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Abstract. In this paper, we investigate the Hamiltonian-stability of La-
grangian tori in the complex hyperbolic space CHn. We consider a standard

Hamiltonian Tn-action on CHn, and show that every Lagrangian Tn-orbits
in CHn is H-stable when n ≤ 2 and there exist infinitely many H-unstable
Tn-orbits when n ≥ 3. On the other hand, we prove a monotone Tn-orbit in
CHn is H-stable and rigid for any n. Moreover, we see almost all Lagrangian

Tn-orbits in CHn are not Hamiltonian volume minimizing when n ≥ 3 as well
as the case of Cn and CPn.

1. Introduction.

A Lagrangian submanifold L in an almost Kähler manifold (M,ω, J) is called

Hamiltonian-minimal (H-minimal for short, or Hamiltonian stationary) if L is a crit-

ical point of the volume functional under Hamiltonian deformations. Moreover, an H-

minimal Lagrangian is called Hamiltonian-stable (H-stable for short) if the second vari-

ation of the volume functional is nonnegative for any Hamiltonian deformations. These

notions were introduced by Oh in [16] and [17], and studied as a natural generalization

of special Lagrangian submanifolds. We refer to [1], [13], [16], [17], [18] and references

therein for explicit examples of H-stable homogeneous Lagrangians in a Hermitian sym-

metric space, and [10] for existence of H-stable Lagrangians in a general compact almost

Kähler manifold. See also [12] for a generalization of the notion of H-stability.

When M is the complex Euclidean space Cn equipped with the standard Kähler

structure, Oh proved that any Lagrangian torus orbit of the standard Hamiltonian Tn-

action is H-stable in Cn [17]. Moreover, Oh conjectured that they are all Hamiltonian-

volume minimizing, i.e., each torus has the least volume in its Hamiltonian isotopy class.

However, using a result of Chekanov [4], Viterbo [20] first pointed out the conjecture

is false for a certain torus orbit, and Iriyeh–Ono [9] showed that almost all Lagrangian

torus orbits are not Hamiltonian volume minimizing, namely, the set of non Hamiltonian

volume minimizing Tn-orbits is a dense subset in Cn. It is a remaining problem that a

torus orbit of the form T k(a, . . . , a)×Tn−k(b, . . . , b) = S1(a)×· · ·×S1(a)×S1(b)×· · ·×
S1(b) for a, b > 0 and k = 1, . . . , n is Hamiltonian-volume minimizing or not.

The situation is similar when M is the complex projective space CPn. In fact, Ono

[18] first proved that any Lagrangian torus orbit of the standard Tn-action on CPn is H-

stable, however, Iriyeh–Ono showed that almost all of them are not Hamiltonian volume
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minimizing. The remaining case includes the Clifford torus, i.e., the unique minimal

Tn-orbit in CPn, and it is conjectured that the Clifford torus is Hamiltonian volume

minimizing [17]. Also we note that the result is generalized to some torus orbits in a

general compact toric Kähler manifold. See [9] for the details.

It is known that the stability of minimal Lagrangian submanifold is related to the

curvature of the ambient space. In fact, any minimal Lagrangian submanifold in a Kähler

manifold of negative Ricci curvature is strictly stable in the classical sense, and this is in

contrast to the fact that there exists no minimal and stable Lagrangian in CPn (see [16]).

As for the Hamiltonian stability, it is pointed out in [9] and [18] that the isoperimetric

inequality for simple closed curve implies the Hamiltonian volume minimizing property

of the geodesic circle in R2 and S2, and the problem described above can be regarded as a

higher dimensional analogue in Cn and CPn, respectively. Notice that this observation is

valid even for a simple closed curve on the hyperbolic plane H2 since a similar inequality

holds on H2 (see [19] or Section 4 in the present paper). However, the higher dimensional

analogue of the hyperbolic case is still unknown, and this motivates us to investigate the

H-stability and Hamiltonian volume minimizing property of Lagrangian submanifold in

a Kähler manifold of negative Ricci curvature.

A natural higher dimensional setting is to consider a compact Lagrangian subman-

ifold in the complex hyperbolic space CHn. A remarkable fact for CHn is that the

symplectic geometry of CHn is completely the same as Cn, namely, there exists a sym-

plectic diffeomorphism Φ : CHn → Cn, and hence, any Lagrangian submanifold in Cn is

regarded as a Lagrangian submanifold in CHn by the map Φ. Moreover, as pointed out

in [8], there is a correspondence between compact homogeneous Lagrangian submanifolds

in CHn and the ones in Cn, and we have many examples of H-minimal Lagrangian in

CHn because any compact homogeneous Lagrangian in a Kähler manifold is H-minimal.

We note that the compact Lagrangian is never minimal in the classical sense because any

minimal submanifold in Cn and CHn must be non-compact. Although some compact

H-stable Lagrangian in Cn are known (see [1] and [17]), the stability of the correspond-

ing Lagrangian in CHn might be different from the Euclidean case since the stability

depends on the metric. In the present paper, we restrict our attention to the torus orbits

in CHn, and investigate the stability.

Let us describe our main results. We equip CHn ≃ SU(1, n)/S(U(1)× U(n)) with

the standard Kähler structure (ω, J, g) of constant holomorphic sectional curvature −4,

and regard CHn as an open unit ball Bn = {z ∈ Cn; |z| < 1} in the standard way

(see Section 3). We consider the maximal torus Tn of a maximal compact subgroup

K = S(U(1)× U(n)) of G = SU(1, n). Then the Tn-action on CHn is Hamiltonian and

the principal orbits are all Lagrangian. We take a diffeomorphism between CHn and Cn

by

Φ : CHn ≃ Bn → Cn, z 7→

√
1

1− |z|2
z.

Then, it turns out that Φ is a K-equivariant symplectic diffeomorphism. Moreover, the

Tn-action on CHn is equivariant to the Tn-action on Cn via the symplectic diffeomor-

phism Φ (see Sections 3 and 4). In particular, there exists a one-to-one correspondence
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between the Tn-orbits in CHn and the Tn-orbits in Cn. We denote the principal Tn-orbit

in Cn by T (r1, . . . , rn) := S1(r1)× · · · × S1(rn), where ri is the radius of the i-th circle.

We say an H-stable Lagrangian is rigid if the null space of the second variation under

Hamiltonian deformations is spanned by normal projections of holomorphic Killing vector

fields on CHn. We show the following results:

Theorem 1.1. (a) If n ≤ 2, every Lagrangian Tn-orbits in CHn is H-stable and

rigid.

(b) Suppose n ≥ 3. If there exist distinct indices i, j, k ∈ {1, . . . , n} such that the

inequality (
1 +

n∑
l=1

r2l

)1/2

ri < rjrk

holds, then the Tn-orbit Φ−1(T (r1, . . . , rn)) is H-unstable in CHn. In particular,

there exist infinitely many H-unstable Tn-orbits in CHn. On the other hand, the

monotone Tn-orbit Φ−1(T (r, . . . , r)) is H-stable and rigid in CHn for any n ≥ 1

and r > 0.

(c) Suppose n ≥ 3. Then, almost all Lagrangian Tn-orbits are not Hamiltonian volume

minimizing in CHn.

See also Proposition 4.5, Theorems 4.6, 4.8 and 4.12 for more precise statement.

Although almost all Lagrangian Tn-orbits are not Hamiltonian volume minimizing when

n ≥ 3, the Hamiltonian volume minimizing property of the monotone Tn-orbit in CHn

is still an open problem as well as the case of Cn and CPn (see Section 4 for further

discussion).

In general, the second variational formula of the volume functional for non-minimal,

H-minimal Lagrangian submanifold L under Hamiltonian deformation is described by a

linear elliptic differential operator of 4th order depending on both intrinsic and extrinsic

properties of the immersion, and the analysis of the operator is much more difficult than

the case of minimal Lagrangian (see [17] or Section 2). For the case of torus orbit in a

compact toric Kähler manifold, Ono described the second variation by using a Kähler

potential on a complex coordinate of the toric manifold [18]. On the other hand, our

computation method in the present paper is slightly different from [18]. We use geometry

of CHn, in particular, the K-equivariant global symplectic diffeomorphism from CHn to

Cn. This map makes it possible to rewrite the second variation for a class of Lagrangian

submanifolds in CHn in terms of the corresponding geometry of Cn (Theorem 3.5),

so that the calculation of several geometric quantities are much easier than a direct

computation by using the hyperbolic metric. We remark that, in principle, our formula

can be applied to not only torus orbits, but also any compact homogeneous Lagrangian

submanifold in CHn. Finally, we apply the results to the torus orbits in CHn and give

a proof of Theorem 1.1.



438(106)

438 T. Kajigaya

2. Preliminaries.

In this section, we give a general description of Lagrangian submanifold with S1-

symmetry in a Kähler manifold.

LetM be a complex n-dimensional Kähler manifold with the Kähler structure (ω, J),

where ω is the Kähler form and J is the complex structure, and ϕ : L → M a Lagrangian

immersion of a real n-dimensional manifold L intoM , that is, an immersion of L satisfying

ϕ∗ω = 0. We denote the compatible Riemannian metric by g, i.e., g(·, ·) = ω(·, J ·), and
we often use the same symbol g for the induced metric.

Suppose a 1-dimensional connected subgroup Z ⊂ Aut(M,ω, J) acts properly on M

in a Hamiltonian way, and we denote the moment map of the action by µ : M → R ≃ z∗,

where z is the Lie algebra of Z. We take c ∈ R and consider the level set µ−1(c). In

the following, we always assume c ∈ R is a regular value for µ so that µ−1(c) is a real

hypersurface in M . Since Z is abelian, one easily check that Z acts on µ−1(c). We denote

the immersion by ι : µ−1(c) → M .

