
945(273)

c⃝2020 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 72, No. 3 (2020) pp. 945–957
doi: 10.2969/jmsj/82278227

Milnor–Hamm sphere fibrations and the equivalence problem
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Abstract. We introduce the sphere fibration for real map germs with
radial discriminant and we address the problem of its equivalence with the
Milnor–Hamm tube fibration. Under natural conditions, we prove the ex-

istence of open book structures with singularities and solve the equivalence
problem.

1. Introduction.

Let G : (Rm, 0) → (Rp, 0), p ≥ 2, be a non-constant real analytic map germ. Under

the condition that G has isolated singularity at 0 ∈ Rm, it was shown by Milnor [Mi]

that there exists a tube fibration and a sphere fibration. Together they contribute to

the definition of a higher open book structure as explained in [ACT], [AT1], [AT2] in

the more general case when the singular set SingG is non-isolated but still included in

the central fibre G−1(0). Milnor [Mi] construction of a sphere fibration by the method

of blowing away the tube fibration holds under certain conditions (see the discussion in

[AT2, Section 2]), providing a topological equivalence between the empty tube fibration

and the sphere fibration.

In case of holomorphic functions f : (Cn, 0) → (C, 0), Milnor [Mi] proved that

the sphere fibration is induced by the special map f/∥f∥. However this particular con-

struction does not extend to real map germs, as already suggested by Milnor in [Mi,

Section 11]. There have been several successful tries to add up supplementary conditions

so that the map G/∥G∥ defines a fibration, e.g. [Ar], [AT1], [AT2], [CSS], [Ja], [RA],

[RSV] etc. In case this fibration exists, there remains the question if it is equivalent to

the empty tube fibration. This seems not to have been solved even in the case when G

has isolated singularity1, the setting in which Milnor [Mi, Section 9] had already given

several related results. We formulate this problem here as the Equivalence Conjecture 4.4.

Recently one started to enrich this landscape by treating the case of a positive

dimensional discriminant DiscG. As one can easily see, the classical case DiscG =

{0} remains a very special situation, which for instance never happens in case of maps

(Cn, 0) → (Cp, 0) with p > 1 defining isolated complete intersection singularities.
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The tube fibration for positive dimensional discriminant, predicted in [ACT], has

been introduced recently in [ART] under the name Milnor–Hamm tube fibration, and

several new classes of singular map germs with such fibration have been presented. This

means that over each connected component of the complement of DiscG there is a well-

defined locally trivial fibration, and there are finitely many such components2.

According to Milnor’s program [Mi] detailed in [AT2], there are two more steps in

order to define open book structures with singularities. Our paper is devoted to this task

in the most reasonable setting of a radial discriminant. We introduce the Milnor–Hamm

sphere fibration, we give natural sufficient conditions such that this exists, and we exhibit

several such classes of singular maps.

We then state the problem of the equivalence with the corresponding Milnor–Hamm

empty tube fibration and we show how to solve it in our general setting under natural

supplementary conditions.

Several conditions for the existence of the Milnor vector field are presented in [AR],

and further details can be found in [Ri].

2. The singular tube fibration.

2.1. Nice map germs.

Given a non-constant analytic map germ G : (Rm, 0) → (Rp, 0), m ≥ p > 0, the set

germ SingG is well defined on the source space but the images G(SingG) and ImG are

in general not well-defined as germs of subanalytic sets, see [ART], [JT1]. If they are,

then we say that G is a nice map germ.

A simple example of a non-nice map germ is (x, xy) : (C2, 0) → (C2, 0), for which

ImG is not a germ. Under these notations, one has the following results about the

existence of nice map germs3:

• [ART, Lemma 2.4]: If SingG ∩ G−1(0) ⊊ G−1(0) then ImG contains an open

neighbourhood of the origin.

• [ART, Theorem 2.7]: Let f, g : (Cn, 0) → (C, 0) be complex polynomials with no

common factor of order ≥ 1. Then fḡ : (Cn, 0) → (C, 0) is a nice map germ.

