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Abstract. We classify Enriques surfaces covered by the supersingular
K3 surface with the Artin invariant 1 in characteristic 2. There are exactly
three types of such Enriques surfaces.

1. Introduction.

In this paper we work over an algebraically closed field k of characteristic 2. It

is known that there exist complex Enriques surfaces whose covering K3 surfaces are

mutually isomorphic. In [17] the author gave two non isomorphic Enriques surfaces whose

covering K3 surfaces are the same Kummer surface, and Ohashi [25], [26] investigated

such Enriques surfaces by using the theory of periods of Enriques surfaces. In particular

he showed that the number of isomorphism classes of such Enriques surfaces with a given

K3 surface as their coverings is finite.

On the other hand, Enriques surfaces in characteristic 2 have a different phenomenon.

Ekedahl, Hyland and Shepherd-Barron [9] showed that the moduli space of Enriques

surfaces whose canonical covers are supersingular K3 surfaces with twelve nodes is an

open set of a P1-bundle over the moduli space of lattice polarized (called N -marked in

[9]) supersingular K3 surfaces. Here P1 parametrizes derivations on such a K3 surface.

Note that the moduli space of Enriques surfaces (resp. supersingular K3 surfaces) has

dimension 10 (resp. dimension 9). Thus the number of isomorphism classes of Enriques

surfaces with a given supersingular K3 surface as their canonical coverings is infinite in

general.

The purpose of this paper is to give an explicit description of Enriques surfaces whose

canonical cover is the most special supersingularK3 surface. Recall that the moduli space

of supersingular K3 surfaces is stratified by the Artin invariant σ (1 ≤ σ ≤ 10) such that

K3 surfaces with Artin invariant σ form a (σ − 1)-dimensional family ([1]). Moreover

supersingular K3 surfaces with Artin invariant 1 are unique up to isomorphisms ([24,

Corollary 7.14] for p > 2, [28, Section 4] for p = 2). In this paper we determine all

Enriques surfaces covered by the supersingular K3 surface with Artin invariant 1. The
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following is the main theorem of this paper. For precise statements, see Theorems 6.1,

6.2, Remark 6.3.

Theorem 1.1. There exist exactly three types of Enriques surfaces such that the

minimal resolutions of the canonical double covers of these Enriques surfaces are the su-

persingular K3 surface with Artin invariant 1. Each type of them forms a 1-dimensional

family.

Remark 1.2. The canonical covers of Enriques surfaces of two types have twelve

nodes and the one of the remaining type has a rational double point of type D4 and eight

nodes.

Remark 1.3. Every Enriques surface X in the three families has a finite number

of (−2)-divisors such that the reflection group generated by reflections associated with

these (−2)-divisors is of finite index in the orthogonal group of Num(X), where Num(X)

is the Néron–Severi group of X modulo the torsion subgroup.

We give examples of three types in Theorem 1.1 explicitly. The first one called

of type MI was given in Katsura and Kondō [13] which is a 1-dimensional family of

classical and supersingular Enriques surfaces. Their canonical covers have twelve nodes.

Each member X of this family contains 30 nodal curves (non-singular rational curves)

and 10 non-effective (−2)-divisors whose dual graph satisfies a condition for the finiteness

of the index of the corresponding reflection group in the orthogonal group O(Num(X))

(see Proposition 2.8). The second type appeared as one of Enriques surfaces with finite

automorphism group (called Type VII in [14], [15]). It is also a 1-dimensional family of

classical and supersingular Enriques surfaces whose canonical covers have twelve nodes.

Each member of the family contains exactly 20 nodal curves whose dual graph satisfies

the same condition. The third and final one called of type MII is new and will be given

in Section 3. It is a 1-dimensional family of classical Enriques surfaces whose canonical

covers have a rational double point of type D4 and eight nodes. It contains 28 nodal

curves and 12 non-effective (−2)-divisors whose dual graph satisfies the same condition.

To prove Theorem 1.1 we use the classification of all elliptic fibrations on the su-

persingular K3 surfaces with Artin invariant 1 and their uniqueness due to Elkies and

Schütt [10] in an essential way. We fix one of the possible elliptic fibrations on such

an Enriques surface X and a bi-section of this fibration. Then we can see that there

exists a unique type of Enriques surface X ′ among three types such that it has an elliptic

fibration of the same type and a bi-section of given type. By lifting the fibration to the

canonical cover and applying the uniqueness of such elliptic fibration, we can see that

X has the same configuration of nodal curves as that of X ′. Finally, together with a

result by Ekedahl, Hyland and Shepherd-Barron [9, Theorem 3.21], these examples give

all Enriques surfaces covered by the supersingular K3 surface with the Artin invariant 1

(see Remark 6.3).

The plan of this paper is as follows. In Section 2, we recall the known results

on Enriques surfaces and supersingular K3 surfaces. In Section 3, we recall and give

three examples of Enriques surfaces covered by the supersingular K3 surface with Artin

invariant 1. Section 4 is devoted to possible singularities of the canonical covers of
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Enriques surfaces of desired type and possible types of elliptic fibrations on them. In

Section 5 we determine possibilities of bi-sections of each special elliptic fibrations, and

in Section 6 we will state and give a proof of the main theorems 6.1, 6.2.

Acknowledgements. The author thanks Toshiyuki Katsura for valuable conver-

sations and Shigeru Mukai for informing the author the dual graph of (−2)-vectors in

the example of type MII. The author thanks Matthias Schütt and Yuya Matsumoto for

reading the manuscript and for suggesting misprints and useful comments. In particular

Matsumoto pointed out that Enriques surfaces of type MII form a 1-dimensional family.

The author thanks the referee for careful reading of the manuscript, for pointing out

errors and for useful suggestions.

2. Preliminaries.

A lattice is a free abelian group L of finite rank equipped with a non-degenerate

symmetric integral bilinear form ⟨., .⟩ : L×L → Z. For a lattice L and an integer m, we

denote by L(m) the free Z-module L with the bilinear form obtained from the bilinear

form of L by multiplication by m. The signature of a lattice is the signature of the

real vector space L ⊗ R equipped with the symmetric bilinear form extended from the

one on L by linearity. A lattice is called even if ⟨x, x⟩ ∈ 2Z for all x ∈ L. We denote

by U the even unimodular lattice of signature (1, 1), and by Am, Dn or Ek the even

negative definite lattice defined by the Cartan matrix of type Am, Dn or Ek respectively.

We denote by L ⊕ M the orthogonal direct sum of lattices L and M , and by L⊕m the

orthogonal direct sum of m-copies of L. Let O(L) be the orthogonal group of L, that is,

the group of isomorphisms of L preserving the bilinear form.

Let k be an algebraically closed field of characteristic p > 0, and let S be a nonsin-

gular complete algebraic surface defined over k. We denote by KS the canonical divisor

of S. A rational vector field D on S is said to be p-closed if there exists a rational function

f on S such that Dp = fD. A vector field D is of additive type (resp. of multiplicative

type) if Dp = 0 (resp. Dp = D). Let {Ui = SpecAi} be an affine open covering of S. We

set AD
i = {α ∈ Ai | D(α) = 0}. The affine varieties {UD

i = SpecAD
i } glue together to

define a normal quotient surface SD.

Now, we assume that D is p-closed. Then, the natural morphism π : S −→ SD is

a purely inseparable morphism of degree p. If the affine open covering {Ui} of S is fine

enough, then taking local coordinates xi, yi on Ui, we see that there exist gi, hi ∈ Ai and

a rational function fi such that the divisors defined by gi = 0 and by hi = 0 have no

common components, and such that

D = fi

(
gi

∂

∂xi
+ hi

∂

∂yi

)
on Ui.

By Rudakov and Shafarevich [27, Section 1], divisors (fi) on Ui glue to a global divisor

(D) on S, and the zero-cycle defined by the ideal (gi, hi) on Ui gives rise to a well-defined

global zero cycle ⟨D⟩ on S. A point contained in the support of ⟨D⟩ is called an isolated

singular point of D. If D has no isolated singular point, D is said to be divisorial.

Rudakov and Shafarevich [27, Theorem 1, Corollary] showed that SD is nonsingular if
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⟨D⟩ = 0, i.e., D is divisorial. When SD is nonsingular, they also showed a canonical

divisor formula

KS ∼ π∗KSD + (p− 1)(D), (2.1)

where ∼ means linear equivalence. As for the Euler number c2(S) of S, we have a formula

c2(S) = deg⟨D⟩ − ⟨KS , (D)⟩ − (D)2 (2.2)

(cf. [16, Proposition 2.1]). Now we consider an irreducible curve C on S and we set

C ′ = π(C). Take an affine open set Ui as above such that C ∩ Ui is non-empty. The

curve C is said to be integral with respect to the vector field D if gi(∂/∂xi) + hi(∂/∂yi)

is tangent to C at a general point of C ∩ Ui. Then, Rudakov and Shafarevich [27,

Proposition 1] showed the following proposition:

Proposition 2.1.

