(©2020 The Mathematical Society of Japan
J. Math. Soc. Japan

Vol. 72, No. 2 (2020) pp. 541-567

doi: 10.2969/jms]j/81468146

Stabilities of rough curvature dimension condition

By Daisuke KAZUKAWA, Ryunosuke OZAWA and Norihiko SUZUKI

(Received Oct. 14, 2018)

Abstract. We study the asymptotic behavior of metric measure spaces
satisfying the rough curvature dimension condition. We prove stabilities of the
rough curvature dimension condition with respect to the observable distance
function and the L2-transportation distance function.

1. Introduction.

The curvature dimension condition CD(K,N) for mm-spaces (metric measure
spaces) has been introduced by Sturm [13], [14] and Lott—Villani [10]. This is a gen-
eralized notion of Ricci curvature bound from below by K € R and dimension bound
from above by N € [1,00]. Since an mm-space satisfying CD(K, N) is a geodesic space,
the notion does not cover the case of discrete spaces. To extend the notion of cur-
vature bounds to discrete spaces, Bonciocat—Sturm [4] introduced the rough curvature
dimension condition h-CD(K, co) with roughness parameter h > 0 and constructed the
discretization with h-CD(K, c0) condition of mm-space satisfying CD(K, co). After that,
Bonciocat [2], [3] introduced the rough curvature dimension condition h-CD(K, N) with
N € [1,00) and proved some rough geometric properties. They also give nice graphs
satisfying h-CD(K, N), which can be embedded isometrically into N-dimensional Rie-
mannian manifolds. Their approach is based on the definition of the curvature dimension
condition and removing the connectivity assumptions on geodesics required in the con-
tinuous case.

Sturm [13] introduced the L2-transportation distance function D (or D distance
function) on the set X, of isomorphism classes of mm-spaces with finite second moment.
This comes from the ideas of the Gromov—Hausdorff distance between two compact metric
spaces and the Wasserstein distance between two Borel probability measures. He proved
the stability of CD(K, N) condition with respect to the L2-transportation distance func-
tion. After that, Bonciocat—Sturm proved the stability of h-CD(K, N) condition with
respect to the L2-transportation distance function in “from discrete to continuous” case,
i.e., if a sequence of mm-spaces satisfies h,,-CD(K, N) with h,, — 0 as n — oo, then the
D-limit mm-space satisfies CD(K, N).

Gromov [9, Chapter 3. 1/2,] introduced the observable distance function deone on
the set X of isomorphism classes of mm-spaces. This comes from the idea of measure
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concentration phenomenon which is stated as that any 1-Lipschitz function on an mm-
space is close to a constant function on a Borel set with almost full measure. The
observable distance function is defined by the difference between the sets of 1-Lipschitz
functions on two mm-spaces. The topology generated by the observable distance function
is weaker than the topology generated by the L2-transportation distance and allows
a convergence sequence of Riemannian manifolds to have unbounded dimensions. For
example, the sequence {S™}2° ; of n-dimensional unit spheres d.onc-converges to the one-
point mm-space but this D-diverges. Funano—Shioya [7] proved the stability of CD(K, o)
condition with respect to d.onc-convergence in the case when the limit mm-space is proper.

The aim of this paper is to obtain stabilities of the rough curvature dimension
condition with respect to the observable distance function and the L2-transportation
distance function in the general case. In particular, our results contain “from discrete to
discrete” case. The following are our main results.

THEOREM 1.1. LetY, X,,, n=1,2,... be mm-spaces and let h, h,, K, K, be real
numbers with h,h, > 0. Assume that X,, satisfies h,-CD(K,,o0), X, deonc-converges
toY, and (hy, K,) converges to (h, K) as n — co. Then we have the following.

(1) If K >0, then Y satisfies h-CD(K, 00).
(2) If K <0, then'Y satisfies 2h-CD(K, 00).

THEOREM 1.2. LetY, X,,n = 1,2,... be mm-spaces and let h, h,, K, K,, N,
N,, L, L, be real numbers with h,h, > 0, L,L, > 0 and N,N,, > 1. Assume that
X, satisfies h,-CD(K,,, N,) and diam X,, = L,, Y is compact, X,, D-converges to Y
as n — oo and (hp, K, Ny, Ly,) converges to (h, K, N, L) satisfying KL?> < (N — 1)m?
as n — 00. Then'Y satisfies the rough curvature dimension condition h-CD(K, N) and
diamY < L.

Note that in Theorem 1.1, we remove the properness assumption of limit mm-space in
Funano—Shioya’s result. We also find new example of graphs satisfying h-CD(0, 1). This
graph cannot be isometrically embedded into any 1-dimensional Riemannian manifold.

THEOREM 1.3. Denote by (K,,dk,) the complete graph of n-vertices equipped
with the graph distance. For any Borel probability measure p on K,, the mm-space
(Kn,dk,, 1) satisfies h-CD(0, 1) for h > 1/2.

2. Observable distance and L2-transportation distance.

2.1. Observable distance function.

DEFINITION 2.1 (mm-Space). A triple X = (X,dx,ux) is called an mm-space
(metric measure space) if (X,dx) is a complete separable metric space and if px is a
Borel probability measure on X. We sometimes say that X is an mm-space, in which
case the metric and the measure of X are respectively indicated by dx and px.

DEFINITION 2.2 (mm-Isomorphism). Two mm-spaces X and Y are said to be mm-
isomorphic to each other if there exists an isometry f : supp px — supp gy such that
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f«bx = Wy, where f.ux is the push-forward measure of ux by f. Such an f is called
an mm-isomorphism. Denote by X the set of mm-isomorphism classes of mm-spaces.

We assume that an mm-space X satisfies X = supp px unless otherwise stated.

Let I :=[0,1] and let X be an mm-space. A Borel measurable map ¢ : I — X is
called a parameter of X if ¢ satisfies p.L = uyx, where £ denotes the one-dimensional
Lebesgue measure on I. Any mm-space has a parameter (see [12, Proposition 4.1]). For
two Borel measurable functions f,g : X — R, we define the Ky Fan distance between f
and g by

dxr(f,9) = inf{e > 0 px({z € X[| f(2) —g(2)| > €}) <e}.

The distance function dky is called the Ky Fan metric on the set of Borel measurable
functions on X. Note that the Ky Fan metric is a metrization of convergence in measure
of Borel measurable functions.

Denote by Lip;(X) the set of 1-Lipschitz continuous functions on an mm-space X.
For any parameter ¢ of X, we set *Lip1(X) :={fop|f € Lip1(X)}.

DEFINITION 2.3 (Observable distance function). We define the observable distance
deonc (X, X') between two mm-spaces X and X' by

dconc(X7 X/) = lni dH(‘P*['Zpl (X)a ¢*£2p1(X/)),

@,

where ¢ : I — X and ¢ : I — X’ run over all parameters of X and X', respectively,
and where dy is the Hausdorff distance with respect to dxr. We say that a sequence of
mm-spaces X,,, n =1,2,..., concentrates to an mm-space X if X,, d.onc-converges to X
as n — o0o.

Note that (X, dconc) is a separable metric space (see [12, Theorem 5.13]).

