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Abstract. We prove local and global energy decay for the asymptoti-
cally periodic damped wave equation on the Euclidean space. Since the be-
havior of high frequencies is already mostly understood, this paper is mainly
about the contribution of low frequencies. We show in particular that the
damped wave behaves like a solution of a heat equation which depends on the
H-limit of the metric and the mean value of the absorption index.

1. Introduction and statement of the main results.

In this paper we are interested in the asymptotic behavior for large times of the
damped wave equation in an asymptotically periodic setting in R?, d > 1. In particular,
the damping is effective at infinity but it is not assumed to be greater than a positive
constant outside some compact subset of R%. Our original motivation is the local energy
decay. We also obtain some results for the global energy. However, because of the contri-
bution of low frequencies, there is no exponential decay for the corresponding semigroup,
even under the usual Geometric Control Condition. More precisely, we will prove that
the contribution of low frequencies behaves like a solution of an explicit heat equation.
This will explain the rate of decay for the local energy decay.

1.1. The damped wave equation in an asymptotically periodic setting.
We consider on R? the damped wave equation
O?u+ Pu+a(r)du=0 on Ry x RY

1.1
(u, Opu)|,_g = (uo,u1) on R?, (1.1)

where (ug,u1) € HY(R?) x L2(R%).

The function a is the absorption index. It is bounded, continuous, and takes non-
negative values.

The operator P is a general Laplace operator. More explicitely, we consider a metric
G(z) = (Gjr(2))1<jk<d On R? and a positive function w such that, for some Gpax >
Gmin > 0 and Wimax > Wmin > 0 and for all z € R? and ¢ € R?,

Grnin [€° < (G(2)€,€)pa < Gmax €7 and  winin < (@) < Winax- (1.2)
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We also assume that G and w are smooth with bounded derivatives. Then we set
1
w(z)

This includes in particular the case of the standard Laplace operator (with G(z) =
Id and w(z) = 1), a Laplacian in divergence form (with w(z) = 1) or the Laplacian
associated with a metric g(x) (with w(z) = det(g(x))*/? and G(x) = det(g(x))"/?g(z)~1).

The purpose of this paper is to consider the case where G, w and a are asymptotically
periodic. This means that we can write

P :=— div G(x)V. (1.3)

G(a) = Gyl(@) + Gola), w(z) = wylz) + wole) and  ale) = ap(e) + ao(z),

where Gp, wy, and a, are Ze-periodic and Gg, wy and ag go to 0 at infinity. More
precisely, we assume that there exist pg, p, > 0 and Cg, C, > 0 such that

|Go(2)] < Cq ()" and  |wo(x)| + |ao(x)| < Ca ()™, (1.4)

where (z) stands for (1+ || )1/2. The periodic part a,, of the absorption index is allowed
to vanish but it is not identically zero, so that the damping is effective at infinity. Notice
that if G(x) and w(z) are periodic and a(x) is constant, then we recover the setting of
[OZPO01].

Let u be a solution of (1.1). We can check that if a = 0 then the energy

B(t) = /]R (w0, + G@)Vult,2) - Val,2)) da (1.5)

is constant. However, with the damping this is a non-increasing function of time. More
precisely, for t; < ts we have

E(te) — E(t1) = —2/t : /]Rd a(x) |8tu(t,x)|2 w(z)dxdt <0. (1.6)

Our purpose in this paper is to say more about the decay of this quantity. We are also
interested in the decay of the local energy

Es(t) := /Rd ()% (w(m) Oyu(t, z)|* + G(z)Vu(t, ) - Vﬂ(t,x)) dx,

where § > 0.

1.2. The geometric damping condition on classical trajectories.

The local energy decay for the wave equation in unbounded domains and the global
energy decay for the damped wave equation in compact domains are two problems which
have quite a long history.

In the first case the global energy is conserved but, at least for the free setting, the
energy escapes to infinity. In perturbed settings, it is then important to know wether
some energy can be trapped, to estimate the dependance of the decay of the local energy
with respect to the initial condition, etc. We refer for instance to [MRS77], [Mel79],
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[Bur98], [BH12], [Boull] for different results in various asymptotically free settings.

For the damped wave equation we really have a loss of energy. Then the goal of
stabilisation results is to understand where the damping should be effective to make this
energy go to 0 (with the same kind of questions about the rates of decay). We refer for
instance to [RT74], [BLR92], [Leb96], [LR97].