(1) If C is integral, then C = π∗(C ′) and C2 = pC ′2.

(2) If C is not integral, then pC = π∗(C ′) and pC2 = C ′2.

In any characteristic char(k) = p ≥ 0, an algebraic surface with numerically trivial

canonical divisor is called an Enriques surface if the second Betti number is equal to 10.

In case of p = 2, Enriques surfaces X are divided into three classes (for details, see [2,

Section 3]):

(1) KX is not linearly equivalent to zero and 2KX ∼ 0. Such an Enriques surface is

called a classical Enriques surface.

(2) KX ∼ 0, H1(X,OX) ∼= k and the Frobenius map acts on H1(X,OX) bijectively.

Such an Enriques surface is called a singular Enriques surface.

(3) KX ∼ 0, H1(X,OX) ∼= k and the Frobenius map is the zero map on H1(X,OX).

Such an Enriques surface is called a supersingular Enriques surface.

It is known that the canonical cover of any singular Enriques surface is not supersin-

gular. Moreover it is an ordinary K3 surface (e.g., [14, Theorem A.1]). Recently Liedtke

[20] showed that the moduli space of Enriques surfaces with a polarization of degree 4

has two 10-dimensional irreducible components. A general point of one component (resp.

the other component) corresponds to a singular (resp. classical) Enriques surface, and

the intersection of the two components parametrizes supersingular Enriques surfaces.

Now assume that X is a classical or supersingular Enriques surface and π̄ : Ȳ → X

the canonical cover. In this case there exists a regular 1-form η on X. A point P ∈ Ȳ is

a singular point if and only if η vanishes at π̄(P ) ([2, p.221]). Since c2(X) = 12, η has 12

zeros generically. Thus in case of classical or supersingular Enriques surfaces, they have

always a singularity. We call the points of zeros of η canonical points of X. If Ȳ has only

rational double points, then the minimal resolution of singularities is a supersingular K3

surface, and it is a rational surface otherwise ([5, Theorem 1.3.1]).
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We call a nonsingular rational curve on an Enriques surface or K3 surface a nodal

curve. If C is a nodal curve, then C2 = −2.

Let X be a supersingular or classical Enriques surface. Let π̄ : Ȳ → X be the

canonical cover. Assume that Ȳ has only rational double points. Let ρ : Y → Ȳ be the

minimal resolution.

Lemma 2.2 ([8, Definition-Lemma 0.8]). Let E be a nodal curve on X and denote

by Ẽ the irreducible curve on Y mapping surjectively to E. Then Ẽ is a nodal curve, the

degree of the map π̄ ◦ ρ : Ẽ → E is one, and two points (including infinitely near points)

on E are blow-ups during the minimal resolution. If two nodal curves E1 and E2 on X

meet transversally at one point, then their strict transforms do not meet on Y .

Here we recall the theory of supersingular K3 surfaces ([1]). In any algebraically

closed field k in characteristic p > 0, a K3 surface Y defined over k is called supersingular

if the Picard number of Y is 22. Let Y be a supersingular K3 surface. Denote by

NS(Y ) the Néron–Severi group of Y and by NS(Y )∗ the dual of NS(Y ). Then NS(Y )

is an even lattice of signature (1, 21) such that NS(Y )∗/NS(Y ) is isomorphic to a p-

elementary abelian group (Z/pZ)2σ where σ is called the Artin invariant of Y and satisfies

1 ≤ σ ≤ 10. The supersingular K3 surfaces with the Artin invariant σ form a (σ − 1)-

dimensional family. Moreover supersingular K3 surfaces with σ = 1 are unique up to

isomorphisms ([24, Corollary 7.14] for p > 2, [28, Section 4] for p = 2). A concrete

example of the supersingular K3 surface in characteristic 2 with Artin invariant 1 is

given as follows (see [7]): let P2(F4) be the projective plane over the finite field F4.

It contains 21 points and 21 lines, and each line contains five points and each point is

contained in five lines. Let Z be the inseparable double cover of P2 defined by

t2 = x4yz + y4xz + z4xy,

where (x, y, z) are homogeneous coordinates of P2. The partial derivatives of this equa-

tion are

y4z + z4y, x4z + z4x, x4y + y4x,

all of which vanish exactly at 21 F4-rational points of P
2. Thus Z has 21 rational double

points of type A1. Let Y be the minimal resolution of Z which is a K3 surface. Obviously

Y contains the disjoint union of the 21 nodal curves which are exceptional curves of the

resolution. On the other hand, the pullbacks of the 21 lines in P2(F4) are 21 disjoint

nodal curves. Thus we have two sets A and B of disjoint 21 nodal curves such that each

member in one set meets exactly five members in the other set at one point transversally.

These 42 nodal curves generate the Néron–Severi lattice NS(Y ) which has rank 22 and

discriminant −22. Thus Y is the supersingular K3 surface with the Artin invariant 1.

Now we recall some facts on elliptic fibrations on Enriques surfaces and the super-

singular K3 surface with the Artin invariant 1.

Proposition 2.3 ([5, Theorems 5.7.5, 5.7.6]). Let f : X → P1 be an elliptic

fibration on an Enriques surface X in characteristic 2. Then the following hold.
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(1) If X is classical, then f has two tame multiple fibers with multiplicity 2, each is

either an ordinary elliptic curve or a singular fiber of additive type.

(2) If X is singular, then f has one wild multiple fiber with multiplicity 2 which is an

ordinary elliptic curve or a singular fiber of multiplicative type.

(3) If X is supersingular, then f has one wild multiple fiber with multiplicity 2 which

is a supersingular elliptic curve or a singular fiber of additive type.

We use Kodaira’s notation for singular fibers of an elliptic fibration:

In, I∗n, II, II∗, III, III∗, IV, IV∗.

If an elliptic fibration on X has a multiple fiber, for example, of type III, then we call it

a fiber of type 2III.

Let X be an Enriques surface and f : X → P1 an elliptic fibration. Since f has a

multiple fiber, it has no sections. If f admits a bi-section s isomorphic to a nodal curve,

then f is called special and s is called a special bi-section. The following result is due

to Cossec [4] in which he assumed the characteristic p ̸= 2, but the assertion for p = 2

holds, too.

Proposition 2.4 ([19, Theorem A3]). Assume that an Enriques surface X con-

tains a nodal curve. Then there exists a special genus one fibration on X.

Elliptic fibrations (genus one fibrations more generally) on the supersingular K3

surfaces with Artin invariant 1 have been classified ([18], [10]). Moreover Elkies and

Schütt proved the following theorem.

Theorem 2.5 ([10, Theorems 1, 2, Proposition 9]). Let Y be the supersingular

K3 surface with Artin invariant 1 over an algebraically closed field k in characteristic 2.

Then Y admits exactly 18 genus 1 fibrations. More precisely, for each genus 1 fibration,

there is exactly one model over k up to isomorphisms. Moreover any genus 1 fibration

has a section.

It is enough to consider only elliptic fibrations in our situation by the following proposi-

tion.

Proposition 2.6 ([5, Proposition 5.7.3]). Let X be an Enriques surface. Assume

that its canonical cover has only rational double points. Then X does not admit quasi-

elliptic fibrations.

Among 18 genus 1 fibrations, there are 8 elliptic fibrations. The following is the list

of elliptic fibrations.

Theorem 2.7 ([10, Theorem 1], [18, Theorem 4.7]). There are exactly the follow-

ing eight types of singular fibers of elliptic fibrations on Y .

(I6, I6, I6, I6), (I8, I8, I
∗
1), (I10, I10, I2, I2), (I12, I

∗
3),

(I12, I4, IV
∗), (IV∗, IV∗, IV∗), (I16, I

∗
1), (I18, I2, I2, I2).
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Finally we recall the theory of reflection groups in hyperbolic spaces. First we

consider the case of Enriques surfaces. Let X be an Enriques surface and let Num(X)

be the quotient of the Néron–Severi group of X by the torsion subgroup. Then Num(X)

together with the intersection product is an even unimodular lattice of signature (1, 9)

([12]). We denote by O(Num(X)) the orthogonal group of Num(X). The set

{x ∈ Num(X)⊗R : ⟨x, x⟩ > 0}

has two connected components. Denote by P (X) the connected component containing an

ample class of X. For δ ∈ Num(X) with δ2 = −2, we define an isometry sδ of Num(X)

by

sδ(x) = x+ ⟨x, δ⟩δ, x ∈ Num(X).

The isometry sδ is called the reflection associated with δ. Let W (X) be the subgroup

of O(Num(X)) generated by reflections associated with all nodal curves on X. Then

P (X) is divided into chambers each of which is a fundamental domain with respect to

the action of W (X) on P (X). We remark that the automorphism group Aut(X) is finite

if the index [O(Num(X)) : W (X)] is finite ([6, Proposition 3.2]).

