ON QUADRATIC GENERATION OF IDEALS DEFINING PROJECTIVE TORIC VARIETIES

Shoetsu Ogata

Abstract

For any ample line bundle L on a projective toric variety of dimension n, it is known that the line bundle $L^{\otimes i}$ is normally generated if i is greater than or equal to $n-1$. We prove that $L^{\otimes i}$ is also normally presented if i is greater than or equal to $n-1$. Furthermore we show that $L^{\otimes i}$ is normally presented for $i \geq[n / 2]+1$ if L is normally generated.

Introduction

Mumford showed in [M] that for ample invertible sheaf L generated by its global sections on a projective algebraic variety X, the k times twisted sheaf $L^{\otimes k}$ defines an embedding of X as an intersection of quadrics for sufficiently large k. In order to describe the precise statement we need recall the definition of normal generation and normal presentation following Mumford.

Definition. Let L be an ample invertible sheaf on a projective variety X. Then L is said to be normally generated if the map

$$
H^{0}(X, L)^{\otimes k} \rightarrow H^{0}\left(X, L^{\otimes k}\right)
$$

is surjective for all $k \geq 1$.
A normally generated invertible sheaf L is said to be normally presented if the map

$$
I_{2}(L) \otimes H^{0}\left(X, L^{\otimes(k-2)}\right) \rightarrow I_{k}(L)
$$

is surjective for all $k \geq 2$, where $I_{k}(L)$ denotes the kernel of the multiplication map $\operatorname{Sym}^{k} H^{0}(X, L) \rightarrow H^{0}\left(X, L^{\otimes k}\right)$. In other words, the defining ideal $I=$ $\oplus_{k \geq 0} I_{k}(L)$ of the image of X mapped by $H^{0}(X, L)$ in $\boldsymbol{P}\left(H^{0}(X, L)^{*}\right)$ is generated by quadrics.

[^0]By using vanishing of cohomology groups Mumford proved that for an ample invertible sheaf L generated by global sections $L^{\otimes k}$ is normally generated and presented for sufficiently large k. And he proved that for a nonsingular complete curve X of genus g, an invertible sheaf L with $\operatorname{deg} L \geq 2 g+1$ is normally generated and that L with $\operatorname{deg} L \geq 3 g+1$ is normally presented. He also proved that for an ample invertible sheaf L on an abelian variety X, the tensor power $L^{\otimes k}$ is normally generated and presented for $k \geq 4$. Fujita improved in [Fj] the case of curves so that L is normally presented if $\operatorname{deg} L \geq 2 g+2$.

In this paper we consider only the case that X is a toric variety. When X is a toric variety of dimension two, Koelman proved in [K1], [K2], [K3] that any ample invertible sheaf L is normally generated and decided when L is normally presented. When X is toric and $\operatorname{dim} X=n \geq 3$, we proved in [NO] that $L^{\otimes i}$ is normally generated for $i \geq n-1$ and is normally presented for $i \geq n$. More precicely we proved that the multiplication map

$$
H^{0}\left(X, L^{\otimes i}\right) \otimes H^{0}(X, L) \rightarrow H^{0}\left(X, L^{\otimes(i+1)}\right)
$$

is surjective for $i \geq n-1$. By employing an analogous argument of $[\mathrm{M}]$ we showed that $L^{\otimes i}$ is normally presented for $i \geq n$. Moreover when X is embedded by $\Gamma\left(L^{\otimes(n-1)}\right)$, the ideal defining the image of X has generators of degree at most three.

In this paper we prove the followings.
Theorem 1. Let L be an ample invertible sheaf on a projective toric variety X of dimension $n \geq 3$. Then $L^{\otimes(n-1)}$ is normally presented. In other words, the ideal defining X embedded by the global sections $H^{0}\left(X, L^{\otimes(n-1)}\right)$ is generated by quadrics.

We shall give a proof of Theorem 1 in Section 2.
Theorem 2. Let $1 \leq t \leq n-1$ be an integer so that $\Gamma\left(L^{i}\right) \otimes \Gamma(L) \rightarrow$ $\Gamma\left(L^{\otimes(i+1)}\right)$ is surjective for all $i \geq t$. Then $L^{\otimes r}$ is normally presented if $r \geq$ $\max \{t,[n / 2]+1\}$.

Theorem 2 will be proved in Section 3.