The behavior of the energy of a wave depends on its frequency. The main difficulties
usually come from the contributions of high and low frequencies. It is now well known
that for high frequencies the behavior of the wave depends on the geometry of the do-
main. More precisely, the wave basically propagates following the classical trajectories
for the corresponding Hamiltonian problem. Then the local energy decays uniformly in
unbounded domains if and only if all these trajectories go to infinity (this is the so-called
non-trapping condition), while for the damped wave equation in compact domains, the
global energy decays uniformly if and only if all the classical trajectories meet the damp-
ing region (this is the geometric control condition, G.C.C. for short). The problems with
the contributions of low frequencies only appear in unbounded domains. The local energy
for the contribution of low frequencies decays uniformly without assumption, but it can
be slower than for high frequencies. Typically, for compactly supported perturbations of
the free setting in even dimension, the local energy for the contribution of low frequencies
decays like t~2¢_ while the contribution of high frequencies decays faster than any power
of ¢ under the non-trapping condition.

In this paper we analyse the local energy decay for a damped wave equation in an
unbounded domain. In this case the criterion for the contribution of high frequencies
combines the non-trapping and the geometric control conditions: each bounded trajec-
tories should either go through the damping region or escape to infinity.

For a compactly supported or asymptotically vanishing damping, we recover with
this assumption the same kind of results as for the undamped analog under the non-
trapping condition. See [AK02], [Khe03], [BR14], [Roy18b]. This is basically due to
the fact that the part which escapes to infinity is no longer influenced by the damping
and behaves as in the free case. In this kind of setting the trajectories at infinity never
see the damping, so we cannot expect a global energy decay.

The situation is quite different when the damping is effective at infinity. In the
asymptotically periodic case, we have at least the property that all the points in R¢ are
uniformly close to the damping region.

For the contribution of high frequencies we will use the results of [BJ16], where the
damped Klein—Gordon equation is considered in a similar setting. We recall that the
Klein—Gordon equation is analogous to the wave equation, except that the non-negative
operator P is replaced by P+ 1. In this case there is no difficulty with the low frequencies
(0 is no longer in the spectrum), but this does not make any significant difference for the
contribution of high frequencies. So for high frequencies it is equivalent to look at the
wave or at the Klein—-Gordon equation.

Thus, we can first deduce from [BJ16] that we have at least a logarithmic decay
with loss of regularity for the contribution of high frequencies. If P = —A and a is
periodic, then by [Wunl7] we obtain a polynomial decay (still with loss of regularity).
The best decay is obtained when all the classical trajectories go uniformly through the
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damping. Since our main purpose is the analysis of the contribution of low frequencies,
we assume that this is the case in this paper.
For a more precise statement, we introduce on R??¢ ~ T*R? the symbol

(G(2)§, &)pa

p:(z,8) w(z)

and the corresponding classical flow: for (z¢,&) € R?? we denote by ¢'(zo,&) the
solution of the Hamiltonian problem

26 (w0,60) = (Vep(o*(z0, &), ~Vp(6 (20, 0))),

¢°(wo0,&0) = (20,&0)-

We recall that ¢'(zo,&) = (o + 2t&, &) if P = —A and ¢! is the geodesic flow corre-
sponding to the metric g if P = —A,. For a review about semiclassical analysis, we refer
to [Zwol2].

We assume that there exist 7' > 0 and a > 0 such that

T
V(o &0) € p ({1)). / a(¢(20,60)) dt > o, (17)

where we have extended a to a function on R2¢ which only depends on the first d variables.
Under this assumption, we know from Theorem 1.2 in [BJ16] that the global (and
therefore local) energy of the contribution of high frequencies decays uniformly (without
loss of regularity) exponentially. Thus, in all the results of this paper, the restrictions in
the rates of decay are due to the contributions of low frequencies.

1.3. Enmnergy decay for the damped wave equation in the periodic setting.
After multiplication by w(x), the problem (1.1) reads

{w(z)azu + Pou+b(z)du =0 on Ry x R?, (1.8)

(u, Opu)|,_oy = (uo,u1) on R?,
where b(z) := w(z)a(z) and Pg is a Laplacian in divergence form:
Pg := —divG(z)V.

We denote by S the Schwartz space of smooth functions whose derivatives decay
faster than any polynomial at infinity. For § € R we denote by L?°(R?) the weighted
space L2(<x>26 dz) and by H*°(R?), k € N, the corresponding Sobolev space. Then we
set

L:=L*RY x L*(RY), L£°:=L>(R%) x L*°(RY),
H = H'(RY) x L*(RY), H°:= HY(R?) x L>(RY).