Now, we recall Vinberg’s result which guarantees that a group generated by a finite

number of reflections is of finite index in the orthogonal group. Let L be an even lattice

of signature (1, n). Let ∆ be a finite set of (−2)-vectors in L. Let Γ be the graph of ∆,

that is, ∆ is the set of vertices of Γ and two vertices δ and δ′ are joined by m-tuple lines

if ⟨δ, δ′⟩ = m. We assume that the cone

K(Γ) = {x ∈ L⊗R : ⟨x, δi⟩ ≥ 0, δi ∈ ∆}

is a strictly convex cone. Such Γ is called non-degenerate. A connected parabolic subdi-

agram Γ′ in Γ is a Dynkin diagram of type Ãm, D̃n or Ẽk (see [29, p.345, Table 2]). If

the number of vertices of Γ′ is r + 1, then r is called the rank of Γ′. A disjoint union of

connected parabolic subdiagrams is called a parabolic subdiagram of Γ. We denote by

K̃1 ⊕ K̃2 a parabolic subdiagram which is a disjoint union of two connected parabolic

subdiagrams of type K̃1 and K̃2, where Ki is Am, Dn or Ek. The rank of a parabolic

subdiagram is the sum of the rank of its connected components. Note that the dual

graph of reducible fibers of an elliptic fibration gives a parabolic subdiagram. For exam-

ple, a singular fiber of type III, IV or In+1 defines a parabolic subdiagram of type Ã1, Ã2

or Ãn respectively. We denote by W (Γ) the subgroup of O(L) generated by reflections

associated with δ ∈ Γ.

Proposition 2.8 ([29, Theorem 2.3]). Let ∆ be a set of (−2)-vectors in an even

lattice L of signature (1, n) and let Γ be the graph of ∆. Assume that ∆ is a finite set, Γ

is non-degenerate and Γ contains no m-tuple lines with m ≥ 3. Then W (Γ) is of finite

index in O(L) if and only if every connected parabolic subdiagram of Γ is a connected

component of some parabolic subdiagram in Γ of rank n− 1 (= the maximal one).

Remark 2.9. Note that Γ as in the above proposition is automatically non-

degenerate if it contains the components of the reducible fibers of an extremal genus
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one fibration on an Enriques surface and a special bi-section of this fibration. Indeed,

these nodal curves generate Num(X)⊗Q and hence K(Γ) is strictly convex.

Let L be an even lattice isomorphic to the Néron–Severi lattice of the supersingular

K3 surface Y in characteristic 2 with the Artin invariant 1. Then L has the signature

(1, 21) and the discriminant −22. In this case the reflection subgroup generated by

reflections associated with all (−2)-vectors is not of finite index in O(L). However the

subgroup generated by all reflections (not only (−2)-reflections, but also (−4)-reflections

in O(L)) is of finite index in O(L). Such lattice is called reflective. There exist reflective

lattices of signature (1, n) only if 1 ≤ n ≤ 19 or n = 21 ([11]). Moreover the lattice L

is the only known example of reflective lattices in rank 22 due to Borcherds [3]. The

automorphism group Aut(Y ) is infinite, that is, the ample cone has infinitely many

facets. Here a facet means a face of codimension 1. On the other hand, there exists

a finite polyhedron in the ample cone which has 42 facets defined by 42 (−2)-vectors

and 168 facets defined by 168 (−4)-vectors. The 42 (−2)-vectors correspond to 42 nodal

curves in A and B on Y . The 168 (−4)-vectors correspond to

2h− (E1 + · · ·+ E6), (2.3)

where h is the pullback of the class of a line on P2 under the map Y → Z → P2 and

E1, . . . , E6 are nodal curves over six points in general position on P2(F4). Here a set of

six points on P2(F4) is called general if no three points are collinear. There are exactly

168 sets of six points in general position. Each of these 42 (−2)- and 168 (−4)-vectors

defines a reflection in O(L). The finite polyhedron is a fundamental domain of the

group generated by all reflections associated with 42 (−2)- and 168 (−4)-vectors. The

reflections associated with 168 (−4)-vectors are realized by automorphisms of Y . Thus

we can give a generator of Aut(Y ) ([7]).

3. Examples.

3.1. Enriques surfaces of type MI.

This example was given in Katsura and the author [13]. We recall it briefly. Let

x2
1x2 + x1x

2
2 + x3

0 + sx0(x
2
1 + x1x2 + x2

2) = 0

be a pencil of cubics on P2 with a parameter s. The base points of the pencil are nine

F4-rational points. There are exactly four members (s3 = 1 and s = ∞) in the pencil

which consist of three lines on P2(F4). By blowing-up the nine base points we have a

rational elliptic surface with four singular fibers of type I3 and with nine sections. Recall

that there exist exactly 5 lines in P2(F4) passing a point in P2(F4). This implies that

there are nine bi-sections of the elliptic fibration passing a singular point of singular

fibers. Now consider the Frobenius base change t2 = s of the pencil

x2
1x2 + x1x

2
2 + x3

0 + t2x0(x
2
1 + x1x2 + x2

2) = 0,

which has 12 rational double points of type A1 over the singularities of singular fibers of

type I3. We will use its affine model
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y2 + y + x3 + t2x(y2 + y + 1) = 0.

By resolution of singularities, we have an elliptic fibration

g : Y → P1

which has four singular fibers of type I6 and 18 sections. Note that the 9 base points

and the 12 singular points of the singular fibers of type I3 of the cubic pencil are exactly

the 21 F4-rational points on P2. Thus Y is birational to the inseparable double covering

of P2 given in Section 2. Hence Y is the supersingular K3 surface with Artin invariant 1.

Note that Y contains 42 nodal curves which are 24 components of singular fibers of g

and 18 sections. These 42 nodal curves correspond to 21 lines and 21 points on P2(F4).

Now consider a rational derivation defined by

Da,b =
1

(t− 1)

(
(t− 1)(t+ a)(t+ b)

∂

∂t
+ (1 + t2x)

∂

∂x

)
, (3.1)

where a, b ∈ k, a + b = ab, a3 ̸= 1. Then D2
a,b = abDa,b, that is, Da,b is 2-closed. It

is known that Da,b is divisorial, and hence the quotient surface Y Da,b is nonsingular.

Moreover the integral nodal curves with respect to Da,b are the disjoint union of twelve

nodal curves which are components of four singular fibers of type I6. By blowing-down

twelve (−1)-curves on Y Da,b which are the images of integral nodal curves, we have an

Enriques surface Xa,b. The fibration g : Y → P1 induces an elliptic fibration f : X → P1

which has four singular fibers of type I3 and 18 special bi-sections. Thus there are 30

nodal curves on Xa,b. On the other hand, among the 168 divisors given in (2.3), there

are exactly ten divisors which are orthogonal to all twelve integral nodal curves. The

images of these ten (−4)-divisors descend to ten (−2)-divisors on Xa,b.

Theorem 3.1 ([13, Theorems 4.8, 7.5]). There exists a 1-dimensional family

{Xa,b} of classical and supersingular Enriques surfaces whose canonical covers Ȳa,b have

twelve nodes. Here a, b ∈ k, a + b = ab, a3 ̸= 1. The minimal resolution of each Ȳa,b

is the supersingular K3 surface Y with the Artin invariant 1. If a = 0, then Xa,b is

supersingular, and otherwise classical. Each Xa,b contains 30 nodal curves and 10 non-

effective (−2)-classes which satisfy the condition in Proposition 2.8. In particular the

reflection subgroup generated by reflections associated with these 40 (−2)-vectors is of

finite index in O(Num(Xa,b)).

We mention an another detail of the 30 nodal curves. There exist twelve canonical

points on Xa,b which are the images of twelve integral curves. Each nodal curve passes

through two canonical points. Recall that there are 42 nodal curves in A and B. We

have decompositions

A = A0 ∪ A1, B = B0 ∪ B1

where both A0 and B0 consist of six integral curves. We denote by Ā0 and B̄0 the sets

of six canonical points on Xa,b which are the images of A0 and B0, respectively. In the

following Figure 1, the six black nodes denote the six canonical points in Ā0 or in B̄0,

and the 15 lines denote the 15 nodal curves passing through two canonical points from
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the six canonical points. Thus we conclude that the 30 nodal curves are divided into two

sets of 15 nodal curves whose incidence relation is given in Figure 1. Nodal curves in

Figure 1 meet only at canonical points. Each member in a set is tangent to exactly three

members in another set.

Figure 1.

The set of elliptic fibrations on Y up to Aut(Y ) bijectively corresponds to the set

of primitive isotropic vectors in NS(Y ) contained in the closure of the finite polyhedron

defined by 42 nodal curves and 168 (−2)-curves. It follows that any elliptic fibration

on Xa,b is isomorphic to one of fibrations corresponding to primitive isotropic vectors in

Num(Xa,b) contained in the closure of the finite polyhedron defined by 40 (−2)-vectors

mentioned in Theorem 3.1. Thus we have the following proposition.

Proposition 3.2 ([13, Lemma 7.2 and the subsequent arguments]). There exist

exactly four types of elliptic fibrations on Xa,b as follows :

(I5, I5, I1, I1), (I6, 2IV, I2), (I4, I4, 2III), (I3, I3, I3, I3).