1. Preliminaries

Let M be a free \boldsymbol{Z}-module of rank $n(n \geq 3)$ and let $M_{R}:=M \otimes_{\boldsymbol{Z}} \boldsymbol{R}$ the extension of the coefficients to the real numbers. We call the convex hull $\operatorname{Conv}\left\{u_{0}, u_{1}, \ldots, u_{r}\right\}$ in $M_{\boldsymbol{R}}$ of a finite subset $\left\{u_{0}, u_{1}, \ldots, u_{r}\right\} \subset M$ an integral convex polytope in M_{R}. By the theory of toric varieties (see, for instance, Section $3.5[\mathrm{Fl}]$, or Section $2.2[\mathrm{O}]$) an integral convex polytope P in $M_{\boldsymbol{R}}$ corresponds to a pair (X, L) consisting of a projective toric variety X and an ample invertible sheaf L on X. Let $T:=\operatorname{Spec} \boldsymbol{C}[M]$ be an algebraic torus of dimension n. Then M is considered as the character group of T, i.e., $M=$
$\operatorname{Hom}_{g r}\left(M, C^{*}\right)$. We denote an element $m \in M$ by $e(m)$ as a regular function on T, which is also a rational function on X. Then we have an isomorphism

$$
\begin{equation*}
H^{0}(X, L) \cong \underset{m \in P \cap M}{\bigoplus} \boldsymbol{C e}(m) . \tag{1.1}
\end{equation*}
$$

Let P, P_{1} and P_{2} be integral convex polytopes in M_{R}. Then we can consider the Minkowski sum $P_{1}+P_{2}:=\left\{u_{1}+u_{2} \in M_{\boldsymbol{R}} ; u_{i} \in P_{i}(i=1,2)\right\}$ and the multiplication by scalars $r P:=\left\{r u \in M_{R} ; u \in P\right\}$ for a positive real number r. If r is a natural number, then $r P$ coincides with the r times sum of P, i.e., $r P=$ $\left\{u_{1}+\cdots+u_{r} \in M_{R} ; u_{1}, \ldots, u_{r} \in P\right\}$. The i-fold tensor product $L^{\otimes i}$ corresponds to the convex polytope $i P$. Moreover the multiplication map

$$
\begin{equation*}
H^{0}\left(X, L^{\otimes i}\right) \otimes H^{0}(X, L) \rightarrow H^{0}\left(X, L^{\otimes(i+1)}\right) \tag{1.2}
\end{equation*}
$$

transforms $e\left(u_{1}\right) \otimes e\left(u_{2}\right)$ for $u_{1} \in i P \cap M$ and $u_{2} \in P \cap M$ to $e\left(u_{1}+u_{2}\right)$ through the isomorphism (1.1). Therefore the equality $i P \cap M+P \cap M=(i+1) P \cap M$ means the surjectivity of (1.2).

In [NO] we proved the following proposition.
Proposition 1.1 (Proposition 1.1 in [NO]). Let P be an integral polytope of dimension n. Then

$$
i P \cap M+P \cap M=(i+1) P \cap M
$$

for all $i \geq n-1$.
In the following we denote $H^{0}(X, L)$ simply by $\Gamma(L)$.
Definition 1.1. Let F and G be coherent sheaves on a variety X. Define $R(F, G)$ to be the kernel of the canonical map

$$
\Gamma(F) \otimes \Gamma(G) \rightarrow \Gamma(F \otimes G) .
$$

By using Proposition 1.1 and an analogous argument of CastelnuovoMumford's lemma (Theorem 4 in $[\mathrm{M}]$) we proved in [NO] the following proposition.

Proposition 1.2 (Corollary 2.2 in [NO]). Let L be an ample invertible sheaf on a projective toric variety X of dimension $n \geq 3$. Then the multiplication map

$$
\Gamma(L) \otimes R\left(L^{\otimes i}, L\right) \rightarrow R\left(L^{\otimes(i+1)}, L\right)
$$

is surjective for all $i \geq n$.
As a corollary to Proposition 1.2 we proved in [NO] the following.
Corollary 1.3 (Proposition 3.2 in [NO]). $L^{\otimes i}$ is normally presented for $i \geq n$. And the defining ideal of X embedded by the global sections $\Gamma\left(L^{\otimes(n-1)}\right)$ is generated by elements of degree at most three.

In this paper we shall prove that $L^{\otimes n-1}$ is also normally presented.

2. Normal presentation

In this section we give a proof of Theorem 1. In the following we denote $L^{\otimes i}$ simply by L^{i} and $\Gamma(L)^{\otimes i}$ by $\Gamma(L)^{i}$.