We begin with the purely periodic case. Thus, for (ug,u;) € H we first consider the
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problem

{wp(x)afup + Ppup + bp(z)0up =0 on Ry x RY, (L.9)

(up, Orup)|,_q = (uo, ur) on R%,
where
P, = —divGp(x)V and bp(x) := wp(x)ap(z).

In the following result we describe the local and global energy decay for the solution
of (1.9).

THEOREM 1.1 (Local and global energy decay in the periodic setting). Assume
that the damping condition (1.7) holds. Let s1,s2 € [0,d/2] and k > 1. Let s € [0,1].
Then there exists C > 0 such that for t > 0 and Uy = (ug,u1) € H*2T° we have

()] 2 —eer < C ) 22U ||
18t ()] 2oy < C {220y
[Vtp(t)]| oy o < C (1) HFI2=Cbo2 2 g0

where up(t) is the solution of (1.9).

Notice that we give decay estimates for the energy of the wave (i.e. for the time and
spatial derivatives of the solution), but also for the solution itself.

We will see that these estimates are sharp. When s; = s3 = s = 0, we obtain
estimates for the global energy (notice, however, that in the right-hand side ||Ug,, is
not the initial energy, see Remark 2.5 below). When s; is positive, we are estimating
the local energy (which decays faster than the global energy). On the other hand, the
parameter so measures the localization of the initial data. We notice that even the global
energy decays faster if the initial data is assumed to be localized. Finally we observe
that the spatial derivatives do not play the same role as the time derivative, which is
unusual for a wave equation. However, if we can take s = 1 (this is the case if we are
interested in the local energy decay for localized initial data) then we recover for the
spatial derivatives the same estimates as for the time derivative.

1.4. Comparison with the solution of a heat equation.

As mentioned above, the rates of decay in Theorem 1.1 are not usual for a wave
equation. This is due to the contribution of low frequencies, which under a strong
damping behaves like a solution of a heat equation.

This phenomenon has already been observed in earlier papers. The simplest case is
the standard wave equation with constant damping

O*u — Au + Oyu = 0. (1.10)

The energy decay for the solutions of (1.10) has been first studied in [Mat76]. More
precise results have then be given in [Nis03], [MNO03], [HO04], [Nar04]. In these
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papers it is proved that a solution of (1.10) behaves for large times like a solution of the
heat equation

—Av + 0w = 0. (1.11)

This phenomenon can be understood as follows. Since G.C.C. is satisfied when
a = 1, the behavior of the wave for large times is governed by the contribution of low
frequencies. But for very slowly oscillating solutions, we expect that the contribution of
the term 92u in (1.10) will be very small compared to d;u, and then u will look like a
solution of (1.11).

The same phenomenon has been observed in an exterior domain (see [Ike02] for a
constant absorption index and [AIK15] for an absorption index equal to 1 outside some
compact) and in a wave guide (see [Roy18a] for a constant dissipation at the boundary
and [MR18] for an asymptotically constant absorption index). For a slowly decaying
absorption index (a(x) = (z)~” with p € (0,1]) we refer to [TY09], [ITY13], [Wak14]
(we recall from [Roy18b] that if a(z) < (z)”” with p > 1 then we recover the behavior
of the undamped wave equation). For the problem in an exterior domain with possibly
slowly decaying damping, we refer to [SW16]. These questions are also of interest for the
semilinear damped wave equation (see [Wak17] and references therein). Finally, results
on an abstract setting can be found in [CHO04|, [RTY10], [Nis16], [RTY16].

The same phenomenon occurs in our periodic setting. We can be more precise than
in Theorem 1.1 and prove that our wave can indeed be written as the sum of the solution
of some heat equation on R? and a smaller term (in the sense that it decays faster when
t goes to +00). Notice that this problem has already been studied in [OZP01] (see the
discussion after Theorem 1.3).