As introduced in [ART], we shall call discriminant of a nice map germ G the

following set:

DiscG := G(SingG) ∪ ∂ImG (1)

where the boundary ∂ImG := ImG \ int(ImG) is a closed subanalytic proper subset of

Rp and well-defined as a set germ, where intA := Å denotes the p-dimensional interior of

a semianalytic set A ⊂ Rp (hence it is empty whenever dimA < p), and A denotes the

closure of it.

It follows from the definition that DiscG is a closed subanalytic set of dimension

strictly less than p, well-defined as a germ.

2A subanalytic set has locally finitely many connected components, see e.g. [BM].
3For more refined results concerning nice map germs (f, g) and fḡ in n variables, one may consult

the recent works [JT1], [JT2].
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2.2. The Milnor–Hamm fibration.

Definition 2.1 ([ART, Definition 2.1]). Let G : (Rm, 0) → (Rp, 0) be a non-

constant analytic nice map germ. We say that G has a Milnor–Hamm tube fibration if

for any ε > 0 small enough, there exists 0 < η ≪ ε such that the restriction:

G| : B
m
ε ∩G−1(Bp

η \DiscG) → Bp
η \DiscG (2)

is a locally trivial smooth fibration which is independent, up to diffeomorphisms, of the

choices of small enough ε and η.

We then also say that the restriction of (2) over a small enough sphere (still denoted

by Sp
η but keeping in mind that the radius is slightly smaller than the η in (2)):

G| : B
m
ε ∩G−1(Sp

η \DiscG) → Sp
η \DiscG (3)

is a Milnor–Hamm empty tube fibration.

One defines in [ART] a more general notion of stratified tube fibration called singular

Milnor tube fibration by considering in addition all singular fibres over the stratified

discriminant. In all cases, the tube fibration is a collection of finitely many fibrations

over path-connected subanalytic sets.

2.3. ρ-regularity of map germs.

Let U ⊂ Rm be an open set, 0 ∈ U , and let ρ : U → R≥0 be the square of the

Euclidean distance to 0. We recall the following definition from [ART]:

Definition 2.2. Let G : (Rm, 0) → (Rp, 0) be a non-constant analytic nice map

germ. The set germ at the origin:

M(G) := {x ∈ U | ρ ̸⋔x G}

is called the set of ρ-nonregular points of G, or the Milnor set of G.

The following inclusion of set germs at the origin will play an important role, where

VG := G−1(0):

M(G) \G−1(Disc (G)) ∩ VG ⊆ {0}. (4)

Condition (4) is a direct extension of the condition used in [ACT], [AT1], [AT2], [Ma]

in case Disc (G) = {0}; it was shown that it is implied by the Thom regularity condition,

in loc. cit. and several other papers. The reciprocal is however not true, counterexamples

are provided in [ACT], [Ti], see also [Oka3], [PT1].

Condition (4) enables the following existence result proved in [ART, Lemma 3.3]:

Let G : (Rm, 0) → (Rp, 0) be a non-constant analytic nice map germ. If G satisfies

condition (4), then G has a Milnor–Hamm tube fibration (2).
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3. The Milnor–Hamm sphere fibration.

We introduce a natural condition under which one may define sphere fibrations

whenever G is a nice map germ and DiscG is positive dimensional.

Definition 3.1. Let G : (Rm, 0) → (Rp, 0) be a real analytic nice map germ. We

say that its discriminant DiscG is radial if it is the germ of a real cone with vertex at

the origin (i.e. a union of real half-lines at the origin), or just the origin.

Example 3.2. Let f, g : (Cn, 0) → (C, 0) be holomorphic function germs such that

f and g do not have any common factor of order > 0. Then fḡ : (Cn, 0) → (C, 0) is a

nice map germ by [ART, Theorem 2.7]. If Disc (f, g) is radial, then obviously Disc fḡ is

radial, e.g. by [PT1, Lemma 2.4].

Example 3.3. Let f : (Rm, 0) → (Rp, 0) be a real analytic nice map germ, and

let g : (R, 0) → (R, 0) be an analytic invertible germ, such that f and g are in separate

variables. Then the map germ G := (f, g) : (Rm × R, 0) → (Rp × R, 0) has SingG =

Sing f × R and it is nice. If moreover Disc f is radial, then DiscG is radial.

