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Abstract. In this paper, we study the joint denseness of the Riemann
zeta function and Hurwitz zeta functions with certain algebraic irrational and

transcendental parameters on ℜs > 1. We also provide evidence for the dense-
ness of the Hurwitz zeta function with an algebraic irrational parameter on
1/2 < ℜs < 1.

1. Introduction.

Let α be a real number with 0 < α ≤ 1. The Hurwitz zeta function associated with

α is defined by

ζ(s, α) =
∞∑

n=0

1

(n+ α)s
(1.1)

for s = σ + it ∈ C with σ > 1. The Riemann zeta function ζ(s) is a special case of

the Hurwitz zeta function since ζ(s, 1) = ζ(s) and ζ(s, 1/2) = (2s − 1)ζ(s). It is well-

known that the Hurwitz zeta function shares some of the properties of the Riemann zeta

function such as an analytic continuation and a functional equation. Another interesting

property of the Riemann zeta function is universality, which roughly states that vertical

shifts of the Riemann zeta function on a closed disc in the right half of the critical strip

can approximate every nonvanishing analytic function defined on the disc. See [1], [4] or

[9] for details. We expect that universality holds for every Hurwitz zeta function ζ(s, α)

as well.

Indeed, the universality of ζ(s, α) has been proved for both transcendental and ratio-

nal α’s (by different methods), but not for algebraic irrational α’s. For a transcendental

α, we apply Kronecker’s theorem to the set

Zα := {log(n+ α) : n = 0, 1, 2, . . . },

which is linearly independent over Q. For a rational α = a/q with gcd(a, q) = 1 and

q > 2, we use the joint universality of Dirichlet L-functions L(s, χ) and the identity
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ζ

(
s,
a

q

)
=

qs

ϕ(q)

∑
χ mod q

χ̄(a)L(s, χ). (1.2)

Here, Kronecker’s theorem is applied to the set

{log p : p prime number}.

It is not clear whether the universality of ζ(s, α) with algebraic irrational α holds or not.

The linear independence of the set Zα is important to study the value distribution of

ζ(s, α) for algebraic irrational α’s. It is known that the set Zα for an algebraic irrational α

is linearly dependent over Q, unlike the transcendental case. However, it seems that there

is no pattern to the dependence, and this makes it hard to apply Kronecker’s theorem. To

get around this difficulty, we instead consider a maximal linearly independent subset of

Zα. How big is it? It is known to be infinite. Cassels [2] proved that at least 51 percent

(in the sense of density) of Zα is linearly independent over Q. For large degree α’s,

Worley [10] improved this by providing bigger lower bounds depending on the degree.

These results imply that ζ(s, α) has infinitely many zeros in the strip 1 < ℜs < 1 + δ

for any fixed δ > 0. (See [2] for the details.) This extends a theorem of Davenport and

Heilbronn [3] for transcendental and rational α’s with 0 < α < 1 and α ̸= 1/2. Moreover,

it is easy to see from the proof in [2] that the set

{ζ(s, α) : ℜs > 1}

is dense in C for each algebraic irrational α. With more effort, the second author [6]

proved the joint denseness of the Riemann zeta function and a Hurwitz zeta function

with an algebraic irrational α. We extend these results further as follows.

Theorem 1. Let α1, . . . , αr be algebraic irrational numbers in (0, 1) such that

Q(αj) ∩Q(α̂j) = Q (1.3)

holds for each j ≤ r, where α̂j = {αi : i ≤ r, i ̸= j}. Let αr+1, . . . , αr+ℓ be real

transcendental numbers in (0, 1) which are algebraically independent over Q. Then the

set {
(ζ(σ + it), ζ(σ + it, α1), . . . , ζ(σ + it, αr+ℓ)) ∈ Cr+ℓ+1 : σ > 1, t ∈ R

}
is dense in Cr+ℓ+1.

Note that the assumption (1.3) and the algebraic independence imply the linear

independence between the sets of Zαj ’s. We will provide a stronger version of Cassels’s

lemma in Subsection 2.1, which combines ideas from [2] and [10]. It also explains a gap

in the proof of Lemma 2 of [6]. Then we will prove Theorem 1 in Section 2.

At this point it is natural to ask about the joint denseness or universality of Hurwitz

zeta functions with rational parameters. The joint denseness might be proved by applying

the joint denseness of Dirichlet L-functions on ℜs > 1 to (1.2). However, the joint

universality might not be true. A dual identity to (1.2) gives a representation for a
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Dirichlet L-function in terms of Hurwitz zeta functions, so if the joint universality of the

Hurwitz zeta functions is true, then by Rouché’s theorem one can find an off-line zero

of the Dirichlet L-function which would disprove the Riemann hypothesis. This makes

it very interesting to study the joint denseness or universality of Hurwitz zeta functions

with rational parameters.