As already said, this diffusive phenomenon is due to the contribution of low frequen-
cies. Assume (at least formally) that u is a solution of (1.8) oscillating at a frequency T
with |7| < 1. If for t > 0 and x € R? we set

t x
u‘r(tax) =u (T7 7_) )

then the function u, oscillates at frequency 1 and is solution of
T\ .o . T 1 T
Wp (;) Oyu, —divGy (;) Vu, + ;bp (;) Oiur = 0.
This suggests that the first term should not play any role when 7 — 0. Moreover, at the

limit the wave should only see the mean value of the highly oscillating damping b, (z/7).
We set

%:A%M%@@, (1.12)

where
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Similarly, for the second term, we consider the effective operator which describes the
asymptotic behavior of the operator —div Gp(2/7)V at the limit 7 — 0. This is given
by the periodic homogenization theory (see for instance [BLP 78], [A1102], [Tar09]). Let
G, be the H-limit of Gp(x/7) when 7 goes to 0. This means that if v,,v € H'(RY) and
f € H Y(R?) are such that

—divGy, (%) Vv, =f and —divGrVuv=f,
then, as 7 goes to 0,
: 1/md z o r2md
vy v in H(R%), and Gp (7) Vv, = GpVv in L*(R?).
T

In general, the matrix Gy, is not the mean value of Gp,. If for £ € R? we denote by Pe a
7Z%-periodic solution of

— div Gy (x)(€ + Vike) = 0 (1.13)

(¢ is defined up to a constant), and if we denote by W (z) the Z%-periodic matrix such
that

W(z)€ = £+ Vipe(), (1.14)

then G, is in fact the mean value of W (x)TGp(x)W (z):

(G, &) = /T (Gp(2)(§ + Vibe(2)), (€ + Ve (2))) da. (1.15)

Notice that it is natural to introduce all these quantities from the homogenization point
of view (see [CV97], [0OZ00], [OZP01], [COV02] for closely related contexts), but our
proofs will be purely spectral. We will see in Section 4 how by, G, and the functions )¢
naturally appear in this context.

Let

Ph = —div GhV.

We now compare the solution up of the dissipative wave equation (1.9) with the solution
up on Ry x RY to the heat equation

brnOiup, + Phup, =0 (116)
with initial condition
w
Uh|t:0 = T:(apuo + Ul)- (1.17)

After a linear change of variables, the estimates of [MIR18] for the standard heat
equation read as follows.

PROPOSITION 1.2.  Let s1,892 € [0,d/2] and k > 1. Let s € [0,1]. Then there exists
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C > 0 such that for all t > 1 we have

[ e o <O ()t

ZL(L2RY)

)

H <x>fnsl ate—tph/bh <x>*:‘€32 C <t>*1*(31+52)/2 ,

Z(L2(RY))

< C <t>_(1+s)/2_(81+82)/2 )

—KS1—S v —tPh/bh —KS2—S
H<x> € <$> ZL(L2(R%)) -

Here and everywhere below, we denote by .Z (K1, K2) the space of bounded operators
from Ky to Ko. We also write Z (K1) for Z (K1, Kq).

The main result of this paper is the following. We prove that the difference between
the solution up, of (1.9) and the solution up, of (1.16)—(1.17) decays faster that up, (except
for the gradient if s = 1, in which case we have the same estimate).

THEOREM 1.3 (Comparison with the heat equation). Assume that the damping
condition (1.7) holds. Let s1,s2 € [0,d/2] and k > 1. Then there exists C > 0 such that
fort >0 and Uy = (ug, u1) € H"2 we have

tup(£) = un(t)]| ooy < C (1) /27 C1T2)2 7

C
100 (up(t) = un(®)) | 2,y < C (Y222 gy
[Vup(t) = WVunR(t)|| 2 eer < C ()22 100y

H’}-L'isz 9

where up(t) and up, are the solutions of (1.9) and (1.16)—(1.17), respectively, and W (x)
is defined by (1.14). Moreover W (x) is bounded.

Here we compare the solution u, of the damped wave equation (1.9) (depending on
the metric Gp(x)) with the solution up of a heat equation with the constant (homoge-
nized) metric Gp. We can also say that, at the first order, u behaves like a solution of
the heat equation with the metric Gp(x). Indeed, it is known that the solution of the
heat equation with the periodic metric Gp(x) behaves itself at the first order like the
solution of the heat equation with Gp. See [OZ00].

We notice that the gradient of u, does not exactly behave like that of up. We have
to use the corrector matrix W (x), but it is bounded, so it does not alter the estimate of
Vuh.

