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Abstract. For knots in S3, it is well-known that the Alexander polyno-
mial of a ribbon knot factorizes as f(t)f(t−1) for some polynomial f(t). By

contrast, the Alexander polynomial of a ribbon 2-knot in S4 is not even sym-
metric in general. Via an alternative notion of ribbon 2-knots, we give a topo-
logical condition on a 2-knot that implies the factorization of the Alexander
polynomial.

1. Introduction.

The class of ribbon embeddings turns out to play a crucial role in low-dimensional

topology. They first appeared in the work of Fox [Fox62] who investigated the problem of

determining when a knot in the 3-sphere bounds a smooth disk in the 4-ball. Such a knot

is called a slice knot. It is the case in particular when the knot bounds an immersed disk

in the 3-sphere with specific self-intersections, namely ribbon singularities, see Figure 1.

Such a knot is called ribbon. One easily sees that a ribbon disk can be pushed into the

• •

Figure 1. A ribbon singularity.

4-ball to produce a smooth disk, hence ribbon knots are slice. In [Fox62], Fox asked

whether the converse is true, i.e. if any slice knot is ribbon. This is nowadays known

as the slice-ribbon conjecture. To determine whether a knot is ribbon (or slice) is a

difficult task. One of the most famous obstruction is provided by the Fox–Milnor theorem

on the Alexander polynomial [FM66]: for a slice knot K, the Alexander polynomial

∆K(t) ∈ Z[t±1] can be written as f(t)f(t−1) for some f(t) ∈ Z[t±1]. This is what we
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892 D. Moussard and E. Wagner

will call here the factorization property. It emphasizes that some topology is reflected in

this algebraic invariant.

For 2-knots, i.e. embeddings of a 2-sphere S2 into the 4-sphere S4, one can still define

an Alexander polynomial, but it was proven by Kinoshita [Kin61] that the Alexander

polynomial of a ribbon 2-knot—a 2-knot that bounds an immersed 3-ball with only

ribbon disk singularities—can be any polynomial f(t) ∈ Z[t±1] such that f(1) = 1. In

[NN01], Nakanishi and Nishizawa gave a topological condition on a 2-knot ensuring that

its Alexander polynomial is symmetric, a property satisfied by the Alexander polynomial

of any knot in S3. In this paper, we investigate the topological properties of 2-knots

that imply the factorization property of their Alexander polynomial. This leads us to

introduce an alternative notion of ribbon 2-knots which at the same time encompasses the

usual notion of ribbon 2-knots and is conveniently featured to recover for some subclasses

the factorization property of the Alexander polynomial.

For classical knots, the ribbon singularities of an immersed disk bounded by the knot

are necessarily 1-disks—the only compact connected 1-manifolds with non-empty bound-

ary. For 2-knots, there are many possibilities. Roseman proposed a general definition

of ribbon 2-knots with no condition on the topological type of the ribbon singularities

(see Hitt [Hit77]). Here we focus on the case of ribbon singularities of annular type; we

call A-ribbon a 2-knot that bounds an immersed 3-ball with only ribbon singularities of

annular type (see Figure 2). Beyond the fact that it is the next easiest possibility after

2-disks, they appear naturally via Artin’s spinning construction. This construction pro-

duces a 2-knot from a classical knot, rotating it around an R2-axis. It has the property

to preserve the Alexander polynomial, hence the spins of ribbon knots are 2-knots whose

Alexander polynomial has the factorization property. It is easily seen that spinning the

initial immersed 2-disk produces an immersed 3-ball whose self-intersections are annu-

lar ribbon singularities. The factorization property naturally arises for another class of

2-knots, namely the connected sum of a 2-knot with its mirror image. When the initial

2-knot is ribbon, in the usual sense, there is a natural construction of an immersed 3-ball

bounded by this connected sum which has only annular ribbon singularities.

This notion of an A-ribbon 2-knot appears to generalize the usual notion of a ribbon

2-knot.

Proposition (Proposition 2.3). Ribbon 2-knots are A-ribbon.

In view of this proposition, the above mentioned result of Kinoshita implies that any

polynomial f(t) ∈ Z[t±1] such that f(1) = 1 is the Alexander polynomial of an A-ribbon

2-knot. Hence we need to add some condition to recover the factorization property. Such

a condition is defined in Subsection 4.2 and called the linkings condition, which concerns

the relative positions of the preimages of the singularities in the preimage of the immersed

3-ball. This condition is naturally satisfied by the spins of ribbon knots.

Theorem (Corollary 4.3). The Alexander polynomial of an A-ribbon 2-knot sat-

isfying the linkings condition has the factorization property.

Alexander invariants can be defined in greater generality for every embedding K of

an n-sphere Sn into the (n + 2)-sphere Sn+2—such an embedding is called an n-knot.
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Figure 2. Local models.

For an n-knot, there are n Alexander polynomials, denoted ∆
(k)
K for k from 1 to n.