As an application of the lemma in 2.1, we also study the denseness of the Hurwitz

zeta function ζ(s, α) for an algebraic irrational number α inside the critical strip. We

believe the following conjecture is true.

Conjecture 1. Let α be an algebraic irrational number with 0 < α < 1 and let

1/2 < σ0 < 1 be fixed. Then the set

{ζ(σ0 + it, α) : t ∈ R}

is dense in C.

Conjecture 1 was also stated in Gonek’s thesis [4, p.122]. To provide evidence for

Conjecture 1, in Section 3 we will study the denseness of the sum∑
n

χ(n+ α)

(n+ α)σ0

with a suitable sense of convergence, where χ is a character defined on {n+ α}n≥0.

Recently, Sourmelidis and Steuding [7] announced surprising results including a

substantial part of Conjecture 1. Theorem 1 in [7] provides explicit simultaneous esti-

mations of ζ(s, α) and its derivatives in the strip 1/2 < ℜs ≤ 1 for algebraic irrational

α of large degree. Theorem 2 in [7] is the universality theorem of ζ(s, α) in the strip

1 − (2 · 36)−1 ≤ σ0 < ℜs < 1 for all but finitely many algebraic irrational α in [A, 1] of

degree at most (162(1− σ0))
−1/2 − 1, where 0 < A < 1 is given.

2. Proof of Theorem 1.

Let α1, . . . , αr be algebraic irrational numbers and let αr+1, . . . , αr+ℓ be transcen-

dental numbers satisfying the conditions in Theorem 1. Then we want to prove that for

any ε > 0 and any complex numbers z0, . . . , zr+ℓ, there exists a complex number s with

ℜs > 1 such that

| log ζ(s)− z0| < ε

and

|ζ(s, αj)− zj | < ε

both hold for j = 1, . . . , r + ℓ. Here is the outline of the proof of Theorem 1. In

Subsection 2.1 we first prove an essential lemma. Then, in Subsection 2.2, we define a

totally multiplicative function χ from

Dr+ℓ := N ∪ {n+ αj : n ≥ 0, j = 1, . . . , r + ℓ}
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to

S1 := {z ∈ C : |z| = 1}

such that

log ζ(s : χ) := −
∑
p

log

(
1− χ(p)

ps

)
= z0

and

ζ(s, αj : χ) :=
∑
n≥0

χ(n+ αj)

(n+ αj)s
= zj

for some s in ℜs > 1 and all j = 1, . . . , r + ℓ. In Subsection 2.3, we apply Kronecker’s

theorem to find numbers t satisfying

ζ(s+ it) ≈ ζ(s : χ)

and

ζ(s+ it, αj) ≈ ζ(s, αj : χ)

for j = 1, . . . , r+ ℓ and ℜs > 1, and then apply Rouché’s theorem to complete the proof.

2.1. Lemma.

Let α be an algebraic irrational number of degree k and let a denote the ideal

denominator of α. We define N (b) = NK/Q(b) to be the norm of an ideal b of the field

K = Q(α). Let Iα be the set of all prime ideals p ∤ a in K = Q(α) satisfying the following

three properties:

(1) p is of the first degree, that is, N (p) = p is a rational prime,

(2) p is unambiguous, that is, p2 ∤ p,

(3) if p|(n + α)a for a nonnegative integer n, then p′ ∤ (n + α)a for any prime ideal

p′ ̸= p with N (p′) = p.

One can show that there are only finitely many prime ideals p in K such that p /∈ Iα and

p|(n+ α)a for some nonnegative integer n.

Lemma 1. Let N ≥ 107 and M = [10−6N ] be positive integers. For each algebraic

irrational number α of degree k, let q be the smallest positive integer such that qα is an

algebraic integer. Define c(α) = 2kq and

TN := TN (α) := {N < n ≤ N +M :

∃pn ∈ Iα(pn|(n+ α)a, pn = N (pn) > c(α)(N +M))}.
(2.1)

Then there exists an integer N0 > 107 depending on α such that
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♯TN ≥

(
1−

(
1

2k
+

√
3

4k3/2
+

3

8k2

))
M (2.2)

for N ≥ N0. Each prime ideal pn in (2.1) satisfies

pn ∤
∏

0≤m≤N+M
m ̸=n

(m+ α)a (2.3)

and

(pn) ∤
∏

0≤m≤N+M

(m+ α)a, (2.4)

where (pn) is the principal ideal of K = Q(α) generated by pn.