Definition 2.1. Let L_{1}, L_{2} and L_{3} be invertible sheaves on a variety X. Define $K\left(i L_{1}, L_{2}^{j}, k L_{3}\right)$ to be the kernel of the multiplication map

$$
\Gamma\left(L_{1}\right)^{i} \otimes \Gamma\left(L_{2}^{j}\right) \otimes \Gamma\left(L_{3}\right)^{k} \rightarrow \Gamma\left(L_{1}^{i} \otimes L_{2}^{j} \otimes L_{3}^{k}\right)
$$

When $i=0$ or $k=0$, we simply denote $K\left(L_{2}^{j}, k L_{3}\right)$ or $K\left(i L_{1}, L_{2}^{j}\right)$, respectively.
In this section we set $r=n-1$. Consider the following diagram

If the multiplication map $\Gamma\left(L^{r}\right) \otimes R\left(L^{r}, L^{r}\right) \rightarrow R\left(L^{2 r}, L^{r}\right)$ is surjective, then we would have

$$
\begin{equation*}
K\left(L^{r}, L^{r}, L^{r}\right)=\Gamma\left(L^{r}\right) \otimes R\left(L^{r}, L^{r}\right)+R\left(L^{r}, L^{r}\right) \otimes \Gamma\left(L^{r}\right) \tag{2.1}
\end{equation*}
$$

Unfortunately, we cannot prove the surjectivity of the map $\Gamma\left(L^{r}\right) \otimes R\left(L^{r}, L^{r}\right) \rightarrow$ $R\left(L^{2 r}, L^{r}\right)$ for $r=n-1$. For a proof of Theorem 1 we shall add one more term in the right hand side of (2.1), which is isomorphic to $R\left(L^{r}, L^{r}\right) \otimes \Gamma\left(L^{r}\right)$ after exchanging the second and the third factors in $\Gamma\left(L^{r}\right)^{3}$.

On the other hand, consider the graded ring $S=\bigoplus_{d \geq 0} S_{d}=\bigoplus_{d \geq 0} \Gamma\left(L^{d r}\right)$. Since S is generated by $S_{1}=\Gamma\left(L^{r}\right)$, it is isomorphic to the residue ring Sym $\Gamma\left(L^{r}\right) / I\left(L^{r}\right)$. Eisenbud and Sturmfels [ES] showed that the homogeneous ideal $I\left(L^{r}\right)$ is generated by binomials. Here a binomial is a difference of two monomials. We are now interested whether the degree three part $I_{3}\left(L^{r}\right)$ is in $I_{2}\left(L^{r}\right) S_{1}$. Since a monomial in S_{3} corresponds to a set of three elements in $r P \cap M$, a binomial in I_{3} corresponds to a pair of two sets consisting of three elements with the same sum.

Definition 2.2. For $x \in(3 r P) \cap M$ let me call the set of three elements $\left\{v_{1}, v_{2}, v_{3}\right\}$ in $r P \cap M$ with $x=v_{1}+v_{2}+v_{3}$ as a path to x in $r P \cap M$ with its length three. For two paths $T=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $T^{\prime}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$ in $r P \cap M$ to some $x \in(3 r P) \cap M$, we define an element $B=e\left(v_{1}\right) \otimes e\left(v_{2}\right) \otimes e\left(v_{3}\right)-e\left(v_{1}^{\prime}\right) \otimes$ $e\left(v_{2}^{\prime}\right) \otimes e\left(v_{3}^{\prime}\right)$ in $K\left(L^{r}, L^{r}, L^{r}\right)$. This defines a binomial in $I_{3}\left(L^{r}\right)$. By abuse of definition we call B a binomial in $K\left(L^{r}, L^{r}, L^{r}\right)$.

Lemma 2.3. For $r=n-1$, a binomial in $K\left(L^{r}, L^{r}, L^{r}\right)$ can be written as a sum of an element in $K\left(r L, L^{r}, r L\right)$ and an element in $\Gamma\left(L^{r}\right) \otimes R\left(L^{r}, L^{r}\right)+$ $R\left(L^{r}, L^{r}\right) \otimes \Gamma\left(L^{r}\right)$.

Proof. A binomial in $K\left(L^{r}, L^{r}, L^{r}\right)$ corresponds to a pair of paths T, T^{\prime} to some $x \in 3 r P \cap M$. Let $T=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $T^{\prime}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$ with $v_{i}, v_{i}^{\prime} \in r P \cap M$ and $x=v_{1}+v_{2}+v_{3}=v_{1}^{\prime}+v_{2}^{\prime}+v_{3}^{\prime}$. Then the binomial $B=e\left(v_{1}\right) \otimes e\left(v_{2}\right) \otimes$ $e\left(v_{3}\right)-e\left(v_{1}^{\prime}\right) \otimes e\left(v_{2}^{\prime}\right) \otimes e\left(v_{3}^{\prime}\right)$ is in $K\left(L^{r}, L^{r}, L^{r}\right)$. Since $v_{2}+v_{3} \in 2 r P \cap M$, from Proposition 1.1 we can choose $w \in r P \cap M$ and $x_{1}, \ldots, x_{r} \in P \cap M$ such that $v_{2}+v_{3}=w+x_{1}+\cdots+x_{r}$. Let $T_{1}=\left\{v_{1}, w, x_{1}, \ldots, x_{r}\right\}$. Then the pair T, T_{1} defines the element