PROPOSITION 2.4 ([7, Proposition 3.5, 3.11, Lemma 5.4], [12, Lemma 5.27, Corol-
lary 5.35, Proposition 9.31]).  Let X,, and Y be mm-spaces, n = 1,2,.... If X, concen-
trates to Y asn — oo, then there exist Borel measurable maps p,, : X, = Y, positive real
numbers e, with €, — 0 as n — oo and Borel subsets Xn C X, with pux, (X'n) >1—¢,
such that

du(Lip1(Xy), pr, Lip1(Y)) < €n,
(pn)«pix, converges weakly to py as n — oo,
3) dy (pn(xn), pu(z))) < dx, (Tn,z)) + &, for any x,,z!, € X,

limsup sup  dy(pn(xn),yo) < +00 for any yo €Y.

We call X,, the non-exceptional domain of p, for an additive error €,.

REMARK 2.5. (1) By the inner regularity of ux, , we may assume X, is a com-
pact set.
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(2) The conditions (1) and (2) of Proposition 2.4 imply the d.onc-convergence (see [7,
Proposition 3.5], [12, Corollary 5.36]).

Let X be a complete separable metric space. Denote by P(X) the set of Borel
probability measures on X. For two Borel probability measures vy, 1 € P(X), we define
the Prokhorov distance dp(vg,v1) between vy and vq by

dp(vo,v1) :=inf{e > 0| vo(A) < v1(B-(A)) + ¢ for any Borel set A C X},

where B.(A) is an open e-neighborhood of A. The distance function dp is called the
Prokhorov metric on P(X). Note that the Prokhorov metric is a metrization of the weak
topology on P(X).

PROPOSITION 2.6. Let X,, and Y be mm-spaces, n = 1,2,.... Assume that X,
concentrates to Y as n — co. Then we have
diamY < liminf diam X,,.
n—roo
Proor. By Proposition 2.4, there exist Borel measurable maps p, : X, — Y,
En, & > 0 with e,, €], — 0 and Borel subsets X,, C X,, with ux_ (X,,) > 1—¢, such that
dp ()t 1) < 21y and dy (p(wn), pa(a)) < dx, (2n, ) +n for any an, a, € K.

Then we have py (Bg/n (pn(Xn))) >1—(en+el). Let {(ym,yh,) S, C Y2 satisfy

lim dy (Ym,y,,) = diamY.
m—o0

For fixed m € N, we take sufficiently small > 0 satisfying min{uy (By(ym)),

1y (By(in))} > en + €}, and then we have By(ym) 0 Bey, (pa(Xn)) # 0 and By (y;,) 0
B, (pn(X'n)> # (). There exist Zpm, T, € X, such that Ay (Y, Pn(Znm)) < n+e), and
dy (Yy,, Pn(Zhm)) < 1+ €. Then we obtain

dy (Ym> Ym) < dy Y Pn(Enm)) + dy (Pn(Enm ), Pn(Em)) + dy (0o (Zm)s Yim)
< dx, (Znm, Try,) +en +2(n +€7,)
< diam X,, + &, +2(n +¢,).

Taking limits of this inequality as n — oo, n — 0, and then m — oo, we obtain the
proposition. g

2.2. L2-transportation distance function.
Define X, by the subset of isomorphism classes of mm-spaces X with

/ dx (x,20)* dux(x) < oo
X

for some (hence all) 2y € X.
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DEFINITION 2.7 (Coupling). Let (X1,dx,,tx,) and (Xa,dx,, tx,) be two mm-
spaces and pr; : X7 x Xo — X; be the natural projection (i = 1,2). A Borel probability
measure 7 on X1 X Xo is called a coupling of px, and px, if m satisfies (pr;).m = px, (i =
1,2). Denote by (ux,, pux,) the set of couplings of pyx, and ux,.

DEFINITION 2.8 (L2-transportation distance function). For X,Y € X,,, we define
the L2-transportation distance between X and Y by

D(X,Y) = inf ( | d(x,yfdw(z,y))m,

d, T

where d and 7 run over all couplings of dx and dy, px and py respectively. A coupling
dof d x and dy is a pseudo-metric on the disjoint union X UY satisfying d|X><X =dx
and d|y><y = dy.

REMARK 2.9. (1) Note that (X,,D) is a complete separable length metric space
(see [13, Theorem 3.6]).

(2) By [13, Lemma 3.7] and [12, Proposition 5.5], we have (27 'dconc(X,Y))?/? <
D(X,Y) for any X,Y € X,. In particular, the D-convergence implies the deonc-
convergence.

3. The rough curvature dimension condition.

3.1. Rough Wasserstein distance function and rough curvature dimen-
sion condition.
DEFINITION 3.1 (Relative entropy). Let X be a complete separable metric space.
For two Borel probability measures p and v on X, the relative entropy Ent(v|u) of v
with respect to p is defined as follows. If v = p - pu, then

Ent(v|p) :=/Xplogpdu,

otherwise Ent(v|u) := 0.

LEMMA 3.2 ([12, Lemma 9.15]). Letp: X — Y be a Borel measurable map between
two complete separable metric spaces, and let p and v be two Borel probability measures
on X such that v is absolutely continuous with respect to p. Then, p.v is absolutely
continuous with respect to p.p and we have

Ent(p.v|psp) < Ent(v|p).

LEMMA 3.3 ([6, Lemma 1.4.3 (b)]). Let X be a complete separable metric space.
The relative entropy Ent(-|-) : P(X) x P(X) — [0,00] is lower semicontinuous with
respect to the weak convergence.

LEMMA 3.4 ([8, Proposition 4.1]).  Let X be a complete separable metric space and
{21, {vn}oey C P(X) be two sequences of Borel probability measures. Assume that
{pn 352y is tight and
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sup Ent(vy, |pn) < 00.
neN

Then, {v,}52, is also tight.

DEFINITION 3.5 (Rényi entropy). Let X be an mm-space, N a real number with
N > 1, and v a Borel probability measure on X. The Rényi entropy Sy (v|ux) of v with
respect to pux is defined as follows.

Sn(vlpx) = —/Xp‘l/N dv,

where p is the density of the absolutely continuous part v¢ with respect to px in the
Lebesgue decomposition v = v° +v® = p- ux + v°.

LEMMA 3.6 ([14, Lemma 1.1]). Let X be an mm-space and N > 1. The Rényi
entropy functional Sy (-|px) is lower semicontinuous with respect to the weak convergence
and satisfies —1 < Sy (-|pux) < 0.

DEFINITION 3.7 (Rough Wasserstein distance function). Let (X, dx) be a metric
space and h a nonnegative real number. For two Borel probability measures vy and vy
on X, we define the h-rough Wasserstein distance between vy and v1 by

1/2
W;h(yo,yl) = inf (/ (dx(l‘o,.rl):l:h)i dﬂ'(l‘o,lj)) s (31)
XxX

mell(vo,v1)

where (-); denotes the positive part. We write Wa(vo,v1) := WS (vo, 1) and call it the
Wasserstein distance between vy and v.