Remark. The first inequality of (2.15) is slightly better than (2.2). For k = 2 at

least 54 percent of integers in (N,N +M ] are contained in TN . The proportion in (2.2)

is an increasing sequence of k, whose value at k = 3 is approximately 0.708. Hence, for

any algebraic irrational α we see that

♯TN (α) > 0.54M

holds for N ≥ N0.

Proof. For an integer n ≥ 0, we may write

(n+ α)a = b
∏
p∈Iα

pun(p), (2.5)

where the un(p) are nonnegative integers and b is the product of all the prime factors of

(n+ α)a which are not in Iα. Define

SN := {N < n ≤ N +M : pun(p) ≤M for all p ∈ Iα}

for integers N > 107 and M = [10−6N ]. We first want to find an upper bound for

SN := ♯SN .

Define

σ(n) :=
∑

pv|(n+α)a
pv≤M

log p.

Since the norm of b is bounded,

σ(n) =
∑

p|(n+α)a
p∈Iα

un(p) log p+O(1)

for n ∈ SN . By taking the norm in (2.5) we have that
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p|(n+α)a

p∈Iα

un(p) log p = logN ((n+ α)a) +O(1).

Since N ((n+ α)a) ≫ nk, we have that

σ(n) ≥ k log n+O(1)

for n ∈ SN . Let ρ := SN/M ≤ 1, then∑
n∈SN

σ(n) ≥ (k logM +O(1))SN = (kρ+ o(1))M logM. (2.6)

We next find an upper bound for the sum in (2.6). We split σ(n) into three parts as

σ(n) = σ1(n) + σ2(n) + σ3(n), (2.7)

where σ1, σ2, σ3 are the sums of log p with pv|(n+ α)a in the sets

σ1 : v > 1, pv ≤M,

σ2 : v = 1, M1/2 ≤ p ≤M,

σ3 : v = 1, p < M1/2.

Following the proof of the lemma in [2], we find that∑
n∈SN

σ1(n) = o(M logM), (2.8)

∑
n∈SN

σ2(n) ≤
(
1

2
+ o(1)

)
M logM, (2.9)

and ∑
n∈SN

(σ3(n))
2 ≤

(
3

8
+ o(1)

)
M log2M. (2.10)

By (2.6)–(2.9), we have ∑
n∈SN

σ3(n) ≥
(
kρ− 1

2
+ o(1)

)
M logM. (2.11)

If the right-hand side of (2.11) is negative, then

ρ ≤ 1

2k
+ o(1). (2.12)

Otherwise, by (2.10), (2.11) and the Cauchy–Schwarz inequality
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n∈SN

σ3(n)

∣∣∣∣∣
2

≤ SN

∑
n∈SN

(σ3(n))
2,

and we find that(
kρ− 1

2
+ o(1)

)2

M2 log2M ≤
(
3ρ

8
+ o(1)

)
M2 log2M.

From this we obtain

8k2ρ2 − (8k + 3)ρ+ 2 ≤ o(1).

Thus,

SN = ρM ≤
(
8k + 3 +

√
48k + 9

16k2
+ o(1)

)
M. (2.13)

The number of n ∈ (N,N +M ] \SN is

≥M − ♯SN ≥
(
1− 8k + 3 +

√
48k + 9

16k2
+ o(1)

)
M

by (2.13). For such n, there is a prime ideal p such that

pv|(n+ α)a, pv > M (2.14)

for some integer v ≥ 1. We also see that

pv ∤ (m+ α)a

for m ̸= n and N < m ≤ N +M . For if pv|(m+ α)a, then

(m− n)a ⊂ (m+ α)a+ (n+ α)a ⊂ pv.

Since p ∤ a, pv|m− n and so pv|m− n. However, this contradicts 0 ̸= |m− n| < M < pv.

Since the number of p with p ≤ c(α)(N +M) is o(M) by the prime ideal theorem, we

have

♯TN ≥
(
1− 8k + 3 +

√
48k + 9

16k2
+ o(1)

)
M

≥

(
1−

(
1

2k
+

√
3

4k3/2
+

3

8k2

))
M

(2.15)

for sufficiently large N . This proves (2.2).

We next prove (2.3) for each pn in (2.1). Suppose that pn|(m + α)a for some 0 ≤
m ≤ N +M and m ̸= n. Similarly to the previous paragraph, we see that pn|m − n,

which contradicts 0 < |m− n| ≤ N +M < pn.