Let G : U → Rp be a representative of the nice map germ G in some open set U ∋ 0.

We consider the map

ΨG :=
G

∥G∥
: U \ VG → Sp−1

1 . (5)

If G is a nice map germ such that DiscG is radial, then it follows from the definitions

that the restriction:

ΨG| : S
m−1
ε \G−1(DiscG) → Sp−1

1 \DiscG (6)

is well defined for any ε > 0 small enough.

Definition 3.4. We say that the nice map germ G : (Rm, 0) → (Rp, 0) with radial

discriminant has a Milnor–Hamm sphere fibration if the restriction map (6) is a locally

trivial smooth fibration which is independent, up to diffeomorphisms, of the choice of

ε > 0 provided it is small enough.

Let M(ΨG) be the Milnor set of the map (5), i.e. the germ at the origin of the

ρ-nonregular points of ΨG, cf Definition 2.2. We say that ΨG is ρ-regular if:

M(ΨG) ⊂ G−1(DiscG). (7)

Remark 3.5. The reason for restricting our definition of Milnor–Hamm sphere

fibration to radial discriminants is precisely that the restriction (6) of the map G/∥G∥
is well-defined if and only if the discriminant is radial. For non-radial discriminants

there is a different way to define singular open books without using the map G/∥G∥, see
Remark 3.7 and Conjecture 3.8.
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3.1. Existence of Milnor–Hamm sphere fibrations.

The following existence criterion extends the case DiscG = {0} considered in [ACT,

Theorem 1.3].

Theorem 3.6. Let G : (Rm, 0) → (Rp, 0), m > p ≥ 2, be a non-constant analytic

nice map germ with radial discriminant, satisfying the condition (4). If ΨG is ρ-regular

then G has a Milnor–Hamm sphere fibration.

Proof. The condition (7) controls the topology of the map ΨG on the complemen-

tary of a tubular neighbourhood of VG, while the condition (4) controls the behaviour of

the map ΨG close to VG. Both conditions are essential, as one can see in many examples.

Step 1: Under the condition (4), by [ART, Lemma 3.3], the restriction

G| : S
m−1
ε ∩G−1(B

p

η \DiscG) → B
p

η \DiscG (8)

is a locally trivial fibration for any small enough 0 < η ≪ ε. Since DiscG is radial, for

π := s/∥s∥ we have that

π : B
p

η \DiscG → Sp−1
1 \DiscG (9)

is a trivial fibration and by (6), we have the inclusion π(Sp−1
η ∩DiscG) = Sp−1

1 ∩DiscG.

Composing the maps (8) and (9) one concludes that

ΨG| : S
m−1
ε ∩G−1(B

p

η \DiscG) → Sp−1
1 \DiscG (10)

is a locally trivial fibration, and its restriction to the boundary of the empty tube Sm−1
ε ∩

G−1(Sp−1
η \DiscG) coincides with the following restriction of G:

G| : S
m−1
ε ∩G−1(Sp−1

η \DiscG) → Sp−1
η \DiscG. (11)

More precisely, in our case of a radial discriminant, the bases of the fibrations (3) and

(10) can be identified with (πSp−1
η \Disc G)

−1 : Sp−1
1 \ DiscG → Sp−1

η \ DiscG, which is

the multiplication by η.

Step 2: The condition (7) is equivalent to the fact that the map ΨG : Sm−1
ε \

G−1(DiscG) → Sp−1
1 \ DiscG is a submersion (over its image) for any small enough ε.

Consequently, the restriction

ΨG| : S
m−1
ε \ {G−1(DiscG) ∪G−1(Bp

η)} → Sp−1
1 \DiscG (12)

is a submersion. It coincides with the fibration (11) on Sm−1
ε ∩ G−1(Sp−1

η \ Disc (G)).

Moreover, the map (12) is proper since the restriction ΨG| : S
m−1
ε \G−1(Bp

η) → Sp−1
1 is

a proper map, and by using (6).