With Proposition 1.2, Theorem 1.3 implies Theorem 1.1. More precisely, it confirms
the energy decay estimates, it proves that they are sharp, and it shows that, as for
the heat equation, we would not get better results by taking stronger (for instance,
compactly supported) weights. Thus, for compactly supported weights, we obtain the
following estimates. For R > 0 there exists Cr such that for ¢ > 0 and Uy supported in
the ball B(R) or radius R and centered at the origin we have

—d
()l 12 (mry) < Cr ()~ [ Uolly, (1.18)

and
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10eu() | 2Ry T IVU) L2(5(R)) < Cr £y~ [Uolly - (1.19)

The comparison between the damped wave equation and the corresponding heat
equation with a periodic metric has already been analysed in [OZP01]. Theorem 1.3
improves the result in different directions.

The main improvements concern the absorption index. First, it is not necessarily
constant. This is an important difference for the spectral analysis of the operator corre-
sponding to the wave equation, since in this case we do not necessarily have a Riesz basis.
Moreover, this absorption index is allowed to vanish, which also makes some arguments
used in [OZP01] unavailable.

On the other hand, the main result of [OZP01] provides an asymptotic developpe-
ment for localized initial data. More precisely, (ug,u;) € L*(R?) x H~1(R%) belongs to
some weighted L' space, and the more decay we have at infinity, the more precise the
developpement is. Here we give estimates which are uniform in the energy of the initial
data (however we still get better results for more localized initial data, and the dual
remark is that the rate of decay will be better for the localized energy, even if the wave
is dissipated at infinity).

However, compared to [OZPO01], we give a less precise developpement. We only
give the leading term, given by the solution up, of (1.16)—(1.17). However, it may happen
that apug + w1 = 0 (then up = 0) or that its Fourier transform vanishes near 0 (then
up, decays exponentially). In these cases, we could get better estimates for the damped
wave v in Theorem 1.1.

In fact, we could continue the developpement for the purely periodic setting, but not
for the general setting which we consider in this paper. Indeed, we allow a perturbation
of all the periodic coefficients by asymptotically vanishing terms, which would invalidate
the developpement. However, we will see that this does not alter the main term, so the
estimates of Theorem 1.1 remain valid. This is described in the following paragraph.

1.5. Perturbation of the periodic setting.
In Theorems 1.1 and 1.3 we have considered a purely periodic problem. Now we can
state the generalizations of these results for the perturbed setting.

THEOREM 1.4 (Perturbation of the periodic wave).  Assume that the damping con-
dition (1.7) holds. Let k > 1 and s1,s2,1 > 0 be such that

d
max(s1, s2) + 1 < min <2,pg,pa + 1) . (1.20)
Then there exists C > 0 such that for Uy = (up,u1) € H*2 and t > 0 we have
u(t) = up ()] 2. -eey < C (1) D22 U gy

186 (u(t) — up(t) || Loy < C (&) T2
IV (ul(t) = up(t) || ooy < C ()T 1500

where u(t) and up(t) are the solutions of (1.1) and (1.9), respectively.
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With Theorems 1.1 and 1.4 we deduce the following estimates in the general setting:

COROLLARY 1.5 (Energy estimates in the general setting).  Assume that the damp-
ing condition (1.7) holds. Let k > 1, s1,82 € [0,d/2) and s € [0,1] be such that

d
max(sy, $2) + $ < min (2,pg,pa + 1) .
Then there exists C > 0 such that for Uy = (ug,u1) € H2% and t > 0 we have

10su(t)]| 2oy < C ()T D20y
[Vt || 2ney e < O ()" FI2=F 2200

—(s1+s2)/2
()| 2oy < C ()22 U |

where u(t) is the solution of (1.1).

These estimates are the same as those of Theorem 1.1, even if there is a restriction
in the choice of s; and sy when the perturbative coefficients Gy, a¢ and wy decay slowly
at infinity. In particular, we recover exactly the same estimates as in the periodic case
for the uniform global energy decay or if the perturbation is compactly supported.

1.6. Organisation of the paper.

The paper is organized as follows. In Section 2 we introduce the wave operator in
the energy space and its resolvent. In Section 3 we discuss the contributions of high
frequencies and explain how the problem reduces to the analysis of low frequencies. The
main part of the paper is Section 4, about the purely periodic case. We prove Theorem
1.3, and Theorem 1.1 will follow with Proposition 1.2. Finally, we consider the perturbed
setting in Section 5.

2. The Resolvent of the wave equation.

We will prove all the energy decay estimates from a spectral point of view. In this
section we introduce the corresponding operators and give their basic spectral properties.
Let

Cy={z€C : Im(z) > 0}.

We recall that an operator T' with domain Dom(7") on a Hilbert space K is said to
be dissipative (respectively accretive) if

Vo € Dom(T), Im(Ty,p)c <0 (respectively, Re (T, @) >0).