Levine proved that they satisfy a remarkable property: ∆
(k)
K (t) = ∆

(n+1−k)
K (t−1) for

all k = 1, . . . , n. In particular, for a 2-knot, “the” Alexander polynomial is ∆K(t) =

∆
(1)
K (t) = ∆

(2)
K (t−1). In addition, if n is odd and K bounds a smooth ball Bn+1 in

Bn+3 (the n-knot is still said to be slice), then the “middle” Alexander polynomial

∆(n+1)/2(t) has the factorization property (Shinohara–Sumners [SS72]). For the other

Alexander polynomials, the question arises to know what kind of topological properties

would ensure the factorization property, discussed in this paper when n = 2. A possible

generalization of annular ribbon singularities is given by ribbon singularities that are

products of circles S1 with compact (n− 1)-manifolds with non-empty boundaries.

Outline of the paper. In the next section, we give the definition and a charac-

terization of A-ribbon 2-knots and we relate this notion to the usual one. In Section 3,

we discuss the construction of Seifert hypersurfaces and the computation of Seifert ma-

trices for A-ribbon 2-knots. In the last section, we prove the factorization property for

A-ribbon 2-knots under the linkings condition.
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Conventions and notations.

• The boundary of an oriented manifold with boundary is oriented with the “outward

normal first” convention. We also use this convention to define the co-orientation

of an oriented manifold embedded in another oriented manifold.

• Given an oriented manifold M , we denote by −M the same manifold with opposite

orientation.

• If U and V are transverse integral chains in a manifold M such that dim(U) +

dim(V ) = dim(M), define the sign σx of an intersection point x ∈ U ∩ V in the

following way. Construct a basis of the tangent space TxM of M at x by taking an

oriented basis of the normal space NxU followed by an oriented basis of NxV . Set

σx = 1 if this basis is an oriented basis of TxM and σx = −1 otherwise. Now the

algebraic intersection number of U and V in M is ⟨U, V ⟩M =
∑

x∈U∩V σx.

• If M and N are submanifolds of dimensions k and ℓ respectively in an n-sphere

Sn, with k + ℓ = n − 1, the linking number of M and N is lk(M,N) = ⟨Σ, N⟩Sn ,

where Σ is a submanifold of Sn such that ∂Σ = M .

• The homology class of a submanifold N in a manifold is denoted by [N ].

• All homology groups are considered with coefficients in Z.

• All immersions are self-transverse.

• We work in the smooth category.

2. A-ribbon 2-knots and A-fusion 2-knots.

Definition 2.1. Let B ↬ ฿ ⊂ S4 be an immersion of a 3-ball B in S4, where ฿ is

the image of the immersion. A singularity of ฿ is a connected component of the singular

set of ฿ . A pre-singularity is a connected component of the preimage of this singular set.

A singularity R of ฿ is G-ribbon if it contains only double points and its preimage in B
is made of:

• a boundary pre-singularity denoted R∂ properly embedded in B, meaning that R∂∩
∂B = ∂R∂ , and

• an interior pre-singularity denoted R◦ embedded in the interior of B.

A G-ribbon singularity is ribbon (resp. A-ribbon) if it is homeomorphic to a 2-disk (resp. to

an annulus).

Definition 2.2. A ribbon ball (resp. an A-ribbon ball) is an immersed 3-ball in S4

whose singularities are ribbon (resp. A-ribbon). A 2-knot is ribbon (resp. A-ribbon) if it

bounds a ribbon ball (resp. an A-ribbon ball).

Proposition 2.3. Any ribbon 2-knot is A-ribbon.
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Figure 3. From a ribbon disk to a ribbon annulus.

Proof. Let K be a ribbon 2-knot bounding a ribbon ball ฿ . Let h : B ↬ ฿ ⊂ S4

be an associated immersion. Let R be a singularity of ฿ . Take a path γ in B from x ∈ ∂B
to y ∈ Int(R∂) such that x = γ ∩ ∂B and γ \ y is disjoint from all the pre-singularities.

Let N(γ) be a regular neighborhood of γ in B. Restricted to N(γ), the immersion h

is injective. Hence h(N(γ)) is a ball in ฿ that meets ∂B along a disk. Removing the

interior of h(N(γ)) from ฿ corresponds to performing an isotopy on the knot K and

changes the ribbon singularity R into an A-ribbon singularity. Figure 3 shows this finger

move on the immersed ball ฿ represented by a projection on a 3-dimensional hyperplane:

from the local model of the left part of Figure 2, the 3-ball at t = 0 has been projected

onto a disk and the time direction has become the vertical direction. □

Let us define some notations. Given an annulus R—for instance a singularity or

a pre-singularity, denote by c(R) the core of R. Let ฿ be an A-ribbon 3-ball and B a

preimage ball of ฿ . For a boundary pre-singularity R∂ , define its co-core ¢(R∂) as an arc

on R∂ joining its two boundary components and transverse to c(R∂). A closure ¢(R∂)

of the co-core of R∂ is a knot in B obtained from ¢(R∂) by joining its endpoints with

an arc embedded in ∂B. Note that the knot type of ¢(R∂) only depends on R∂ . The

pre-singularity R∂ divides B into a ball denoted B(R) and an integral homology torus

denoted T (R), with R = B(R) ∩ T (R). Notice that T (R) is the exterior of the knot

¢(R∂). In particular, T (R) is a standard torus if and only if ¢(R∂) is a trivial knot.