Take a non-zero element v ∈ z and define ṽp := (d/dt)|t=0exptv · p the fundamental

vector field of the Z-action at p ∈ µ−1(c). Set zp := spanR{ṽp}. Then, the tangent space

of µ−1(c) is decomposed into

Tpµ
−1(c) = Ep ⊕ zp, (1)

where Ep is the orthogonal complement of zp in Tpµ
−1(c). Note that Ep is a J-invariant

subspace in TpM . Moreover, we see Jṽp is a normal direction of µ−1(c) in M . In fact,

we have

g(Jṽp, X) = ω(ṽp, X) = dµv
p(X) = 0

for any X ∈ Γ(Tµ−1(c)) since the Z-action is Hamiltonian. We set

ξp :=
ṽp

|ṽp|g
and Np := Jξp.

The unit vector field ξp will be called Reeb vector field on µ−1(c), and N defines a

unit normal vector field on µ−1(c) in M . Also, we define a 1-form on µ−1(c) by η :=

ι∗{g(ξ, ·)} = ι∗{g(−JN, ·)} so that Ep = Kerηp.

It is known that if the Lagrangian immersion ϕ is Z-invariant, then there exists

c ∈ R ≃ z∗ so that ϕ(L) ⊂ µ−1(c). Thus, for the Z-invariant Lagrangian immersion

ϕ : L → µ−1(c) ⊂ M , we have an orthogonal decomposition

TpL = El
p ⊕ zp ⊂ Tpµ

−1(c),

where El
p is the orthogonal complement of zp in TpL. Note that Ep = El

p ⊕ JEl
p since L

is Lagrangian. According to this decomposition, we denote the tangent vector X ∈ TpL

by

X = XE + η(X)ξ.
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Suppose Z acts on µ−1(c) freely. Then, the quotient space Mc := µ−1(c)/Z is a

smooth manifold and the standard Kähler reduction procedure yields a Kähler structure

(ωc, Jc) on Mc so that π∗ωc = ι∗ω and π∗J = Jc ◦ π∗, where π : µ−1(c) → Mc is the

projection. Note that π is a Riemannian submersion and π∗|Ep : Ep
∼−→ Tπ(p)Mc is

an isomorphism. In particular, the Levi-Civita connections ∇̃ of (µ−1(c), g) and ∇c
of

(Mc, gc) are related as π∗(∇̃XY ) = ∇c

π∗Xπ∗Y for any X,Y ∈ Γ(E). See [6] for details of

Kähler reduction.

We denote the shape operator of the immersion ι : µ−1(c) → M by Ã : Γ(Tµ−1(c)) →
Γ(Tµ−1(c)), i.e., Ã(X) := −(∇XN)⊤, where ∇ is the Levi-Civita connection on TM ,

and ⊤ means the orthogonal projection onto Tµ−1(c). In the present paper, we are

interested in a special class of hypersurfaces so called η-umbilical hypersurfaces. Namely,

we suppose the shape operator of the immersion ι : µ−1(c) → M satisfies

Ã(X) = aX + bη(X)ξ. (2)

for some constants a, b ∈ R. Note that a and a + b are eigenvalues of Ã and ξ gives a

eigenvector for the eigenvalue a+b. In this case, we have the following simple fact: Denote

the holomorphic sectional curvature tensors of M and Mc by T and Tc, respectively.

Then, by the result of Kobayashi [15], we have

Tc(π∗X) = T (X) + 4g(Ã(X), X)2 = T (X) + 4a2

for any X ∈ Ep with |X| = 1. In particular, if M is a complex space form, then the

quotient spaceMc of the η-umbilical hypersurface also has constant holomorphic sectional

curvature. Thus, if furthermoreMc is simply-connected, thenMc is a complex space form

again. We exhibit the concrete examples of η-umbilical hypersurfaces in complex space

forms and these Kähler quotient spaces in Table 1. We refer to [2], [3] and references

therein for details.

Table 1. η-umbilical hypersurfaces in complex space forms.

M µ−1(c) Z a, b Mc = µ−1(c)/Z

Cn hypersphere

of radius r
S1 a = 1/r

b = 0
CPn−1(4/r2)

CPn(4)
geodesic hypersphere

of radius r
S1 a = cot(r)

b = − tan(r)
CPn−1(4/ sin2 r)

geodesic hypersphere

of radius r
S1 a = coth(r)

b = tanh(r)
CPn−1(4/ sinh2 r)

CHn(−4) horosphere R a = 1, b = 1 Cn−1

tube of radius r

around CHn−1(−4)
S1 a = tanh(r)

b = coth(r)
CHn−1(−4/ cosh2 r)

Suppose a Z-invariant Lagrangian immersion ϕ : L → M is contained in an η-

umbilical hypersurface µ−1(c). Denote the second fundamental form of the immersions

ϕ : L → M and ϕ′ : L → µ−1(c) by B and B′, respectively. Also, we define the mean

curvature vectors of these immersions by H := trB and H ′ := trB′, respectively. A
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direct computation shows that

B(X,Y ) = (∇XY )⊥ = B′(X,Y ) + B̃(X,Y ) (3)

for any X,Y ∈ Γ(TL), where B̃ is the second fundamental form of ι : µ−1(c) → M .

Therefore, we obtain from (2) and (3)

H = H ′ + (an+ b)Jξ. (4)

Note that H ′ ∈ JEl
p and Jξ = N .

We often use the following (0, 3)-tensor field on L:

S(X,Y,W ) := g(B(X,Y ), JW ) for X,Y,W ∈ Γ(TL).

We remark that the sign is different from [17] for the definition of S. It is easy to see

that S is symmetric for all three components by the Kähler condition. Since we assume

L is Lagrangian, S and B have the same information. The following lemma will be used

in the next section:

Lemma 2.1. Suppose the Z-invariant Lagrangian submanifold L is contained in

an η-umbilical hypersurface µ−1(c). For any X ∈ TpL, we have

S(X,X, JH) = S(XE , XE , JH
′) + 2a · η(X)g(XE , JH

′)

− (an+ b){a|X|2 + bη(X)2}. (5)

Proof. By using (2) and the Kähler condition, we note that

S(X,Y, ξ) = S(X, ξ, Y ) = g(∇Xξ, JY ) = −g(∇XN,Y )

= g(Ã(X), Y ) = ag(X,Y ) + bη(X)η(Y )

for X,Y ∈ TpL ⊂ Tpµ
−1(c). In particular, we have

S(XE , Y, ξ) = ag(XE , Y ) and S(XE , ξ, ξ) = 0.

Combining this with (4), we see

S(X,X, JH) = S(X,X, JH ′)− (an+ b)S(X,X, ξ)

= S(XE , XE , JH
′) + 2η(X) · ag(XE , JH

′)− (an+ b){a|X|2 + bη(X)2}.

This proves (5). □

Recall that an infinitesimal deformation ϕs : L × (−ϵ, ϵ) → M of a Lagrangian

immersion ϕ0 = ϕ : L → M into a (almost) Kähler manifold (M,ω, J, g) is called

Hamiltonian if the variational vector field V := dϕs/ds|s=0 is a Hamiltonian vector field,

i.e., there exists u ∈ C∞(L) so that αV := ϕ∗iV ω = du. A Lagrangian immersion ϕ is

Hamiltonian-minimal (H-minimal for short) if d/ds|s=0Volg(ϕs) = 0 for any Hamiltonian

deformation ϕs of ϕ = ϕ0, where Volg(ϕ) is the volume of ϕ measured by the volume
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measure dvg of g. Moreover, an H-minimal Lagrangian is Hamiltonian-stable (H-stable

for short) if d2/ds2|s=0Volg(ϕs) ≥ 0 for any Hamiltonian deformation ϕs.

By the result of Oh [17], the H-minimality is equivalent to divg(JH) = 0. A typical

example of H-minimal Lagrangian submanifold is obtained by a compact group action.

Namely, if a compact connected Lie subgoup G ⊂ Aut(M,ω, J) admits a Lagrangian

orbit G · p for some p ∈ M , then G · p is always H-minimal by the divergence theorem

(cf. [1]).

For an H-minimal Lagrangian submanifold in a Kähler manifold, Oh proved the

following second variational formula under the Hamiltonian deformation ϕs:

d2

ds2

∣∣∣
s=0

Volg(ϕs) =

∫
L

|∆u|2 − ρ(∇u, J∇u) + 2S(∇u,∇u, JH) + JH(u)2dvg, (6)

where u is the Hamiltonian function of the variational vector field V and ρ is the Ricci

form of M (Recall that the sign of S is different from [17]). In the following sections, we

consider the second variation (6) in a specific situation.

3. Lagrangian submanifolds in CHn.

In this section, we consider a Lagrangian submanifold contained in a special case of

η-umbilical hypersurface in the complex hyperbolic space CHn. The main purpose of

this section is to prove Theorem 3.5.

3.1. Geometry of CHn.

Let Cn be the complex Euclidean space equipped with the standard Kähler structure

(ω0 = (
√
−1/2)

∑n
i=1 dz

i ∧ dzi, J0, g0). Also, we denote the standard Hermitian inner

product and its norm on Cn by ⟨, ⟩ and | · |, respectively.
Let C1,n be the complex Euclidean space C1+n with the Hermitian inner product

⟨, ⟩′ of signature (1, n) and P (C1,n) is the projective space. The complex hyperbolic space

CHn is defined by

CHn := {[l] ∈ P (C1,n); l = spanC{z} with ⟨z, z⟩′ < 0}.