In each case there are exactly twelve singular points of fibers which are canonical points

of Xa,b, that is, the images of twelve integral curves. All elliptic fibrations are special.

Lemma 3.3. Let f : Xa,b → P1 be an elliptic fibration.

(1) In case that f is of type (I5, I5, I1, I1), any special bi-section passes through a singular

point of a fiber of type I5 and that of a fiber of type I1, and is tangent to each other

singular fiber at a simple point.

(2) In case of type (I6, 2IV, I2), any special bi-section passes through a singular point of

the fiber of type I2 and is tangent to the fiber of type I6 at a simple point. There are

four canonical points on the multiple fiber of type IV, one of them is the singular

point of the fiber and others are simple points on each component. Any special

bi-section passes through a canonical point on the multiple fiber.

(3) In case of type (I4, I4, 2III), any special bi-section passes through a singular point

of a fiber of type I4 and is tangent to the other fiber of type I4 at a simple point.

There are four canonical points on the multiple fiber of type III. Each component

of the multiple fiber contains two canonical points, both of which are simple points
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of the fiber. Any special bi-section passes through a canonical point on the multiple

fiber.

(4) In case of type (I3, I3, I3, I3), any special bi-section passes through a singular point

of two fibers of type I3, and is tangent to each other singular fiber at a simple point.

Proof. In cases (1), (2), (4), the elliptic fibration g on Y induced from f has a

section and its Mordell–Weil group is a torsion group. Any special bi-sections of f is one

of 30 nodal curves mentioned in Theorem 3.1. Thus we directly prove the assertion.

In case (3), g has singular fibers of type (I8, I8, I
∗
1). Twelve canonical points are the

singular points of two fibers of type I4 and four points on the singular fiber of type III.

The last four points are the images of four simple components of the fiber of g of type I∗1.

Since the pullback of any special bi-section of f is a section of g, it passes exactly one

canonical point on the fiber of type III. Since any nodal curve passes two canonical

points (Lemma 2.2), we have the assertion. □

Remark 3.4. Over the complex numbers, Mukai obtained an Enriques surface

which contains 30 nodal curves with the same dual graph as the above example. The

name “of type MI” comes from this fact. The canonical cover of the Mukai’s example is

the intersection of three quadrics given by the equations:

x2 − (1 +
√
3)yz = u2 − (1−

√
3)vw,

y2 − (1 +
√
3)xz = v2 − (1−

√
3)uw,

z2 − (1 +
√
3)xy = w2 − (1−

√
3)uv.

See Mukai and Ohashi [22, Remark 2.7].

3.2. Enriques surfaces of type VII.

This type has appeared in the classification of Enriques surfaces with finite auto-

morphism group ([14], [15]).

We start with a rational elliptic fibration defined by

y2 + sxy + y = x3 + x2 + s,

which has two singular fibers of type I5 over s = 1,∞ and two singular fibers of type I1
over s = ω, ω2 (ω3 = 1, ω ̸= 1). Taking the Frobenius base change s = t2, we have an

elliptic fibration g : Y → P1 defined by

y2 + t2xy + y = x3 + x2 + t2. (3.2)

The fibration g has two singular fibers of type I10 over t = 1,∞ and two singular fibers of

type I2 over t = ω, ω2. And g has 10 sections. One can prove that Y is the supersingular

K3 surface with the Artin invariant 1.

Now consider a rational derivation defined by

Da,b =
1

(t− 1)

(
(t− 1)(t− a)(t− b)

∂

∂t
+ (1 + t2x)

∂

∂x

)
,
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where a, b ∈ k, a + b = ab and a3 ̸= 1 (this derivation is the same as in the case of

type MI given in (3.1). However the equations of these surfaces are different). Then

D2
a,b = abDa,b, that is, Da,b is 2-closed. It is known that Da,b is divisorial, and hence

the quotient surface Y Da,b is smooth. Moreover the integral nodal curves with respect to

Da,b are the disjoint union of twelve nodal curves which are components of the singular

fibers of type I10 and of type I2. By blowing-down the twelve (−1)-curves on Y Da,b which

are the images of integral nodal curves, we have an Enriques surface Xa,b. The fibration

g induces an elliptic fibration f : Xa,b → P1 which has two singular fibers of type I5
and two singular fibers of type I1. The ten sections of g give ten bi-sections of f . Thus

there are 20 nodal curves on Xa,b whose dual graph coincides with that of the Enriques

surface of type VII defined over C in Kondō [17]. The following Figure 2 is a part of

the 20 nodal curves. Each line denotes a nodal curve and the 10 black circles are a part

of the 12 canonical points. The remaining five nodal curves pass through the remaining

two canonical points. The dual graph of the 20 nodal curves satisfies the condition in

Proposition 2.8. In particular the reflection subgroup generated by reflections associated

with these 20 (−2)-vectors is of finite index in O(Num(Xa,b)).

Figure 2.

Theorem 3.5 ([14, Theorems 3.15, 3.19]). There exists a 1-dimensional family

{Xa,b} of classical and supersingular Enriques surfaces whose canonical covers Ȳa,b have

twelve nodes. Here a, b ∈ k, a+ b = ab, a3 ̸= 1. The minimal resolution of each Ȳa,b is

the supersingular K3 surface Y with Artin invariant 1. The surface X contains exactly

20 nodal curves and the automorphism group Aut(Xa,b) is isomorphic to the symmetric

group S5 of degree 5.

Proposition 3.6 ([14, Figure 2 and the subsequent arguments]). There exist

exactly four types of elliptic fibrations on Xa,b as follows :

(I5, I5, I1, I1), (I6, 2IV, I2), (I9, I1, I1, I1), (I8, 2III).

All elliptic fibrations are special.

Lemma 3.7. Let f : Xa,b → P1 be an elliptic fibration.

(1) In case that f is of type (I5, I5, I1, I1), the following two cases occur. Either a special
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bi-section passes through a singular point of two fibers of type I5 and is tangent to

the other two singular fibers at a simple point, or it passes through a singular point

of two fibers of type I1 and is tangent to the other two singular fibers at a simple

point.

(2) In case of type (I6, 2IV, I2), any special bi-section passes through a singular point of

the fiber of type I6 and is tangent to the fiber of type I2 at a simple point. There are

four canonical points on the multiple fiber of type IV, one of them is the singular

point of the fiber and others are simple points on each component. Any special

bi-section passes through a canonical point on the multiple fiber.

(3) In case of type (I9, I1, I1, I1), the following two cases occur. Either a special bi-

section passes through a singular point of the fiber of type I9 and a singular point

of a fiber of type I1, and is tangent to the other two fibers at a simple point, or it

passes through the singular point of two fibers of type I1 and is tangent to the other

two fibers at a simple point.

(4) In case of type (I8, 2III), any special bi-section passes through a singular point of

the fiber of type I8. There are four canonical points on the multiple fiber of type III.

Each component of the multiple fiber contains two canonical points, both of which

are simple points of the fiber. Any special bi-section passes through a canonical

point on the multiple fiber.

Proof. The surface Xa,b has exactly 20 nodal curves. Recall that the elliptic

fibration f : Xa,b → P1 has two singular fibers of type I5 and ten bi-sections, and the

above 20 nodal curves are exactly the components of singular fibers and bi-sections of f .

The fibration g : Y → P1 inducing f is defined by the equation (3.2). We know the

intersection relations between the fibers and sections of g explicitly (see [14, Section 3]).

Thus we have the assertions. □

3.3. Enriques surfaces of type MII.

Consider a line ℓ in P2(F4) and denote by p1, . . . , p5 the five F4-rational points on ℓ.

For i = 1, 2, let ℓij (j = 1, . . . , 4) be the four lines in P2(F4) through pi except ℓ (see

Figure 3).

Figure 3.
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Let Y be the supersingularK3 surface with Artin invariant 1. Recall that Y contains

42 nodal curves which are the pullbacks of the 21 lines on P2(F4) and the 21 exceptional

curves over the 21 points on P2(F4). Let L,Lij be the proper transforms of ℓ, ℓij on Y .

Also denote by Ei the exceptional curve over the point pi (i = 1, . . . , 5). Let Ȳ be the

surface obtained by contracting Lij (i = 1, 2, j = 1, . . . , 4), L,E3, E4, E5 which has eight

rational double points of type A1 and one rational double point of type D4. We shall

give classical Enriques surfaces X = Xa,b whose canonical covers are Ȳ . The surfaces X

contain 28 nodal curves as in Figure 4.

Figure 4.

Among 28 nodal curves in Figure 4, sixteen of them are the images of the sixteen excep-

tional curves Eij on Y over the sixteen intersection points of ℓ1i and ℓ2j , and twelve of

them are the images of the twelve lines on P2(F4) through p3, p4 or p5. The 16 straight

lines on the left hand side in Figure 4 denote these 16 nodal curves and the eight black

circles denote eight canonical points which are the images of eight rational double points

of type A1. The 16 nodal curves meet only at the 8 canonical points. On the right hand

side in Figure 4 twelve curves denote the twelve nodal curves. All these twelve curves

pass through the black circle corresponding to the canonical point which is the image of

the rational double point of type D4. These twelve nodal curves are divided into three

groups each of which consist of four nodal curves tangent each other.