Denote by P2(X) the set of Borel probability measures p on X such that

/ dx (z,20)* du(x) < 0o
b'e

for some point zo € X. If (X,dx) is a complete separable metric space, then so is
(P2(X), Ws) (see [15, Lemma 6.14]). For an mm-space X, we denote by P3°(X) the
subset of P2 (X) satisfying the absolute continuity with respect to px, and by P3(X) the
subset of measures v € Py(X) of Ent(v|px) < oo.

LEMMA 3.8 ([4, Remark 3.4], [15, Lemma 4.4, Theorem 6.9, Remark 6.12]).  For
a complete separable metric space X, we have the following (1)—(4).

(1) For vy,v1 € P(X), the set II(vg,v1) is compact with respect to the weak topology.

(2) There exists a minimizer for the infimum in (3.1). We will call it *h-optimal
coupling of vy and vi. Denote by +h-Opt(vg,v1) the set of h-optimal couplings
of vg and vi. If h =0, we omit 0.

(3) The topology generated by the Wasserstein distance is stronger than the weak topol-
ogy. If a metric space X is bounded, then the topology generated by the Wasserstein
distance and the weak topology coincide to each other.
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(4) The Wasserstein distance function is lower semicontinuous with respect to the weak
topology, i.e., if {v§}52, and {v'}22, converge weakly to vy and v1, respectively,
we have

Wa(vo, v1) < liminf Wa (v, v7).
n—oo
LEMMA 3.9 ([2, Lemma 1.2.5, 1.2.6], [4, Lemma 3.5, 3.6]). For any h,k > 0,
0 < hy < hg and any v1,va,v3 € Py(X), we have the following (1)—(6).
(1 W;_h(l/l,l/g) < Wa(v,ve) < VV2 (1/1,1/2) + h.
2 Wg(l/l, VQ) < W2 (Vl,VQ) < WQ(Vl, 1/2) + h.

3 (1/1,1/2) 2(1/1,1/2).
W+ *(vi,12) < W+ (v, 12).
5) Wil vy, vs) < W5 (v1, v2) + W5 (va, v3).

)
(2)
3) W.
(4)
()
(6)

6 Wihq:k(”l7y2) < WZih(VlaV2) + k.

PrOOF. Statements (1)-(4) are proved in [2, Lemma 1.2.5, 1.2.6] and
[4, Lemma 3.5, 3.6]. In this paper, we only prove (5) and (6).

We prove (5). By Lemma 3.8 (2), there exist w1, € +h-Opt(v1,15) and 74y €
+k-Opt(ve, v3). Define a projection pr; ; : X* — X2, i,j = 1,2,3 with i < j by
pr; ;(z1,72,23) = (x;,2;). By the gluing lemma (see [15, Section 1]), there exists a
Borel probability measure 7 on X? satisfying (pry o)«m = m1p, (Pry3)«® = 7Tk, and
Tihtk = (Pry3)«m € (£h + k)- Opt(r1,v3). By Minkowski’s inequality, we obtain

W2:th:|:k(l/1’ VS)

1/2
< </ {(dx (z1,22) F h) 4+ + (dx (22, 23) F k)1 }? dﬂ($175€2,$3)>
XxXxX
< W5 (v, v2) + Wy (v, v3).
We prove (6). By Lemma 3.8 (2), there exists my, € +h-Opt(vi,12). By
Minkowski’s inequality, we obtain
1/2
sz[thk(Vl, v2) < (/ {(dx (@1, 22) Fh)4 + k}Q dﬂih(xhxz))
XxX
S Wzih(ljl, 1/2) —|— k

This completes the proof of lemma. O

DEFINITION 3.10 (Rough curvature dimension condition: the case N = o0). Let
X be an mm-space, h a nonnegative real number, and K a real number. We say that an
mm-space X satisfies the h-rough curvature dimension condition h-CD(K, 00) if for any
v, V1 € P3(X), there exists a family of measures (v;);c(0,1) C P2(X) such that for any
t € 10, 1], we have
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Wa(ve,vs) < 7741 — ) Wo(vo, 1) +hy, i=0,1, (3.2)

1
Ent(v|px) < (1= 1) Ent(vplux) + t Bnt (v |ux) — S KH(1 - HWIE" (5, 01)2, (3.3)

where 0 = —1 for K < 0 and g = 1 for K > 0. A map [0,1] 2 t — vy € Pa(X)
satisfying (3.2) is called an h-rough geodesic on (P2(X), Wa).

LEMMA 3.11.  Let (X,dx) be a metric space and h > 0. If a map v :[0,1] - X
satisfies

(1= t)dx (y0,7)? + tdy (v, 71)? < t(1 = t)dx (y0,71)* + B,
then (7¢)tejo,1) 95 an h-rough geodesic on (X, dx).

ProOOF. By the triangle inequality,

h? > (1 —t)dx (v0,%)* + tdx (v, m)* — t(1 — t)dx (0, 1)*
> (1= t){dx (v0,m) — dx (v, 1)} + tdx (v, 1) — t(1 — t)dx (v0, 1)
= {dx (v, m) — (1 — t)dx (v0,71)}>.

Similarly, we have dx (v, 70) < tdx (y0,71) + h. d

For two positive real numbers K, N with N > 1 and (¢,0) € [0,1] X R>¢, we define

the function TI((t?N(Q) by

00 if K6%?> (N —1)r2,

/N (Sin (fe\/m)>l N
s (0N 1))

TI(;?N(6> =t if K62=0or

if K62 <0and N=1,

1-1/N
1y ((sinh (10 /=K/(N =1)) i .
t <sinh(0 ) f K62 <0and N > 1.

DEFINITION 3.12 (Rough curvature dimension condition: the case N < 00). Let X
be an mm-space, h a nonnegative real number, and K, N real numbers with N > 1. We
say that an mm-space X satisfies the h-rough curvature dimension condition h-CD(K, N)
if for any two measures vy = pg - px,v1 = p1 - x € P3¢(X), there exists a 0k h-optimal
coupling 7 of vy and v; and a family of measures (v4)e(0,1) C Po2(X) such that for any
t €10,1] and any N’ > N, we have

if 0<K6?<(N-1)r2,

Walve,vi) <7741 — ) Wo(vg, 1) +h, i=0,1, (3.4)

Swolli) <= [ {0 (o) = ) (o)
XxX

+T§<t,)N/((dX(fE07$1) - t‘)Kh)Jr)pl_l/Nl (xl)} dr(xg, 1), (3.5)
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where 0 = —1 for K <0 and 0 =1 for K > 0.

We write CD(K, N) instead of 0-CD(K,N) and call it the curvature dimension
condition.

REMARK 3.13. (1) On the definition of rough curvature dimension condition,
the reference measure px is not necessary probability measure. In Example 3.16,
we consider mm-spaces satisfying the rough curvature dimension condition with
infinite measures.

(2) By the continuity of the Rényi entropy S.(v|ux) : [1,00) — R and Fatou’s lemma,
it suffices to check the case N’ > N in Definition 3.12.

For vy, v1 € P$¢(X) and a coupling 7 of vy and vy, we define

T,Ellth)VEJ(ﬂMX) = /X . Ti((l,;vt,)((dx(xo,xl) - HKh)+)p61/N (zo) dm(z0, 1),
X

Tgne (eli) = = /X i ea) = 0xch) Doy 1) e, ),
X

t 1-t),0 t),1
T no(7lix) = T () + Ti o ().

