
1 also defines the element

E 0
1 ¼ eðv 01Þn feðv 02Þn eðv 03Þ � eðw 0Þn eðx 0

1 þ � � � þ x 0
rÞg

in GðLrÞnRðLr;LrÞ. On the other hand, the pair T1;T
0
1 defines the element

eðv1Þn eðwÞn eðx1Þn � � �n eðxrÞ � eðv 01Þn eðw 0Þn eðx 0
1Þn � � �n eðx 0

rÞ

in KðLr;Lr; rLÞ, which is mapped to the binomial

B1 ¼ eðv1Þn eðwÞn eðx1 þ � � � þ xrÞ � eðv 01Þn eðw 0Þn eðx 0
1 þ � � � þ x 0

rÞ

in KðLr;Lr;LrÞ. Thus we have B ¼ B1 þ E1 � E 0
1 with B1 in KðLr;Lr;LrÞ and

E1 � E 0
1 in GðLrÞnRðLr;LrÞ. Here B1 is coming from KðLr;Lr; rLÞ.

Next we apply the same procedure to v1 þ w and v 01 þ w 0 in 2rPVM. Then
we have B1 ¼ B2 þ E2 � E 0

2 such that B2 is coming from KðrL;Lr; rLÞ and that
E2 � E 0

2 is in RðLr;LrÞnGðLrÞ. This completes the proof.

Lemma 2.4.
(1) KðLn�1; ð j þ 1ÞLÞ ! KðLn; jLÞ is surjective for jb 1.
(2) GðLÞnKðLi; kLÞ ! KðLiþ1; kLÞ is surjective for ib n and kb 1.

Proof. In order to prove (1) we consider the diagram

0 ���! KðLn�1; ð j þ 1ÞLÞ ���! GðLn�1ÞnGðLÞ jþ1 ���! GðLnþjÞ ���! 0???y
???y

����
0 ���! KðLn; jLÞ ���! GðLnÞnGðLÞ j ���! GðLnþjÞ ���! 0

such that two horizontal sequences are exact. Since the middle vertical arrow is
surjective, we obtain a proof of (1).

on quadratic generation of ideals 141



As for (2) we consider the diagram

GðLÞnKðLi; kLÞ ���! KðLiþ1; kLÞ???y
???y

RðL;LiÞnGðLÞk ���! GðLÞnGðLiÞnGðLÞk ���! GðLiþ1ÞnGðLÞk???ya

???y
???y

RðL;LiþkÞ ���! GðLÞnGðLiþkÞ ���! GðLiþkþ1Þ:

Since a is surjective for ib n from Proposition 1.2, we obtain a proof of (2).

Proposition 2.5. For r ¼ n� 1ðb 2Þ we have

KðrL;Lr; rLÞ ¼ GðLÞr nKðLr; rLÞ þ KðrL;LrÞnGðLÞr

þ GðLÞnKððr� 1ÞL;Lr;LÞnGðLÞr�1:

Proof. Consider the diagram

GðLÞr nKðLr; rLÞ ���!b KðL2rþ1; ðr� 1ÞLÞ???y
???y

KðrL;Lr;LÞnGðLÞr�1 ���! GðLÞr nGðLrÞnGðLÞr ���! GðL2rþ1ÞnGðLÞr�1

???y
???y

???y
KðrL;L2rÞ ���! GðLÞr nGðL2rÞ ���! GðL3rÞ:

The homomorphism b factors as GðLÞr nKðLr; rLÞ ! GðLÞ r n
KðLrþ1; ðr� 1ÞLÞ ! KðL2rþ1; ðr� 1ÞLÞ. Thus b is surjective from Lemma 2.4.
Hence we have

KðrL;Lr; rLÞ ¼ GðLÞr nKðLr; rLÞ þ KðrL;Lr;LÞnGðLÞr�1:

Next we consider the diagram

GðLÞnKððr� 1ÞL;Lr;LÞ ���!g RðL2r;LÞ???y
???y

KðrL;LrÞnGðLÞ ���! GðLÞr nGðLrÞnGðLÞ ���! GðL2rÞnGðLÞ???y
???y

???y
RðL;L2rÞ ���! GðLÞnGðL2rÞ ���! GðL2rþ1Þ:
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The homomorphism g factors as GðLÞnKððr� 1ÞL;Lr;LÞ ! GðLÞn
RðL2r�1;LÞ ! RðL2r;LÞ. Since 2r� 1 ¼ 2n� 3b n, the map g is surjective from
Lemma 2.4. Hence we have

KðrL;Lr;LÞ ¼ GðLÞnKððr� 1ÞL;Lr;LÞ þ KðrL;LrÞnGðLÞ:

Proof of Theorem 1. From Lemma 2.3 we may consider binomials in
KðLr;Lr;LrÞ coming from KðrL;Lr; rLÞ. From Proposition 2.5 we may con-
sider the elements in KðLr;Lr;LrÞ coming from GðLÞnKððr� 1ÞL;Lr;LÞn
GðLÞr�1, because an element coming from GðLÞr nKðLr; rLÞ or KðrL;LrÞn
GðLÞr is mapped to an element in GðLrÞnRðLr;LrÞ or RðLr;LrÞnGðLrÞ,
respectively. It is easily seen that Kððr� 1ÞL;Lr;LÞ is generated by elements of
the form

eðy1Þn � � �n eðyr�1Þn eðwÞn eðzÞ � eðy 0
1Þn � � �n eðy 0

r�1Þn eðw 0Þn eðz 0Þ;
where yi; y

0
i ; z and z 0 are in PVM and w and w 0 are in rPVM with y1 þ � � � þ

yr�1 þ wþ z ¼ y 0
1 þ � � � þ y 0

r�1 þ w 0 þ z 0, by definition of Kððr� 1ÞL;Lr;LÞ.
Let

B ¼ eðxþ y1 þ � � � þ yr�1Þn eðwÞn eðzþ x 0
1 þ � � � þ x 0

r�1Þ

� eðxþ y 0
1 þ � � � þ y 0

r�1Þn eðw 0Þn eðz 0 þ x 0
1 þ � � � þ x 0

r�1Þ

be a binomial mapped from GðLÞnKððr� 1ÞL;Lr;LÞnGðLÞr�1 to KðLr;Lr;LrÞ
such that x; z; x 0

i ; yi; y
0
i A PVM and w;w 0 A rPVM with y1 þ � � � þ yr�1 þ wþ z ¼

y 0
1 þ � � � þ y 0

r�1 þ w 0 þ z 0. Set

B 0 ¼ feðzþ y1 þ � � � þ yr�1Þn eðwÞ � eðz 0 þ y 0
1 þ � � � þ y 0

r�1Þn eðw 0Þg
n eðxþ x 0

1 þ � � � þ x 0
r�1Þ:

Then B 0 is in RðLr;LrÞnGðLrÞ. Consider the di¤erence B� B 0. The di¤er-
ence of the first terms in B and B 0 is

eðxþ y1 þ � � � þ yr�1Þn eðwÞn eðzþ x 0
1 þ � � � þ x 0

r�1Þ
� eðzþ y1 þ � � � þ yr�1Þn eðwÞn eðxþ x 0

1 þ � � � þ x 0
r�1Þ:

If we delete eðwÞ from it, then we obtain an element in RðLr;LrÞ. Therefore
B� B 0 is an element in the image of RðLr;LrÞnGðLrÞ after exchanging the
second and the third factors of GðLrÞ3.

3. Special cases

First we consider a special case that L is normally generated. In this case
we can represent the graded ring 0

db0
GðLdÞ as the residue ring Sym GðLÞ=IðLÞ.

Here IðLÞ is the homogeneous ideal of Sym GðLÞ defining the image of X in
PðGðLÞ�Þ. It is known that IðLÞ has generators of degree at most nþ 1 (see
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Theorem 13.14 [S], or Theorem 0.3 [NO]) and that there exists an example whose
generators need elements of degree nþ 1. In this section we want to obtain an
estimate for an integer i0 such that Lni is normally presented, that is, the defining
ideal IðLiÞ is generated by quadrics, for all ib i0.