To construct X we use an elliptic fibration g : Y → P1 defined by

y2 + xy + t2(t+ 1)2y = x3 + t2(t+ 1)2x2, (3.3)

which is the Frobenius base change s = t2 of a rational elliptic surface defined by

y2 + xy + s(s+ 1)y = x3 + s(s+ 1)x2.

The fibration g has two singular fibers of type I8 over t = 0, 1 and one of type I∗1 over

t = ∞. This elliptic fibration is realized by the linear system

|L11 + E11 + L21 + E21 + L12 + E22 + L22 + E12|.

The other singular fibers are given by the divisors

L13 + E33 + L23 + E43 + L14 + E44 + L24 + E34

and

E3 + E4 + 2(L+ E5) + F1 + F2,
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where F1, F2 are proper transforms of some lines passing through p5. Thus the linear

system defines an elliptic fibration on Y with singular fibers of type (I8, I8, I
∗
1). By the

uniqueness of elliptic fibrations on Y (Theorem 2.5), we may assume that the fibration

defined by the linear system is the one g : Y → P1 given by (3.3).

Now consider a rational derivation Da,b on Y induced by

1

abt(t+ 1)

(
t(t+ 1)(at+ 1)(bt+ 1)

∂

∂t
+ (x+ t2(t+ 1)2)

∂

∂x

)
,

where a, b ∈ k∗, a + b = ab (the author gave a derivation (the case a = ω, b = ω2) and

later Matsumoto pointed out the existence of derivations of this type). Obviously Da,b

has poles of order 1 along the fibers over the points t = 0, 1 and the fibers over the points

defined by t = 0, 1, 1/a, 1/b are integral with respect to Da,b. We resolve the singularities

of the surface defined by the equation (3.3). Then we calculate the divisorial part of

the induced derivation, denoted by the same symbol Da,b, on Y and determine integral

curves on fibers. These are elementary, but long calculations. Thus one can prove the

following lemma.

Lemma 3.8.

(1) D2
a,b = Da,b, namely, Da,b is 2-closed and of multiplicative type.

(2) On the surface Y , the divisorial part of Da,b is given by

(Da,b) = −(L11 +L12 +L21 +L22 +L13 +L14 +L23 +L24 +2(L+E3 +E4 +E5))

and (Da,b)
2 = −24.

(3) The integral curves with respect to Da,b in the fibers of g : Y −→ P1 are the

following : two smooth fibers over the points t = 1/a, 1/b and

L11, L12, L21, L22, L13, L14, L23, L24, E3, E4, E5.

Lemma 3.9. The derivation Da,b is divisorial.

Proof. It follows from the formula (2.2) and Lemma 3.8, (2) that

24 = c2(Y ) = deg(⟨Da,b⟩)−KY · (Da,b)− (Da,b)
2 = deg(⟨Da,b⟩) + 24.

Hence deg(⟨Da,b⟩) = 0 and the assertion follows. □

It follows from Lemma 3.9 that the quotient surface Y Da,b is nonsingular. We

denote by π : Y → Y Da,b the quotient map. By using Lemma 2.1 we see that Y Da,b

has 11 exceptional curves of the first kind which are the images of the integral curves

stated in Lemma 3.8, (3). By contracting these curves and then contracting π(L) we get

a smooth surface ϕ : Y Da,b → Xa,b. It follows from the formula (2.1) that

0 = KY = π∗(KY Da,b ) + (Da,b).
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On the other hand, by construction, we have KY Da,b = ϕ∗(KXa,b
) + L̄ + L̄11 + L̄12 +

L̄21 + L̄22 + L̄13 + L̄14 + L̄23 + L̄24 + 2Ē3 + 2Ē4 + 2Ē5. Here, for example, L̄ = π(L).

Note that L is not integral and hence π∗(L̄) = 2L (Lemma 2.1). Combining these two

equations and Lemma 3.8, (2), (3), we have

π∗ϕ∗KXa,b
= 0,

and hence KXa,b
is numerically trivial. Since b2(Y

Da,b) = b2(Y ) = 22, we have

b2(Xa,b) = b2(Y
Da,b)− 12 = 10.

Thus Xa,b is an Enriques surface.

The elliptic fibration g : Y → P1 induces an elliptic fibration f : Xa,b → P1 which

has two singular fibers of type I4 and a singular fiber of type III consisting of the images

of F1 and F2. Since the images of two smooth integral curves stated in Lemma 3.8, (3)

are multiple fibers of the elliptic fibration, Xa,b is classical.

Recall that Y contains 42 nodal curves. Except E1, E2, L and the eleven integral

nodal curves, the images of the remaining 28 nodal curves are nodal curves on Xa,b.

The images of E1, E2 are rational curves with a cusp. It is not difficult to see that the

configuration of these 28 nodal curves is given as in the Figure 4. Thus we conclude:

Theorem 3.10. The surface Xa,b is a classical Enriques surface whose canonical

cover Ȳ has eight nodes and one rational double point of type D4. The minimal resolution

of Ȳ is the supersingular K3 surface Y with Artin invariant 1. The surface Xa,b contains

28 nodal curves as in the Figure 4.

Theorem 3.11. There are twelve non-effective (−2)-divisors on Xa,b. The dual

graph of the 28 nodal curves and these 12 (−2)-vectors satisfies the condition in Proposi-

tion 2.8. In particular the reflection subgroup generated by the reflections associated with

these 40 (−2)-vectors is of finite index in O(Num(Xa,b)).

Proof. Among the 168 (−4)-vectors given in (2.3), the desired ones are the images

of the divisors perpendicular to the root lattice D4 ⊕ A⊕8
1 generated by the exceptional

curves of the singularities of the canonical cover of Xa,b. Such divisors correspond to

six point sets S on P2(F4) such that S contains p1, p2, does not contain p3, p4, p5 and

each line ℓij passes through one member in S \ {p1, p2}. We can easily see that there

are exactly 12 such sets in general position. Thus we have 12 (−2)-vectors {ri}12i=1 in

Num(Xa,b). Each vector rj has the intersection multiplicity 1 with exactly 8 vectors

among {ri} and 2 with the remaining 3 vectors. The dual graph of {ri} has two types

of maximal parabolic subdiagrams of type Ã1 and Ã2. It follows that maximal parabolic

subdiagrams of the dual graph of 40 vectors are of type

Ã3 + Ã3 + Ã1 + Ã1, Ã5 + Ã2 + Ã1, Ã7 + Ã1, Ã5 + Ã2 + Ã1, Ã2 + Ã2 + Ã2 + Ã2,

all of which have the maximal rank 8. Note that there are two cases of type Ã5+Ã2+Ã1.

In one of them, Ã2 consists of three non-effective (−2)-vectors and in another one, all

vertices are represented by effective (−2)-vectors (see Remark 3.14). □
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Proposition 3.12. There exist exactly five types of elliptic fibrations on Xa,b as

follows :

(I4, I4, III), (I6, IV, I2), (I8, III), (I6, 2III), (2IV, 2IV, IV).

All fibrations are special.

Proof. The set of elliptic fibrations on Y up to Aut(Y ) bijectively corresponds

to the set of primitive isotropic vectors in NS(Y ) contained in the closure of the finite

polyhedron defined by 42 nodal curves and 168 (−2)-curves. It follows that any elliptic

fibration on Xa,b corresponds to a primitive isotropic vector in Num(Xa,b) contained

in the closure of the finite polyhedron defined by 40 (−2)-vectors mentioned in Theo-

rem 3.11. The latter one corresponds to a maximal parabolic subdiagram of the dual

graph of 40 vectors. The types of fibers (e.g., type III or type I2) are determined by the

classification of elliptic fibrations after Lemma 4.2. Their multiplicities follow from the

construction (see the next example 3.13). □

Example 3.13. We give examples of elliptic fibrations in Proposition 3.12 and

their special bi-sections.

(1) Take a point from {p3, p4, p5}, for example, p3. Let ℓ3, ℓ
′
3 be two lines on P2(F4)

passing through p3 (see Figure 3). Denote by F , F ′ the image of ℓ3, ℓ
′
3 on X = Xa,b

respectively. Then F, F ′ are nodal curves in the right hand side of Figure 4 which

form a singular fiber of type III of an elliptic fibration. Each of the two lines ℓ3, ℓ
′
3

passes four points in P2(F4) \ {p1, . . . , p5}. The images of the remaining eight

points not lying on ℓ3, ℓ
′
3 form two singular fibers of type I4 of the fibration. There

are two types of special bi-sections. A nodal curve in the right hand side of Figure 4

not tangent to F is one of them. Another one is a bi-section tangent to F or F ′

at a simple point. For example, the image of an F4-rational point on ℓ3 \ {p3} is

such a bi-section. Since a bi-section meets F + F ′ with multiplicity 2, the fiber of

type III is not multiple. Thus we have an elliptic fibration of type (I4, I4, III).