THEOREM 3.14 ([11, Theorem 1.1], [13, Theorem 4.9], [14, Theorem 1.7], [10,
Theorem 7.3]). Let M be a complete Riemannian manifold and K a real number, and
N € [1,00]. Then M satisfies CD(K, N) if and only if Ricpyy > K and dimM < N,
where Ricy; denotes the Ricci curvature of M.

LEMMA 3.15 ([2, Proposition 2.2.7], [3, Proposition 3.7]).  Let h, K, N be real num-
bers with h > 0 and N > 1. If an mm-space X satisfies the rough curvature dimension
condition h-CD(K, N), then X satisfies h-CD(K, o0).

EXAMPLE 3.16 ([4, Example 3.2, 4.2, 4.4], [2, Subsection 2.5], [3, Section 6]).

(1) The space Z™ C R™ equipped with the I1-norm || - ||; and the counting measure pzn
satisfies h-CD(0, n) for h > 2n.

(2) The n-dimensional grid G™ having Z™ as the set of vertices, equipped with the graph
distance (I1-norm) and the 1-dimensional Lebesgue measure on edges, satisfies h-
CD(0,n) for h > 2(n + 1).

(3) Let G(I,n,r) be a homogeneous planar graph and pg be the uniform measure on the
set of edges. We assume that vertices have constant degree [ > 3, faces are bounded
by polygons with n > 3 edges, and edges have the same length » > 0. Denote
V(l,n,r) the set of vertices of G(I,n,r) equipped with the counting measure py.
G(l,n,r) and V(I,n,r) are embedded into the 2-dimensional Riemannian manifold
(M%,d m2) With constant sectional curvature K = K(I,n,r), where K is defined
by
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1 2 cos?(m/n) ? 1 1 1
. h( 2222\ f -4 =<z
72 [MCCOS ( sin?(7/1) " + n
K=K(,nr):=140 g 111
2(r/n) ? Lo
1 2cos*(m/n
— A GV AL T
= {arccos( (/) )] it o+ >5

Then two mm-spaces (G(I,n,7),dyz2,pc) and (V(I,n,7),dyz, pv) satisfy h-
CD(K,2) for h > r-C(l,n), where

C(1,m) = dacsini ( S c Tl 1> (sxcomn (2205t 1)> |

PrROOF OF THEOREM 1.3. Put p = Z?:l m;0;, where ¢; is the Dirac measure at
i € K,,. Take vg = > | a;0;,v1 = Z?Zl b;j6; € P(Ky). For any 0 < h < 1, we first
prove

Wi (vo,11)* = (1=h)> Y (ai—b;) = (1=h)* > (bi—a;) = a ;h) > lai—bil, (3.6)

i€A i€ A¢ =1

where A := {i € K,, |a; > b;}. We may assume A = {1,2,...,k} with & < n. Note that
D1 =iy bi=1and 330 |ai —bi| = 30, 4(ai — bi) + 32 4c (—ai + b)) imply the
second and the third equality. We check the first equality. By the Kantorovich duality
(see [15, Theorem 5.10]),

W5 ™ (v, 11)?

= sup {Z aip(i) + > bip(i)
i=1 i=1

Choose functions ¢ and 1 by

L fJa-n? if iea, L [-a-n? i jea,
»(i) = {o i icac, Y0 -—{

p €L (w), ¥ € L' (1), (i) +¥(j) < (dx, (i,7) — h)i} :

Then we have
(1=1)*Y (a; —b;) < Wi (vo,11)*.
€A

On the other hand, we construct a coupling 7 = > " _, w;;0(; ;) of 19 and vy as follows.

n
ii=
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b; if i=4,1<i<k,
a; if i=7 k+1<i<n,

wij =1 & - L .
Dlar—b)p (ai—bi)(bj—ay) it i£j 1<i<k k+1<j<n,

0 otherwise.

Then

Thus we obtain (3.6).
Put

=1 -ty +ty = Z{ 1 —t)a; + tb; }6;.
i=1

By (3.6),

(1 - t)WQ(l/o, Vt)2 + tWQ(l/t, V1)2 - t(l - t)WQ(l/o, V1)2

n

1—t t t(1—1t)
Z:|az (1-t)a tbi|—|—§Z|(1—t)ai+tbi—bi|—TZ|ai—bi|

i=1 i=1
= 7_ Z lai — bil
2 i=1

<

pM»—‘

By Lemma 3.11, (¢)¢cjo,1) is an h-rough geodesic for h > 1/2. By Jensen’s inequality
and the convexity of f(s) = —s'~1/N with N > 1,

Swinl =~ Y {M”b}m m,

. my;
1Esupp
a 1—1/N ; 1-1/N
g
—(1—t)4z (m) i—t > ( ) m;
1E8upp u 1ESUpp [
= (1 =t)Sn(wolp) + Sy (1]p).
Therefore (K, dk, , i) satisfies h-CD(0,1) for h > 1/2. O

REMARK 3.17.  We do not know that the lower curvature bound of (K,,dk, , )
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is sharp. For sufficiently small ¢ > 0, we put v§ := (27! +&)d; + (27! — ¢)d and
vii= (271 —¢€)d1 + (271 +€)d2. v§ := (1 —t)1 + tvy is an h-rough geodesic for h > 1/2.
We assume (v ).e[o,1] satisfy (3.3) for K > 0. Taking the limit as ¢ — 0, this leads the
contradiction. Unfortunately, we do not know whether for any other h-rough geodesic
(3.3) is satisfied or not.

The following is an example and a corollary of Theorem 1.2 and 1.3.

EXAMPLE 3.18. Let i € NU {oo} and k,n € N with & < n. Define a probability
measure on K, by

k . n
. i 1
=N 5 S —
Hnk ;k(i—1)+nl+l;lk(i—l)+nl

For each i, k,n, the mm-space Kf%k = (KdenaNiL,k) satisfies h-CD(0,1) for h > 1/2.
The sequence {K;7k}ﬁ1 D-converges to K7, which is isomorphic to K. Indeed, by
(3.6),

D(Ki,k’K;fk) < WQ(M;,MMS:LC)

as 1 — 0Q.

4. Proof of Theorem 1.1.

For an mm-space X, we denote by P’(X) the set of Borel probability measures v
on X with compact support that are absolutely continuous with respect to px and their
density functions are essentially bounded on X. Note that P(X) is a dense subset in
(P2(X), W2).

LEMMA 4.1 ([12, Lemma 9.20]). Let X be an mm-space and v € P3(X). Then,
for any € > 0, there exists 7 € P*(X) such that

Wy(P,v) <e and |Ent(P|lpx) — Ent(v|px)| < e.

LEMMA 4.2.  Let X be an mm-space, h a nonnegative real number, and K a real
number. If we assume that any vo,v1 € P(X) satisfy the conditions in the definition
of h-CD(K, 00), then X satisfies h-CD(K, c0).