Then the operator T is said to be maximal dissipative if (T'— z) is boundedly invertible
for some (and therefore any) z € C. In this case we have, for all z € C,

-1 1
-2 HE(IC) < Im(z)’

Iz
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Moreover, if T is also accretive, then (T — z) is boundedly invertible when Re(z) < 0 and
we have

1
[Re(2)|"

H(T - Z)71|}c(/<) <
We recall that P and b were defined after (1.8). If z € C is such that the operator
(Pe —izb(z) — 2*w(z)) € L(H*R?),L*(RY) (2.1)
has a bounded inverse, we set
R(z) = (Pg —izb(z) — zQw(x))_l.

PROPOSITION 2.1.  Let z € Cy. Then the operator (2.1) has a bounded inverse
and its inverse R(z) extends to a bounded operator from H~1(RY) to H*(RY). Moreover
for v > 0 there exists ¢, > 0 such that for z € C, with Im(z) > v and 3, B, € N® with
16| <1 and |B] <1 we have

|‘BI‘+|/B|"_1

B B |2
H@z'R(z)a Tm(2)

xT

crmay) =

PrOOF. Let z =741 € C with 7 >0 and p > 0. We set

T(z) := Pg —izb(x) — 2*w(z)
— (Pe+ () + (42 — 7)w()) — i(rb{a) + 2rpun(z).

Assume that p < 27. Then T(z) := T(z) + 2iTpwm, is a dissipative and bounded
perturbation of the selfadjoint operator Pg, so it is maximal dissipative. Thus T'(z) =
T(z) — 2iTpwmmin is boundedly invertible and in .#(L?(R?)) we have

1

||T(Z)71|| = “(T(Z) - 22.7-/»“.Umin)71H < m

Now assume that p > 27. Then T(z) := T'(z) — (42 /2)wmin is a dissipative and accretive
perturbation of the non-negative selfadjoint operator Pg, so T'(z) = T(2) + (142 /2)wWmin

is boundedly invertible and
2 -1
- 2
<T(Z) + l;wmin)

o M2wmin

7)) = \

In any case we have

1

1
|T(2) ||$(L2(Rd)) S w2l

If 7 < 0 we observe that T(z) = T(—%)* to obtain the same results. This gives the
existence of R(z) and the estimate for g = 5, = 0.
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Now we fix v > 0 and assume that u > v. For ¢ € S we have
1
IVR(2)| 72 ey S (PaR(2)6, R(2)6) S (¢, R(2)8) + |2] (1 +|2]) | R(2)¢lI* < 2 l)1*

This gives the estimate when |8j| = 1 and 8, = 0. The estimate for 5 = 0 and |5,| = 1
follows by duality. Finally, for the case |5)| = |5,| = 1 we write

IVR(2)Vl|* < (PaR(2)Ve, R(2)Ve) S (Vo, R(2)V) + |2 (1 + |2]) | R(2) Vo

s

S IVREVl el + 2 lo)?,

and the conclusion follows. Again, we have strongly used in this last step that |z]| is
bounded below by v > 0. O

We consider on ‘H the operator

A= (ISG ga) (2.2)
with domain
Dom(A) = H*(R?) x H'(R?). (2.3)

Let F = (ug, iwuy) € Dom(A). Then w is a solution to the problem (1.8) if and only
it U = (u,iwdu) is a solution to

{(at +iA)U(t) =0, 2.0

U(0) = F.

PROPOSITION 2.2.  For z € C4 the operator (A — z) is boundedly invertible on H,
and we have

o R(2)(ib + zw) R(z)
U== = <w + wR(2)(i2b + 22w) sz<Z>) |

Moreover for v > 0 there exists Cy, > 0 such that for all z € Cy with Im(z) > v we have

Cy
<

[ (A~ 2)71”3(%) = Im(z)

ProoF. Let z=7+iu € Cy, with 7 € Rand u > 0. For F = (f,g) € H we set

B R(2)(ib+ 2w) f + R(2)g
Ra(2)F = (wf +wR(2)(izb + 2%w) f + ZUJR(Z)Q)

_ (iR(z)PGf i+ R(z)g) |
wR(2)Paf 4+ zwR(z)g
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With the first expression we see that R 4(z) is a bounded operator from H to Dom(.A).
By an explicit computation, we check that R4(z) is an inverse for (A — z). Finally,
with the second expression of R 4(z) and the estimates of Proposition 2.1, we obtain for
Im(z) > v

1 1
IRa(2)Fll3 < i 1BV 22, ) IV Fll L2 + 2l [l + 1R 222,11 1191l 22
+ IRV 2,12 IVl 2 + R | 222,02 9]l 2
< Pl
"
The proposition is proved. O

By the Hille-Yosida Theorem (see for instance Theorem I1.3.8 in [ENO0O]), we now
deduce the following result about the propagator of A. It ensures in particular that for
F € Dom(.A) the problem (2.4) has a unique solution defined for all non-negative times.