Finally, we prove (2.4) for each pn in (2.1). Let p = pn and n1 = n. Then it is
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enough to show that there are no positive integers n2, . . . , nt ≤ N +M with t ≤ k such

that

(p)
∣∣ t∏
i=1

(ni + α)a. (2.16)

Suppose that (2.16) holds. Let q be the smallest positive integer such that β = qα is an

integer of K. Put mi = qni for i ≤ t, then (2.16) implies

t∏
i=1

(mi + β) ∈ (p). (2.17)

One can expand the product

t∏
i=1

(mi + β) =
t+1∑
i=1

St+1−i(m⃗)βi−1, (2.18)

where Sj(m⃗) (0 ≤ j ≤ t) are the elementary symmetric polynomials in m1, . . . ,mt and

m⃗ = (m1, . . . ,mt). Note that S0(m⃗) = 1. Let {γ1, . . . , γk} be a basis for the integer ring

OK of K over Z. Then there exist integers aij ∈ Z (1 ≤ i, j ≤ k) such that

βi−1 =

k∑
j=1

aijγj . (2.19)

By (2.17)–(2.19) we see that

k∑
j=1

(
t+1∑
i=1

aijSt+1−i(m⃗)

)
γj ∈ (p).

Since γ1, . . . , γk is a basis for OK , it follows that

t+1∑
i=1

aijSt+1−i(m⃗) ≡ 0 (mod p) (2.20)

for every 1 ≤ j ≤ k.

If t < k, one can write this system with additional zeros (if necessary) as

AT



St(m⃗)
...

S0(m⃗)

0
...

0


=



0
...

0

0
...

0


(2.21)

in Zp = Z/pZ, where AT is the transpose of the matrix A := (aij). Since both of
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{γ1, . . . , γk} and {β0, . . . , βk−1} are linearly independent over Q, the matrix A is invert-

ible. Note that each aij depends only on α. Thus, the determinant of A is not divisible

by a prime p if p > |detA|. Hence, A (mod p) is also invertible, and by (2.21)

Si(m⃗) ≡ 0 (mod p)

for every 0 ≤ i ≤ t and sufficiently large p > c(α)(N +M). This contradicts the fact

S0(m⃗) = 1.

Next we consider the case t = k. Since k is the degree, we have

βk =
k−1∑
i=0

ciβ
i (2.22)

for some ci ∈ Z. By (2.17), (2.18) and (2.22), we find that

k∏
i=1

(mi + β) =

k+1∑
i=1

Sk+1−i(m⃗)βi−1 =

k∑
i=1

(Sk+1−i(m⃗) + ci−1)β
i−1 ∈ (p).

By the argument in the case t < k, we deduce that

Sk+1−i(m⃗) + ci−1 ≡ 0 (mod p)

for every 1 ≤ i ≤ k. In particular,

S1(m⃗) + ck−1 = q(n1 + · · ·+ nk) + ck−1 ≡ 0 (mod p). (2.23)

Since N < n1 ≤ N +M and ni ≥ 0 for all i, it is easy to see that

q(n1 + · · ·+ nk) + ck−1 ̸= 0

for sufficiently large N . Thus

0 < |q(n1 + · · ·+ nk) + ck−1| ≤ qk(N +M) + |ck−1| < c(α)(N +M) < p

for sufficiently large N . But this contradicts (2.23). This completes the proof of (2.4)

and the lemma. □

2.2. Construction of χ.

We next investigate dependencies among the numbers n and n + αj . First recall

that αr+1, . . . , αr+ℓ are independent transcendental parameters and claim that the values

χ(n + αj) for n ≥ 0 and j = r + 1, . . . , r + ℓ can be chosen to be any numbers in S1,

independent of the values χ(n) for n ≥ 1 and χ(n+ αj) for n ≥ 0 and j = 1, . . . , r. Let

Aj be a finite subset of Z≥0 for each j. Suppose that

r+ℓ∏
j=1

∏
n∈Aj

(n+ αj)
mn,j ·

∏
n∈A0

nmn,0 = 1
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for mn,j ∈ Z. Then we see that

r+ℓ∏
j=r+1

∏
n∈Aj

(n+ αj)
mn,j ∈ Q(α1, . . . , αr)

is algebraic over Q and a root of a polynomial with rational coefficients. Since

αr+1, . . . , αr+ℓ are algebraically independent over Q, we must have

mn,j = 0

for all n ∈ Aj and j = r + 1, . . . , r + ℓ. This proves the claim.

Next consider the algebraic parameters α1, . . . , αr. For each j ≤ r, we claim that

the values χ(n+ αj) for n ≥ 0 are independent of the values χ(n+ αi) for n ≥ 0, i ̸= j

and i ≤ r, but may depend on the values χ(n) for n ≥ 1. Suppose that

r∏
j=1

∏
n∈Aj

(n+ αj)
mn,j ·

∏
n∈A0

nmn,0 = 1

for mn,j ∈ Z. For each j ≤ r, we have∏
n∈Aj

(n+ αj)
mn,j =

∏
i ̸=j

∏
n∈Ai

(n+ αi)
−mn,i ·

∏
n∈A0

n−mn,0 ∈ Q

by (1.3). Hence ∏
n∈Aj

(n+ αj)
mn,j = qj

for some qj ∈ Q. This proves the claim.