PROOF. Lemma 3.9 (5) and Lemma 4.1 together imply the lemma. U

For a Borel subset B of an mm-space X with positive measure, we define a Borel
probability measure up by
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= px|B
px (B)
LEMMA 4.3 ([7, Lemma 3.13], [12, Lemma 9.33]). Let X,, and Y be mm-spaces,
n = 1,2,.... Assume that a sequence of Borel measurable maps p, : X,, — Y and a

sequence {e, 1521 of positive real numbers with €, — 0 satisfy (1)—(3) of Proposition 2.4.
For a real number § > 0, we give two Borel subsets By, By CY such that

diam B; < 5, ,u,y(Bi) > 0, and wy (637) =0
fori=0,1, and set

B :=p,Y(B)NX, C X,,

where X,, is a non-exceptional domain of p,. Then, there exist Borel probability measures
g, &7 on X, and couplings 7, between fig and i}, n = 1,2,..., such that, for every
sufficiently large natural number n,

(1) ar <1+ 0(51/2))NB,, (i=0,1), where O(-) is a Landau symbol,
(2) an(xo,l’l) > dy(Bo,Bl> —en for any x; € Bi, 1=0,1,
(3) supp @™ C {(zq,27,) € X3 | dx, (wn, x) < dy (Bo, B1) +8'/%},

(4) —e, < WE" (a8, @) — (dy (Bo, B1) T h)y < 62 for any nonnegative real number
h.

PrROOF. Existence of ff, it and statements (1)-(3) are proved in [12,
Lemma 9.33]. We only prove that (1)—(3) imply (4). By (2), we have

(dy (Bo, B1) ¥ h)y < (dx, (vo,x1) F h)+ +en

for any x; € B;, i = 0,1. Let w € h- Opt(ag, 4t). By (1), we have suppm C By x B.
Then, Minkowski’s inequality and the above inequality imply

1/2
(B B0 7)< ([ (ol F i)+ 22 dr(a) ) /
< WM, i) + e
By (3), we have
supp " C {(zn,2},) € X2 | (dx, (zn,2)) F h)+ < (dy(Bo, B1) F h)4 + 67/},

Then, we obtain

1/2
Wi (g 7)< ( /X (o) h)idﬁwn,x;))
nXXn

= (dy (Bo, B1) T h)4 + 0'/2.
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This completes the proof of (4). O

PROOF OF THEOREM 1.1. We take any vp,v; € P®(Y) and fix them. For any
natural number m, there are finite disjoint Borel subsets B; C Y, j = 1,2,...,J, such
that szlBij = supp vp U supp vy, diam B; < m™Y, uy(B;) > 0, and py (0B;) = 0 for
any j. For each (j, k) € {1,...,J}?, we apply Lemma 4.3 to B; and By, and obtain Borel
probability measures £7;" € P(X,),n=1,2,..., such that

& < (14 0m ), -y
Wﬁ“h”(ﬂ", ) — (dy (Bj, Br) — O, ha)+| < 0(m™1), (4.2)

for any sufficiently large natural number n. Here, 6(-) is a function with 8(6) — 0 as
d — 0. By the diagonal argument, we may assume that (py,)s ~;’}€” converges weakly to a
Borel probability measure 5;7,; € P(Y) as n — oo for each (j,k,m) € {1,...,J}2 x N.
Take a coupling 7 of vy and v, as follows. If K > 0, the measure 7 is an optimal coupling
for Wa(vp,v1). If K < 0, the measure 7 is an optimal coupling for ngh(yo,yl). We
define

Wik = 7T(Bj X Bk),

J J
~mno,_ cmn ~mn .,__ Fmn cb
Ve E Wik ot = E Wik e P(Xy),
jk=1 jk*l
J
~m ,__ E cm . E Fm cb
Vo = Wik Gk . wjk€ eP (Y)
7,k=1 7,k=1

mn mn

Then, (pp)«5"" and (pp)«]
co. ' and D" converge weakly to vy and vy, respectively, as m — oco. Moreover,
Wa(pn)+ 28" v0), Wa((pn)«P7""™, 1) — 0 as n — oo and then m — oo. The condition
I CD(Kn, oo) implies that, for any t € (0, 1), there is 7" € P5(X,,) such that

converge weakly to 7§® and 7{", respectively, as n —

Wa (o™ ™) < 78 (1 — £) Wa(T5™, ™) + hp, 0= 0,1, (4.3)
Ent(7™ ex, ) < (1 — #) Bnt(70" pux.,) + t Bt (7" pux., )
0 n/~mn ~mn
- 5Knt(l — YWy (g B2, (4.4)
Let 7 be an optimal coupling of WQOK " (g, o™, Then, (pn X pn)«T is a coupling of
(pn) 75" and (py,).7"™. Proposition 2.4 (3), supp 7™ C X,, (i = 0,1) together imply

WeKh((pn)*ﬂo s (pn)< 1"

< / (dy (5.9/) — Oxch)2 d(pn % po)aF ()
Y XY

<[ A o)~ O )+ 1, B — k] 4 2,2 d ()
XnxX

< (WK (Gmn 5mmy 410k hy, — Och| + ).
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Since (pp )75 and (py, )" Wa-converge to vy and vy, respectively, this inequality and
Lemma 3.9 (5) together imply

WM (v, v1) < liminf lim inf (WgK"h"(ﬁS""7 P 4 O, hy — eKh\) . (4.5)

m— 00 n—oo

Let 7; be an optimal coupling for Wy (™", ™). By Proposition 2.4 (4),

L)
v (p Y (supp vo Usupp 1)) = 1 and the compactness of supp vy Usupp v, there exists a

constant D > 0 such that dy (pn(zn), pn(z7,)) < D for | x \ 5, )xx, "€ (Tn,27,) € X2.
This together with Proposition 2.4 (3) and Minkowski’s inequality imply

Wa((pn) <D™, (pn) ™)

< / dy (5,5 )? d(pn X pu)aFe (/)
Y XY

< / {dx, (20, 2%) + 20} diy (2, 21
XnxXn

b )l R,
(X \Xn) X X

< (Wa("", 07"™) + €n)” + D25 (X \ Xan). (4.6)

Note that we can prove

lim 7"(X, \ X,) =0

n— oo

as in [7, Lemma 3.15] and [12, Lemma 9.34].

K-Convexity : the case of K > 0.

In this case,

Wa(vg,v1) = lim liminf Wa (7™, 77"") = lim lim sup Wo (90", 07""), (4.7)
m—00 n—o00 m—00 5 00
Ent(v;|py) > limsup limsup Ent(7]""|ux, ), ¢=0,1, (4.8)

m—r o0 n—oo

are proved in the proof of [7, Lemma 3.15] and [12, Lemma 9.34]. If K,, — 0, Lemma 3.9
(2) implies

Hm K, Wesnn (gmn gmny < Jim K, (W (5™, 7™ + hy,) = (4.9)

n— oo n—oo

Thus Lemma 3.2, (4.3), (4.4), (4.6), (4.5), (4.7), (4.8), and (4.9) together imply

limsup limsup Wa((pn )™, (pn)«7™) < 7741 — ) Wa(vo,v1) + h, i =0,1, (4.10)

m— o0 n— oo

lim sup lim sup Ent((p, )« |(pn)«tx,,) < (1 —t) Ent(vg|uy ) 4+ t Ent(vy |py)

m—0oQ n— oo

1
- S K1 - WIE (15, 11)2. (4.11)
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K-Convexity : the case of K < 0.