(2) Consider three lines ℓ3, ℓ4, ℓ5 on P2(F4) such that ℓi passes pi (i = 3, 4, 5). We

assume that these three lines do not meet at a point. Denote by Fi the image of

ℓi on X. Then F3, F4, F5 form a singular fiber of type IV. Among the 7 points

on P2(F4) not lying on ℓ, ℓ3, ℓ4, ℓ5, there are six points whose images on X form a

singular fiber of type I6. The remaining point is a component of a singular fiber

of type I2. The image of an F4-rational point on ℓ3 \ {p3, ℓ3 ∩ ℓ4, ℓ3 ∩ ℓ5} gives a

special bi-section. Since a bisection meets F3 + F4 + F5 with multiplicity 2, the

fiber of type IV is not multiple. Thus we have an elliptic fibration with singular

fiber of type (I6, IV, I2).

(3) Take a point from p3, p4, p5, for example, p3, and a line ℓ3 on P2(F4) passing

through p3. Among the 12 points on P2(F4)\{ℓ, ℓ3} there are eight points q1, . . . , q8
(not unique) whose images on X form a singular fiber F of type I8. By Proposi-

tion 3.12, this fibration has a singular fiber F ′ of type III or 2III. The image L3

of ℓ3 on X is a component of F ′. Denote by L′
3 the remaining component of F ′.
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Then L3 and L′
3 are tangent at the point p0 the image of the singular point of

type D4 on the canonical covering of X (see Lemma 4.5, (1)). Take a point p of

P2(F4) \ {ℓ, ℓ3, q1, . . . , q8} and a point q on ℓ3 \ {p3}. Consider a line ℓ′ passing

through p and q. Then ℓ′ meets ℓ at p4 or p5 and passes through exactly one

point among the above eight points. This implies that the image s of ℓ′ on X is a

bi-section of the fibration. Since s meets both L3 and L′
3 at p0 transversally, F ′ is

not multiple. Thus we have an elliptic fibration with singular fiber of type (I8, III).

(4) Take three points from p1, . . . , p5, for example, p1, p2, p3. Consider a line on P2(F4)

passing through pi (i = 1, 2), for example, ℓ11, ℓ21. Consider the image of the point

ℓ11 ∩ ℓ21 on X and that of the line ℓ3 passing through two points ℓ11 ∩ ℓ21 and

p3. These two nodal curves form a singular fiber of type III of an elliptic fibration.

The image of an F4-rational point on ℓ11 \ {p1, ℓ11 ∩ ℓ21} is a bi-section. Since this

bi-section meets the fiber of type III with multiplicity 1, this fiber is multiple. The

images of six points not lying on ℓ, ℓ11, ℓ21, ℓ3 form a singular fiber of type I6. Thus

we have an elliptic fibration of type (I6, 2III). There are two types of bi-sections.

The above one passes a singular point of the fiber of type I6. Another one is tangent

to a component of the fiber of type I6. For example, the image of a line passing

through the point p4, but not through ℓ11 ∩ ℓ21 gives such a bi-section. Since it

passes the canonical point which is the image of the rational double point of type

D4, it is tangent to a component of the fiber of type I6 by Lemma 2.2.

(5) Consider three lines ℓ3, ℓ4, ℓ5 on P2(F4) such that ℓi passes through pi (i = 3, 4, 5).

We assume that these three lines meet at a point p (compare this with the case (2)).

Let ℓj be the line passing through p and pj (j = 1, 2). Denote by Li the image of ℓi
on X (i = 3, 4, 5). Then L3, L4, L5 form a singular fiber F of type IV of an elliptic

fibration. On the other hand, the images of the three F4-rational points lying on

ℓ1 \ {p1, p} form a singular fiber F1 of type IV of the elliptic fibration. Similary

the three F4-rational points on ℓ2 \ {p2, p} give a singular fiber F2 of type IV of

the fibration. The image of a point in P2(F4) \ {ℓ ∪ ℓ1 ∪ ℓ2} gives a bi-section.

Since this bi-section meets F1, F2 (resp. F ) with multiplicity 1 (resp. 2), F1, F2 are

multiple and F is not. Thus we have an elliptic fibration of type (2IV, 2IV, IV).

Remark 3.14. We remark that the maximal parabolic subdiagrams in the proof

of Theorem 3.11 correspond to five types of elliptic fibrations in Proposition 3.12 and

that, in the first, fourth, or fifth case, a parabolic subdiagram of type Ã1, Ã2 or Ã2

respectively contains a non-effective (−2)-vector.

Remark 3.15. The symmetry group of the dual graph of 40 (−2)-vectors is (A4×
A4) ·Z/2Z (see Figure 3). This remarkable diagram of (−2)-vectors was first discovered

by Shigeru Mukai (unpublished) in case of complex Enriques surfaces.

Recall that Aut(Y ) is generated by PGL(3,F4), a switch and 168 Cremona transfor-

mations, where Y is the covering K3 surface of Xa,b ([7]). Among these automorphisms,

the subgroup (A4 ×A4) ·Z/2Z and the twelve Cremona transformations associated with

the twelve divisors stated in the proof of Theorem 3.11 preserve the 12 nodal curves
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L,L11, L12, L21, L22, L13, L14, L23, L24, E3, E4, E5

contracted under the map ϕ.

Conjecture 3.16. The subgroup (A4×A4) ·Z/2Z and the twelve Cremona trans-

formations descend to automorphisms of Xa,b.

Lemma 3.17. There are nine canonical points on Xa,b. One of them, denoted by

p0, corresponds to the D4-singularity and the others correspond to A1-singularities. Let

f : Xa,b → P1 be an elliptic fibration.

(1) In case that f is of type (I4, I4, III), the canonical point p0 is the singular point of

the fiber of type III. For special bi-sections, the following two cases occur. Either a

special bi-section passes through p0 and is tangent to the other two singular fibers

of type I4 at a simple point, or it passes through a singular point of two fibers of

type I4 and is tangent to the fiber of type III at a simple point.

(2) In case of type (I6, IV, I2), the canonical point p0 is the singular point of the fiber of

type IV. Any special bi-section passes through a singular point of the fiber of type

I6 and a singular point of the fiber of type I2, and is tangent to the fiber of type IV

at a simple point.

(3) In case of type (I8, III), the canonical point p0 is the singular point of the fiber of

type III. Any special bi-section passes through p0 and is tangent to the fiber of

type I8 at a simple point.

(4) In case of type (I6, 2III), the canonical point p0 is a simple point of a component

of the singular fiber of type 2III. Two canonical points lie on the other component

of the fiber of type 2III, both of which are simple points of the fiber. For special

bi-sections, the following two cases occur. A special bi-section passes through p0
and is tangent to the fiber of type I6 at a simple point. Or a special bi-section

passes through a canonical point on the fiber of type III not p0 and a singular point

(= canonical point) on the fiber of type I6.

(5) In case of type (2IV, 2IV, IV), the canonical point p0 is the singular point of the

non-multiple fiber of type IV. The other two singular fibers contain four canonical

points. One of them is the singular point of the fiber and others are simple points

of each component. Any special bi-section passes through a canonical point on two

multiple fibers and is tangent to the remaining fiber at a simple point.

Proof. The existence of bi-sections of given types follows from Example 3.13. In

cases (2), (3), the elliptic fibration g on Y induced from f has a section and the Mordell–

Weil group is a torsion group. Any special bi-sections of g is one of 28 nodal curves

mentioned in Theorem 3.10. Thus we directly prove the assertion.

In the remaining cases, the proof is similar to that of Lemma 3.3. Any special bi-

section of f is a section of g. We know which components of g are integral curves. From

this one can easily check the assertions. □
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4. Possible singularities and singular fibers.

Let X be an Enriques surface. Assume that the canonical cover π̄ : Ȳ → X has

only rational double points and the minimal resolution Y of Ȳ is the supersingular K3

surface with the Artin invariant 1. In this section we determine the possibilities of the

singularities of Ȳ (Lemma 4.2) and study elliptic fibrations on X (Lemmas 4.3, 4.5, 4.6).

Proposition 4.1. Let R be the lattice generated by exceptional curves of the min-

imal resolution Y → Ȳ of singularities. Then R is one of the following :

A⊕12
1 , A⊕8

1 ⊕D4, A⊕4
1 ⊕D⊕2

4 , A⊕6
1 ⊕D6.