Finally, the fibrations (10) and (12) may be glued together along the fibration (11)

to induce the locally trivial smooth fibration

ΨG| : S
m−1
ε \G−1(DiscG) → Sp−1

1 \DiscG
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which is independent of the small enough ε > 0. □

Remark 3.7. One would like to have a more general existence result for a sphere

fibration, namely without the radiality condition, like one can prove for isolated singu-

larities [Mi] and more generally for a point discriminant [ACT, Theorem 2.1]. In order

to do that, we need a blow-away vector field which is tangent to SingG, but one does

not ask anymore that the vector field is tangent to the fibres of ΨG (like we ought to do

here, see Section 4). We conjecture that this can be done for any SingG:

Conjecture 3.8. Under the conditions of Theorem 3.6 but without the ra-

diality of the discriminant, there is a singular open book structure on the sphere

Sm−1
ε \G−1(DiscG), independent of the small enough ε.

Example 3.9. Let G : Rn → R2, G(x1, . . . , xn) = (x1, x
2
2 + · · ·+ x2

n−1 − x2
n). One

has VG = {x1 = 0} ∩ {x2
2 + · · · + x2

n−1 − x2
n = 0} and SingG = {x2 = · · · = xn = 0},

thus DiscG = R × {0} is radial, and the map germ G is nice since it verifies [ART,

Lemma 2.4] quoted in Subsection 2.1. See also Example 3.3 for an alternate argument.

Since M(G)∩VG ⊂ SingG∩VG = {0}, the condition (4) is satisfied. By straightfor-

ward computations one gets that M(Ψ) = SingG, thus M(Ψ) \G−1(Disc (G)) = ∅, thus
Ψ is ρ-regular. By Theorem 3.6 it follows that G has a Milnor–Hamm sphere fibration.

4. Equivalence of Milnor–Hamm tube and sphere fibrations.

Let G : (Rm, 0) → (Rp, 0), m > p ≥ 2, be an analytic nice map germ.

Problem 4.1 (The equivalence problem). Assuming that the Milnor–Hamm tube

fibration and sphere fibration exist, under what conditions are they equivalent, in the

sense that the fibrations (3) and (6) are equivalent?

The equivalence problem 4.1 makes sense in the case of a radial discriminant since

the bases of the fibrations (3) and (6) can be identified via multiplication by η, as we

have explained in last part of Step 1 of the proof of Theorem 3.6.

Milnor [Mi] introduced the method of “blowing away the tube to the sphere” which

uses integration of a special vector field in order to prove the equivalence of these two

fibrations in the case of non-constant holomorphic function germs (Cn, 0) → (C, 0). As

pointed out by Milnor [Mi] and explained in all details in [ACT, Section 2], this method

may be applied in the real setting under certain conditions, still referring to a point-

discriminant. We now formulate the properties of such a vector field in the more general

context of a radial discriminant DiscG:

Definition 4.2. One calls Milnor vector field for G a vector field ν which satisfies

the following conditions for any x ∈ Bm
ε \G−1(DiscG):

(c1) ν(x) is tangent to the fibre Ψ−1
G (ΨG(x)),

(c2) ⟨ν(x),∇ρ(x)⟩ > 0,

(c3)
⟨
ν(x),∇∥G(x)∥2

⟩
> 0.
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We then have the following general equivalence theorem:

Theorem 4.3. Let G : (Rm, 0) → (Rp, 0), m > p ≥ 2 be an analytic nice map

germ with radial discriminant, such that the Milnor–Hamm tube fibration (2) and sphere

fibration (6) do exist. If there is a Milnor vector field for G, then the fibrations (3) and

(6) are equivalent.

Proof. The proof follows Milnor’s pattern [Mi] explained in detail in [ACT].

The Milnor vector field is by definition radial pointing to the exterior of the spheres. It

is well-defined and non-zero by definition outside the inverse image of the discriminant,

and the excepted set DiscG is itself radial by assumption (Definition 3.1), thus it is a

collection of radii in the target. Therefore the Milnor vector field produces a flow on

Bm
ε \G−1(DiscG), the projection by G of which is radial in the target.