There is a positive integer N0 such that Lemma 1 holds for all α1, . . . , αr and N ≥
N0. Let δ = 10−2. Then there exists a real number σ0 > 1 such that

N0∑
n=0

1

(n+ αj)σ0
+ |zj | < δ

∑
n>N0

1

(n+ αj)σ0
(2.24)

for all j = 1, . . . , r,

ζ(σ0, αj : χ) =
∞∑

n=0

χ(n+ αj)

(n+ αj)σ0
= zj (2.25)

for all j = r + 1, . . . , r + ℓ and some χ(n+ αj) ∈ S1, and

log ζ(σ0 : χ) =
∑
p

− log

(
1− χ(p)

pσ0

)
= z0 (2.26)

for some χ(p) ∈ S1. Here, (2.24) is due to
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lim
σ→1+

∞∑
n=0

1

(n+ αj)σ
= ∞,

and (2.25) and (2.26) are explained in Chapter XI [8], using the theory of summation of

convex curves. Thus, we only need to define χ(n+ αj) for n ≥ 0 and each j = 1, . . . , r.

Let j be a positive integer ≤ r. We will construct a totally multiplicative function

ψ from the set of fractional ideals in Q(αj) to S
1 and then let

χ(n+ αj) = ψ(n+ αj)

for n ≥ 0 by a restriction of ψ. We first determine the values of ψ on the set

Pj(N) := {p : p|(n+ αj)aj for some 0 ≤ n ≤ N, or p|aj}.

Make a list of the prime ideals p ∈ Pj(N0) and define ψ(p) inductively by the condition

ψ(p) = ψ(p1) · · ·ψ(pν)

for (p) = p1 · · · pν . Note that ψ(p) = χ(p) for a rational prime p is already determined

in (2.26). Let

ψ(p) = 1

if there is a conjugate p′ of p such that ψ(p′) is not yet defined, and otherwise let

ψ(p) = ψ(p)
∏
p′ ̸=p

ψ(p′)−1.

Hence, we have defined ψ(p) for all p ∈ Pj(N0) and χ(n+αj) for n ≤ N0 and j = 1, . . . , r.

Define Mi = [10−6Ni] and Ni+1 = Ni +Mi for i ≥ 0. Let Ni < n ≤ Ni+1 and

assume that we have defined ψ(p) for all p ∈ Pj(Ni). We want to determine ψ(n + αj)

by defining the values at prime ideal divisors of (n+αj). If ψ(p) is already defined for all

p|(n+ αj)aj , then ψ(n+ αj) is determined by multiplicativity. If there is a p|(n+ αj)aj
such that ψ(p) is not defined yet, but n /∈ TNi(αj), then we simply let ψ(p) = 1. If

n ∈ TNi(αj), then by Lemma 1 there is a prime ideal pn|(n+αj)aj in (2.1) that satisfies

(2.3) and (2.4). Thus, we may choose ψ(pn) to be any number in S1. It follows that

we may choose ψ(n + αj) for n ∈ TNi(αj) to be any number in S1, too. By repeating

this inductive process, we can determine ψ(p) for all p and ψ(n + αj) for all n ≥ 0 and

j = 1, . . . , r. It is important to notice that for j = 1, . . . , r, we can choose the value

χ(n+ αj) to be any number in S1 if and only if n ∈ TNi(αj) for some i ≥ 0.

Now we define χ(n+ αj) for n ∈ TNi(αj), 1 ≤ j ≤ r and i ≥ 0 such that∣∣∣∣∣
Ni∑
n=0

χ(n+ αj)

(n+ αj)σ0
− zj

∣∣∣∣∣ < δ

∞∑
n=Ni+1

1

(n+ αj)σ0
(2.27)

holds for all i ≥ 0, which implies that
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ζ(σ0, αj : χ) =
∞∑

n=0

χ(n+ αj)

(n+ αj)σ0
= zj . (2.28)

We prove (2.27) by induction on i. First, by (2.24) we see that (2.27) holds for i = 0.

Suppose now that (2.27) holds for i ≥ 0. We prove (2.27) for i + 1 by making suitable

choices of the values χ(n + αj) ∈ S1 for n ∈ TNi(αj). For any n, n′ ∈ TNi(αj) with

n > n′,

1 <
(n+ αj)

σ0

(n′ + αj)σ0
<

(
Ni +Mi + αj

Ni + αj

)2

< 2.