Proof. Denote by R̄ the primitive sublattice in Pic(Y ) containing R of finite

index. Then R̄ is the orthogonal complement of π∗(Pic(X)) ∼= E10(2) in Pic(Y ). Since

ρ(Y ) = 22, rank(R) = 12. By Ekedahl, Hyland, Shepherd-Barron [9, Lemma 6.5], R is

the direct sum of root lattices of type A1, D2n, E7, E8. Note that these root lattices are

2-elementary, that is, R∗/R is a 2-elementary abelian group. Since R̄ is an over lattice

of R, R̄ is also 2-elementary ([23, Proposition 1.4.1]). Assume that R∗/R ∼= (Z/2Z)a

and R̄∗/R̄ ∼= (Z/2Z)a
′
. Then a′ ≤ a ([23, Proposition 1.4.1]). Denote by H the quotient

group Pic(Y )/(E10(2)⊕ R̄). It follows from Nikulin [23, Proposition 1.5.1] that

210+a′
= |det(E10(2)⊕ R̄)| = |det(Pic(Y ))| · |H|2 = 22 · |H|2.

Hence we have |H| = 24+a′/2. Since H is embedded into R̄∗/R̄ ([23, Proposition 1.5.1]),

we have 24+a′/2 ≤ 2a
′
, and hence 8 ≤ a′ ≤ a. Now the assertion follows from the

classification of root lattices of rank 12. □

Let f : X → P1 be an elliptic fibration on X and denote by g : Y → P1 the

induced elliptic fibration on Y . It follows that g is one of eight elliptic fibrations given

in Theorem 2.7.

Lemma 4.2. The contribution of a fiber of g to the rational double points on Ȳ is

as follows.

(1) On a singular fiber of type I2n there exist n disjoint components contracting to n

rational double points of type A1.

(2) On a singular fiber of type I∗1, there are two possibilities : the four simple compo-

nents of the fiber are contracted to four rational double points of type A1, or four

components forming a dual graph of type D4 are contracted to a rational double

point of type D4.

(3) On a singular fiber of type I∗3, there are two possibilities : two simple components are

contracted to two rational double points of type A1 and another four components

forming a dual graph of type D4 are contracted to a rational double point of type D4,

or six components forming a dual graph of type D6 are contracted to a rational

double point of type D6.
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(4) On a singular fiber of type IV∗ there are two possibilities : the four disjoint compo-

nents are contracted to four rational double points of type A1, or four components

forming a dual graph of type D4 are contracted to a rational double point of type D4.

Proof. First note that each component of singular fibers of type I2n, I
∗
1, I

∗
3, IV

∗

meets transversally with other components. This implies that integral curves in these

fibers form a disjoint union of nodal curves. Also note that possible singularities are 12

A1-singularities, 8 A1- and a D4-singularities, 4 A1- and 2 D4-singularities, or 6 A1- and

a D6-singularities (Proposition 4.1).

The first assertion for I2n (n ≥ 2) follows from Lemma 2.2. In case of I2, one

component of the fiber is integral and the other is not (if both are integral or non

integral, this contradicts to Lemma 2.1). Hence the assertion (1) follows.

In case of a fiber of type I∗1, there are at most four disjoint components. If there

are four integral curves, then they are four simple components and correspond to four

rational double points of type A1. If the number of integral curves is three, then they

are two simple components and a component with multiplicity 2 (otherwise, the image

of the fiber to X is not a configuration of Kodaira’s type). Together with the component

meeting with three integral curves, they form the exceptional curves of a rational double

point of type D4.

In case of a fiber of type I∗3, there are at most five disjoint components. If there

are five integral curves, then they are four simple components and a component with

multiplicity 2. There exists a unique component meeting three integral curves. They

form the exceptional curves of a rational double point of type D4. The remaining two

integral curves correspond to two rational double points of type A1. If the number of

integral curves is four, then they are two simple components and two components with

multiplicity 2 (otherwise, the image of the fiber to X is not a configuration of Kodaira’s

type). Together with two components meeting at least two integral curves, they form

the exceptional curves of a rational double point of type D6.

In case of a fiber of type IV∗, there are at most four disjoint components. If the

number of integral curves is three, then they are three components of the fiber with

multiplicity 2 (otherwise, the image of the fiber to X is not a configuration of Kodaira’s

type). Together with the component meeting these three curves, they form the excep-

tional curves of a rational double point of type D4. If the number of integral curves

is four, then they are three simple components of the fiber and the component with

multiplicity 3. These four components correspond to four A1-singularities. □

By the proof of Lemma 4.2, we can determine the image of each singular fiber to X.

Thus we have the following types of the elliptic fibration f : X → P1 corresponding to

g : Y → P1 (see Theorem 2.7).

Type of g: (I6, I6, I6, I6), (I8, I8, I
∗
1), (I10, I10, I2, I2), (I12, I

∗
3).

Type of f : (I3, I3, I3, I3), (I4, I4, III), (I5, I5, I1, I1), (I6, III).

Type of g: (I12, I4, IV
∗), (IV∗, IV∗, IV∗), (I16, I

∗
1), (I18, I2, I2, I2).

Type of f : (I6, I2, IV), (IV, IV, IV), (I8, III), (I9, I1, I1, I1).
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The following three lemmas easily follow from Lemma 4.2 and its proof.

Lemma 4.3. Assume that Ȳ has a rational double point of type D6 and six rational

double points of type A1. Then X has only one type (I6, III) of singular fibers of elliptic

fibrations, and Ȳ has six rational double points of type A1 over the six singular points of

the fiber of type I6 and a rational double point of type D6 over the singular point of the

fiber of type III.

Lemma 4.4. Assume that Ȳ has two rational double points of type D4 and four

rational double points of type A1. Then X has only one type (IV, IV, IV) of singular

fibers of elliptic fibrations, and Ȳ has rational double points of type D4 over the singular

points of two fibers of type IV and four rational double points of type A1 over four points

on the remaining singular fiber F of type IV. One of the four points is the singular point

of the fiber F and the remaining three points consist of a point on each component of F .

Lemma 4.5. Assume that Ȳ has a rational double point of type D4 and eight

rational double points of type A1. Then X can have five types of singular fibers of elliptic

fibrations as follows :

(I4, I4, III), (I6, III), (I6, I2, IV), (IV, IV, IV), (I8, III).

(1) In cases of (I4, I4, III), (I6, I2, IV), (I8, III), Ȳ has eight rational double points of

type A1 over the eight singular points of singular fibers of type In and a rational

double point of type D4 over the singular point of the fiber of type III or type IV.

(2) In case of (I6, III), Ȳ has eight rational double points of type A1 over the six singular

points of the fiber of type I6 and two points on a component of the singular fiber of

type III and a rational double point of type D4 over a point of the other component

of the fiber of type III.

(3) In case of (IV, IV, IV), Ȳ has a rational double point of type D4 over the singular

point of a fiber of type IV and eight rational double points of type A1 over the eight

points on the remaining two singular fibers of type IV. Two of the eight points are

two singular points of the two fibers and the remaining six points consist of a point

on each component of the two singular fibers.

Lemma 4.6. Assume that Ȳ has twelve rational double points of type A1 and elliptic

fibrations are special. Then X can have six types of singular fibers of elliptic fibrations

as follows :

(I3, I3, I3, I3), (I4, I4, III), (I5, I5, I1, I1), (I6, I2, IV), (I8, III), (I9, I1, I1, I1).

(1) In cases of (I3, I3, I3, I3), (I5, I5, I1, I1), (I9, I1, I1, I1), Ȳ has twelve rational double

points of type A1 over the twelve singular points of the fibers of type In.

(2) In case of (I4, I4, III), (I8, III), Ȳ has eight rational double points of type A1 over

the eight singular points of the fibers of type In and four rational double points of

type A1 over four points on the singular fiber of type III. Each component of the

fiber of type III contains two of the four points.
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(3) In case of (I6, I2, IV), Ȳ has eight rational double points of type A1 over the eight

singular points of the fibers of type In and four rational double points of type A1

over the fiber of type IV. One of the four points is the singular point of the fiber

and the remaining three points consist of a point on each component of the fiber.

Proof. The only non trivial thing is non-existence of the case (IV, IV, IV). In

this case, three singular fibers of g : Y → P1 are of type IV∗ and all simple components

are integral. Recall that g has a section s whose image on X is a special bi-section

of f (we assume that f is special). This implies that all three singular fibers of f

are multiple, which is a contradiction (also s passes three canonical points, which is

impossible (Lemma 2.2)). □

5. Special bi-sections of a special elliptic fibration.

In this section we study possibilities of special bi-sections of a special elliptic fibration

f : X → P1 on an Enriques surface X. We assume that the canonical cover Ȳ of X has

only rational double points and its minimal nonsingular model Y is the supersingular

K3 surface with the Artin invariant 1. Let s be a special bi-section. In the following

Lemmas 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, we assume that the canonical cover Ȳ has only rational

double points of type A1.

Lemma 5.1. In case that f has singular fibers of type (I5, I5, I1, I1), the following

three cases occur :

(1) s passes through a singular point of two fibers of type I5.

(2) s passes through a singular point of two fibers of type I1.

(3) s passes a singular point of a fiber of type I5 and that of a fiber of type I1.

Proof. Since Ȳ has only rational double points of type A1, any special bi-section

passes through two canonical points (Lemma 2.2). Hence the assertion is obvious. □

By the same proof as that of Lemma 5.1, we have the following two Lemmas 5.2,

5.3.