The limit inequality (4.8) for this case is obtained in the same way as in
[7, Lemma 3.15] and [12, Lemma 9.34]. Let 7;; be an optimal coupling of
W29 Knfin (5;’,;”,5,@;") Define the coupling 7 of 7§ and 7]"" by

J
7= wirdie € P(Xn X Xp).
jk=1

For sufficiently large n, (4.2), Minkowski’s inequality, and Lemma 3.9 (5)—(6) together
imply

Wyt (g ) <D Wy (G €

Jk=1

wjr{(dy (Bj, Br) = 0, hn)4 + 0(m™")}?

7 1

M= M- M-

[ (BB = 0 b+ 60 drla )
Bj x By,

i 1

/ {(dy (1:9) — O, h) s+ 0(m~ )Y dr(y, y)
Y xY

< (W (wy, 11) + |0k, hon — Oich| + 0(m™1))?.

IN

Thus

lim sup lim sup WgK"h” (D™, o) < WER (g, 1), (4.12)
m—roo n—oo

and this limit inequality and (4.8) together lead to the limit inequality (4.11) for K < 0.
For sufficiently large n and i = 0,1, by (4.3) and Lemma 3.9,

Wa (", ") < #1701 = ) Wa (5™, 07"™) + hny
< L — )W G ) o+ Ry
Thus this inequality, (4.12), and Lemma 3.9 (2) together imply
lim sup lim sup Wa (57", 5™") < 171 — t)' W% vy, 1) + h
m— o0 n—oo

<t — )" Wa(vg, 1) + 2h. (4.13)

Existence of h-rough geodesic.

We prove the existence of h-rough geodesic (v¢):cjo,1] between vy and vy. By the
limit inequality (4.11) for each K, there exists a subsequence {(my,n)}5e; € Nx N
such that
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sup Ent ((pnk)*ﬁf”“"’“

sup |(pny)+bix,, ) < 0.

Since the sequence {(pn,)«fix, }72; is tight, Lemma 3.4 implies that {(pn, )7 }72,
is also tight. We denote its weak convergence limit by v,. By Lemma 3.3, we have

Ent(v|py) < liminf Bnt ((pn, )« 7™ (Pni) spix,, ) (4.14)

Let mf be an optimal coupling of Wa((pn, )« (pny)«7 ™), @ = 0,1. Since
{(pny )« " 322 and {(pn,, )P 322, are both tight, {7}, is also tight. We
denote its weak convergence limit by 7;. This is a coupling of 1 and v;. Then, we
obtain

Wo(ve, v3)? < / dy (y,y')* dme(y, y')
Y XY

< lim inf/ dy (y,y')? drf (y,y)
Y XY

k—o0
— Tim inf W (pag )77, (puy ) 7) . (4.15)
k—o0
Combining (4.10), (4.11), (4.13), (4.14), and (4.15), we obtain the conclusion. O

5. Proof of Theorem 1.2.

Let 7 be a coupling of ux and py, and let d be a coupling of dx and dy. Let £ and
&' be the disintegrations of 7 with respect to px and py respectively, i.e., dr(z,y) =
dé(y) dpux (v) = d&,(v)dpy (y). Recall that & defines a map £ PL(Y) = PI(X),
which was constructed in [13, Section 4.5]. For v = p'uy € P§(Y), we define {(v) =
plix € P§(X) by

ple) = /Y P () da(y).

In the same way, we also define a map £’ : P¢(X) — P$¢(Y) using the disintegration ¢’.
Denote by L the ux-essential supremum of the map

> (/y Cf(ﬂc,‘l/)Qci&g(y))l/Q-

LEMMA 5.1 ([13, Lemma 4.19]). Let X,Y € X, with D(X,Y) < 1. £ and L are
defined as above. For any v € P§¢(X), we have following two properties.

(1) Ent((v)luy) < Ent(vlux).

2 4+ L?Ent(v|ux)
—logD(X,Y)

(2) Wa(r,&'(v)? <
Py(X LY, d).

, where Wy is the Wasserstein distance on
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LEMMA 5.2 ([2, Lemma 2.4.2], [3, Lemma 5.2]).  Let X be an mm-space and vy, vy €
Pye(X). Assume that a sequence {m"}52, of couplings of vy and v1 converges to a
coupling ©>° weakly. Then we have

limsup Ty 'y (7" 1) < Ty (7 |x). (5.1)

n—oo
PROOF OF THEOREM 1.2. By Remark 2.9 and Proposition 2.6, the limit space Y

has diam Y § L.
Define L,C > 0 by

o 4
5k 0/ (6)

L :=supdiam X,, + suph,,, C:= sup
neEN neN t,K',N",0

b

where ¢/, K’, N, and 6 run over t' € [0,1], K’ < sup,,cy Ky, N’ > inf,,en N, and 0 < L.

We first consider two Borel probability measures on Y with finite densities. Take
any € > 0 with Ly/(K +¢)/(N — 1) < m and any vo = popy,v1 = pipy € PEE(Y) with
lpilloc < 7 (i =0,1) for some r > 1. Set

1 -
R = R(r) :=rlogr + - sup | K,|L>.
8 neN

By the assumption, for sufficiently large n, we can find a coupling dy, of d x, and dy, and
a coupling 7, of px, and py such that

1/2 72

1 N 2+4L°R

7/ &2 di, < D(X,,Y) < min{ <, exp 2t (5.2)
2 \Ux, xy 2 g2

This leads to
F({(2,y) € Xy x Y | dp(2,y) < VE}) > 1—¢. (5.3)
Let ¢ and £" be disintegrations of #,, with respect to py, and uy respectively, i.e.,
ditn(2,y) = d€3 (y)dux, () = d&; (x) duy (y).
We set

w:m%,ﬁm:/m@M@mzm.
Y

By Jensen’s inequality, Lemma 5.1, (5.2) and ||pi|]|lcc < r, for i = 0,1 and N’ > 1, we
have

Sn (Vi px,) < Sne (i |y ), (5.4)

Ent(pi'|px,) < Ent(vi|py) < rlogr,

2 + L2Ent(v;|py) <2
“logD(X,,Y) ~°©

WQ(N?? Vi)2 <
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On the other hand, since X,, satisfies the rough curvature dimension condition h,,-

CD(K,, Ny,), for two measures ug, ui € P5°(X,), there exists a coupling 7, €

(eKn hn)'

Opt(ud, pt) such that for each ¢ € [0, 1], there exists a measure p} = oy ux, € P3(Xy,)

such that for any N’ > N,,, the following two conditions hold;
W2(M?7M?) < tl_i(l _t)iW2(M6l7M711)+hn7 i =0,1,
S (i lnx.) < Tyl e, o (enliex, )

Put

UP = iy, pi(y) = /X o7 () dE(x).

n

Note that v}* and 7, depend on (r,e). By Lemma 3.15 and Lemma 5.1, we get

Ent(v'|py) < Ent(pf|px,)

n n 1 Oknhn, n n
< (1= t)Ent(ug |, ) + tEnt (it |, ) — SEat(L =)W (g, )

1 ~
< rlogr + - sup |K,|L?
8 neN

= R7
and

2+ LEnt (4} ux,)
—logD(X,,,Y)

Wa(vf', puy)? < <e?