For example, we consider the case that n ¼ 5 and L is normally gen-
erated. The image of X in PðGðLÞ�Þ has generators of degree at most six.
We may expect that the defining ideal of the image of X in PðGðL3Þ�Þ is
generated by quadrics, because this embedding is a composition of the embedding
X ,! PðGðLÞ�Þ and the Veronese embedding PðGðLÞ�Þ ,! PðGðL3Þ�Þ. In gen-
eral, we may expect that Lni is normally presented for i > ½n=2� when L is
normally generated. We shall show in Proposition 3.1 that this is true. When
n ¼ 3, or n ¼ 4, the equality n� 1 ¼ ½n=2� þ 1 holds. Thus we may assume
nb 5.

Example. Let e1; . . . ; e5 be a Z-basis of MGZ 5. Set u0 ¼ 0, ui ¼ ei
ði ¼ 1; . . . ; 4Þ and u5 ¼ e1 þ � � � þ e4 þ 3e5. Let P ¼ Convfu0; u1; . . . ; u5g. Then
we easily see 4PVM ¼ 3PVM þ PVM. If P corresponds to the polarized toric
variety ðX ;LÞ, then we have that GðLiÞnGðLÞ ! GðLiþ1Þ are surjective for all
ib 3. Thus we have that L3 is normally generated. But L2 is not very ample,
because the lattice point u6 ¼ e1 þ � � � þ e5 in 3P is not contained in 2P. This
implies that GðL2ÞnGðLÞ ! GðL3Þ is not surjective. From easy calculation we
see that L3 is normally presented.

The example suggests that we may weaken the condition on L from the
normal generation to the surjectivity of the multiplication map GðLiÞnGðLÞ !
GðLiþ1Þ for all i > n=2.

Assumption 3.1. Let t ¼ tðLÞ be the smallest positive integer such that the
multiplication map GðLiÞnGðLÞ ! GðLiþ1Þ is surjective for all ib t. From
Proposition 1.1 we see that 1a ta n� 1. We assume that nb 5 and that
1a t < n� 1.

Proposition 3.1. Let t be the integer in Assumption 3.1. Then Lr is nor-
mally presented for rbmaxft; ½n=2� þ 1g.

In order to prove Proposition 3.1 we need the following lemma.

Lemma 3.2. For rbmaxft; ½n=2� þ 1g, we have three equalities.
(1) KðrL;Lr; rLÞ ¼ KðrL;Lr; iLÞnGðLÞr�i þ GðLÞ i nKððr� iÞL;Lr; rLÞ for

1a i < r.
(2) KðrL;Lr;LÞ ¼ KðrL;LrÞnGðLÞ þ GðLÞnKððr� 1ÞL;Lr;LÞ.
(3) KðrL;Lr; iLÞ ¼ KðrL;Lr; ði � 1ÞLÞnGðLÞ þ GðLÞ i nKððr� iÞL;Lr; iLÞ

for 2a i < r.
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Proof. For 1a i < r and 0a s < k, consider the diagram

GðLÞ i nKððr� iÞL;Lr; kLÞ ��! GðLÞr nGðLrÞnGðLÞk ��! GðLÞ i nGðL2rþk�iÞ???ya

???yb

???yg

KðL2rþs; ðk � sÞLÞ ��! GðL2rþsÞnGðLÞk�s ��! GðL2rþkÞ;

where b and g are surjective.
First set k ¼ r and s ¼ i. Then we see that Ker b ¼ KðrL;Lr; iLÞnGðLÞr�i

and that a is surjective. This proves (1). Next set k ¼ i ¼ 1 and s ¼ 0. Then
we see that Ker b ¼ KðrL;LrÞnGðLÞ and that a is surjective. This proves (2).
Finally if we set k ¼ i and s ¼ i � 1, then we see that Ker b ¼ KðrL;Lr; ði � 1ÞLÞn
GðLÞ and that a is surjective. This proves (3).