$$
E_{1}=e\left(v_{1}\right) \otimes\left\{e\left(v_{2}\right) \otimes e\left(v_{3}\right)-e(w) \otimes e\left(x_{1}+\cdots+x_{r}\right)\right\}
$$

in $\Gamma\left(L^{r}\right) \otimes R\left(L^{r}, L^{r}\right)$. In the same way we can choose $w^{\prime} \in r P \cap M$ and x_{1}^{\prime}, \ldots, $x_{r}^{\prime} \in P \cap M$ such that $v_{2}^{\prime}+v_{3}^{\prime}=w^{\prime}+x_{1}^{\prime}+\cdots+x_{r}^{\prime}$, and let $T_{1}^{\prime}=\left\{v_{1}^{\prime}, w^{\prime}, x_{1}^{\prime}, \ldots, x_{r}^{\prime}\right\}$. Then the pair $T^{\prime}, T_{1}^{\prime}$ also defines the element

$$
E_{1}^{\prime}=e\left(v_{1}^{\prime}\right) \otimes\left\{e\left(v_{2}^{\prime}\right) \otimes e\left(v_{3}^{\prime}\right)-e\left(w^{\prime}\right) \otimes e\left(x_{1}^{\prime}+\cdots+x_{r}^{\prime}\right)\right\}
$$

in $\Gamma\left(L^{r}\right) \otimes R\left(L^{r}, L^{r}\right)$. On the other hand, the pair T_{1}, T_{1}^{\prime} defines the element

$$
e\left(v_{1}\right) \otimes e(w) \otimes e\left(x_{1}\right) \otimes \cdots \otimes e\left(x_{r}\right)-e\left(v_{1}^{\prime}\right) \otimes e\left(w^{\prime}\right) \otimes e\left(x_{1}^{\prime}\right) \otimes \cdots \otimes e\left(x_{r}^{\prime}\right)
$$

in $K\left(L^{r}, L^{r}, r L\right)$, which is mapped to the binomial

$$
B_{1}=e\left(v_{1}\right) \otimes e(w) \otimes e\left(x_{1}+\cdots+x_{r}\right)-e\left(v_{1}^{\prime}\right) \otimes e\left(w^{\prime}\right) \otimes e\left(x_{1}^{\prime}+\cdots+x_{r}^{\prime}\right)
$$

in $K\left(L^{r}, L^{r}, L^{r}\right)$. Thus we have $B=B_{1}+E_{1}-E_{1}^{\prime}$ with B_{1} in $K\left(L^{r}, L^{r}, L^{r}\right)$ and $E_{1}-E_{1}^{\prime}$ in $\Gamma\left(L^{r}\right) \otimes R\left(L^{r}, L^{r}\right)$. Here B_{1} is coming from $K\left(L^{r}, L^{r}, r L\right)$.

Next we apply the same procedure to $v_{1}+w$ and $v_{1}^{\prime}+w^{\prime}$ in $2 r P \cap M$. Then we have $B_{1}=B_{2}+E_{2}-E_{2}^{\prime}$ such that B_{2} is coming from $K\left(r L, L^{r}, r L\right)$ and that $E_{2}-E_{2}^{\prime}$ is in $R\left(L^{r}, L^{r}\right) \otimes \Gamma\left(L^{r}\right)$. This completes the proof.

Lemma 2.4.
(1) $K\left(L^{n-1},(j+1) L\right) \rightarrow K\left(L^{n}, j L\right)$ is surjective for $j \geq 1$.
(2) $\Gamma(L) \otimes K\left(L^{i}, k L\right) \rightarrow K\left(L^{i+1}, k L\right)$ is surjective for $i \geq n$ and $k \geq 1$.

Proof. In order to prove (1) we consider the diagram

such that two horizontal sequences are exact. Since the middle vertical arrow is surjective, we obtain a proof of (1).

As for (2) we consider the diagram

Since α is surjective for $i \geq n$ from Proposition 1.2, we obtain a proof of (2).
Proposition 2.5. For $r=n-1(\geq 2)$ we have

$$
\begin{aligned}
K\left(r L, L^{r}, r L\right)= & \Gamma(L)^{r} \otimes K\left(L^{r}, r L\right)+K\left(r L, L^{r}\right) \otimes \Gamma(L)^{r} \\
& +\Gamma(L) \otimes K\left((r-1) L, L^{r}, L\right) \otimes \Gamma(L)^{r-1} .
\end{aligned}
$$