PROPOSITION 2.3.  The operator —iA generates a C°-semigroup on H. Moreover
for v > 0 there exists C,, > 0 such that for all t > 0 we have
—it A tv
le™ Hz(%) < Gye™.
By Proposition 2.2 we know that any z € C belongs to the resolvent set of A. As

usual we are interested in the behavior of (A — 2)~! at the limit Im(z) — 0. In fact, with
a strong decay, the spectrum away from 0 is really under the real axis.

THEOREM 2.4. Any 7 € R\ {0} belongs to the resolvent set of A. Moreover there
exists C > 0 such that for all T € R\ [-1, 1] we have

[(A=7)" | g0 < C- (2.5)

For the proof of this result we refer to [BJ16] (notice that w = 1 in [BJ16], but
this does not play any crucial role in this high-frequency analysis).

The first statement about a fixed frequency holds under the general assumption that
all the points in R? are in some suitable sense uniformly close to the damping region (see
Theorem 1.3 and Section 4 in [BJ16]). It is not difficult to check that this is always the
case in our asymptotically periodic setting, even without the damping condition (1.7).

Since the resolvent (A — 7)~! is continuous on R\ {0}, it is clear that an estimate
like (2.5) holds for 7 in a compact subset. However this resolvent may blow up when
|7] goes to +00. The fact that we have a uniform estimate even at the high-frequency
limit relies on the damping condition (1.7) on classical trajectories (see Theorem 1.2 and
Section 3 in [BJ16]). As explained in the introduction, we would have a weaker estimate
with loss of regularity without this assumption.

The proof of Theorem 2.4 relies on semiclassical analysis. This is why we need
some regularity for the coefficients of the problem. Notice that [BJ16] requires uniform
continuity for a. This is indeed the case here for our continuous and asymptotically
periodic absorption index.
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REMARK 2.5. All the estimates of the main theorems are given in ‘H or its weighted
analogs. However, for the energy of a wave it would be more natural to work in the energy
space &, defined as the Hilbert completion of S x S for the norm defined by

2
||(u,v)||§a = / G(z)Vu(zx) - Vi(x)ds + / [v()] dz.
Rd Rd ’U}(.’E)
We observe that & is equal to the standard energy space H'(R%) x L?(R?) with equivalent
norm, and if u is the solution of (1.1) then its energy is exactly

2

E(t) = [|(u(t), wOyu(®))|ls -

Moreover we could check that the operator A would define on & a maximal dissipative
operator, so that (e‘“A)tZO would be a contractions semigroup on &.

Working in & instead of H{ means that we are not interested in the size of the solution
w itself but only in the size of its first derivatives. And the estimates should not depend
on ugp but only on Vug (see [Roy18b] for a discussion on this question). However for
the heat equation it is natural to take into account the size of ug. Thus, since our wave
behaves like a solution of the heat equation, it is relevant to give all the estimates in H
instead of &.

3. Reduction to a low frequency analysis.

In this section we show how we can use the resolvent estimate of Theorem 2.4 to
reduce the time decay properties of Theorems 1.1 and 1.4 to the contributions of low
frequencies. By density, it is enough to consider initial data in S x S.

Let ¢ € C*(R,][0,1]) be equal to 0 on (—oo, 1] and equal to 1 on [2,400). For
e € (0,1] and t € R we set ¢ (t) := ¢(t/e), and then

Ud(t) == ¢ (t)e A, (3.1)

Let F € S xS and p € (0,1]. For 7 € R we have
/ e MU () Fdt = —i(A— (T + i,u))les(T +ip),
R

where for z € C we have set

2e
F.(2)= | ¢Lt)e A2t (3.2)

)

The map 7 — (A — (7 + iu))_lFE (7 +14p) belongs to S so the Fourier inversion formula
yields, for all ¢t € R,