Thus, (5.6), (5.7) and (5.10) imply

W2(th? Vi) S W?(:U’?a /J/:L) + 2
<L = ) Walpg, ) + b + 26
<t — )" Walvg, v1) + hy + 4e.

By Jensen’s inequality,

S (v y) = / ()N day (y)

/ / YN GER () dp (y)

= Snr(pf |MX )-

| /\

Define a probability measure 7,, € P(Y?) as

a7y, o) = /X 2oL yen 1) den () (e, 2.

xx, 00 (x)ot (2')

We check 7,, € II(vg,v1). For any Borel subset A C Y, we have

(5.9)

(5.10)

(5.11)

(5.12)
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y W) on gy gen ,
Jo 0= | / S A€ e )

& (y)dug ()

—/XM o(y) din (2, )

= /A dvo(y).

Similarly, fyxA dmn(y,y') = fA dvi(y')

CLAM 5.3.  We assume that |0k, hy, —O0xh| — 0 as n — co. There exist a coupling
7" € vy, v1) and (v )ie0,1) € P3C(Y) such that
(1) WQ(V:’E, V’i) < tlii(l — t)iVVQ(l/O7 1/1) +h+ 45, .= 0, 1,
(2) for any N' > N +e¢,

S (v y) < T pr (7% |y ) + 40T VN max{e, (2L + V)2V ~1e2-2/N'y,

1/2
® ([ @) =0 dr () WP ) 42200+ V),
Y XY

PrROOF. Take N’ > N +e. We may assume N’ > N,, and |K,, — K| < ¢ for
sufficiently large n. By the fundamental theorem of calculus,

T (dy (y,y') — )
: dx, (v, 2") — 0k, hyn)1) + Cl(dx, (x,2") — Ok, hn)+ — (dy (y,y') — O h) 4]
dx, (v, 2") — 0k, hp)s) + C(czn(x, y) + czn(a:’, y') + |0k, hn — Ok h]). (5.13)

This leads

1-t),0
T}(LK )N/(Wn|/~LY)

po(y)p1(y') (1-t) N —1/N’
< [ B R ) ~ O ) o)
& (y')dés (y)dmn (2, 2")

powr(y) 5 N e e N o (o
+C/X XX, /ny 0'61(93)0'? x') ( ,y)po(y) d& (y )dfx(y)d n(z,2")
P y) T —1/N’" gen (o 1\ 1¢n —
" C/X X X /ny 0"(1’)0? )d ( Y )po( ) dgz’(y )dfm (y)d n( y )

- Cloe, i — O / / ? poly) "N e (o VdE (), o)
XX Xn JYXY Uo )
= (I) + C(I1) + C(III) + C|0x, hn 9Kh|(IV)

We estimate (I)—(IV). By Jensen’s inequality,
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(I)=/X N Tz(cl,f,f@f((dxn(%x’)—9Knhn)+)08($)_1/Ypo(y)l_l/N/ A&z (y)dmn (z, 2')
TIrX n

<[ R ) b ) o) Y dr (o)
XX Xn

1-),0
i(Ln,KL,N/(Wn\MXn)-

() = /X /Y Ao, o) VN dEr)dpy, (2) < Ve (5.14)

By Jensen’s inequality and (5.3),

< [ [ )o@ Y de )o@ g i e o)
nXXp JY
, 1/N’
<([ [t s o) g an, o)
XoxXn JY
) , , 1-1/N’
([ ey Y I o) e (i o))
XoxXn JY
, 1/N’
<(m [ [ e et w) e an o))
XoxXn JY
A , ) 1-1/N’
([ antaa Dt g o)
X, JY
) R o 1-1/N’
= plU/N (/ dn (2, )N /D) dﬁn(wﬂy’)>
X, XY
< PN s {E, (Zi + \@)2/N’—152—2/N/}. (5.15)
In the second inequality, we consider o7 (x) =1 d¢™, (y')dm, (z,2) as a new measure and ap-

ply Holder’s inequality to py (y")og(x) /N and d,,(2’,y'). In the last inequality, Holder’s
inequality implies

R , , 1-1/N’
(/ dn(x',y')N /(N'=1) dﬁn(x',y'))
X, XY

e if N> 2,
T QL+ V)N 122N i 1< N < 2,

By Jensen’s inequality,
@)= [ [ o) ) de e,
XnXXn JY
of (x) /N dmy(,2')

X XXn
1.

IN

IN
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Thus we obtain

~Tpe ) Faliy) < =T33 0 (raliax,) + 200 =Y max (e, (2L + V&) /N 712
+ Cl0k, hn — Ok h. (5.16)

Put

- K - [ 1
Ci no = (diamY) N/74r51 <m, C_py = <diamY + sup hn> N7 15U | K,
- neN — L nen

. 1-1/N’
itl/N' <s1nta) /

) S [ B
do sin « reit -}

Cy,N' := sup sup
t€[0,1] aef0,C, n/]

C’N/ = maX{C’+,N/, Ci,N’}~

Note that by the fundamental theorem of calculus,
T ((dy (y.y') — Oxch))

- Cyo(diamY +0xh)| e
27'}((17 t/)((dY(yay/)_eKh)+)_ N(m K )| |Kn‘_ |K|

)

and then

1-t),0 ,—
— T (Faliy)

.0, Cn(diamY + Oxh)
> TN (Rl ) + e WVIKa = VK|S (oluy). (5.17)

Then (5.16), (5.17), and Lemma 3.6 together imply
T oo (Talinx,) < Tl R (Falpoy) + 200N maxc {e, (2L + Vo)V 122/

Cnr(diamY + Oxh)
0%, hn — Oxch K| - VIK]|.
+ 0k, Kh|+ NI VI - VIK]]

Similarly,

T s (malix,) < T (faliy ) + 2071 YN max {e, (2L + E)2/N' —1e272/N")

C'N/(diamY + 0Kh)

Combining (5.8), (5.12), and these inequalities, we obtain

Sy (V] py) < T}E%{,N' (T |y ) + 4Cr 1N max {5, (2I~/ + \ﬁ)2/N/_152_2/N/}

2CN/ (diam Y + O h
+ 2|0k, hy — Och| + v — K )|\/|Kn|—\/|K|]. (5.18)

On the other hand, by the triangle inequality, Minkowski’s inequality, Lemma 3.9, and
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(5.6),
</ny(dy(y’y) Oxch)% drn(y, y))w

1/2
< (/ (an (Cﬂ,!ﬂ/) - eKﬂ,hn)i dﬂ—n(xax/)>
XXXy

po(y)p1(y') 5 o / 1/2
(/X XX /ny oy (x)ot(x )d (2,y)” dE (y')dEs (y)dmn (z, @ ))
poWP1(Y) 5 ) e n s em / 1/2
(/X XX /ny op(z)ol(z )d w2, y')* dey (y') ey (y)dmn (z, @ )>
+ |6Knhn 0Kh|