In the present paper, we use the ball model for CHn, namely, we identify CHn with the

open unit ball

Bn := {z ∈ Cn; |z| < 1} ⊂ Cn

by the map

Bn ∋ z 7→ [1 : z] ∈ CHn ⊂ P (C1,n). (7)

The standard complex structure J0 on Cn defines the complex structure J on Bn. More-

over, the standard Kähler form on Bn (or CHn) is defined by

ω =
−1

2

√
−1∂∂ log(1− |z|2)
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=
1

2

√
−1

(1− |z|2)2

{(
n∑

i=1

zidzi

)
∧

(
n∑

j=1

zjdzj

)
+ (1− |z|2)

n∑
i=1

dzi ∧ dzi

}
. (8)

Then, the holomorphic sectional curvature of (Bn, ω, J) is negative constant which is

equal to −4. See [7] for details. We denote the compatible Kähler metric on Bn by g.

Recall that SU(1, n) acts on Bn through the map (7), where SU(1, n) naturally

acts on C1,n and P (C1,n). Moreover, the action is transitive, and the stabilizer group at

z = 0 is given by K = S(U(1) × U(n)). In particular, CHn is identified with G/K =

SU(1, n)/S(U(1) × U(n)). Note that the stabilizer subgroup K is a maximal compact

subgroup of SU(1, n), and it acts on Bn by

k · z = w−1Az for k :=

 w

A

 ∈ K and z ∈ Bn.

Moreover, K acts on the tangent space T0B
n by the isotropy representation K → U(n).

By (8), we see (T0B
n, ω0) is naturally identified with the standard symplectic vector

space (Cn, ω0). Thus, K acts on Cn by this identification.

A principal K-orbit in Bn coincides with a hypersphere S2n−1(R) := {z ∈ Bn; |z| =
R} in Bn of radius R ∈ (0, 1). On the other hand, one can check that the geodesic

distance r := d(0, z) between 0 and z ∈ S2n−1(R) with respect to the hyperbolic metric

(8) is given by

r = d(0, z) = tanh−1(R)

(see Sub-subsection 3.1.7 in [7] for instance. Note that the holomorphic sectional cur-

vature of CHn is equal to −1 in Sub-subsection 3.1.7 in [7], although we assume it is

equal to −4). In particular, S2n−1(R) is a geodesic hypersphere in Bn of geodesic ra-

dius r = tanh−1(R). Therefore, we denote the geodesic hypersphere of geodesic radius

r ∈ (0,∞) in Bn by

S2n−1
r := S2n−1(tanh r) = {z ∈ Bn; |z| = tanh r}.

Note that the geodesic hyperspheres in Bn of different radii are not homothetic to each

other with respect to the induced metrics from g, and they are so called the Berger

spheres.

Let us consider the symplectic structure of CHn. It is known that any Hermitian

symmetric space of non-compact type is symplectic diffeomorphic to the symplectic vector

space (cf. [14]). For the case of CHn, we have the following explicit identification (cf. [7],

[8]):

Lemma 3.1. A map defined by

Φ : Bn → Cn, z 7→

√
1

1− |z|2
· z, (9)
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gives a K-equivariant symplectic diffeomorphism, i.e., Φ∗ω0 = ω.

Proof. By the definition of K-actions and Φ, it is easy to verify that Φ is K-

equivariant diffeomorphism. On the other hand, a section of the cohomogeneity one

K-action on Bn is given by {(0, . . . , 0, R) ∈ Bn;R ∈ [0, 1)}. Thus, in order to prove the

second assertion, it is sufficient to check at a point r := (0, . . . , 0, R) ∈ Bn for R ∈ [0, 1).

Note that, at the point r, we have

Φ∗
∂

∂xi

∣∣∣
r
=

√
1

1−R2

∂

∂xi

∣∣∣
Φ(r)

for i ̸= n, Φ∗
∂

∂xn

∣∣∣
r
=

(
1

1−R2

)3/2
∂

∂xn

∣∣∣
Φ(r)

,

Φ∗
∂

∂yi

∣∣∣
r
=

√
1

1−R2

∂

∂yi

∣∣∣
Φ(r)

for i = 1, . . . , n,

where we set zi = xi +
√
−1yi. On the other hand, we have (ω0)Φ(r) =

∑n
i=1 dx

i ∧ dyi

and

ωr =
1

1−R2

n−1∑
j=1

dxj ∧ dyj +
1

(1−R2)2
dxn ∧ dyn.

By using these equalities, one can easily check that Φ∗ω0 = ω. □

In the following, we identify Bn (or CHn) with Cn as a symplectic manifold by Φ.

Let us consider the C(K)-action on Bn, where

C(K) := {diag(e−n
√
−1θ, e

√
−1θ, . . . , e

√
−1θ); θ ∈ [0, 2π]}

is the center of K. Note that C(K) does not act effectively on Bn. Indeed, C(K) acts

on Bn by z 7→ e
√
−1(n+1)θz for z ∈ Bn. In order to adapt the argument of the previous

section, we take a normal subgroup N of C(K):

N := {diag(e−n
√
−1(2πk/(n+1)), e

√
−1(2πk/(n+1)), . . . , e

√
−1(2πk/(n+1))); k = 0, 1, . . . , n}.

Obviously, N is isomorphic to Zn+1 and Z := C(K)/N is homeomorphic to S1. Moreover,

Z acts on Bn effectively and freely through the C(K)-action. Indeed, Z acts on Bn by

z 7→ e
√
−1θz for e

√
−1θ ∈ S1 via the identification Z ≃ S1.

Since Φ is a K-equivariant symplectic diffeomorphism, a moment map µ : Bn → R
of the Z-action on Bn is given by

µ(z) = µ0 ◦ Φ(z) = −1

2

(
|z|2

1− |z|2

)
where µ0 : Cn → R is a moment map of the Z-action on Cn which is given by

µ0(z) := −(1/2)|z|2. Thus, a regular level set µ−1(c) coincides with a geodesic hy-

persphere S2n−1
r = S2n−1(tanh r) in Bn, that is, a K-orbit.

We fix a fundamental vector field of the Z-action on Bn (or Cn) defined by
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ṽz :=
n∑

i=1

(
−yi

∂

∂xi
+ xi ∂

∂yi

)
=

√
−1

n∑
i=1

(
zi

∂

∂zi
− zi

∂

∂zi

)
for z ∈ Bn (or Cn) so that Jṽz = −p is the inner position vector. On the other hand, a

direct computation shows that we have

|ṽz|g =
|z|

1− |z|2
=

tanh r

1− tanh2 r
= sinh r cosh r (10)

for z ∈ S2n−1
r ⊂ Bn. Note that the norm |ṽz|g depends only on r, and this implies that

Z-orbits contained in S2n−1
r are mutually isometric. The Reeb vector field on S2n−1

r is

given by

ξz :=
ṽz

|ṽz|g
=

ṽz
sinh r cosh r

for z ∈ S2n−1
r .

Note that N := J0ξ is the inner unit normal vector field of S2n−1
r . Moreover, it is known

that the shape operator Ã of S2n−1
r ⊂ Bn with respect to N is given by

Ã(X) = coth r ·X + tanh r · η(X)ξ,

namely, S2n−1
r is an η-umbilical hypersurface in Bn. In particular, the Kähler quotient

space µ−1(c)/Z is exactly the complex projective space CPn−1(4/ sinh2 r) (see Section 2).

3.2. Comparison of CHn with Cn.

Let ϕ1 : L → Bn be a C(K)-invariant Lagrangian embedding into Bn. Note that L

is C(K)-invariant if and only if so is Z-invariant, where Z = C(K)/N . In this subsec-

tion, we shall compare geometric properties of ϕ1 with corresponding properties of the

composition

ϕ2 := Φ ◦ ϕ1 : L → Cn.

Note that ϕ2 is a C(K)-invariant Lagrangian embedding into Cn since Φ is a C(K)-

equivariant symplectic diffeomorphism.

Recall that the image ϕ1(L) is contained in µ−1(c) = S2n−1
r for some r ∈ (0,∞) (see

Section 2). On the other hand, we see the restriction map

Φ|S2n−1
r

: S2n−1
r = S2n−1(tanh r)

∼−→ S2n−1(sinh r), Φ(z) = cosh r · z

is a diffeomorphism, and ϕ2(L) is contained in S2n−1(sinh r). Namely, we have the

following diagram:

(Bn, ω)
Φ−−−−−−−−→

symp. diffeo.
(Cn, ω0)

∪ ∪
L → S2n−1

r
Φ−−−−−−−−→

diffeo.
S2n−1(sinh r)

↓ π1 ↓ π2 ↓
L/Z → CPn−1(4/ sinh2 r) = CPn−1(4/ sinh2 r).
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Here, π1 and π2 are natural projections by the Z-actions on S2n−1
r and S2n−1(sinh r),

respectively. Note that we have isomorphisms

Φ∗|Ez : Ez
∼−→ EΦ(z) and Φ∗|zz : zz

∼−→ zΦ(z) (11)

for any z ∈ µ−1(c) = S2n−1
r since Φ is C(K)-equivariant, where E and z are defined

by (1). Moreover, the Reeb vector fields and the inner unit normal vector fields of the

hypersurfaces S2n−1
r ⊂ Bn and S2n−1(sinh r) ⊂ Cn are given by

ξ1(z) :=
ṽz

|ṽz|g
=

ṽz
sinh r cosh r

and ξ2(Φ(z)) :=
ṽΦ(z)

|ṽΦ(z)|g0
=

Φ∗ṽz
sinh r

, (12)

N1 := Jξ1 and N2 := J0ξ2,

respectively. Also, we define 1-forms η1 := g(ξ1, ·)|S2n−1
r

and η2 := g0(ξ2, ·)|S2n−1(sinh r).

Let us consider the induced metrics on L

g1 := ϕ∗
1g and g2 := ϕ∗

2g0 = (Φ ◦ ϕ1)
∗g0.