Proof. Consider the diagram

The homomorphism $\quad \beta \quad$ factors \quad as $\quad \Gamma(L)^{r} \otimes K\left(L^{r}, r L\right) \rightarrow \Gamma(L)^{r} \otimes$ $K\left(L^{r+1},(r-1) L\right) \rightarrow K\left(L^{2 r+1},(r-1) L\right)$. Thus β is surjective from Lemma 2.4. Hence we have

$$
K\left(r L, L^{r}, r L\right)=\Gamma(L)^{r} \otimes K\left(L^{r}, r L\right)+K\left(r L, L^{r}, L\right) \otimes \Gamma(L)^{r-1} .
$$

Next we consider the diagram

The homomorphism $\quad \gamma \quad$ factors \quad as $\quad \Gamma(L) \otimes K\left((r-1) L, L^{r}, L\right) \rightarrow \Gamma(L) \otimes$ $R\left(L^{2 r-1}, L\right) \rightarrow R\left(L^{2 r}, L\right)$. Since $2 r-1=2 n-3 \geq n$, the map γ is surjective from Lemma 2.4. Hence we have

$$
K\left(r L, L^{r}, L\right)=\Gamma(L) \otimes K\left((r-1) L, L^{r}, L\right)+K\left(r L, L^{r}\right) \otimes \Gamma(L) .
$$

Proof of Theorem 1. From Lemma 2.3 we may consider binomials in $K\left(L^{r}, L^{r}, L^{r}\right)$ coming from $K\left(r L, L^{r}, r L\right)$. From Proposition 2.5 we may consider the elements in $K\left(L^{r}, L^{r}, L^{r}\right)$ coming from $\Gamma(L) \otimes K\left((r-1) L, L^{r}, L\right) \otimes$ $\Gamma(L)^{r-1}$, because an element coming from $\Gamma(L)^{r} \otimes K\left(L^{r}, r L\right)$ or $K\left(r L, L^{r}\right) \otimes$ $\Gamma(L)^{r}$ is mapped to an element in $\Gamma\left(L^{r}\right) \otimes R\left(L^{r}, L^{r}\right)$ or $R\left(L^{r}, L^{r}\right) \otimes \Gamma\left(L^{r}\right)$, respectively. It is easily seen that $K\left((r-1) L, L^{r}, L\right)$ is generated by elements of the form

$$
e\left(y_{1}\right) \otimes \cdots \otimes e\left(y_{r-1}\right) \otimes e(w) \otimes e(z)-e\left(y_{1}^{\prime}\right) \otimes \cdots \otimes e\left(y_{r-1}^{\prime}\right) \otimes e\left(w^{\prime}\right) \otimes e\left(z^{\prime}\right),
$$

where y_{i}, y_{i}^{\prime}, z and z^{\prime} are in $P \cap M$ and w and w^{\prime} are in $r P \cap M$ with $y_{1}+\cdots+$ $y_{r-1}+w+z=y_{1}^{\prime}+\cdots+y_{r-1}^{\prime}+w^{\prime}+z^{\prime}$, by definition of $K\left((r-1) L, L^{r}, L\right)$.

Let

$$
\begin{aligned}
B= & e\left(x+y_{1}+\cdots+y_{r-1}\right) \otimes e(w) \otimes e\left(z+x_{1}^{\prime}+\cdots+x_{r-1}^{\prime}\right) \\
& -e\left(x+y_{1}^{\prime}+\cdots+y_{r-1}^{\prime}\right) \otimes e\left(w^{\prime}\right) \otimes e\left(z^{\prime}+x_{1}^{\prime}+\cdots+x_{r-1}^{\prime}\right)
\end{aligned}
$$

be a binomial mapped from $\Gamma(L) \otimes K\left((r-1) L, L^{r}, L\right) \otimes \Gamma(L)^{r-1}$ to $K\left(L^{r}, L^{r}, L^{r}\right)$ such that $x, z, x_{i}^{\prime}, y_{i}, y_{i}^{\prime} \in P \cap M$ and $w, w^{\prime} \in r P \cap M$ with $y_{1}+\cdots+y_{r-1}+w+z=$ $y_{1}^{\prime}+\cdots+y_{r-1}^{\prime}+w^{\prime}+z^{\prime}$. Set

$$
\begin{aligned}
B^{\prime}= & \left\{e\left(z+y_{1}+\cdots+y_{r-1}\right) \otimes e(w)-e\left(z^{\prime}+y_{1}^{\prime}+\cdots+y_{r-1}^{\prime}\right) \otimes e\left(w^{\prime}\right)\right\} \\
& \otimes e\left(x+x_{1}^{\prime}+\cdots+x_{r-1}^{\prime}\right) .
\end{aligned}
$$