We now introduce the fusion presentation of an A-ribbon 2-knot. Let C1, . . . , Ck+1

be disjoint handlebodies trivially embedded in a 3-dimensional hyperplane in S4. Let

E1, . . . , Ek be disjoint copies of S1 × [0, 1]× [0, 1] embedded in S4 in such a way that:

• S1 × [0, 1]× {0} and S1 × [0, 1]× {1} are embedded in the boundaries of the Ci’s,

• S1 × [0, 1]× (0, 1) is disjoint from the ∂Ci’s and meets transversely the interiors of

the Ci’s along annuli,

• ฿ = (
⊔k+1

i=1 Ci) ∪ (
⊔k

i=1 Ei) is an immersed ball.

Such an immersed ball ฿ is called an A-fusion 3-ball. It is immediate that the boundary

of an A-fusion 3-ball is an A-ribbon 2-knot. We now prove the converse.

Proposition 2.4. Any A-ribbon 2-knot bounds an A-fusion 3-ball.
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Proof. Let K be an A-ribbon 2-knot. Let ฿ be an A-ribbon ball for K. We

will modify the A-ribbon ball ฿ in order to get an A-ribbon ball whose boundary pre-

singularities are unknotted and unlinked, in the sense that the closures of their co-cores

form a trivial link—assuming that these closures are disjoint.

We first prove that we can split these co-core at any point. Fix a singularity R. Set

ξ = ¢(R∂). Take a path γ in B from x ∈ Int(ξ∩∂B) to y ∈ Int(ξ∩R∂) such that x = γ∩∂B
and the interior of γ is disjoint from all the pre-singularities. Let D be a disk embedded

in B(R) whose interior lies in the interior of B(R), which is disjoint from all interior

pre-singularities, whose intersections with other boundary pre-singularities, if any, are

essential curves on these pre-singularities, and such that ∂D is an essential curve on R∂

containing y. Let N be a neighborhood of γ ∪D. Like in the proof of Proposition 2.3,

remove the interior of N to get a new A-ribbon ball for K, still denoted ฿ . Note that

the singularity R gives rise to two singularities in the new A-ribbon ball. We now prove

that this cutting process allows to unknot the boundary pre-singularity R∂ .

Embed B in R3 in such a way that there is a projection p onto a plane such that

p(ξ ∩ ∂B) ⊂ ∂p(B) and the singular points of p|ξ are transverse double points. Fix a

crossing c of ξ in this projection. We will use the cutting process to change this crossing.

Fix an orientation of ξ. Let x be a point of ξ∩∂B such that the arc of ξ ∩∂B going from

x to an endpoint of ξ ∩ ∂B does not meet any pre-singularity, except R∂ at its endpoint.

Let y be a point of ξ∩ Int(R∂) such that p(y) lies after the crossing c and before the next

crossing when running along p(ξ) from x in the sense of the orientation. Fix a framing

of ξ pointing toward T (R) at any point. Take the arc of ξ from x to y and push slightly

its interior in the direction of the framing in order to define an arc γ from x to y that

satisfies the above requirements. Add to γ a turn around B(R) in order to change its

last crossing with ξ. Apply the cutting process with this γ. The singularity R is then

divided into an unknotted singularity and a singularity whose closure of the co-core is a

knot obtained from ξ by changing the crossing c. Since any knot can be trivialized by

crossing changes, this proves that we can unknot the boundary pre-singularity R∂ .

We now unlink the link made of the closures of the co-cores of the boundary pre-

singularities. Let Ri for 1 ≤ i ≤ n be the singularities of ฿ . Let I ⊂ {1, . . . , n} be the

minimal set satisfying
∩n

i=1 T (Ri) =
∩

i∈I T (Ri). Use the cutting process to unknot the

pre-singularities R∂
i for i ∈ I. This turns the co-cores of these pre-singularities into a

tangle in B3. Such a tangle is always trivial up to isotopy. Anyway, we need to iterate by

applying this procedure in each ball B(Ri) for i ∈ I. Hence we have to consider the case

where the components of the tangle have their extremities in two disjoint disks in ∂B.
In this case, we have to prove that we can bring the tangle into a braid position. This

can be done using the cutting process to change some crossings of the tangle. At each

application of the cutting process, a new singularity appears that has both boundary

components in the same disk. With an arc γ that joins this new singularity to the

other disk, we can apply once again the cutting process to turn the tangle component

corresponding to the new singularity into two monotone components.

So we can assume that the boundary pre-singularities of B are unlinked. It follows

that cutting B along these boundary pre-singularities, we can write it as a disjoint union

of handlebodies glued together by copies of S1 × [0, 1]× [0, 1]. Make these handlebodies

trivially embedded in a common 3-dimensional hyperplane of S4 by an ambient isotopy.
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A Fox–Milnor theorem for the Alexander polynomial of 2-knots 897

This provides an A-fusion ball for K. □

3. Seifert hypersurfaces and Seifert matrices.

3.1. Levine presentation of the Alexander module of a 2-knot.

We review here the presentation of the Alexander module given by a Seifert matrix.