For any point p ∈ L, we have decompositions

Tϕα(p)L = El
ϕα(p) ⊕ zϕα(p), where zϕα(p) := spanR{ṽϕα(p)}

for α = 1, 2. This is an orthogonal decomposition with respect to the metric gα. By

(11), we have isomorphisms Φ∗|El
ϕ1(p)

: El
ϕ1(p)

∼−→ El
ϕ2(p)

and Φ∗|zϕ1(p)
: zϕ1(p)

∼−→ zϕ2(p).

Because of this reason, we simply write

TpL = El
p ⊕ zp

and use identifications El
p ≃ El

ϕ1(p)
≃ El

ϕ2(p)
and zp ≃ zϕ1(p) ≃ zϕ2(p) in the following.

According to this decomposition (with identifications via Φ), it turns out that the induced

metrics g1 and g2 are decomposed into

g1 = gE ⊕ (cosh2 r · gz) and g2 = gE ⊕ gz, (13)

respectively, where gE := g2|El
p
and gz := g2|zp . In fact, for α = 1, 2, we have gα|El

p
=

π∗
α(ϕ

∗
cgFS), where ϕc : L/Z → CPn−1(4/ sinh2 r) and gFS is the Fubini-Study metric on

CPn−1(4/ sinh2 r). On the other hand, we have

ξ1 =
1

cosh r
ξ2

by (12), and this implies g1|zp = cosh2 r · g2|zp as given in (13). In particular, we can

take local orthonormal bases of L with respect to g1 and g2 by {e1, . . . , en−1, ξ1} and

{e1, . . . , en−1, ξ2}, respectively, where {ei}n−1
i=1 is an orthonormal basis of (El

p, gE). In

other words, we take {ei}n−1
i=1 so that {ei := (π1 ◦ϕ1)∗ei}n−1

i=1 is a local orthonormal basis

of L/Z in CPn−1(4/ sinh2 r).

Denote the norm, the Levi-Civita connection, gradient and Hodge–de Rham Lapa-
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cian for function u ∈ C∞(L) with respect to g1 := ϕ∗
1g and g2 := ϕ∗

2g0 by | · |1 and | · |2,
∇1 and ∇2, ∇1u and ∇2u, ∆1u and ∆2u, respectively.

Lemma 3.2. We have the following :

(a) For any X ∈ TpL, we have |X|21 = |X|22 + sinh2 r · η2(X)2.

(b) For any u ∈ C∞(L), we have ∇1u = ∇2u− tanh2 r · ξ2(u)ξ2. Moreover,

|∇1u|21 = |∇2u|22 − tanh2 r · ξ2(u)2.

(c) Let {e1, . . . , en−1, ξ1} and {e1, . . . , en−1, ξ2} be the local frame of L taking above.

Then, the Levi-Civita connections are related as follows :

∇1
eiej = ∇2

eiej for i, j = 1, . . . , n− 1.

∇α
eiξα = ∇α

ξαei = ∇α
ξαξα = 0 for α = 1, 2, i = 1, . . . , n− 1.

(d) For any u ∈ C∞(L), we have ∆1u = ∆2u+ tanh2 r · ξ2(ξ2u).

Proof. For any X ∈ TpL, we set X =
∑n−1

i=1 Xiei + Xnξ1 =
∑n−1

i=1 Xiei +

Xnξ2/ cosh r. Then, we see

|X|21 =

n−1∑
i=1

X2
i +X2

n = |X|22 +
(
1− 1

cosh2 r

)
X2

n = |X|22 + sinh2 r · η2(X)2.

This proves (a). Next, we see

∇1u =
n−1∑
i=1

(eiu)ei + (ξ1u)ξ1 =
n−1∑
i=1

(eiu)ei +
1

cosh2 r
(ξ2u)ξ2

= ∇2u−
(
1− 1

cosh2 r

)
(ξ2u)ξ2

= ∇2u− tanh2 r · (ξ2u)ξ2.

Moreover, by using (a), we have

|∇1u|21 = |∇1u|22 + sinh2 r · η2(∇1u)
2

= |∇2u− tanh2 r · ξ2(u)ξ2|22 + sinh2 r · η2(∇2u− tanh2 r · ξ2(u)ξ2)2

= |∇2u|22 − 2 tanh2 r · ξ2(u)2 + tanh4 r · ξ2(u)2 + sinh2 r · {(1− tanh2 r)ξ2(u)}2

= |∇2u|22 − tanh2 r · ξ2(u)2,

where we used a relation sinh2 r = tanh2 r/(1− tanh2 r). This proves (b).

Next, we shall show (c). Since π1, π2 : L → L/Z are Riemannian submersions, we

have

∇c
eiej = (π1 ◦ ϕ1)∗(∇1

eiej) = (π2 ◦ ϕ2)∗(∇2
eiej),
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where ∇c is the Levi-Civita connection on L/Z. This implies (∇1
eiej)

⊤1

El = (∇2
eiej)

⊤2

El ,

where ⊤α
El means the orthogonal projection with respect to gα onto El. On the other

hand, we see

gα(∇α
eiej , ξα) = −gα(∇

α

eiej , JNα) = −gα(∇
α

eiNα, Jej) = gα(Ã
α(ei), Jej) = 0 (14)

since Jej ∈ E and the η-umbilical conditions. Therefore, we have ∇α
eiej = (∇α

eiej)
⊤

El ,

and we obtain ∇1
eiej = ∇2

eiej .

Next, we consider ∇α
eiξα and ∇α

ξα
ξα. Since |ξα|gα = 1, we have gα(∇α

eiξα, ξα) = 0.

Moreover, (14) shows gα(∇α
eiξα, ej) = −gα(∇α

eiej , ξα) = 0 for any i, j = 1, . . . , n − 1.

Thus, ∇α
eiξα = 0. Moreover, since ei is C(K)-invariant, we have [ṽ, ei] = 0, and hence,

∇α
ξα
ei = (const.)∇α

ṽ ei = (const.)∇α
ei ṽ = ∇α

eiξα = 0, where const. is depends only on α

and r. Similarly, we have gα(∇α
ξα
ξα, ξα) = 0, and

gα(∇α
ξαξα, ei) = −gα(∇α

ξαei, ξα) = −(const.)gα(∇α
ṽ ei, ṽ) = −(const.)gα(∇α

ei ṽ, ṽ) = 0

since |ṽ|gα is constant on L. Thus, we obtain ∇α
ξα
ξα = 0. This proves (c).

Finally, we show (d). In the local orthonormal frame, by using (c), we see

−∆1u =
n−1∑
i=1

ei(eiu) + ξ1(ξ1u)−
n−1∑
i=1

(∇1
eiei)u

=
n−1∑
i=1

ei(eiu) +
1

cosh2 r
ξ2(ξ2u)−

n−1∑
i=1

(∇2
eiei)u

= −∆2u− tanh2 r · ξ2(ξ2u).

This proves (d). □

Next, we compare extrinsic properties. Denote the second fundamental form and

the mean curvature vector of the immersion ϕ1 : L → (Bn, g) and ϕ2 : L → (Cn, g0) by

B1 and B2, H1 and H2, respectively. Also, we set H ′
α := (Hα)E and Sα(X,Y,W ) :=

gα(Bα(X,Y ), JαW ) for X,Y,W ∈ Γ(TL) and α = 1, 2 as introduced in Section 2, where

J1 and J2 denotes the complex structure on Bn and Cn, respectively.

Lemma 3.3. For X,Y,W ∈ El
p, we have

S1(X,Y,W ) = S2(X,Y,W ). (15)

In particular, we see

g1(J1H
′
1,W ) = g2(J2H

′
2,W ) and S1(X,Y, J1H

′
1) = S2(X,Y, J2H

′
2). (16)

Proof. For i, j, k = 1, . . . , n− 1 and α = 1, 2, we have

Sα(ei, ej , ek) = gα(∇
α

eiej , Jαek) = gα(∇̃α
eiej , Jαek) = gc(∇

c

eiej , Jcek)
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since πα is a Riemannian submersion onto CPn−1(4/ sinh2 r) and (πα)∗ ◦Jα = Jc ◦(πα)∗.

This shows S1(ei, ej , ek) = S2(ei, ej , ek) for any i, j, k = 1, . . . , n−1, and hence, we obtain

(15).

Recall that S1(ξ1, ξ1,W ) = S2(ξ2, ξ2,W ) = 0 for W ∈ El
p (see the Proof of

Lemma 2.1), and hence, by taking the trace of the former two components of S and

using the fact that El
p is Jα-invariant, we obtain the first equality of (16). Moreover, we

have

Sα(ei, ej , JαH
′
α) = −gc(∇

c

eiej , (πα)∗H
′
α).

Here, it turns out that (πα)∗H
′
α coincides with the mean curvature vector Hc of the

reduced Lagrangian immersion L/Z → CPn−1(4/ sinh2 r). This can be shown by using

Lemma 3 in [11] and the fact that, in our setting, |ṽz|gα is constant on L for each α.

This proves the second equation of (16). □

On the other hand, the shape operators Ã1 of S2n−1
r → B2n and Ã2 of

S2n−1(sinh r) → Cn (with respect to N1 := Jξ1 and N2 := J0ξ2, respectively) satisfy

Ã1(X) = coth r ·X + tanh r · η1(X)ξ1 and Ã2(Y ) =
1

sinh r
Y (17)

for X ∈ Γ(TS2n−1
r ) and Y ∈ Γ(TS2n−1(sinh r)), respectively.