Lemma 5.2. In case that f has singular fibers of type (I9, I1, I1, I1), the following

two cases occur :

(1) s passes through a singular point of the fiber of type I9.

(2) s passes through a singular point of two fibers of type I1.

Lemma 5.3. In case that f has singular fibers of type (I3, I3, I3, I3), s passes through

a singular point of two fibers of type I3.

Lemma 5.4. In case that f has singular fibers of type (I6, IV, I2), the fiber of type IV

is multiple and the following two cases occur :

(1) s passes through a singular point of the fiber of type I6.
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(2) s passes through a singular point of the fiber of type I2.

Proof. Since the pre-image of the fiber of type IV on Y is of type IV∗ and three

simple components of the fiber of type IV∗ are integral (see the proof of Lemma 4.2, (4)),

s passes through exactly one canonical point on the fiber of type IV and hence this fiber

is multiple. Since s passes through another canonical point, either the assertion (1) or

(2) holds. □

Lemma 5.5. In case that f has singular fibers of type (I8, III), the fiber of type III

is multiple and s passes through a singular point of the fiber of type I8.

Proof. Since there are exactly four canonical points on the fiber of type III which

are the images of the four simple components of the fiber of type I∗1 (see the proof of

Lemma 4.2, (2)), the fiber of type III is multiple. The bi-section s passes through another

canonical point and hence the remaining assertion follows. □

Lemma 5.6. In case that f has singular fibers of type (I4, I4, III), the fiber of type III

is multiple. The bi-section s passes through a singular point of a fiber of type I4 and is

tangent to a component of the other fiber of type I4.

Proof. The proof is the same as that of Lemma 5.5. □

Next, in the following Lemmas 5.7, 5.8, 5.9, 5.10, 5.11, we assume that Ȳ has a

rational double point of type D4 and 8 rational double points of type A1. Denote by

p0 the canonical point on X which is the image of the rational double point of type D4

on Ȳ .

Lemma 5.7. In case that f has singular fibers of type (I8, III), the fiber of type III

is not multiple and its singular point is p0. The bi-section s passes through the singular

point of the fiber of type III and is tangent to a component of the fiber of type I8.

Proof. Since the two components of the fiber F of type III correspond to two

simple components of the fiber of type I∗1 (see the proof of Lemma 4.2, (2)), s is tangent

to a component of F or passes through the singular point of F . Hence F is not multiple.

If s is tangent to F , then s passes through two singular points of the fiber of type I8
which is impossible because s is a bi-section. Therefore s passes through the singular

point of F and is tangent to a component of the fiber of type I8. □

Lemma 5.8. In case that f has singular fibers of type (I6, III), the fiber of type III

is multiple, p0 is a simple point of a component of this fiber, and the following two cases

occur :

(1) s passes through a singular point of the fiber of type I6.

(2) s is tangent to a component of the fiber of type I6.

Proof. The pullback of the fiber F of type III to Y is of type I∗3, and the image

of the cycle of type D4 is nothing but p0 (see the proof of Lemma 4.2, (3)). Since four

simple components of the fiber of type I∗3 are integral, s meets F at a simple point on F
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transversally. Therefore F is multiple. If s passes through p0, then s is tangent to a

component of the fiber F ′ of type I6. If s passes through a canonical point of F not equal

p0, then s passes through a singular point of F ′. □

Lemma 5.9. In case that f has singular fibers of type (IV, IV, IV), two fibers of

type IV are multiple and p0 is the singular point of the non multiple fiber of type IV. The

bi-section s is tangent to a component of the non-multiple fiber of type IV.

Proof. Since p0 is the image of the cycle of type D4 on a fiber of type IV∗, p0 is

the singular point of a fiber of type IV (see the proof of Lemma 4.2, (4)). Since s passes

through a canonical and simple point of the other two singular fibers of type IV, these

two singular fibers are multiple. The remaining assertion is obvious. □

Lemma 5.10. In case that f has singular fibers of type (I4, I4, III), the fiber of type

III is not multiple, p0 is its singular point and the following two cases occur :

(1) s passes through a singular point of two fibers of type I4.

(2) s passes through p0 and is tangent to the fibers of type I4 at a simple point.

Proof. The proof of non-multipleness of the fiber of type III is the same as that

of Lemma 5.7. The remaining assertions are obvious. □

Lemma 5.11. In case that f has singular fibers of type (I6, IV, I2), the fiber of

type IV is not multiple and p0 is its singular point. The bi-section s passes through a

singular point of the fiber of type I6 and a singular point of the fiber of type I2.

Proof. The proof of the first assertion is similar to that of Lemma 5.9. The

remaining assertion is obvious. □

Finally we consider the case that the canonical double cover Ȳ has two rational

double points of type D4 or a rational double point of type D6.

Lemma 5.12. The canonical cover Ȳ has neither a rational double points of type D̃6

nor two rational double points of type D4.

Proof (due to the referee). If Ȳ has a rational double point of type D6, then f

has singular fibers of type (I6, III) (Lemma 4.3). The induced fibration g : Y → P1

has singular fibers of type (I12, I
∗
3), and the special bi-section s induces a section s̃ of g.

By Lemma 2.2, s̃ has exactly two points (including an infinitely near point) contracted

during the blow-down Y → Ȳ . On the other hand, by Lemma 4.2, (3), s̃ has either

three points contracted during Y → Ȳ or no such points on the fiber of type I∗3, and by

Lemma 4.2, (1), s̃ has either one point contracted during Y → Ȳ or no such points on

the fiber of type I12. This is a contradiction.

If Ȳ has two rational double points of type D4, then f has singular fibers of type

(IV, IV, IV) (Lemma 4.4). The induced fibration g : Y → P1 has three singular fibers

of type IV∗ and has a section s̃. It follows from Lemma 4.2, (4) that s̃ has exactly one

point contracted during Y → Ȳ . This contradicts Lemma 2.2. □
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Remark 5.13. Ekedahl, Hyland and Shepherd-Barron [9, Corollary 6.16] showed

that the canonical cover Ȳ has no two rational double points of type D4 in general setting

without the assumption of the existence of a special bi-section. Very recently Matsumoto

[21] studied more details of possible singularities on the canonical coverings of Enriques

surfaces in characteristic 2.

6. Classification.

In the following, X is an Enriques surface and Y is the minimal resolution of the

canonical cover Ȳ of X. We assume that Y is the supersingular K3 surface with the

Artin invariant 1. If X has no nodal curves, then any elliptic fibration on X has only

irreducible fibers. The induced fibration on Y is one of the list of Theorem 2.7, which is

impossible. Thus X contains a nodal curve, and hence X has a special elliptic fibration

(Proposition 2.4). We fix a special elliptic fibration f : X → P1 with a special bi-section s.

Theorem 6.1.

(a) Assume that Ȳ has only rational double points of type A1. Then X has the dual

graph of twenty (−2)-vectors of type VII or forty (−2)-vectors of type MI.

(b) Assume that Ȳ has a rational double point of type D4. Then X has the dual graph

of forty (−2)-vectors of type MII.

Proof. By Lemmas 4.5, 4.6, 5.12, we know possible singular fibers and the po-

sitions of canonical points on the fibers. Moreover, for each special elliptic fibration,

we know the configuration of singular fibers and special bi-sections (Lemmas 5.1–5.11).

Fortunately, if we take any possible special bi-section s, it coincides with the unique one

of examples of type VII, type MI or type MII. For example, in Lemma 5.1, the cases

(1) and (2) correspond to the example of type VII (Lemma 3.7, (1)) and the case (3)

corresponds to the example of type MI (Lemma 3.3, (1)). In each case, the pullback of

the fibration gives an elliptic fibration on the supersingular K3 surface Y which is unique

up to isomorphisms (Theorem 2.5). Therefore we have the remaining nodal curves on

Y as sections or multi-sections in each case, and hence we obtain the remaining nodal

curves on X whose dual graph is the same as that of the corresponding example. In case

of type VII, the dual graph of nodal curves is already determined. In case of type MI

or MII, the remaining 10 or 12 (−2)-vectors are determined by the obtained 30 or 28

nodal curves. Thus we have the dual graph of 20, 40, or 40 vertices, respectively, which

satisfies the condition in Proposition 2.8. □

Thus we have the main theorem in this paper.

Theorem 6.2. There exist exactly three types of Enriques surfaces such that the

minimal resolutions of the canonical double covers of these Enriques surfaces are the

supersingular K3 surface with the Artin invariant 1.

Remark 6.3. By the result of Ekedahl, Hyland and Shepherd-Barron [9, Theo-

rem 3.21], the canonical cover of each of the examples of Enriques surfaces of type MI,

MII, VII has exactly 2-dimensional regular derivations. Thus it follows that our examples
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give all Enriques surfaces such that the minimal resolutions of the canonical double covers

of these Enriques surfaces are the supersingular K3 surface with the Artin invariant 1.
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Graduate School of Mathematics

Nagoya University

Nagoya 464-8602, Japan

E-mail: kondo@math.nagoya-u.ac.jp