We first recall some definitions and well-known facts. Let K be a 2-knot. Let N(K)

be a tubular neighborhood of K. Set X = S4 \ Int(T (K)). Consider the projection

π : π1(X) → H1(X)/torsion ∼= Z and the covering map p : X̃ → X associated with its

kernel. The automorphism group Aut(X̃) of this covering is isomorphic to Z and acts

on H1(X̃). Denoting the action of a generator of Aut(X̃) as the multiplication by t, we

get a structure of Z[t±1]-module on A(K) = H1(X̃). This Z[t±1]-module is called the

Alexander module of K. It is known to have a finite presentation, so that it has well-

defined elementary ideals. The Alexander polynomial ∆K of K is the generator of the

smallest principal ideal of Z[t±1] that contains the first elementary ideal of A(K)—note

that the latter ideal is principal when K is ribbon but not in general [Yaj64, Section 5].

The Alexander polynomial satisfies ∆K(1) = 1.

Let K be a 2-knot. Let Σ be a Seifert hypersurface of K. Assume the homology

groups of Σ are torsion-free. Fix bases (x1, . . . , xn) and (X1, . . . , Xn) ofH1(Σ) andH2(Σ)

respectively, given by homology classes of simple closed curves and embedded surfaces

in Σ. For a simple closed curve γ ⊂ Σ, define γ+ (resp. γ−) as the push-off of γ in the

direction of the positive (resp. negative) normal of Σ. Define the positive and negative

Seifert matrices of K associated with Σ and the above bases of its homology groups as:

V± =
(
lk(Xi, x

±
j )

)
1≤i,j≤n

.

Proposition 3.1 (Levine). If H1(Σ) is torsion-free, then the matrix tV+ − V− is

a presentation matrix of the Z[t±1]-module A(K). In particular, ∆K(t) = det(tV+−V−).

Remark. In [Lev66, Section 2], Levine works overQ and gets a presentation of the

Q[t±1]-module Q⊗A(K) for any 2-knotK. The only obstruction to work over the integers

comes from the possible existence of torsion in the homology of the Seifert hypersurface

and its complement. Note that Alexander duality and the universal coefficient theorem

imply that H1(Σ) is torsion-free if and only if H1(S
4 \Σ) is torsion-free, while H2(Σ) and

H2(S
4\Σ) are always torsion-free thanks to Poincaré duality and the universal coefficient

theorem.

Corollary 3.2. If a 2-knot admits a Seifert hypersurface Σ such that H1(Σ) is

torsion-free, then its Alexander module has no Z-torsion.

Proof. The matrix presentation of the Alexander module A given by Proposi-

tion 3.1 is a square matrixM whose determinant is the Alexander polynomial ∆. We have

A = (
⊕n

i=1 Z[t±1]gi)/(
⊕n

j=1 Z[t±1]rj). Take a ∈ A and represent it by a column vector

expressing it in terms of the gi. Assume ka = 0 for some non trivial integer k. Then

there is b ∈
⊕n

i=1 Z[t±1]gi such that ka = Mb. Hence kCof(M)a = det(M)b = ∆(t)b,

where Cof(M) is the cofactor matrix of M . Since ∆(1) = 1, it implies that b = kc with

c ∈
⊕n

i=1 Z[t±1]gi, so that a = Mc and finally a = 0 in A. □
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3.2. Seifert hypersurface associated with an A-ribbon ball.

In this subsection, we associate a hypersurface with any A-ribbon ball and we com-

pute its homology. Under some condition, we deduce a presentation of the Alexander

module of the 2-knot that bounds this A-ribbon ball.

Let K be an A-ribbon 2-knot and let ฿ be an A-ribbon ball for K. We will construct

from ฿ a Seifert hypersurface for K. Let R be an A-ribbon singularity of ฿ . Let

h : B ↬ ฿ ⊂ S4 be an immersion associated with ฿ . Let B∂
R (resp. B◦

R) be the image by

h of a regular neighborhood of R∂ (resp. of R◦) in B that does not meet the other pre-

singularities. We say that B∂
R (resp. B◦

R) is the boundary leaf (resp. the interior leaf) of

฿ at R. Let N(R) be a regular neighborhood of R in S4 such that N(R)∩฿ ⊂ B∂
R∪B◦

R.

Remove from ฿ the interior of N(R). The created boundary is made of a ∂([0, 1]2)× S1

on B◦
R and two [0, 1]×S1 on B∂

R, where the S
1 factors correspond to the core of R. Glue

the last two along {0} × [0, 1] × S1 and {1} × [0, 1] × S1, choosing which [0, 1] × S1 is

glued to which {i} × [0, 1] × S1 in order to respect the orientation of the hypersurface.

The process is described Figure 4 at a point of the S1 factor. Performing the same

manipulation at each singularity of ฿ , we get the Seifert hypersurface of K associated

with ฿, which we denote Σ.

Figure 4. A slice of a neighborhood of the singularity.

We now have a closer look at the structure of the hypersurface Σ and its homology

groups. Denote by Ri for i = 1, . . . , n the singularities of the A-ribbon ball ฿ . For each

i, set Xi = ∂B◦
Ri
. When we cut Σ along the tori Xi, we see from the above construction

that we obtain a 3-ball with 2n solid tori removed; denote it Σ̌ (see Figure 5). Note that

Σ is recovered from Σ̌ by gluing n handles Ai homeomorphic to S1 × S1 × I, where the

first S1 factor corresponds to the core of Ri in ฿ , the second S1 factor corresponds to

the meridian of Ri, and Xi = S1 × S1 × {1} ⊂ Ai. For each i, set:

• xi = {∗} × S1 × {1} ⊂ Ai, x
′
i = {∗} × S1 × {0} ⊂ Ai, x

I
i = {∗} × S1 × I ⊂ Ai;

• βi = S1 × {∗} × {1} ⊂ Ai, β
′
i = S1 × {∗} × {0} ⊂ Ai, β

I
i = S1 × {∗} × I ⊂ Ai;

• X ′
i = S1 × S1 × {0} ⊂ Ai.