Since ♯TNi(αj) > 5, the sum ∑
n∈TNi

(αj)

χ(n+ αj)

(n+ αj)σ0
,

with |χ(n+ αj)| = 1, takes any value z in the disc

|z| ≤
∑

n∈TNi
(αj)

1

(n+ αj)σ0
=: S3,j(Ni).

Let UNi(αj) be the set of integers in Ni < n ≤ Ni +Mi with n ̸∈ TNi(αj), and let

Λj(Ni) =
∑

n≤Ni or n∈UNi
(αj)

χj(n+ αj)

(n+ αj)σ0
− zj .

If |Λj(Ni)| ≤ S3,j(Ni), then there exist χ(n+ αj) ∈ S1 for all n ∈ TNi(αj) such that∑
n∈TNi

(αj)

χ(n+ αj)

(n+ αj)σ0
= −Λj(Ni).

Thus, ∣∣∣∣∣∣
∑

n≤Mi+Ni

χj(n+ αj)

(n+ αj)σ0
− zj

∣∣∣∣∣∣ = 0,

which obviously implies (2.27) for i+ 1.

If |Λj(Ni)| > S3,j(Ni), then there exist χ(n+αj) ∈ S1 for all n ∈ TNi(αj) such that∑
n∈TNi

(αj)

χ(n+ αj)

(n+ αj)σ0
= −S3,j(Ni)

Λj(Ni)

|Λj(Ni)|
.

Thus,
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∑

n≤Ni+Mi

χ(n+ αj)

(n+ αj)σ0
− zj

∣∣∣∣∣∣ = |Λj(Ni)| − S3,j(Ni). (2.29)

Define

S1,j(Ni) :=

∣∣∣∣∣∣
∑
n≤Ni

χ(n+ αj)

(n+ αj)σ0
− zj

∣∣∣∣∣∣ and S2,j(Ni) :=
∑

n∈UNi
(αj)

1

(n+ αj)σ0
.

Then

|Λj(Ni)| − S3,j(Ni) ≤ S1,j(Ni) + S2,j(Ni)− S3,j(Ni). (2.30)

By Lemma 1 we see that

S3,j(Ni)

S2,j(Ni)
≥ (1/2 + δ)Mi(Ni +Mi + αj)

−σ0

(1/2− δ)Mi(Ni + αj)−σ0
>

1 + δ

1− δ
.

Thus,

S3,j(Ni)− S2,j(Ni) > δ(S2,j(Ni) + S3,j(Ni)). (2.31)

The inductive hypothesis (2.27) is

S1,j(Ni) < δ(S2,j(Ni) + S3,j(Ni) + S4,j(Ni)), (2.32)

where

S4,j(Ni) =
∑

n>Ni+1

1

(n+ αj)σ0
.

Thus we have

S1,j(Ni) + S2,j(Ni)− S3,j(Ni) < δS4,j(Ni). (2.33)

Therefore, (2.27) for i+ 1 holds by (2.29), (2.30) and (2.33).

2.3. Completion of the proof.

Let η be a real number satisfying 0 < η < (σ0 − 1)/2. Given ϵ > 0, there exists

N > 0 such that

max

 max
0≤j≤r+ℓ

∑
n>N

1

(n+ αj)1+η
,
∑
p>N

− log

(
1− 1

p1+η

) ≤ ϵ

3
.

By the construction of χ in Subsection 2.2, we can apply Kronecker’s approximation

theorem, to see that there exists a real number t such that

|e−it log p − χ(p)| ≤ ϵ

A



54

54 Y. Lee and H. Mishou

for p ≤ N , and

|e−it log(n+αj) − χ(n+ αj)| <
ϵ

A

for n ≤ N and 1 ≤ j ≤ r + ℓ, where

A := max

{
3
∑
p

1

p1+η

(
1− 1

p1+η

)−1

, max
j≤r

{
3
∑
n

1

(n+ αj)1+η

}}
.

Therefore, we have

|ζ(s+ it, αj)− ζ(s, αj : χ)|

≤
∑
n>N

2

(n+ αj)1+η
+
∑
n≤N

|χ(n+ αj)− (n+ αj)
−it|

(n+ αj)1+η

≤ 2ϵ

3
+
ϵ

A

∑
n≤N

1

(n+ αj)1+η

≤ ϵ

for all 1 ≤ j ≤ r + ℓ and ℜs ≥ 1 + η, and also

| log ζ(s+ it)− log ζ(s : χ)|

≤ 2
∑
p>N

− log

(
1− 1

p1+η

)
+
∑
p≤N

∞∑
m=1

1

m

|χ(p)m − p−imt|
pm(1+η)