Then B^{\prime} is in $R\left(L^{r}, L^{r}\right) \otimes \Gamma\left(L^{r}\right)$. Consider the difference $B-B^{\prime}$. The difference of the first terms in B and B^{\prime} is

$$
\begin{aligned}
& e\left(x+y_{1}+\cdots+y_{r-1}\right) \otimes e(w) \otimes e\left(z+x_{1}^{\prime}+\cdots+x_{r-1}^{\prime}\right) \\
& \quad-e\left(z+y_{1}+\cdots+y_{r-1}\right) \otimes e(w) \otimes e\left(x+x_{1}^{\prime}+\cdots+x_{r-1}^{\prime}\right) .
\end{aligned}
$$

If we delete $e(w)$ from it, then we obtain an element in $R\left(L^{r}, L^{r}\right)$. Therefore $B-B^{\prime}$ is an element in the image of $R\left(L^{r}, L^{r}\right) \otimes \Gamma\left(L^{r}\right)$ after exchanging the second and the third factors of $\Gamma\left(L^{r}\right)^{3}$.

3. Special cases

First we consider a special case that L is normally generated. In this case we can represent the graded ring $\bigoplus_{d \geq 0} \Gamma\left(L^{d}\right)$ as the residue ring Sym $\Gamma(L) / I(L)$. Here $I(L)$ is the homogeneous ideal of $\operatorname{Sym} \Gamma(L)$ defining the image of X in $\boldsymbol{P}\left(\Gamma(L)^{*}\right)$. It is known that $I(L)$ has generators of degree at most $n+1$ (see

Theorem 13.14 [S$]$, or Theorem 0.3 [NO$]$) and that there exists an example whose generators need elements of degree $n+1$. In this section we want to obtain an estimate for an integer i_{0} such that $L^{\otimes i}$ is normally presented, that is, the defining ideal $I\left(L^{i}\right)$ is generated by quadrics, for all $i \geq i_{0}$.

For example, we consider the case that $n=5$ and L is normally generated. The image of X in $\boldsymbol{P}\left(\Gamma(L)^{*}\right)$ has generators of degree at most six. We may expect that the defining ideal of the image of X in $\boldsymbol{P}\left(\Gamma\left(L^{3}\right)^{*}\right)$ is generated by quadrics, because this embedding is a composition of the embedding $X \hookrightarrow \boldsymbol{P}\left(\Gamma(L)^{*}\right)$ and the Veronese embedding $\boldsymbol{P}\left(\Gamma(L)^{*}\right) \hookrightarrow \boldsymbol{P}\left(\Gamma\left(L^{3}\right)^{*}\right)$. In general, we may expect that $L^{\otimes i}$ is normally presented for $i>[n / 2]$ when L is normally generated. We shall show in Proposition 3.1 that this is true. When $n=3$, or $n=4$, the equality $n-1=[n / 2]+1$ holds. Thus we may assume $n \geq 5$.

Example. Let e_{1}, \ldots, e_{5} be a \boldsymbol{Z}-basis of $M \cong \boldsymbol{Z}^{5}$. Set $u_{0}=0, u_{i}=e_{i}$ $(i=1, \ldots, 4)$ and $u_{5}=e_{1}+\cdots+e_{4}+3 e_{5}$. Let $P=\operatorname{Conv}\left\{u_{0}, u_{1}, \ldots, u_{5}\right\}$. Then we easily see $4 P \cap M=3 P \cap M+P \cap M$. If P corresponds to the polarized toric variety (X, L), then we have that $\Gamma\left(L^{i}\right) \otimes \Gamma(L) \rightarrow \Gamma\left(L^{i+1}\right)$ are surjective for all $i \geq 3$. Thus we have that L^{3} is normally generated. But L^{2} is not very ample, because the lattice point $u_{6}=e_{1}+\cdots+e_{5}$ in $3 P$ is not contained in $2 P$. This implies that $\Gamma\left(L^{2}\right) \otimes \Gamma(L) \rightarrow \Gamma\left(L^{3}\right)$ is not surjective. From easy calculation we see that L^{3} is normally presented.

The example suggests that we may weaken the condition on L from the normal generation to the surjectivity of the multiplication map $\Gamma\left(L^{i}\right) \otimes \Gamma(L) \rightarrow$ $\Gamma\left(L^{i+1}\right)$ for all $i>n / 2$.

Assumption 3.1. Let $t=t(L)$ be the smallest positive integer such that the multiplication map $\Gamma\left(L^{i}\right) \otimes \Gamma(L) \rightarrow \Gamma\left(L^{i+1}\right)$ is surjective for all $i \geq t$. From Proposition 1.1 we see that $1 \leq t \leq n-1$. We assume that $n \geq 5$ and that $1 \leq t<n-1$.

Proposition 3.1. Let t be the integer in Assumption 3.1. Then L^{r} is normally presented for $r \geq \max \{t,[n / 2]+1\}$.

In order to prove Proposition 3.1 we need the following lemma.