Let us remark here that the flow does not cross the set G−1(DiscG) precisely because

the vector field is tangent to the fibres of ΨG (i.e. condition (c1)) and that the discriminant

is radial. This flow yields an isotopy from the Milnor–Hamm tube fibration to the Milnor–

Hamm sphere fibration. □

In the real setting, the Milnor vector field existence problem appeared first in case

SingG = {0} in Jacquemart’s work [Ja] and later in [Ar], [Oka2] etc. The more general

case DiscG = {0} has been addressed later in e.g. [ACT], [Ar], [AT1], [AT2], [Han],

[Oka3]. The authors produced sufficient conditions in each setting, but the existence of

a Milnor vector field without conditions seems to be an open problem4.

Equivalence Conjecture 4.4. Let G : (Rm, 0) → (Rp, 0), m > p ≥ 2 be an

analytic nice map germ with radial discriminant and such that ΨG is ρ-regular. If both

fibrations (2) and (6) exist, then the fibrations (3) and (6) are equivalent.

Let us remind that the complement Sp−1
η \DiscG may have several connected com-

ponents and thus two types of fibrations over each such component.

Definition 4.5. We say that the fibrations (3) and (6) are fibre-equivalent if the

corresponding fibres over each connected component of Sp−1
η \DiscG are isotopic.

We show here that Conjecture 4.4 is true at the level of fibres.

Theorem 4.6. Let G = (G1, . . . , Gp) : (Rm, 0) → (Rp, 0) be an analytic nice map

germ with radial discriminant such that ΨG is ρ-regular. If the Milnor–Hamm fibrations

(2) and (6) exist, then :

(a) the fibrations (3) and (6) are fibre-equivalent,

(b) the fibrations (3) and (6) are equivalent over any contractible component of Sp−1 \
DiscG.

4The existence proof of [CSS, Lemma 5.2] has been reported as being incomplete, see [Han, iv] and
[Ri, Subsection 7.3].
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Proof of Theorem 4.6. Since (b) is a simple consequence of (a), we stick to

the proof of (a). For any vector field ω on Bm
ε \G−1(DiscG), we denote by projT (ω(x))

the orthogonal projection of ω(x) to some linear subspace T ⊂ TxB
m
ε = Rm. Milnor [Mi]

proved the following result by using the Curve Selection Lemma, see also [Io, Lemma 1,

p. 343].

Lemma 4.7 ([Mi]). Let X ⊂ Rm be an analytic manifold such that 0 ∈ X. Let

f and g be analytic functions on Rm such that f(0) = g(0) = 0 and that f|X\{0} > 0

and g|X\{0} > 0. Then there exists ε > 0 such that for all x ∈ X ∩ Bm
ε the vectors

projTxX(∇f(x)) and projTxX(∇g(x)) cannot have opposite direction whenever both are

non-zero.

We apply this lemma to the following situation. Let Xy := Ψ−1
G (y) be the fibre over

some fixed value y ∈ Sp−1
1 \ DiscG. We may assume, without loss of generality, that x

belongs to the open set {G1(x) ̸= 0}. By [AT1, Section 2] and [AT2, Proof of Theo-

rem 2.2], the normal space NxXy of the fibre Xy in Rm is spanned by {Ω2(x), . . . ,Ωp(x)}
where Ωk = G1∇Gk −Gk∇G1, for k = 2, . . . , p.

Consider the following vector fields on Bm
ε \G−1(DiscG):

v1(x) := projTxXy
(∇∥G(x)∥2)

v2(x) := projTxXy
(∇ρ(x)).

The vector field v1 has no zeros since the tube {∥G(x)∥2 = constant} is transversal

to Xy, for y ̸∈ DiscG. The second vector field v2 has no zeros on Bm
ε \ G−1(DiscG) if

and only if M(ΨG) \G−1(DiscG) = ∅, i.e. ΨG is ρ-regular, which is our assumption.

By Lemma 4.7, there is ε > 0 such that for any x ∈ Xy ∩ Bε either the vectors

v1(x) and v2(x) are linearly independent, or they are linearly dependent but cannot have

opposite direction.

Let ε0 > 0 such that both fibrations (2) and (6) exist, for any 0 < ε < ε0 and

0 < η ≪ ε ≤ ε0. Let us fix some y ∈ Sp−1
1 \DiscG.