Proof of Proposition 3.1. We note that the ideal defining the image of X
embedded by GðLrÞ has generators of degree at most three from Proposition
3.2 in [NO]. Thus we may consider only KðLr;Lr;LrÞ. Furthermore we may
consider binomials in KðLr;Lr;LrÞ coming from KðrL;Lr; rLÞ because in the
proof of Lemma 2.3 we used only the condition rb t.

We shall prove the equality

KðrL;Lr; rLÞ ¼
Xr

i¼0

GðLÞ i nKððr� iÞL;Lr; iLÞnGðLÞr�i:ð3:3Þ

First apply Lemma 3.2 (1) for i ¼ r� 1. By applying (3) to the first term
we obtain the sum in (3.3) from i ¼ 1 to i ¼ r� 1 and the rest. Apply (2) to
the rest.

The term of i ¼ 0 or i ¼ r in the right hand side of (3.3) is mapped into
RðLr;LrÞnGðLrÞ or GðLrÞnRðLr;LrÞ, respectively. Let 1a ia r� 1. By
applying the same argument in the proof of Theorem 1, we consider a binomial

B ¼ eðx1 þ � � � þ xi þ y1 þ � � � þ yr�iÞn eðwÞn eðz1 þ � � � þ zi þ x 0
1 þ � � � þ x 0

r�1Þ

� eðx1 þ � � � þ xi þ y 0
1 þ � � � þ y 0

r�iÞn eðw 0Þn eðz 01 þ � � � þ z 0i þ x 0
1 þ � � � þ x 0

r�1Þ

such that xj; x
0
j ; yj; y

0
j ; zj and z 0j are in GðLÞ and w;w 0 are in GðLrÞ with y1 þ � � � þ

yr�1 þ wþ z1 þ � � � þ zi ¼ y 0
1 þ � � � þ y 0

r�1 þ w 0 þ z 01 þ � � � þ z 0i . The binomial B is

in KðLr;Lr;LrÞ coming from GðLÞ i nKððr� iÞL;Lr; iLÞnGðLÞr�i. Set

B 0 ¼ feðy1 þ � � � þ yr�i þ z1 þ � � � þ ziÞn eðwÞ

� eðy 0
1 þ � � � þ y 0

r�i þ z 01 þ � � � þ z 0i Þn eðw 0Þg

n eðx1 þ � � � þ xi þ x 0
1 þ � � � þ x 0
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Thus B 0 is in RðLr;LrÞnGðLrÞ. The di¤erence B� B 0 is written as

feðx1 þ � � � þ xi þ y1 þ � � � þ yr�iÞn eðwÞn eðz1 þ � � � þ zi þ x 0
1 þ � � � þ x 0

r�1Þ
� eðy1 þ � � � þ yr�i þ z1 þ � � � þ ziÞn eðwÞn eðx1 þ � � � þ xi þ x 0

1 þ � � � þ x 0
r�iÞg

� feðx1 þ � � � þ xi þ y 0
1 þ � � � þ y 0

r�iÞn eðw 0Þn eðz 01 þ � � � þ z 0i þ x 0
1 þ � � � þ x 0

r�1Þ
� eðy 0

1 þ � � � þ y 0
r�i þ z 01 þ � � � þ z 0i Þn eðw 0Þn eðx1 þ � � � þ xi þ x 0

1 þ � � � þ x 0
r�iÞg:

Therefore B� B 0 is in the image of RðLr;LrÞnGðLrÞ under the isomor-
phism of GðLrÞ3 defined by exchanging the second and the third factors. Since
Kððr� iÞL;Lr; iLÞ is generated by elements like binomials

eðy1Þn � � � eðyr�1Þn eðwÞn eðz1Þn � � �n eðziÞ
� eðy 0

1Þn � � � eðy 0
r�1Þn eðw 0Þn eðz 01Þ � � �n eðz 0i Þ;

we obtain the proof.
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