Lemma 3.2. For $r \geq \max \{t,[n / 2]+1\}$, we have three equalities.
(1) $K\left(r L, L^{r}, r L\right)=K\left(r L, L^{r}, i L\right) \otimes \Gamma(L)^{r-i}+\Gamma(L)^{i} \otimes K\left((r-i) L, L^{r}, r L\right)$ for $1 \leq i<r$.
(2) $K\left(r L, L^{r}, L\right)=K\left(r L, L^{r}\right) \otimes \Gamma(L)+\Gamma(L) \otimes K\left((r-1) L, L^{r}, L\right)$.
(3) $K\left(r L, L^{r}, i L\right)=K\left(r L, L^{r},(i-1) L\right) \otimes \Gamma(L)+\Gamma(L)^{i} \otimes K\left((r-i) L, L^{r}, i L\right)$ for $2 \leq i<r$.

Proof. For $1 \leq i<r$ and $0 \leq s<k$, consider the diagram

where β and γ are surjective.
First set $k=r$ and $s=i$. Then we see that $\operatorname{Ker} \beta=K\left(r L, L^{r}, i L\right) \otimes \Gamma(L)^{r-i}$ and that α is surjective. This proves (1). Next set $k=i=1$ and $s=0$. Then we see that $\operatorname{Ker} \beta=K\left(r L, L^{r}\right) \otimes \Gamma(L)$ and that α is surjective. This proves (2). Finally if we set $k=i$ and $s=i-1$, then we see that $\operatorname{Ker} \beta=K\left(r L, L^{r},(i-1) L\right) \otimes$ $\Gamma(L)$ and that α is surjective. This proves (3).

Proof of Proposition 3.1. We note that the ideal defining the image of X embedded by $\Gamma\left(L^{r}\right)$ has generators of degree at most three from Proposition 3.2 in [NO]. Thus we may consider only $K\left(L^{r}, L^{r}, L^{r}\right)$. Furthermore we may consider binomials in $K\left(L^{r}, L^{r}, L^{r}\right)$ coming from $K\left(r L, L^{r}, r L\right)$ because in the proof of Lemma 2.3 we used only the condition $r \geq t$.

We shall prove the equality

$$
\begin{equation*}
K\left(r L, L^{r}, r L\right)=\sum_{i=0}^{r} \Gamma(L)^{i} \otimes K\left((r-i) L, L^{r}, i L\right) \otimes \Gamma(L)^{r-i} \tag{3.3}
\end{equation*}
$$

First apply Lemma 3.2 (1) for $i=r-1$. By applying (3) to the first term we obtain the sum in (3.3) from $i=1$ to $i=r-1$ and the rest. Apply (2) to the rest.

The term of $i=0$ or $i=r$ in the right hand side of (3.3) is mapped into $R\left(L^{r}, L^{r}\right) \otimes \Gamma\left(L^{r}\right)$ or $\Gamma\left(L^{r}\right) \otimes R\left(L^{r}, L^{r}\right)$, respectively. Let $1 \leq i \leq r-1$. By applying the same argument in the proof of Theorem 1, we consider a binomial

$$
\begin{aligned}
B= & e\left(x_{1}+\cdots+x_{i}+y_{1}+\cdots+y_{r-i}\right) \otimes e(w) \otimes e\left(z_{1}+\cdots+z_{i}+x_{1}^{\prime}+\cdots+x_{r-1}^{\prime}\right) \\
& -e\left(x_{1}+\cdots+x_{i}+y_{1}^{\prime}+\cdots+y_{r-i}^{\prime}\right) \otimes e\left(w^{\prime}\right) \otimes e\left(z_{1}^{\prime}+\cdots+z_{i}^{\prime}+x_{1}^{\prime}+\cdots+x_{r-1}^{\prime}\right)
\end{aligned}
$$

such that $x_{j}, x_{j}^{\prime}, y_{j}, y_{j}^{\prime}, z_{j}$ and z_{j}^{\prime} are in $\Gamma(L)$ and w, w^{\prime} are in $\Gamma\left(L^{r}\right)$ with $y_{1}+\cdots+$ $y_{r-1}+w+z_{1}+\cdots+z_{i}=y_{1}^{\prime}+\cdots+y_{r-1}^{\prime}+w^{\prime}+z_{1}^{\prime}+\cdots+z_{i}^{\prime}$. The binomial B is in $K\left(L^{r}, L^{r}, L^{r}\right)$ coming from $\Gamma(L)^{i} \otimes K\left((r-i) L, L^{r}, i L\right) \otimes \Gamma(L)^{r-i}$. Set

$$
\begin{aligned}
B^{\prime}= & \left\{e\left(y_{1}+\cdots+y_{r-i}+z_{1}+\cdots+z_{i}\right) \otimes e(w)\right. \\
& \left.-e\left(y_{1}^{\prime}+\cdots+y_{r-i}^{\prime}+z_{1}^{\prime}+\cdots+z_{i}^{\prime}\right) \otimes e\left(w^{\prime}\right)\right\} \\
& \otimes e\left(x_{1}+\cdots+x_{i}+x_{1}^{\prime}+\cdots+x_{r-i}^{\prime}\right) .
\end{aligned}
$$