By the above Lemma and discussion, there is 0 < ε < ε0 such that v1(x) and v2(x)

cannot have strictly opposite direction on Bm
ε ∩Xy. Using Milnor’s original idea, we may

consider the bisector vector field:

ν(x) =
v1(x)

∥v1(x)∥
+

v2(x)

∥v2(x)∥
(13)

defined on Bm
ε \ G−1(DiscG). It has no zeros on Xy ∩ (Bm

ε \ G−1(DiscG)) precisely

because v1 and v2 do not point in opposite directions. This is thus a Milnor vector field

on Bm
ε ∩ Xy and we may now apply Theorem 4.3 to the restriction of G to the space

Bm
ε ∩Xy in order to prove the isotopy of the fibres over y of the two fibrations.

Varying the point y ∈ Sp−1
1 \ DiscG we get the isotopy of the corresponding fibres

over any connected component. □



953(281)

Milnor–Hamm sphere fibrations 953

4.1. The importance of the Milnor set M(G).

We tacitly assume throughout this subsection that G is an analytic nice map with

radial discriminant and that the Milnor–Hamm fibrations (2) and (6) exist. Let us show

that the obstruction to the existence of a Milnor vector field is the Milnor set.

Lemma 4.8. Let x ∈ Bε \ G−1(DiscG). The vectors v1 and v2 are linearly de-

pendent if and only if x ∈ M(G). In particular the vector field ν from (13) is a Milnor

vector field on Bm
ε \ (M(G) ∪G−1(DiscG)).

Proof. For x ∈ Bε \G−1(DiscG) we consider the decomposition:

TxXy = TxG
−1(G(x))⊕ R⟨v1(x)⟩, (14)

where, by its definition, the vector v1(x) is orthogonal to TxG
−1(G(x)) in TxXy.

One writes v1(x) = v11(x) + v21(x) and v2(x) = v12(x) + v22(x) according to the

decomposition (14). From the definitions, we have v11(x) = 0 for all x ∈ Bε\G−1(DiscG),

and v12(x) = 0 if and only if x ∈ M(G). This proves the first claim, and the second is an

easy consequence. □

For x ∈ M(G) \ G−1(DiscG) one has that v1(x) and v2(x) are collinear, which

amounts to the relation:

∇ρ(x) = a(x)∇∥G(x)∥2 +
p∑

j=2

bj(x)Ωj(x), (15)

where

a(x) =
⟨∇ρ(x), v1(x)⟩

∥v1(x)∥2
. (16)

This proves in particular that x ∈ M(ΨG) \G−1(DiscG) ⇔ a(x) = 0.

With these notations one may characterise the existence of a Milnor vector field for

G as follows, extending the particular case DiscG = {0} of [Han, Theorem 3.3.1].

Theorem 4.9. Let G : (Rm, 0) → (Rp, 0), m ≥ p ≥ 2 be an analytic nice map

with radial discriminant such that the Milnor–Hamm fibrations (2) and (6) exist. There

exists a Milnor vector field for G on Bε \ G−1(DiscG), for some small enough ε > 0 if

and only if a(x) > 0 for any x ∈ M(G) \G−1(DiscG).

Proof. The implication “⇒” follows from the definition (13) of the vector field

ν(x). In fact, by condition (c1) one has that ⟨ν(x),Ωj(x)⟩ = 0 for any j = 2, . . . , p.

Therefore, ⟨∇ρ(x), ν(x)⟩ = a(x)
⟨
∇∥G(x)∥2, ν(x)

⟩
, which by (c2) and (c3) implies that

a(x) > 0.

Reciprocally, if a(x) > 0, it follows from Lemma 4.8 and (15) that the vector field

ν(x) has no zeroes on Bm
ε \ VG, hence it is a Milnor vector field for G. □

There are several other criteria for the existence of a Milnor vector field for G; we

discuss some of them in [AR].
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Proposition 4.10. The image of the restriction G| : B
m
ε ∩M(G)\G−1(DiscG) →

Rp contains Bp
η ∩ ImG \DiscG for some small enough ball Bp

η centred at the origin.