≤ 2ϵ

3
+
ϵ

A

∑
p≤N

∞∑
m=1

1

pm(1+η)

≤ ϵ

for ℜs ≥ 1 + η. Put

ζ0(s) = log ζ(s), ζ0(s : χ) = log ζ(s : χ)

and

ζj(s) = ζ(s, αj), ζj(s : χ) = ζ(s, αj : χ)

for j = 1, . . . , r + ℓ, and

gj(s) := ζj(s : χ)− zj

for j = 0, . . . , r + ℓ. Then we have just proved that for any ϵ > 0, there exists a real

number t such that

|ζj(s+ it)− zj − gj(s)| ≤ ϵ (2.34)

for all j = 0, . . . , r + ℓ and ℜs ≥ 1 + η.



55

Joint denseness of Hurwitz zeta functions 55

Since the functions gj(s) for j ≤ r + ℓ have a common zero at s = σ0 by (2.25),

(2.26) and (2.28), there exists 0 < ϵ0 < η such that

gj(s) ̸= 0

for 0 < |s− σ0| ≤ ϵ0 for all j ≤ r + ℓ. Given 0 < ϵ1 < ϵ0, let

M := max
0≤j≤r+ℓ

max
ℜs≥1+η

|ζ ′j(s)|+ 1

and

ϵ2 = min
0≤j≤r+ℓ

min
|s−σ0|=ϵ1/M

|gj(s)| > 0.

By (2.34) there exists a real number t such that

|ζj(s+ it)− zj − gj(s)| < ϵ2

for all j ≤ r + ℓ and ℜs ≥ 1 + η. Thus, for each j ≤ r + ℓ we have

|ζj(s+ it)− zj − gj(s)| < |gj(s)|

on the circle |s−σ0| = ϵ1/M . Therefore, by Rouché’s theorem, there is a complex number

sj with |sj − σ0| < ϵ1/M such that ζj(sj + it) = zj . Moreover, we find that

|ζj(s1 + it)− zj | =

∣∣∣∣∣
∫ s1

sj

ζ ′j(s+ it)ds

∣∣∣∣∣ < M |sj − s1| < 2ϵ1.

Thus, we have shown that given ϵ > 0, there exists a complex number s1 + it with

|s1 − σ0| < ϵ/(2M) such that

|ζj(s1 + it)− zj | < ϵ

for all j ≤ r + ℓ. This completes the proof of the theorem. □

3. Evidence of the denseness of ζ(s, α) in the critical strip.

Theorem 2. Let α be an algebraic irrational number with 0 < α < 1 of degree

k > 2 and let 1/2 < σ0 < 1 be fixed. Then for any complex number z, there exist a

character χ on {n+ α}n≥0 and an increasing sequence {Ni}i≥0 ⊂ N such that Ni → ∞
as i→ ∞ and

lim
i→∞

Ni∑
n=0

χ(n+ α)

(n+ α)σ0
= z.

Notice that the limit in Theorem 2 is not a usual sum
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∞∑
n=0

χ(n+ α)

(n+ α)σ0
,

because from the proof in Subsection 3.1 one cannot see that the above sum is convergent.

However, we can find a convergent rearrangement for algebraic irrational α of degree > 2

as follows.

Corollary 1. Let α be an algebraic irrational number with 0 < α < 1 of degree

k > 2 and let 1/2 < σ0 < 1 be fixed. Then the set of all convergent rearrangements of

the sums
∑

n χ(n+ α)/(n+ α)σ0 for all characters χ on the set {n+ α}n≥0 is C.

We will prove Theorem 2 in Subsection 3.1 and Corollary 1 in Subsection 3.2.

3.1. Proof of Theorem 2.

Let N0 be the integer in Lemma 1 and let Mi = [10−6Ni] and Ni+1 = Ni +Mi for

all i ≥ 0. The set TNi is defined in (2.1) and we let VNi = (Ni, Ni+1] \ TNi . Given a

complex number z, we want to find a character χ on {n+ α}n≥0 such that

lim
i→∞

Ni∑
n=0

χ(n+ α)

(n+ α)σ0
= z.

We instead define a character χ on the set of fractional ideals of Q(α) and then restrict

it to {n+α}n≥0. Since it is totally multiplicative, we only need to define it for all prime

ideals.

Define χ(n+ α) = 1 for all n ≤ N0. (We may choose χ(p) = 1 for all p|(n+ α)a or

p|a.) We next inductively define χ(n+α) for Ni < n ≤ Ni+1 assuming that all χ(n+α)

for n ≤ Ni are defined. Since the fractional ideal (n + α) for each n ∈ TNi has an

independent prime ideal factor pn by Lemma 1, the values χ(n+ α) for n ∈ TNi can be

any complex numbers in S1 = {z ∈ C : |z| = 1}. Since χ is multiplicative, the values

χ(n+ α) for n ∈ VNi are determined by the induction hypothesis.