Note that xi corresponds to a meridian of the annulus R◦
i in B. Let yi be a simple closed

curve in Σ such that yi ∩ (Σ \ Σ̌) = {∗} × {∗} × I ⊂ Ai.
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A Fox–Milnor theorem for the Alexander polynomial of 2-knots 899

Figure 5. Seifert hypersurface associated with an A-ribbon ball.

Define the link of interior pre-singularities of ฿ as LS(฿) =
⊔n

i=1 c(R
◦
i ) and the

associated linking matrix LkS(฿) = (lkB(c(R
◦
i ), c(R

◦
j )))1≤i,j≤n, where lkB stands for the

linking number in the ball B—if i = j, the self-linking lkB(c(R
◦
i ), c(R

◦
i )) is defined as

the linking of c(R◦
i ) with a boundary component of R◦

i . Note that LkS(฿) is also the

linking matrix of the link
⊔n

i=1 βi viewed in B. This matrix plays a crucial role in the

computation of H1(Σ) and H2(Σ). We will use the long exact sequence in homology

associated with the pair (Σ, Σ̌). We first compute the relative homology groups. By
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excision, we have Hk(Σ, Σ̌) ∼= Hk(
⊔n

i=0 Ai,
⊔n

i=0 ∂Ai). Thus:

• H3(Σ, Σ̌) ∼= Zn is generated by the fundamental classes [Ai],

• H2(Σ, Σ̌) ∼= Z2n is generated by the [xI
i ] and the [βI

i ],

• H1(Σ, Σ̌) ∼= Zn is generated by the classes of the yi ∩Ai.

The homology of Σ̌ is easily computed: H1(Σ̌) ∼= Z2n is generated by the [xi] and [x′
i]

and H2(Σ̌) ∼= Z2n is generated by the [Xi] and [X ′
i]. The long exact sequence gives:

0 → H3(Σ, Σ̌) → H2(Σ̌) → H2(Σ) → H2(Σ, Σ̌) → H1(Σ̌) → H1(Σ) → H1(Σ, Σ̌) → 0.

Since H1(Σ, Σ̌) is free, the sequence splits at H1(Σ) and we have H1(Σ) ∼= H1(Σ, Σ̌) ⊕
(H1(Σ̌)/∂2(H2(Σ, Σ̌))). Now ∂2([x

I
i ]) = [xi]− [x′

i] and ∂2([β
I
i ]) = [βi]− [β′

i]. In Σ̌, the β′
i

bound embedded disks and [βi] =
∑n

j=1 lkB(βi, βj)[xj ]. Thus we get:

H1(Σ) ∼= Zn ⊕ (Zn/LkS(฿)Zn) ,

where the first factor is freely generated by the [yi] and the second factor is gen-

erated by the [xi]. Similarly, H2(Σ, Σ̌) is free, thus we have H2(Σ) ∼= ker(∂2) ⊕
(H2(Σ̌)/∂3(H3(Σ, Σ̌))). The expression of ∂2 given above shows that ker(∂2) ∼= Zn−s

where s is the rank of LkS(฿). One easily deduces H2(Σ) ∼= Z2n−s.

We now assume LkS(฿) = 0. In this case, there are embedded surfaces Yi in Σ

such that Yi ∩ (Σ \ Σ̌) = βI
i . Fix orientations of the c(R◦

i ) and orient the xi so that

lkB(xi, c(R
◦
i )) = 1. Orient the yi and Yi so that:

⟨Xi, yj⟩Σ = δij and ⟨Yi, xj⟩Σ = −δij .

The families (x1, . . . , xn, y1, . . . , yn) and (X1, . . . , Xn, Y1, . . . , Yn) are bases of H1(Σ) and

H2(Σ) respectively, dual in the above sense. It is easily checked that lk(Xi, x
±
j ) = 0 for

any i, j. Hence the Seifert matrices associated with Σ and the above basis of its homology

groups are:

V± =

(
0 U±

W± ∗

)
,

where U± = (lk(Xi, y
±
j ))1≤i,j≤n and W± = (lk(Yi, x

±
j ))1≤i,j≤n. Unlike the case of clas-

sical knots, we don’t have W± = tU∓ in general, thus we don’t get the factorization

property. We give in the next section a topological characterization of the A-ribbon balls

that provide the equalities W± = tU∓.

3.3. Computing the Seifert matrices from the preimage ball.

Keeping the notations of the previous subsection and the condition LkS(฿) = 0,

we now explain how to compute the matrices U± and W± from the preimage ball with

some orientation information. This information is given for each singularity R by an

arrow at a point of R∂ that gives the direction of the negative normal to the interior

leaf B◦
R. Orient the boundary pre-singularities so that these arrows give the direction of

their positive normal in B. We assume that the cores of all the singularities are oriented
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Figure 6. Local computations of algebraic intersection numbers.

and we orient the cores of the pre-singularities accordingly. To make our computation,

we need to have a closer look at the local picture around a singularity.