Proof. Let y ∈ Bp
η∩ImG\DiscG, for some η > 0 which fits in the Milnor–Hamm

tube fibration, and such that the fibre G−1(y) is not empty. The distance function to the

origin ρ| : Bm
ε ∩G−1(y) → R≥0 has at least one local minimum point xy in the interior

Bm
ε ∩G−1(y). This implies that xy ∈ M(G). □

Let
∪

β Mβ be the decomposition into connected components of the subanalytic set

germ at the origin M(G) \ G−1(DiscG). See Example 5.4 where we have 8 connected

components.

Corollary 4.11. If one of the following conditions holds :

(a) M(G) \G−1(DiscG) is connected,

(b) for any β there is y = yβ ∈ Sp−1
1 \DiscG such that the germ at 0 of Mβ ∩Xy has

dimension > 0,

then there exists a Milnor vector field for G.

Proof. (a). Proposition 4.10 implies that dimM(G) ∩ Xy > 0 for any y ∈
Sp−1
1 \DiscG, thus (a) is a particular case of (b).

(b). For some fixed β we apply Milnor’s Lemma 4.7 to that Xy for which dimMβ ∩
Xy > 0. This shows that the vectors v1(x) and v2(x) point in the same direction for all

x ∈ Mβ ∩ Xy and hence for all x ∈ Mβ since this is connected. Since this is true for

any β it is then true for the whole set M(G) \ G−1(DiscG), thus the vector field ν has

no zeros on it. Finally we may apply Lemma 4.8 to conclude that ν is a Milnor vector

field. □

5. Classes of maps with equivalent Milnor–Hamm fibrations.

5.1. Mixed functions and the equivalence problem.

Definition 5.1. The mixed function F : Cn → C is called polar weighted-

homogeneous of degree k if there are non-zero integers p1, . . . , pn and k > 0, such

that gcd(p1, . . . pn) = 1 and
∑n

j=1 pj(νj − µj) = k, for any monomial of the expansion

F (z) = F (z, z̄) =
∑
ν,µ

cν,µz
ν z̄µ.

The corresponding S1-action on Cn is, for λ ∈ S1:

λ · (z, z) = (λp1z1, . . . , λ
pnzn, λ

−p1z1, . . . , λ
−pnzn).

Theorem 5.2. Let F : Cn → C be a polar weighted homogeneous mixed function.

Then F is a nice map germ with Disc F = {0}, the Milnor fibrations (2) and (6) exist,

and the fibrations (3) and (6) are equivalent.

Proof. From [ACT, Subsection 4.1] it follows (due to the S1-action) that polar

weighted-homogeneous maps are nice, more precisely because the image F (B2n
ε ) contains
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a small neighbourhood of the origin for any ε > 0, and necessarily Disc F = {0}. The

discriminant is thus trivially radial.

It was proved in [PT1, Theorem 5.2] that a polar weighted-homogeneous mixed

function germ F has tube fibration, and in [ACT, Theorem 1.4] that such F has a

sphere fibration. It therefore remains to show that they are equivalent.

Each component Mβ of the decomposition into connected components
∪

β Mβ of

the semi-analytic set germ at the origin M(F ) \ VF is invariant under the S1-action,

more precisely one has that λMβ = Mβ for any λ ∈ S1. It follows that this verifies the

hypothesis (b) of Corollary 4.11 and thus our claim follows. □

5.2. Maps with radial action.

Let t · x := (tq1x1, . . . , t
qmxm) for t ∈ R+ and q1, . . . , qm ∈ N∗ relatively prime

positive integers. One says that the map G = (G1, . . . , Gp) : Rm → Rp is radial weighted-

homogeneous (or radial, for short) of weights (q1, . . . , qm) and of degree d > 0, if G(t·x) =
tdG(x).

Theorem 5.3. Let G : (Rm, 0) → (Rp, 0) be a radial weighted homogeneous map

germ, and satisfying the condition (4). Then G is nice, with radial discriminant, has

Milnor–Hamm tube and sphere fibrations, and the fibrations (3) and (6) are equivalent.

Proof. The image of G is a real cone and this cone is stable as a germ, in the

sense that G(Bm
ε ) and G(Bm

ε′ ) have the same germs at the origin, for any 0 < ε′ < ε.

Moreover, the boundary ∂ImG is also a conical set germ at the origin.