Lemma 3.4. We have

S1(∇1u,∇1u, J1H1) = S2(∇2u,∇2u, J2H2)

− (n+ 1)|∇2u|22 + (n+ tanh2 r) tanh2 rξ2(u)
2 and

J1H1(u) = J2H2(u)−
tanh r

cosh r
ξ2(u).

Proof. By (17) and Lemma 2.1, we have

S1(∇1u,∇1u, J1H1) = S1

(
(∇1u)E , (∇1u)E , J1H

′
1

)
+ 2 coth r · ξ1(u)g1

(
J1H

′
1, (∇1u)E

)
− (n coth r + tanh r){ coth r|∇1u|21 + tanh rξ1(u)

2}. (18)

S2(∇2u,∇2u, J2H2) = S2

(
(∇2u)E , (∇2u)E , J2H

′
2

)
+

2

sinh r
· ξ2(u)g2

(
J2H

′
2, (∇2u)E

)
− n

sinh2 r
|∇2u|22. (19)

Here, by Lemma 3.3 and the relation ξ1 = ξ2/ cosh r, it turns out that the first two terms

in the RHS of (18) and (19) coincides with each other. Therefore, by using Lemma 3.2

we see

S1(∇1u,∇1u, J1H1)− S2(∇2u,∇2u, J2H2)

= −(n coth r + tanh r)

{
coth r

(
|∇2u|22 − tanh2 rξ2(u)

2
)
+ tanh r

ξ2(u)
2

cosh2 r

}
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+
n

sinh2 r
|∇2u|22

= −(n coth r + tanh r)
{
coth r · |∇2u|22 − tanh3 r · ξ2(u)2

}
+

n

sinh2 r
|∇2u|22

= −(n+ 1)|∇2u|22 + (n+ tanh2 r) tanh2 rξ2(u)
2.

On the other hand, we see

J1H1(u) = J1H
′
1(u)− (n coth r + tanh r)ξ1(u)

= J2H
′
2(u)−

(
n

sinh r
+

tanh r

cosh r

)
ξ2(u) = J2H2(u)−

tanh r

cosh r
ξ2(u)

by (4), (16) and (17). □

Now, we are ready to prove the following formula:

Theorem 3.5. Let ϕ : L → CHn(−4) be a C(K)-invariant Lagrangian embedding

whose image is contained in the geodesic hypersphere S2n−1
r ⊂ CHn(−4) of geodesic

radius r ∈ (0,∞). Suppose furthermore ϕ is H-minimal in CHn(−4). Then, ϕ is H-stable

in CHn(−4) if and only if the corresponding Lagrangian embedding ϕ2 := Φ◦ϕ : L → Cn

satisfies ∫
L

|∆2u|2 − 2g2(B2(∇2u,∇2u),H2) + J2H2(u)
2

+ 2 tanh2 r ·∆2u · ξ2ξ2(u)− 2
tanh r

cosh r
ξ2(u)J2H2(u)

+ tanh4 r|ξ2ξ2(u)|2 −
tanh2 r

cosh2 r
|ξ2(u)|2dvg2 ≥ 0 (20)

for any u ∈ C∞(L), where ξ2 is the Reeb vector field on the hypersphere S2n−1 containing

ϕ2(L) in Cn so that N2 := J2ξ2 is the inner unit normal vector field of S2n−1.

Proof. For a function u ∈ C∞(L), let ϕ1,s and ϕ2,s be a Hamiltonian deformation

of ϕ1 : L → S2n−1
r ⊂ Bn and ϕ2 : L → S2n−1(sinh r) ⊂ Cn so that d/ds|s=0ϕα,s =

Jα∇αu for α = 1, 2. We denote the integrand of the right hand side of the second

variational formula (6) for ϕα,s by Jα(u). By Lemmas 3.2 and 3.4, we have

J1(u) = |∆1u|2 + 2(n+ 1)|∇1u|21 + 2S1(∇1u,∇1u, J1H1) + J1H1(u)
2

= |∆2u+ tanh2 rξ2ξ2(u)|2 + 2(n+ 1)(|∇2u|22 − tanh2 r|ξ2(u)|2)

+ 2S2(∇2u,∇2u, J2H2)− 2(n+ 1)|∇2u|22 + 2(n+ tanh2 r) tanh2 r|ξ2(u)|2

+
∣∣∣J2H2(u)−

tanh r

cosh r
ξ2(u)

∣∣∣2
= |∆2u|2 + 2S2(∇2u,∇2u, J2H2) + J2H2(u)

2

+ 2 tanh2 r ·∆2u · ξ2ξ2(u)− 2
tanh r

cosh r
ξ2(u)J2H2(u)
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+ tanh4 r|ξ2ξ2(u)|2 −
tanh2 r

cosh2 r
|ξ2(u)|2. (21)

On the other hand, one easily checked that the volume measure has a relation dvg1 =

cosh r ·dvg2 . Therefore, by integrating (21) over L by dvg1 , we obtain the conclusion. □

We remark that the C(K)-invariant Lagrangian submanifold L in CHn is H-minimal

if and only if so is the reduced Lagrangian submanifold L/Z in CPn−1 (cf. [5]). More-

over, a typical examples of H-minimal Lagrangian is obtained by a compact homogeneous

Lagrangian submanifold in CHn, i.e. a Lagrangian orbit of K ′-action for a connected

compact subgroup K ′ ⊂ K. Since Φ : Bn → Cn is a K-equivariant symplectic diffeo-

morphism, it turns out that any compact homogeneous Lagrangian submanifold in CHn

corresponds to a compact homogeneous Lagrangian submanifold in Cn (see Theorem 1

in [8]). Theorem 3.5 is applicable to all such examples.

4. The torus orbits in CHn.

In this section, we consider the Hamiltonian stability of torus orbits in CHn(−4),

and give a proof of Theorem 1.1. Let Tn be a maximal torus of K = S(U(1) × U(n))

represented by

Tn := {diag(e−
√
−1

∑n
i=1 θi , e

√
−1θ1 , . . . , e

√
−1θn); θi ∈ R ∀i = 1, . . . , n}.

Since Φ is K-equivariant, it is easy to see that any Tn-orbit Tn ·z through z ∈ Bn ≃ CHn

corresponds to a standard Tn-orbit in Cn via the map Φ:

Φ(Tn · z) = T (r1, . . . , rn) := {(r1e
√
−1θ1 , . . . rne

√
−1θn); θi ∈ R} ⊂ Cn (22)

for some (r1, . . . , rn) ∈ (R>0)
n. Note that this correspondence is one to one. In partic-

ular, any Tn-orbit in CHn is Lagrangian since so is Tn-orbit in Cn. Moreover, they are

all H-minimal. Thus, by Theorem 3.5, we consider a principal Tn-orbit in Cn in order

to show the H-stability of Tn-orbit in CHn.

4.1. Hamiltonian stability of torus orbits.

Let S2n−1(sinh r) be the hypersphere of radius sinh r for r ∈ (0,∞) in Cn. The

Reeb vector field on S2n−1(sinh r) is given by

ξ2 :=
1

sinh r

n∑
i=1

∂i,

where ∂i is a tangent vector field on S2n−1 defined by

∂i(z) := −yi
∂

∂xi
+ xi ∂

∂yi

for i = 1, . . . , n, where zi = xi +
√
−1yi. Note that N := J0ξ = −p is the inner unit

normal vector field on S2n−1(sinh r).



451(119)

Hamiltonian stable Lagrangian tori in CHn 451

Let us consider the standard Tn-action on Cn so that the principal orbit is a La-

grangian torus given by (22). A moment map µ : Cn → Rn of the Tn-action on Cn is

given by µ(z) := (−|z1|2/2, . . . ,−|zn|2/2) and we identify the moment polytope µ(Cn)

with a quadrant

P := {(p1, . . . , pn) ∈ Rn; pi ≥ 0}, µ(z) 7→ (|z1|2, . . . , |zn|2).

It is easy to see that the map µ gives rise to a one to one correspondence between principal

Tn-orbits and the set of interior points P int of P . For each r ∈ (0,∞), we denote the set

of torus orbits contained in S2n−1(sinh r) by

Or :=

{
T (r1, . . . , rn);

n∑
i=1

r2i = sinh2 r

}
.

By using the correspondence via the moment map, we have a correspondence

Or
1:1−−→ Πr :=

{
(p1, . . . , pn) ∈ P int;

n∑
i=1

pi = sinh2 r

}
.

Moreover, we parametrize Or by{
s̃ := (s1, . . . , sn) ∈ (R>0)

n;
n∑

i=1

si = 1

}
= Πsinh−1(1)

∼−→ Or, (23)

(s1, . . . , sn) 7→ Tn
r,̃s := S1(sinh r

√
s1)× · · · × S1(sinh r

√
sn).

We take a basis of TzT
n
r,̃s by

∂

∂θi

∣∣∣
z
= −yi

∂

∂xi

∣∣∣
z
+ xi ∂

∂yi

∣∣∣
z
= ∂i|z

for i = 1, . . . , n and z ∈ Tn
r,̃s. Note that we have g(∂i, ∂j) = (sinh2 r · si)δij . Then, one

easily computes the second fundamental form and the mean curvature vector of Tn
r,̃s in

Cn as follows:

B2(∂i, ∂j) = δijJ∂i and H2 =

n∑
i=1

1

sinh2 r · si
J∂i, (24)

respectively.