Curves and surfaces can be drawn in B that correspond to the elements of the

bases (x1, . . . , xn, y1, . . . , yn) and (X1, . . . , Xn, Y1, . . . , Yn) of H1(Σ) and H2(Σ) defined

above; we will use the same notations. In B, Xi is the oriented boundary of a tubular

neighborhood of R◦
i , xi is an oriented meridian of the core c(R◦

i ), yi is an arc joining

the two points in the preimage of a point of Ri and Yi is a surface whose boundary is

c(R∂
i ) ⊔ (−c(R◦

i )). Choose the surface Yi as a disjoint union Yj = Y ∂
j ⊔ (−Y ◦

j ) where

∂Y ∂
j = c(R∂

j ), ∂Y
◦
j = c(R◦

j ) and Y ∂
j is a disk properly embedded in B(R∂

j ). Choose the

arc yi so that it meets R∂
i and Ri◦ only at its endpoints. The next two results express

the coefficients of the matrices U± and W± in terms of algebraic intersections in B. They
are illustrated in Figures 6.

Lemma 3.3. Set ϵi = 1 if the positive normal to R∂
i gives the direction of yi at its

endpoint on R∂
i , ϵi = −1 otherwise. We have :

lk(Xi, y
±
j ) = ⟨R∂

i , yj⟩B if i ̸= j,

and :

lk(Xi, y
+
i ) =

{
−1

0
and lk(Xi, y

−
i ) =

{
0

1

if ϵi = −1,

otherwise.

Proof. The torus X±
i is the boundary of a solid torus T±

i transverse to Σ, where

Ti = B◦
Ri
. The linking lk(X±

i , γ) of X±
i with a simple closed curve γ transverse to T±

i is
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given by the algebraic intersection number ⟨T±
i , γ⟩S4 . The contribution of an intersection

point is −1 if γ is oriented as the positive normal to T±
i at that point, 1 otherwise. If

γ = yj , such an intersection point corresponds in B to an intersection point of yj with

the pre-singularity R∂
i . Hence if j ̸= i:

lk(Xi, y
±
j ) = lk(X∓

i , yj) = ⟨R∂
i , yj⟩B.

In the case j = i, a special attention should be paid to the endpoints of the arc represent-

ing yi in B. These points correspond in Σ to an intersection of yi with either T+
i or T−

i .

It follows from the duality between Xi and yi that the orientation of yi at its endpoint

lying on R∂
i goes toward R∂

i . If yi arrives on that point from the positive side (resp. neg-

ative side) of R∂
i , then the contribution of this point to lk(Xi, y

+
i ) is −1 (resp. 0) and the

contribution to lk(Xi, y
−
i ) is 0 (resp. 1). To conclude, note that ⟨R∂

i , Int(yi)⟩B = 0. □

Orient the co-cores ¢(R∂
i ) of the boundary pre-singularities so that (c(R∂

i ), ¢(R∂
i ))

is an oriented basis of R∂
i .

Lemma 3.4. Set ϵ̂i = 1 if ∂Y ∂
i has a collar neighborhood in Y ∂

i that lies on the

positive side of R∂
i , ϵ̂i = −1 otherwise. We have :

lk(Yj , x
±
i ) = ⟨Yj , ¢(R∂

i )⟩B if i ̸= j and lk(Yi, x
±
i ) = ⟨−Y ◦

i , ¢(R
∂
i )⟩B + ρ±i ,

where :

ρ+i =

{
0

1
and ρ−i =

{
−1

0

if ϵ̂i = 1,

otherwise.

Proof. The curve xi is the boundary of a disk Di transverse to Σ and isotopic

to a meridian disk of B◦
Ri
. For an embedded surface Γ, disjoint from xi and transverse

to Di, we have lk(Γ, xi) = −lk(xi,Γ) = −⟨Di,Γ⟩S4 . If Γ = Y ±
j , an intersection point

between Di and Γ corresponds to an essential curve of R∂
i in the intersection R∂

i ∩ Yj .

Checking the orientation conventions, one gets for j ̸= i:

lk(Yj , x
±
i ) = ⟨Yj , ¢(R∂

i )⟩B.

Once again, the case j = i requires special attention for the boundary of Y ∂
i . This curve

corresponds to an intersection point of the disk Di with either Y +
i or Y −

i . By convention,

the orientation of Y ∂
i is given near its boundary by first the direction pointing toward

T (Ri) and second the direction of c(R∂
i ). If the surface Y

∂
i lies on the positive side (resp.

negative side) of R∂
i , the contribution of this curve to lk(Yi, x

+
i ) is 0 (resp. 1) and its

contribution to lk(Yi, x
−
i ) is −1 (resp. 0). Note that ⟨Int(Y ∂

i ), ¢(R∂
i )⟩B = 0. □

Example. With the preimage ball on the left part of Figure 6, the associated

Seifert matrices are
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V+ =

 0
0 0

0 −1

1 −1

1 1
⋆

 and V− =

 0
1 0

0 0

0 −1

1 0
⋆

 .

4. Factorization of the Alexander polynomial.

In this section, we introduce some conditions on A-ribbon 2-knots that ensure the

factorization property of the Alexander polynomial.