The image by G of any analytic germ X ⊂ Rm which is invariant under the R+-

action is a conical germ, and SingG is such an invariant set germ. It follows that DiscG

is well-defined as a germ, and it is radial. These show that G is a nice map germ, without

using the hypothesis about condition (4).

The assumed condition (4) insures now the existence of the Milnor–Hamm tube

fibration via [ART, Lemma 3.3]. Let us see that the Milnor–Hamm sphere fibration

exists too. It was proved in [ACT, Proposition 3.2] by using the Euler vector field

γ(x) :=
∑m

j=1 qjxj(∂/∂xj) that the spheres are transversal to the fibres of the map ΨG.

In our setting this implies that ΨG is ρ-regular, thus our claim follows by Theorem 3.6.

The existence of a Milnor vector field follows by noting that any connected compo-

nent Mβ of M(F ) \ VF is also invariant under the R+-action, and thus we may apply

Corollary 4.11(b). □

Example 5.4 ([ART, Example 5.6]). Let G : (R3, 0) → (R2, 0) given by

G(x, y, z) = (xy, z2) is radial homogeneous. One has VG = {x = z = 0} ∪ {y = z = 0},
SingG = {z = 0} ∪ {x = y = 0}, DiscG = {(0, β) |β ≥ 0} ∪ {(λ, 0) |λ ∈ R}, and

G−1(DiscG) = {x = 0} ∪ {y = 0} ∪ {z = 0}. We see that DiscG is radial, as predicted

by Theorem 5.3.

By further computations one gets M(G) = {x = ±y} ∪ {z = 0}. To check that G

satisfies the condition (4), let us consider p0 = (x0, y0, z0) ∈ M(G) \G−1(DiscG) ∩ VG.

Then there is a sequence pn := (xn, yn, zn) ∈ M(G) \ G−1(DiscG) such that pn → p0
with p0 ∈ VG. Consequently, z0 = 0 and xn = ±yn ̸= 0 since pn ̸∈ G−1(DiscG). Thus

x0 = limxn = ± lim yn = y0 = 0, and therefore p0 = (0, 0, 0).
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Then by Theorem 5.3 the map germ G has Milnor–Hamm tube and sphere fibration,

and the fibrations (3) and (6) are equivalent.

Corollary 5.5. Let (f, g) be a holomorphic map germ which is Thom regular at

V(f,g), and such that f and g do not have common factor of order > 0.

If fḡ is a radial weighted homogeneous function, then fḡ has Milnor–Hamm tube

and sphere fibrations, and the fibrations (3) and (6) are equivalent.

Proof. The Thom regularity of (f, g) implies the Thom regularity of fḡ by [ART,

Theorem 4.3] which extends [PT1, Theorem 3.1], and thus condition (4) is verified and

we may apply the above Theorem 5.3 to conclude. □

Corollary 5.6. Let f and g be holomorphic, radial weighted-homogeneous such

that the map germ (f, g) is an ICIS. Then the map germ fḡ : (Cn, 0) → (C, 0) has

Milnor–Hamm tube and sphere fibrations, and the fibrations (3) and (6) are equivalent.

Proof. Since (f, g) is an ICIS, it follows by [ART, Theorem 2.7] that the map

germ fḡ is a nice map germ, and that it is Thom regular and has a Milnor–Hamm

tube fibration, by [ART, Theorem 4.3(a)]. If we add up the R+-action then we get, as

in Theorem 5.3 above, the existence of a Milnor–Hamm sphere fibration and thus the

equivalence of the fibrations. □

Let us point out that if (f, g) is an ICIS then its discriminant Disc fḡ is either a

union of semi-analytic curves or it is {0}. This is actually true for any complex analytic

map germ (f, g), as shown in [PT2, Theorem 2.3] and in [Oka4], together with precise

criteria for Disc fḡ being positive dimensional.

Example 5.7. Let us consider the map fḡ, where f, g : (C2, 0) → (C, 0), f(x, y) =
x2 + y2 and g(x, y) = x2 − y2. One easily computes that Disc fḡ is the real axis in

C (see e.g. [PT1], [PT2]). This verifies the assumptions of Corollary 5.6, thus fḡ has

Milnor–Hamm tube and sphere fibrations, and they are equivalent.
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