Lemma 4.1. The torus orbit Φ−1(Tn
r,̃s) is Hamiltonian-stable in CHn(−4) if and

only if

Qn,r(s̃,m) := a1(s̃,m)− 2 tanh2 r · a2(s̃,m) + tanh4 r · a3(m) ≥ 0 (25)

for any m = (m1, . . . ,mn) ∈ Zn \ {0}, where
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a1(s̃,m) :=

(
n∑

i=1

m2
i

si

)2

+

(
n∑

i=1

mi

si

)2

− 2

(
n∑

i=1

m2
i

s2i

)

=
n∑

i=1

m2
i (m

2
i − 1)

s2i
+
∑
i̸=j

mimj(mimj + 1)

sisj
,

a2(s̃,m) :=

(
n∑

i=1

mi

){(
n∑

i=1

m2
i

si

)(
n∑

i=1

mi

)
−

(
n∑

i=1

mi

si

)}
,

a3(m) :=

(
n∑

i=1

mi

)2{( n∑
i=1

mi

)2

− 1

}
.

Proof. We set ri := sinh r ·√si so that Tn
r,̃s = S1(r1)×· · ·×S1(rn) in this proof.

We decompose the integrand of the formula (20) into three parts

|∆2u|2 − 2g2(B2(∇2u,∇2u),H2) + J2H2(u)
2︸ ︷︷ ︸

(I)

+
{
c1(r) · ξ2ξ2(u) ·∆2u− c2(r) · ξ2(u)J2H2(u)

}
︸ ︷︷ ︸

(II)

+
{
c3(r)|ξ2ξ2(u)|2 − c4(r)ξ2(u)

2
}

︸ ︷︷ ︸
(III)

,

where we set

c1(r) : = 2 tanh2 r, c2(r) :=
2 tanh r

cosh r
,

c3(r) : = tanh4 r, c4(r) :=
tanh2 r

cosh2 r
.

Since the integral of (I) coincides with the second variation of Tn
r,̃s in Cn, the same

calculation given in [17] (see (29) in [17]) shows that∫
Tn
r,s̃

(I)dvg2 =

∫
Tn
r,s̃

{
n∑

i=1

1

r4i
(∂4

i u+ ∂2
i u) +

∑
i ̸=j

1

r2i r
2
j

(∂2
i ∂

2
j u− ∂i∂ju)

}
udvg2 . (26)

Next, we calculate (II). A straightforward calculation shows that∫
Tn
r,s̃

(II)dvg2 =

∫
Tn
r,s̃

c1(r)

sinh2 r

(
n∑

i,j=1

∂i∂ju

)(
−

n∑
k=1

1

r2k
∂2
ku

)

− c2(r)

sinh r

(
n∑

i=1

∂iu

)(
−

n∑
k=1

1

r2k
∂ku

)
dvg2

= − 2

cosh2 r

∫
Tn
r,s̃

{
n∑

i,j,k=1

1

r2k
∂2
k∂i∂ju+

n∑
i,k=1

1

r2k
∂k∂iu

}
udvg2 . (27)

Here, we used the integration by parts. Finally, we see
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∫
Tn
r,s̃

(III)dvg2 =

∫
Tn
r,s̃

c3(r)

sinh4 r

∣∣∣∣∣
n∑

i,j=1

∂i∂ju

∣∣∣∣∣
2

− c4(r)

sinh2 r

(
n∑

i=1

∂iu

)2

dvg2

=
1

cosh4 r

∫
Tn
r,s̃

{
n∑

i,j,k,l=1

∂k∂l∂i∂ju+
n∑

i,j=1

∂j∂iu

}
udvg2 . (28)

Recall that the non-zero eigenvalues of ∆ on the flat torus Tn
r,̃s are given by

λm =

n∑
i=1

m2
i

r2i
for m := (m1, . . . ,mn) ∈ Zn \ {0},

and the corresponding eigenspace is spanned by

uc
m := cos

(
n∑

i=1

miθi

)
and us

m := sin

(
n∑

i=1

miθi

)
.

It is known that these functions form an orthogonal basis of L2(Tn
r,̃s). Note that

∂i∂ju
c
m = −mimju

c
m, ∂i∂j∂k∂lu

c
m = mimjmkmlu

c
m,

and us
m is as well. Hence, substituting u = uc

m (or us
m) in (26), (27) and (28), we have∫

Tn
r,s̃

(I) + (II) + (III)dvg2 =

∫
Tn
r,s̃

[
n∑

i=1

1

r4i
(m4

i −m2
i ) +

∑
i ̸=j

1

r2i r
2
j

(m2
im

2
j +mimj)

− 2

cosh2 r

{
n∑

i,j,k=1

m2
k

r2k
mimj −

n∑
i,k=1

mk

r2k
mi

}

+
1

cosh4 r

{
n∑

i,j,k,l=1

mkmlmimj −
n∑

i,j=1

mjmi

}]
(uc

m)2dvg2

=
1

sinh4 r

∫
Tn
r,s̃

Qn,r(s̃,m)(uc
m)2dvg2

since we set ri = sinh r · √si, this implies the lemma. □

Note that the coefficients a1(s̃,m), a2(s̃,m) and a3(m) are all non-negative. We

shall estimate Qn,r(s̃,m) in the following.

First of all, we consider a specific m, namely, we suppose m ∈ Zn \ {0} satisfies

a3(m) = 0, or equivalently,

n∑
i=1

mi = 0 or ± 1.

We shall find a necessary condition for the Hamiltonian stability of Tn
r,̃s when n ≥ 3 for

such an m (Proposition 4.5), which leads a proof of the first assertion of Theorem 1.1

(b).
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Lemma 4.2. If
∑n

i=1 mi = 0, then Qn,r(s̃,m) ≥ 0 and the equality holds if and

only if there exist i, j ∈ {1, . . . , n} so that mi = 1, mj = −1 and mk = 0 for other k.

Proof. Suppose
∑n

i=1 mi = 0. Then the latter two terms in the RHS of (25)

vanish, and hence, Qn,r(s̃,m) = a1(s̃,m) ≥ 0 by Lemma 4.1. Moreover, the equality

holds if and only if m2
i (m

2
i − 1) = 0 for any i and mimj(mimj + 1) = 0 for any i ̸= j.

This is equivalent to that m ∈ Zn \ {0} has the form mi = 1, mj = −1 for some i ̸= j

and mk = 0 for other k. □

Next, we consider the case when
∑n

i=1 mi = ±1. Since Qn,r(s̃,m) = Qn,r(s̃,−m),

we may assume
∑n

i=1 mi = 1 for our purpose. We denote such m by m̃. In this case,

the last term in (25) is vanishing and we have

Qn,r(s̃, m̃) =
n∑

i=1

m2
i (m

2
i − 1)

s2i
+
∑
i̸=j

mimj(mimj + 1)

sisj
− 2 tanh2 r ·

n∑
i=1

mi(mi − 1)

si

for (s̃, m̃) ∈

{
(s,m) ∈ Rn

>0 × Zn;
n∑

i=1

si = 1,
n∑

i=1

mi = 1

}
.

Lemma 4.3. If mi ̸= −1 for any i, then Qn,r(s̃, m̃) ≥ 0 and the equality holds if

and only if m̃ is of the form mi = 1 for some i and mk = 0 for other k ̸= i.

Proof. Qn,r(s̃, m̃) is rearranged as

n∑
i=1

mi(mi − 1){mi(mi + 1)− 2 tanh2 r · si}
s2i

+
∑
i ̸=j

mimj(mimj + 1)

sisj
. (29)

In (29), the second term is non-negative and the coefficient of 1/s2i is non-negative when-

ever mi ̸= −1 since 0 < tanh2 r · si < 1. Therefore, Qn,r(s̃, m̃) ≥ 0 if mi ̸= −1 for all i.

Here, the equality holds if and only if mi(mi−1) = 0 for any i and mimj(mimj +1) = 0

for any i ̸= j. Since we assume
∑n

i=1 mi = 1, this is equivalent to mi = 1 for some i and

mk = 0 for other k ̸= i. □

By Lemma 4.3, we restrict our attention to the case when m̃ has the form

m̃ = (−1, . . . ,−1︸ ︷︷ ︸
α

,mα+1, . . . ,mn︸ ︷︷ ︸
n−α

) (30)

for mα+1, . . . ,mn ∈ Z \ {−1} and α = 1, . . . , n. Here, we replaced the indices (if neces-

sary) so that m̃ has the form (30).

Lemma 4.4. If m̃ has the form (30) and |mi| > 1 for some i ∈ {α + 1, . . . , n},
then Qn,r(s̃, m̃) > 0.

Proof. Since mi = −1 for i = 1, . . . , α and mj ̸= −1 for j = α + 1, . . . , n, the

equation (29) shows
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Qn,r(s̃, m̃) ≥
α∑

i=1

−4 tanh2 r

si
+ 2

∑
i<j

mimj(mimj + 1)

sisj

≥
α∑

i=1

−4 tanh2 r

si
+ 2

α∑
i=1

n∑
j=α+1

mj(mj − 1)

sisj
+

∑
1<k<l<α

4

sksl

= 2

(
α∑

i=1

1

si

){
− 2 tanh2 r +

n∑
j=α+1

mj(mj − 1)

sj

}
+

∑
1≤k<l<α

4

sksl
(31)

Therefore, if there existsmj for j = α+1, . . . , n satisfying |mj | > 1, thenmj(mj−1)/sj >

2 > 2 tanh2 r, and hence, Qn,r(s̃, m̃) > 0. □

Combining this lemma with
∑n

i=1 mi = 1, the remaining case is when

m̃ = (−1, . . . ,−1︸ ︷︷ ︸
α

, 1, . . . , 1︸ ︷︷ ︸
α+1

, 0, . . . , 0︸ ︷︷ ︸
n−(2α+1)

) (32)

for α = 1, . . . , [n/2]. Note that there is no m̃ of the form (32) for n ≤ 2.

Proposition 4.5. Suppose n ≥ 3 and m̃ is of the form (32). Then, Qn,r(s̃, m̃) ≥ 0

if and only if

si ≥ tanh2 r · sjsk (33)

holds for any distinct i, j, k ∈ {1, . . . , n} with
∑n

i=1 si = 1. In particular, there exist

infinitely many H-unstable torus in CHn when n ≥ 3.