4.1. Spun knots and concentricity.

Let us recall a construction of 2-knots from classical knots, first introduced by Artin

[Art25]. Consider a 3-dimensional half-space R3
+ ⊂ R4 ⊂ S4. Let κ be an arc embedded

in R3
+ with endpoints in R2 = ∂R3

+. Rotating around R2, this arc describes a 2-knot

K called the spin of the 1-knot κ̄ obtained from κ by joining its endpoints with an arc

embedded in R2. Any Seifert matrix of κ̄ is a Seifert matrix of K. In particular, κ̄ and K

have the same Alexander polynomial. It follows that the spin of a ribbon 1-knot always

has the factorization property. Moreover, if κ̄ is a ribbon 1-knot, then its ribbon disk

can also be rotated around R2, providing an A-ribbon 3-ball for K. Hence the spin of a

ribbon 1-knot is an A-ribbon 2-knot.

We now introduce a condition on an A-ribbon 2-knot that ensures the factorization

property of the Alexander polynomial and is satisfied in particular by the spins of ribbon

1-knots. Let ฿ be an A-ribbon 3-ball with singularities Ri, i = 1, . . . , n. Let B be a 3-ball

preimage of ฿ . An essential arc in B is an arc η such that ∂η = η ∩ ∂B and η is disjoint

from the pre-singularities. Define the closure η̄ of η by joining its endpoints with an arc

embedded in ∂B. For a pre-singularity R⋆
i in B whose core is oriented, where ⋆ stands for

◦ or ∂, define the linking number lk(R⋆
i , η) as the linking number in B of the core of R⋆

i

with η̄. Given an orientation of the cores of the singularities Ri, fix the corresponding

orientations for the cores of the R⋆
i . The A-ribbon 3-ball ฿ satisfies the concentricity

condition if there is an orientation of the cores of the Ri and an essential arc η such that

lk(R⋆
i , η) = 1 for all i and all ⋆, and if the linking matrix of the pre-singularities is trivial.

An A-ribbon 2-knot satisfies the concentricity condition if it bounds an A-ribbon 3-ball

that satisfies it.

Lemma 4.1. The spin of a ribbon 1-knot satisfies the concentricity condition.

Proof. Let K be the spin of a ribbon 1-knot κ̄ as in the above definition. Take a

ribbon disk D̄ of κ̄. Let ฿ be the A-ribbon 3-ball obtained from D̄ . Define the essential

arc η as the arc used in the definition of spin knots to define κ̄ from κ. The first part

of the concentricity condition is easily checked. Now, for each singularity of D̄ , join

the singularity to the arc η by a path through its interior leaf; choose all these paths

disjoint and with interiors disjoint from the singularities. Spinning these paths provides

disjoint embedded disks in ฿ bounded by the cores of the singularities, meeting them

along their interior leaves. These disks lift in the preimage ball B as disjoint embedded

disks bounded by the cores of the interior pre-singularities. □
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We will see in the next subsection that the concentricity condition implies the fac-

torization property.

4.2. Singularities position.

We now introduce the characterization announced in Section 3. We begin with

some definitions. Let ฿ be an A-ribbon 3-ball with singularities (Ri)1≤i≤n. Let B be

a preimage of ฿ . Orient the cores of the singularities Ri and fix the corresponding

orientations for the cores of the R⋆
i . Fix a boundary pre-singularity R∂

i . Define the

linking of the pre-singularity R⋆
j with respect to R∂

i as:

ℓi(R
⋆
j ) =

{
1 if R⋆

j ⊂ B(Ri),

k if R⋆
j ⊂ T (Ri) and c(R⋆

j ) = k c(R∂
i ) in H1(T (Ri)).

The A-ribbon ball ฿ with oriented singularities satisfies the linkings condition if

ℓi(R
∂
j ) = ℓi(R

◦
j )

for all i, j and if the linking matrix of the pre-singularities is trivial. By extension, we

say that an A-ribbon 2-knot satisfies the linkings condition if it bounds an A-ribbon

3-ball that satisfies this condition for given orientations of its singularities. Note that the

concentricity condition implies the linkings condition.

Proposition 4.2. Let ฿ be an A-ribbon 3-ball with oriented singularities

(Ri)1≤i≤n. Assume the linking matrix of the pre-singularities is trivial. Let Σ be the

associated Seifert hypersurface and let V± =

(
0 U±

W± ∗

)
be associated Seifert matrices.

Then ฿ satisfies the linkings condition if and only if W± = tU∓.

Corollary 4.3. If an A-ribbon 2-knot satisfies the linkings condition, then it has

the factorization property.

Recall the surface Yj was defined as Yj = Y ∂
j ⊔ (−Y ◦

j ) with ∂Y ∂
j = c(R∂

j ) and

∂Y ◦
j = c(R◦

j ). We have ⟨Yj , ¢(R∂
i )⟩ = ⟨Y ∂

j , ¢(R∂
i )⟩ − ⟨Y ◦

j , ¢(R∂
i )⟩ and the next lemma

gives the two terms in terms of the linkings ℓi and the εi defined by εi = −1 if the

positive normal to R∂
i points toward B(Ri) and εi = 1 otherwise.