By (2.2) for k > 2, one can find a subset UNi of TNi such that 2♯VNi = ♯UNi . For

each n ∈ VNi and for any two elements n′, n′′ ∈ UNi , one can define two values χ(n′+α)

and χ(n′′ + α) in S1 such that

χ(n+ α)

(n+ α)σ0
+
χ(n′ + α)

(n′ + α)σ0
+
χ(n′′ + α)

(n′′ + α)σ0
= 0. (3.1)

Thus, it is easy to find a character χ such that∑
n∈UNi
n∈VNi

χ(n+ α)

(n+ α)σ0
= 0.

Define

Λi =
∑
n≤Ni

χ(n+ α)

(n+ α)σ0
− z.
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The sum ∑
n∈TNi

\UNi

χ(n+ α)

(n+ α)σ0

can be any complex number in the set{
z ∈ C : |z| ≤

∑
n∈TNi

\UNi

1

(n+ α)σ0

}

by suitable choices of the values χ(n + α) ∈ S1 for n ∈ TNi \ UNi . So we can define

χ(n+ α) ∈ S1 so that ∑
n∈TNi

\UNi

χ(n+ α)

(n+ α)σ0
= −Λi

if

|Λi| ≤
∑

n∈TNi
\UNi

1

(n+ α)σ0
,

and ∑
n∈TNi

\UNi

χ(n+ α)

(n+ α)σ0
= − Λi

|Λi|
∑

n∈TNi
\UNi

1

(n+ α)σ0

if

|Λi| >
∑

n∈TNi
\UNi

1

(n+ α)σ0
.

In both cases we have

|Λi+1| =

∣∣∣∣∣Λi +
∑

n∈TNi
\UNi

χ(n+ α)

(n+ α)σ0

∣∣∣∣∣
≤

∣∣∣∣∣Λi −
Λi

|Λi|
∑

n∈TNi
\UNi

1

(n+ α)σ0

∣∣∣∣∣
=

∣∣∣∣∣|Λi| −
∑

n∈TNi
\UNi

1

(n+ α)σ0

∣∣∣∣∣
≤ |Λi|.

Since the sum ∑
n∈TNi

\UNi

1

(n+ α)σ0
≫ N1−σ0

i → ∞
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as Ni → ∞, there is an integer J such that

|ΛJ | ≤
∑

n∈TNJ
\UNJ

1

(n+ α)σ0
.

Then we see that ∑
n∈TNJ

\UNJ

χ(n+ α)

(n+ α)σ0
= −ΛJ

and

Λi = 0

for all i > J . Thus

lim
i→∞

Λi = lim
i→∞

∑
n≤Ni

χ(n+ α)

(n+ α)σ0
− z = 0.

This completes the proof. □

3.2. Proof of Corollary 1.

We follow the notation in the proof of Theorem 2. Given a complex number z, we

have constructed a character χ in Theorem 2 such that

lim
i→∞

∑
n≤Ni

χ(n+ α)

(n+ α)σ0
= z.

We want to define a rearrangement {mn}n≥0 of Z≥0 and a character ψ such that

∞∑
n=0

ψ(mn + α)

(mn + α)σ0
= z.

By the proof of Theorem 2, there exists a character ψ, an integer J and a rearrangement

{mn : n ≥ 0} of Z≥0 such that for i ≥ J

(1) mn = n and ψ(n+ α) = χ(n+ α) for n ≤ NJ ,

(2) mn permutes the integers in (Ni, Ni+1],

(3) m < m′ for every m ∈ UNi and m′ ∈ TNi \ UNi ,

(4) for VNi = {mNi+3ℓ−2 : ℓ = 1, . . . , L} and UNi = {mNi+3ℓ−j : ℓ = 1, . . . , L and

j = 0, 1}, we have that

ψ(mNi+3ℓ−2 + α)

(mNi+3ℓ−2 + α)σ0
+
ψ(mNi+3ℓ−1 + α)

(mNi+3ℓ−1 + α)σ0
+
ψ(mNi+3ℓ + α)

(mNi+3ℓ + α)σ0
= 0,

(5) ψ(mn + α) = (−1)n for mn ∈ TNi \ UNi = {mNi+3L+j : j = 1, . . . ,Mi − 3L},
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(6) mn < mn′ for every mn,mn′ ∈ TNi \ UNi with n < n′.

Then it is easy to show that the sum

∞∑
n=0

χ(mn + α)

(mn + α)σ0

is convergent to z.
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