Proof. Suppose m̃ has the form (32). If α ≥ 2, (31) becomes

Qn,r(s̃, m̃) ≥ −4 tanh2 r

(
α∑

k=1

1

sk

)
+

∑
1≤k<l<α

4

sksl

= −4 tanh2 r

α− 1

∑
1≤k<l<α

(
1

sk
+

1

sl

)
+

∑
1≤k<l<α

4

sksl

=
∑

1≤k<l<α

4

sksl

(
1− tanh2 r(sk + sl)

α− 1

)
> 0

since tanh2 r(sk + sl) < 1. If α = 1, i.e., m̃ = (−1, 1, 1, 0, . . . , 0), we have

Qn,r(s̃, m̃) =
4

s2s3
− 4 tanh2 r

s1
,

and this may be negative for some s̃. Since we replaced the indices so that m̃ =

(−1, 1, 1, 0, . . . , 0), this implies Qn,r(s̃, m̃) ≥ 0 if and only if the inequality (33) holds

for any distinct i, j, k with
∑n

i=1 si = 1. □
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Since we set Tn
r,̃s = S1(r1) × · · · × S1(rn) with ri := sinh r

√
si for i = 1, . . . , n (see

(23)), the inequality (33) is equivalent to(
1 +

n∑
l=1

r2l

)1/2

ri ≥ rjrk, (34)

where we used the relation
∑n

i=1 si = 1. This proves the first assertion of Theorem 1.1

(b). For example, if some ri is sufficiently small, then the inequality (34) does not hold,

and hence, the corresponding torus in CHn is H-unstable.

Although there exist infinitely many H-unstable torus when n ≥ 3, we can find

an H-stable torus as follows: The Clifford torus Tn in Cn is the torus of the form

Tn = {(re
√
−1θ1 , . . . , re

√
−1θn); θi ∈ R} for r ∈ (0,∞). For this particular case, we prove

Theorem 4.6. Let Tn be the Clifford torus in Cn for n ≥ 1. Then, Φ−1(Tn) is

Hamiltonian stable in CHn.

Proof. In our notation described in the previous subsections, the Clifford torus

is exactly the case when s1 = · · · = sn = 1/n. We shall show Qn,r(s̃,m) ≥ 0.

First, we consider the case when a3(m) = 0. Since s1 = · · · = sn = 1/n, the

inequality (33) is equivalent to n ≥ tanh2 r, and this holds for any n ≥ 1. Combining

this with Lemmas 4.2 and 4.3, we obtain Qn,r(s̃,m) ≥ 0 for a3(m) = 0.

Next, we consider the case when a3(m) ̸= 0. Setting A :=
∑n

i=1 m
2
i and B :=∑n

i=1 mi, we see

Qn,r(s̃,m) = n2(A2 +B2 − 2A)− 2 tanh2 r · nB2(A− 1) + tanh4 rB2(B2 − 1).

If n = 1, we have B2 = A, and hence, Q1,r(s̃,m) = (1 − tanh2 r)2A(A − 1) ≥ 0. Here,

the equality holds if and only if A = m2
1 = 0 or 1. For n ≥ 2, we estimate as follows:

Qn,r(s̃,m) = n2(A2 +B2 − 2A)− 2 tanh2 r · nB2(A− 1) + tanh4 r ·B2(B2 − 1)

= (nA− tanh2 rB2)2 − 2n(nA− tanh2 rB2) + (n2 − tanh4 r)B2

=
{
(nA− tanh2 rB2)− n

}2

− n2 + (n2 − tanh4 r)B2

≥ −n2 + (n2 − tanh4 r) · 4

= 3n2 − 4 tanh2 r

> 0,

where, in the first inequality, we used the fact |B| ≥ 2 since a3(m) ̸= 0. This proves the

theorem. □

Remark 4.7. We shall show in Subsection 4.4 below the pull-back of Clifford torus

Φ−1(Tn) is rigid, namely, Qn,r(s̃,m) = 0 if and only if the corresponding hamiltonian uc
m

or us
m generates an infinitesimal isometry on CHn. Therefore, one can find a torus orbit

which is sufficiently close to Φ−1(Tn) and H-stable in CHn since Qn,r(s̃,m) is continuous

with respect to s̃. In this sense, the H-stable torus orbit in CHn is not unique.
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4.2. The case when n = 2.

In this subsection, we consider another special situation, that is, when n = 2. Note

that Proposition 4.5 is not valid for this case. In fact, we prove the following result:

Theorem 4.8. Every Lagrangian torus orbits in CH2 is Hamiltonian stable.

Proof. We shall prove Q2,r(s̃,m) ≥ 0. In the following, we simply write ai(s̃,m)

in Q2,r(s̃,m) by ai. Note that all coefficient ai are non-negative. When a3 = 0, the

results in Subsection 4.1 implies Q2,r(s̃,m) ≥ 0 for any r, s̃ and m. Thus, we assume

a3 ̸= 0, or equivalently,

m1 +m2 ̸= 0 and m1 +m2 ̸= ±1

in the rest of this proof. Moreover, if mi = 0 for some i, the problem is reduced to the

case when n = 1, and this has already been considered in Subsection 4.2. Therefore, we

suppose mi ̸= 0 for i = 1, 2. Our claim is Q2,r(s̃,m) > 0 (strictly positive) for such m.

Since a3 > 0 and

Qn,r(s̃,m) = a3

(
tanh2 r − a2

a3

)2

− a22
a3

+ a1,

there are two possibilities:

(i) If 0 < a2/a3 < 1, then Qn,r(s̃,m) > 0 for any r ∈ (0,∞) if and only if

a1a3 − a22 > 0.

(ii) If a2/a3 ≥ 1, then Qn,r(s̃,m) > 0 for any r ∈ (0,∞) if and only if

a1 − 2a2 + a3 > 0.

Let us consider the case (i). Then, we have 0 < a2 < a3, and hence,

a1a3 − a22 > a1a3 − a23 = a3(a1 − a3).

Thus, it is sufficient to prove a1(s̃,m) − a3(m) > 0. Since s1 + s2 = 1, we consider a

function for s1 ∈ (0, 1) by

f(s1) := a1(s̃,m) =
α1

s21
+

α2

(1− s1)2
+ 2β

(
1

s1
+

1

1− s1

)
,

where αi := m2
i (m

2
i − 1) and β := m1m2(m1m2 + 1).

Note that αi ≥ 0 and β ≥ 0, and α1 = α2 = β = 0 if and only if (m1,m2) = (1,−1) or

(−1, 1) since mi ̸= 0. However, this is not the case since a3 ̸= 0. Thus, we may assume

αi > 0 or β > 0 in the following. An elementary calculation shows that
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∂f

∂s1
= −2α1

s31
+

2α2

(1− s1)3
+ 2β

{
− 1

s21
+

1

(1− s1)2

}
,

∂2f

∂s21
=

6α1

s41
+

6α2

(1− s1)4
+ 2β

{
2

s31
+

2

(1− s1)3

}
.

By assumptions, we have ∂2f/∂s21 > 0, ∂f/∂s1 → −∞ as s1 → 0 and ∂f/∂s1 → ∞ as

s1 → 1, and hence, there exists a unique minimizer of the function f(s1) in the interval

(0, 1). One can easily check that the minimizer is explicitly given by

s1 =
m1

m1 +m2
,

and

min
0<s1<1

f(s1) = (m1 +m2)
4.

Therefore, we see

a1 − a3 ≥ (m1 +m2)
4 − (m1 +m2)

2{(m1 +m2)
2 − 1} = (m1 +m2)

2 > 0.

Thus, we conclude a1a2 − a23 > 0 for the case (i).

Next, we consider the case (ii). Setting

A :=
2∑

i=1

m2
i

s2i
, B :=

2∑
i=1

m2
i

si
, C :=

2∑
i=1

mi

si
, D :=

2∑
i=1

mi,

we see

a1 − 2a2 + a3 = (B2 + C2 − 2A)− 2(D2B −DC) +D2(D2 − 1)

= (B −D2)2 − (C −D)2 + 2(C2 −A)

=

{
2∑

i=1

(
1

si
− 1

)
m2

i − 2m1m2

}2

−

{
2∑

i=1

(
1

si
− 1

)
mi

}2

+ 4
m1m2

s1s2
.

By using s1 + s2 = 1, this is equivalent to

s21s
2
2(a1 − 2a2 + a3) = (s2m1 − s1m2)

4 − (s22m1 + s21m2)
2 + 4s1s2m1m2. (35)

We divide two cases:

(ii-a) Suppose m1m2 < 0. The equation (35) is rearranged as

s21s
2
2(a1 − 2a2 + a3) = s42m

2
1(m

2
1 − 1) + s41m

2
2(m

2
2 − 1) + 6(s1s2)

2(m1m2)(m1m2 + 1)

− 4s1s2m1m2(s
2
2m

2
1 + s21m

2
2 + 2s1s2 − 1). (36)

Notice that the former three terms in (36) are non-negative since m1,m2 ∈ Z. On the

other hand, since m1 +m2 ̸= 0 and m1m2 < 0, we have m2
1 +m2

2 > 2, and hence

s22m
2
1 + s21m

2
2 + 2s1s2 − 1 = (m2

1 +m2
2 − 2)s21 − 2(m2

1 − 1)s1 + (m2
1 − 1)
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= (m2
1 +m2

2 − 2)

(
s1 −

m2
1 − 1

m2
1 +m2

2 − 2

)2

+
(m2

1 − 1)(m2
2 − 1)

m2
1 +m2

2 − 2

> 0.