Lemma 4.4. For Y ⋆
j ̸= Y ∂

i :

⟨Y ⋆
j , ¢(R

∂
i )⟩B =

{
0 if R⋆

j ⊂ B(Ri),

εi ℓi(R
⋆
j ) if R⋆

j ⊂ T (Ri).

Proof. This algebraic intersection only depends on the boundary of Y ⋆
j . If R

⋆
j ⊂

B(Ri), the surface Y ⋆
j can be chosen in the interior of B(Ri) and the result follows.

Assume R⋆
j ⊂ T (Ri). Consider a disk D ⊂ B that intersects R∂

i transversely along a

single simple closed curve isotopic to c(R∂
i ), whose oriented boundary is a push-off of

c(R∂
i ) in the direction of T (Ri). We have ⟨Y ⋆

j , ¢(R∂
i )⟩ = ℓi(R

⋆
j )⟨D, ¢(R∂

i )⟩. □
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Lemma 4.5. For i ̸= j :

⟨R∂
i , yj⟩B =


0 if R∂

j , R
◦
j ⊂ B(Ri) or R∂

j , R
◦
j ⊂ T (Ri),

εi if R◦
j ⊂ B(Ri) and R∂

j ⊂ T (Ri),

−εi if R∂
j ⊂ B(Ri) and R◦

j ⊂ T (Ri).

Proof. The choice of orientation for yj implies that it is oriented from R◦
j to R∂

j .

□

Proof of Proposition 4.2. For any i ̸= j, Lemmas 4.4 and 4.5 imply that

ℓi(R
∂
j ) = ℓi(R

◦
j ) if and only if ⟨R∂

i , yj⟩B = ⟨Yj , ¢(R∂
i )⟩B, using the fact that ℓi(R

⋆
j ) = 1

if R⋆
j ⊂ B(Ri). This concludes thanks to Lemmas 3.3 and 3.4. If i = j, notice that

ℓi(R
∂
i ) = 1 and conclude using the same lemmas. □

4.3. Connected sum of a 2-knot with its mirror image.

Denote by K the mirror image of a 2-knot K and by K1♯K2 the connected sum of

two 2-knots K1 and K2.

Proposition 4.6. For any 2-knot K, the 2-knot K♯K has the factorization prop-

erty.

This result is a corollary of the following easy lemma.

Lemma 4.7.

• ∆K(t) = ∆K(t−1).

• ∆K1♯K2 = ∆K1∆K2 .

The next result shows that not any A-ribbon 2-knot with the factorization property

is a connected sum of an A-ribbon 2-knot with its mirror image, via the example of the

spin of the ribbon knot 61.

Proposition 4.8. Let K be the spin of the knot 61. Then there is no ribbon 2-knot

J such that K is isotopic to J♯J .

Proof. The 2-knot K, as the knot 61, has its first elementary ideal principal and

generated by its Alexander polynomial, namely (2t−1)(2−t), and has Z[t±1] as a second

elementary ideal.

Assume K is isotopic to J♯J for some ribbon 2-knot J . Up to exchanging J and J ,

we have ∆J (t) = 2t − 1 and ∆J (t) = 2 − t. Let V (t) be a square presentation matrix

of the integral Alexander module of J , of size n. Then V (t−1) is a presentation matrix

of A(J) and W (t) =

(
V (t) 0

0 V (t−1)

)
is a presentation matrix of A(K). The second

elementary ideal of K is generated by the minors of size 2n − 1 of W (t). These minors

have the following forms:(
V (t) 0

0 ⋆

)
,

(
⋆ 0

0 V (t−1)

)
,

(
⋆ 0n
0 ⋆

)
,

(
⋆ 0

0n ⋆

)
,
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where 0n is the trivial square matrix of size n. Hence these minors are mutiples of 2t− 1

or 2 − t. It follows that evaluation at t = −1 sends the second elementary ideal of K

onto an ideal of Z contained in 3Z, which is a contradiction since this ideal is the whole

Z[t±1]. □

t = 0 0 < t < 1 t = 1 t = 3 3 < t < 4 t = 4

Figure 7. The 2-knots J and J .

0 ≤ t < 1 1 ≤ t ≤ 3 3 < t ≤ 4

Figure 8. The immersed 3-ball.

When J is a ribbon 2-knot, it is clear that K = J♯J is also ribbon and it follows

that it is A-ribbon. Anyway, it is interesting to note that there is a natural construction

of an A-ribbon 3-ball for K associated with the decomposition of K as the connected

sum J♯J . It was proved by Yanagawa [Yan69] that a 2-knot is ribbon if and only if it is

simply knotted, i.e. if it has a projection on a 3-dimensional hyperplane whose singular

set is made of simple closed curves of double points. Consider such a projection of J on

R3
0 in R4 =

⊔
t∈R R3

t . Re-construct J from this projection by pushing the over-crossing

leaf at each curve of double points as shown in Figure 7, so that J ⊂
⊔

0≤t≤1 R3
t . Draw

J by symmetry with respect to R3
2. Join each point of J to the corresponding point of

J by a line segment, see Figure 8. The union of all these line segments is an immersed

S2 × S1; remove a tube from it, disjoint from the singularities, so that the obtained

immersed 3-ball ฿ is bounded by J♯J . The singularities of ฿ are easily seen to be ribbon

annuli.
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