1/2
6 n n 3 ~
W ) ( / po<y>dn<x,y>2dm<m,y>)
X, XY

1/2
n ( / m(y')cln(x',y')zdfw',y')) T Ve P — Ogchl
X, XY

< Wy (i) + 2v/re + |0k, b — Oxch|
< WM (o, 1) + 2(1 + Vr)e + 2|0k, hn — Oxch]. (5.19)

By the compactness of (v, 1), (5.9), and Lemma 3.4, two sequences {7,}22; and
{v}oe, are both tight. We denote their weak limits by 7™¢ and v,*®, respectively.
Therefore, Lemma 3.8 (4), Lemma 3.6, Lemma 5.2, (5.11), (5.18), and (5.19) together
imply the statement. This completes the proof of Claim 5.3. d

Two measures "¢ € II(vg, 1) and v;*° € P3¢(Y) are as in Claim 5.3. By Lemma 3.8
(1), (5.9), and Lemma 3.4, two sets {7}~ and {v;°}c~o are tight. Taking limits as
e — 0, we denote their weak convergent limits by n" € I(vg,v1) and v] € P§e(Y),
respectively. Therefore, combining Claim 5.3 (1)—(3), Lemma 3.8 (4), Lemma 3.6, and
Lemma 5.2, the optimal coupling 7" € (6xh)-Opt(vg,r1) and the family of measures
(U )te(0,1) satisfy the definition of h-CD(K,N). Note that (vf)ic(,1) is an h-rough
geodesic between vy and v;.

We consider the general case where |0k, hy, — Oxh| — 0 as n — oo. Take vy =
poy,v1 = p1iy € P§e(Y). For r > 0, we set

v =r(r) = max {vi({ps < )7

vl = vi({ps < 1) Wilgpieny = oy € PEE(Y), i=0,1,
= (idy,idy )«Vil{p,<r} + Vil{pi>r} @ v e (v, v,
where (idy,idy) : Y 2y — (y,y) € Y x Y. Since

/

Wavi, 7' )? < / dy (y,y/)? dn?’ (y,y') < (diam ¥)2ui({p; > 1),
Y XY
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we have Wa(v;, 1) — 0 as r — co. We also have ||p} ||c < 7. Apply the above
discussion to ug' and u{/7 we obtain a (fxh)-optimal coupling e H(V6/7V{/) and a
family of measures (VZ,)tE(O’l) such that for any ¢t € [0,1] and any N’ > N, we have

Wo (7 vl < 8701 — ) Wa (v, vf) + (5.20)

’ 1—£),0 t),1 ’

S (1 lv) < Ty ! (77 i) + T (7 oy ) (5.21)
By the compactness of Y, the set {1/[/}00 is tight. Denote its weak limit by v, i.e. I/t,
converges weakly to v; as 7 — co. By Lemma 3.8 (4) and Wa (v, v} ) — 0, we obtaln
that (Vt)te(o,l) is an h-rough geodesic between vy and v;. Since dy is bounded and Vi
converges weakly to v; (i = 0,1), the measure 7" converges weakly to a (0 h)-optimal

coupling 7 of vy and v as r — co. For any €’ > 0, there is a bounced continuous function
¢ Y — R such that

—1/N’
/|Po N pldvg < ¢,
Y

and then

5/

71/N' r’
1 = pldyy < ——m—————,
J 1 ey = ol < s

where 17, <,y is the characteristic function of the set {py <} C Y. Put

To:= sup 7y (dy(y.y) —Oxh)s) € [0,00).
(y,y")€Y?

Thus

_T}EKJ)V’( T‘.UY)
= (vo({po < 7}))* /Y YTKN’ (dy (4:5) = 0xh) 1 )pg ™ W) Lipp<ry d” (3.)
> (o({po < 7))’ / n(éNﬁ’ (dy (0. 9) — Bxch) o) dn” (3, 4)

— Toe' (vo({po < )V

and then
tmsup T ) < = [ ARy (09 = 0x) o) dnl) + Toe
T—00 X

< T}(Lth])VE](ﬂuy) + 2Toe’.
Since ¢’ > 0 is arbitrary,
. (1-4),0 /4 (1-),0
limsup T, v (77 |y ) < Ty e v (lay )
r—00

Similarly, we obtain
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. 1 r
limsup Ty o (77 |y) < TY R p (el oy )

r—00

Therefore, the above inequalities and Lemma 3.6 together imply (3.5) for vy and v4. We
conclude that Y satisfies h-CD(K, N) when |0k, hy, — 0xh| — 0 as n — oo.

In the same way, the proof of general case where |0k, h, — 0xh| does not converge
to 0 follows from the next claim.

CLAaM 5.4.  We assume that |0k, h, — Oxh| does not converge to 0, particularly
K =0. There exists (v;"")te0,1) C Ps°(Y ) such that,

(1) Wa(v%,v) <11 —6)'Wa(vg, 1) + h+4e, i=0,1,
(2) for any N' > N +e¢,
S (v |y )
< (1= 8)Sn (Wolpy) + tSn: (v1|py ) + 4Cr N max {e,(2L + VE) 2N —1g2=2/N }.

PROOF. Take N’ > N +¢e. We may assume N’ > N,, and |K,| < ¢ for sufficiently
large n. By the fundamental theorem of calculus,

i (A, (@.2) = O, b))
2 Tl((l f\),,((dy(y,y') - eKnhn)+> - C(dﬂ(xvy> + Cin(gcl?yl))7

and

| K|
N —1

(1= ) = 7 Ry (4. ) = e, ha) )| < Cv(diam Y + )
These inequalities, Jensen’s inequality, (5.14), (5.15), and Lemma 3.6 together imply
— (1 =1)Sn (volpy)
= [ = 0mly) Y dly.)
Y XY

/ / (1 t) ., (2,2") = O, ) 4 ) po () Y ffgiigi((?)
XXX, JY XY 0 1
&z (y")de; (y)dmy (x, x')

vo [ [ B ool AR ) (o2
nXXn JY XY 0 ('r)o-l )
(y)p ) —l/N/ n / n /
+C L dn (2, ) po(y) A&y (y')dE; (y)dmy (z, ")
X, xX, JYxy 0o (l’) (")
A . Kn
— Cn/(diamY + hy,) ]\|[, | Sy (vo|py)
— T e (Taliix, ) + 20r1-1/N max {e, (2L + /)*/N'"1e2 2N
|

+ Cno(diam Y + hy,)

N —1°
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Similarly,

—tSni(v1|py) < —T;(Li),’;n,N/(Wn‘HXn) + 207N max {e, (2L + \@)Q/N/_152_2/N/}

A K,

Combining (5.8), (5.12), and these inequalities, we obtain

Sne (v lpy) < (1= )Sne (volpy) + tSn: (v1|py)
+ 407 YN max {e, (2L + \/E)Z/N'715272/N’}
| Kol

+ 20y (diam Y + hy,) N1

(5.22)

By (5.9) and Lemma 3.4, the sequence {v}*}2°, is tight. We denote its weak limit by ;.
Therefore, Lemma 3.8 (4), Lemma 3.6, (5.11), and (5.22) together imply the statement.
This completes the proof of Claim 5.4. O

The proof of the theorem is now complete. O
REMARK 5.5. Note that we only use the compactness of Y for tightness of {v] ,}7">0-
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