Combining this with m1m2 < 0, we see the last term of (36) is strictly positive, and

hence, we obtain a1 − 2a2 + a3 > 0.

(ii-b) Suppose m1m2 > 0. We may assume 0 < m1 ≤ m2. We set

γ := s2m1 − s1m2 and δ := s2m1 + s1m2

so that s2m1 = (δ + γ)/2 and s1m2 = (δ − γ)/2. First, we assume m1 > 1. Then, we

estimate (35) as follows:

s21s
2
2(a1 − 2a2 + a3) = γ4 −

{s2
2
(δ − γ) +

s1
2
(δ + γ)

}2

+ (δ2 − γ2)

= γ4 −
{
δ

2
+

s1 − s2
2

γ

}2

+ (δ2 − γ2)

≥ γ4 − 2

{
δ2

4
+

(s1 − s2)
2

4
γ2

}
+ (δ2 − γ2)

= γ4 −
(
1 +

(s1 − s2)
2

2

)
γ2 +

δ2

2

=

{
γ2 − 1

2

(
1 +

(s1 − s2)
2

2

)}2

− 1

4

(
1 +

(s1 − s2)
2

2

)2

+
δ2

2

≥ δ2

2
− 9

16

=
1

16
[8{m1 + (m2 −m1)s1}2 − 9]

≥ 1

16
(8m2

1 − 9)

> 0.

Here, in the second inequality, we used

1

4

(
1 +

(s1 − s2)
2

2

)2

=
1

4

(
1 +

(2s1 − 1)2

2

)2

≤ 1

4

(
1 +

1

2

)2

=
9

16

since s1 + s2 = 1 and 0 < s1 < 1. The third inequality is due to the assumption

m2 ≥ m1 > 0. Finally, we consider the case when 1 = m1 ≤ m2. Then, by using (36)

and s1 + s2 = 1, one easily verifies that

s21s
2
2(a1 − 2a2 + a3) = s21m2(m2 + 1)

{
(m2 + 1)(m2 + 2)

(
s1 −

2

m2 + 1

)2

+ 2
m2 − 1

m2 + 1

}
> 0
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since 0 < s1 < 1 and m2 ≥ 1. Thus, a1 − 2a2 + a3 > 0 for the case (ii). This completes

the proof of theorem. □

4.3. Rigidity of H-stable torus.

Recall that an H-stable Lagrangian submanifold is called rigid if the null space of

the second variation under the Hamiltonian deformations is spanned by holomorphic

Killing vector fields. In order to consider the rigidity of Lagrangian torus orbit, we need

a lemma: Let su(1, n) be the Lie algebra of SU(1, n) the group of holomorphic isometries

on CHn, and su(1, n) = k⊕ p the Cartan decomposition, namely, we set

k =
{ w

A

 ;w ∈ u(1), A ∈ u(n), w + trCA = 0
}
= s(u(1)⊕ u(n)),

p =
{

tz

z

 ; z ∈ Cn
}
≃ Cn,

where k is the Lie algebra of the maximal compact subgroup K. For an element X ∈
su(1, n), the fundamental vector field X̃ gives a holomorphic Killing vector field on CHn.

Conversely, any holomorphic Killing vector field on CHn is obtained in this way. Since

LX̃ω = 0, Cartan’s formula implies iX̃ω is a closed form, where i denotes the inner

product. Moreover, since M = CHn is simply connected, there exists a Hamiltonian

function f ∈ C∞(M) so that iX̃ω = df . We shall explicitly determine the Hamiltonian

function in our case. For convenience, we count the number of row and column of matrix

in su(1, n) from 0 to n, e.g., the (0, 0)-component is the upper left component of the

matrix. We take a basis of k by

Xc
ij : =

√
−1(Ei,j + Ej,i), Xs

ij := Ei,j − Ej,i for 1 ≤ i < j ≤ n and

Zi : =
√
−1(E0,0 − Ei,i) for i = 1, . . . , n,

and a basis of p by

Xc
i :=

√
−1(Ei,0 − E0,i) Xs

i := Ei,0 + E0,i for i = 1, . . . , n,

where Ei,j is the matrix unit.

Lemma 4.9. The Hamiltonian functions on Bn for the fundamental vector fields

X̃s
ij , X̃

c
ij , Z̃i, X̃

s
i and X̃c

i are given by

f c
ij(z) : =

Re(zizj)

1− |z|2
, fs

ij(z) :=
Im(zizj)

1− |z|2
, hi :=

1

2
· 1 + |zi|2

1− |z|2
,

f c
i (z) : =

Rezi
1− |z|2

and fs
i (z) :=

Imzi
1− |z|2

,

respectively.
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One can check this lemma by a straightforward calculation. Thus, we omit the proof.

Proposition 4.10. Let Φ−1(Tn
r,s̃) be an H-stable Lagrangian torus given in The-

orem 4.6 and 4.8. Then, Φ−1(Tn
r,s̃) is rigid.

Proof. By Lemma 4.1 through 4.4 and Proposition 4.5, the null space of the

second variation is spanned by the following functions:

uc
ij : = cos(θi − θj), us

ij := sin(θi − θj),

uc
i : = cos θi, us

i := sin θi,

for i, j = 1, . . . , n with i ̸= j. Recall that Φ−1(Tn
r,s̃) is contained in a geodesic hypersphere

S2n−1
r = S2n−1(tanh r) in Bn. For the fixed r, we see

uκ
ij = (1− tanh2 r)fκ

ij |Φ−1(Tn
r,s̃

) and uκ
i = (1− tanh2 r)fκ

i |Φ−1(Tn
r,s̃

)

for κ = s or c. Therefore, the null vectors J∇1u
κ
i,j and J∇1ũ

κ
i coincides with normal

projections of some holomorphic Killing vector fields on Bn. Note that (Z̃i)
⊥ = 0 along

Φ−1(Tn
r,s̃). This proves the proposition. □

4.4. Remarks on Hamiltonian volume minimizing property.

In this last section, we mention the Hamiltonian volume minimizing property for

torus orbits.

Definition 4.11 (cf. [9]). (1) A diffeomorphism Ψ on a symplectic manifold (M,ω)

is called Hamiltonian if Ψ = Ψ1
V for the flow Ψt

V with Ψ0
V = IdM of the time-dependent

Hamiltonian vector field Vt defined by a compactly supported Hamiltonian function ft ∈
C∞

c ([0, 1]×M). We denote the set of Hamiltonian diffeomorphism by Hamc(M,ω). For

Lagrangian submanifolds L0 and L1 in M , we say L1 is Hamiltonian isotopic to L0 if

there exists Ψ ∈ Hamc(M,ω) so that L1 = Ψ(L0).

(2) A Lagrangian submanifold L in a almost Kähler manifold (M,ω, J, g) is called

Hamiltonian volume minimizing if L satisfies Volg(Ψ(L)) ≥ Volg(L) for any Ψ ∈
Hamc(M,ω).

Let ϕ1 : L → CHn be a C(K)-invariant Lagrangian embedding into CHn(−4) and

set ϕ2 := Φ◦ϕ1 : L → Cn as described in Section 3. Suppose ϕ1(L) is contained in S2n−1
r .

Since the volume forms of g1 := ϕ∗
1g and g2 := ϕ∗

2g0 are related by dvg1 = cosh r · dvg2 ,
we have Volg1(L) = cosh r ·Volg2(L).

Consider the case when ϕ2(L) = T (r1, . . . , rn) = S1(r1)× · · · × S1(rn) ⊂ Cn. Since∑n
i=1 r

2
i = sinh2 r, we see

Volg1(Φ
−1(T (r1, . . . , rn))) = (2π)n ·

(
1 +

n∑
i=1

r2i

)1/2 n∏
i=1

ri. (37)

Since Φ−1 preserves the Hamiltonian isotopy of T (r1, . . . , rn), the same argument de-

scribed in Section 2 in [9] is valid for the case of torus orbits in CHn. Namely, setting
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N(r1, . . . , rn) := ♯{r1, . . . , rn}, we see the following:

Theorem 4.12. Suppose n ≥ 3. If the inequality (34) is not satisfied for some

i, j, k ∈ {1, . . . , n} or N(r1, . . . , rn) ≥ 3, then Φ−1(T (r1, . . . , rn)) is not Hamiltonian

volume minimizing in CHn.

More precisely, if the inequality (34) is not satisfied, the torus is H-unstable. If

N(r1, . . . , rn) ≥ 3, using the result of Chekanov [4], we can find a torus

T (r1, . . . , rj−1, r
′
j , rj+1, . . . , rn)

so that r′j < rj and is Hamiltonian isotopic to T (r1, . . . , rn) (see proof of Proposition 8

in [9]). Thus, by the formula (37), T (r1, . . . , rn) is not Hamiltonian volume minimizing

in CHn. In this sense, almost all Lagrangian torus orbits in CHn are not Hamiltonian

volume minimizing when n ≥ 3, however, the following problem is still remaining as well

as the case of Cn and CPn:

Problem 4.13. Is Φ−1(T (a, . . . , a)) Hamiltonian volume minimizing in CHn?

When n = 1, γ0 := Φ−1(T (a)) is just a geodesic circle in the hyperbolic disk B2 and

a simple closed curve γ on B2 is Hamiltonian isotopic to γ0 if and only if A(γ) = A(γ0),

where A(γ) is the area with respect to the hyperbolic metric of the region enclosed by γ.

For a simple closed curve in B2, we have the isoperimetric inequality on the hyperbolic

disc;

length(γ)2 ≥ 4πA(γ) +A(γ)2

where the equality holds if and only if γ = γ0 (cf. [19]). Thus, the statement of Prob-

lem 4.13 is affirmative when n = 1.
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