Thus B^{\prime} is in $R\left(L^{r}, L^{r}\right) \otimes \Gamma\left(L^{r}\right)$. The difference $B-B^{\prime}$ is written as

$$
\begin{aligned}
& \left\{e\left(x_{1}+\cdots+x_{i}+y_{1}+\cdots+y_{r-i}\right) \otimes e(w) \otimes e\left(z_{1}+\cdots+z_{i}+x_{1}^{\prime}+\cdots+x_{r-1}^{\prime}\right)\right. \\
& \left.\quad-e\left(y_{1}+\cdots+y_{r-i}+z_{1}+\cdots+z_{i}\right) \otimes e(w) \otimes e\left(x_{1}+\cdots+x_{i}+x_{1}^{\prime}+\cdots+x_{r-i}^{\prime}\right)\right\} \\
& \quad-\left\{e\left(x_{1}+\cdots+x_{i}+y_{1}^{\prime}+\cdots+y_{r-i}^{\prime}\right) \otimes e\left(w^{\prime}\right) \otimes e\left(z_{1}^{\prime}+\cdots+z_{i}^{\prime}+x_{1}^{\prime}+\cdots+x_{r-1}^{\prime}\right)\right. \\
& \left.\quad-e\left(y_{1}^{\prime}+\cdots+y_{r-i}^{\prime}+z_{1}^{\prime}+\cdots+z_{i}^{\prime}\right) \otimes e\left(w^{\prime}\right) \otimes e\left(x_{1}+\cdots+x_{i}+x_{1}^{\prime}+\cdots+x_{r-i}^{\prime}\right)\right\} .
\end{aligned}
$$

Therefore $B-B^{\prime}$ is in the image of $R\left(L^{r}, L^{r}\right) \otimes \Gamma\left(L^{r}\right)$ under the isomorphism of $\Gamma\left(L^{r}\right)^{3}$ defined by exchanging the second and the third factors. Since $K\left((r-i) L, L^{r}, i L\right)$ is generated by elements like binomials

$$
\begin{aligned}
& e\left(y_{1}\right) \otimes \cdots e\left(y_{r-1}\right) \otimes e(w) \otimes e\left(z_{1}\right) \otimes \cdots \otimes e\left(z_{i}\right) \\
& \quad-e\left(y_{1}^{\prime}\right) \otimes \cdots e\left(y_{r-1}^{\prime}\right) \otimes e\left(w^{\prime}\right) \otimes e\left(z_{1}^{\prime}\right) \cdots \otimes e\left(z_{i}^{\prime}\right)
\end{aligned}
$$

we obtain the proof.

References

[ES] D. Eisenbud and B. Sturmfels, Binomial ideals, Duke Math. J., 84 (1996), 1-45.
[Fj] T. Fuitta, Defining equations for certain types of polarized varieties, in Complex Analysis and Algebraic Geometry (edited by Baily and Shioda), Iwanami Shoten and Cambridge Univ. Press, 1977, 165-173.
[Fl] W. Fulton, Introduction to Toric Varieties, Ann. of Math. Studies 131, Princeton University Press, Princeton, 1993.
[K1] R. J. Koelman, The number of moduli of families of curves on toric surfaces, Thesis, Katholieke Universiteit te Nijmengen, 1991.
[K2] - Generators for the ideal of a projectively embedded toric surface, Tohoku Math. J., 45 (1993), 385-392.
[K3] - A criterion for the ideal of a projectively embedded toric surface to be generated by quadrics, Beiträger zur Algebra und Geometrie, 34 (1993), 57-62.
[M] D. Mumpord, Varieties defined by quadric equations, In: Questions on Algebraic Varieties, Corso CIME (1969), 30-100.
[NO] K. Nakagawa and S. Ogata, On generators of ideals defining projective toric varieties, Manuscripta Math., 108 (2002), 33-42.
[O] T. Oda, Convex Bodies and Algebraic Geometry, Ergebnisse der Math. 15, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1988.
[S] B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series 8, American Math. Society, Providence, 1996.

Mathematical Institute

Tohoku University
Sendai 980 Japan
e-mail: ogata@math.tohoku.ac.jp

[^0]: 1991 Mathematics Subject Classification: Primary 14M25; Secondary 14J10, 52B20.
 Partly supported by the Grants-in-Aid for Co-operative Research, The Ministry of Education, Science, Sports and Culture, Japan.

 Received May 16, 2001; revised October 23, 2002.