1 . _
e MU(F = — | e " (A— (T +ip)) 1F5(T +ip) dr,
2im Jr

or
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1 .
U.(t)F = — e (A~ 2) " FL(2) dz. (3.3)
2im Im(z)=p
Let C > 0 be given by Theorem 2.4 and v € (0,1/2C). Then the resolvent (A — z)~! is
well defined if |Re(z)| > 1 and Im(z) > —~, and we have

||(A - (T - iV))71||3(L2(Rd)) S 2C. (34)

We consider 6, € C>*(R,R) such that 6,(s) = p if |s] < 1, —y < 0,(s) < p if
|s| € [1,2] and 6,(s) = —v if |s| > 2. Then we set (see Figure 1)

'y ={r+1i0,(1), 7 €R}. (3.5)

Re(z) = —2 Re(z) = -1 Re(z) =1 Re(z) =2
.- included in the
resolvant set of A

~ Im(z) = p
———————————————————————————————————————————————————————————————————————————————————————————————————————————————— Im(z) = —2v

Figure 1. The curve I',.

Since the integrand in (3.3) is holomorphic and decays rapidly at infinity we can
write

1 .
U.()F = %/F e (A —2) " F.(2) dz.
Notice that, by holomorphy of the integrand, the right-hand side does not depend on
w € (0,1]. Then we separate the contributions of low and high frequencies. For this
we consider x € C§°(R, [0, 1]) supported in (—3,3) and equal to 1 on a neighborhood of
[-2,2]. For F € § x S we set

Uins(OF = 5= [ x(Re(2))e (A= =) Fo(2) ds

and

1

= 50 (1 —x)(Re(2))e (A — 2) " F.(2) dz.
r

n

Upign () F

Again, these quantities do not depend on y (this is clear for U, (t)F, for Uf (1) F it
follows from the holomorphy of the integrand in the region where |[Re(z)| < 2). We begin
with the contribution of high frequencies:
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PROPOSITION 3.1.  There exists C' > 0 such that for F € SxS, p € (0,1], € € (0,1]
and t > 0 we have

Cef'yt/2
NG

PROOF. Let F €8x S. Fore € (0,1] and ¢t € R we set

| Ukign O F ], < [E 3¢

I(t) := U (H F. (3.6)

We have

I.(t) = € /R(l —X)(T)e (A~ (T —iy))  F.(T — i) dr.

2w

By the Plancherel equality (twice) and (3.4) we have

/R ML dt < / (1= )N A = (7 — i) Falr — i), dr

) F 2 2e
< [InG-miB ars [ w2, as I [© e
R R € e
[Fallk
< R 3.7
<= (37)
Let tg,t € R with ty < t. For s € [to,t] we have
d (s o 1 ; e
75 (T ) = e M) 1 5 [ (1= e IR i)
so as above we can check that
2 2
P12,

% (ei(ts)Alg(sD‘ ds <

/t
to

Then, by the Cauchy—Schwarz inequality,

t
0l < |41+ [
H to

F
< e(to)lyy + VT To ! J'g#

By (3.7) we have

. F
inf L (to)]l,, < 1t

to€[0,1] NI

t
.01 S 1

sofort>1
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With (3.6), this concludes the proof. O

We now turn to the contribution of low frequencies. The smooth cut-off ¢. intro-
duced in (3.1) was useful to analyse the contribution of high frequencies (if U, is smooth
then F.(z) is small at infinity). For low frequencies we could also estimate U, for some
fixed e, but in order to obtain the sharp result of Theorem 1.3 we have to work with the
initial data F' and not its perturbed version F.. In the following lemma we let € go to 0.
Since —¢. somehow converges to the Dirac mass at ¢ = 0, we obtain that we can replace
F. by F in the expression of U¥(t). We set

1

Ilow(t) = % .
I3

x(Re(2))e (A — 2) "t dz. (3.8)

As above, this does not depend on p € (0, 1].

PROPOSITION 3.2.  There exists C > 0 such that for F € S x S, ¢ € (0,1] and
t > 0 we have

1Uiow (O F = Diow () Fll3, < Cel[Flly-

ProOOF. Let ¢ € (0,1]. For z € C; we have

+oo
(A—2)"'F = z/ e A= P s,
0

On the other hand

400 +oo
(A—2)"'F.(2) = / PL(s)(A = 2)te AR P s = z/ be(s)e A ds,
0 0

(A—z)"Y(F-F.(2)) = i/o ) (1- (bg(s))e_is(A_z)F ds.

Let p € (0,1]. This equality between holomorphic functions on C can be extended to
any z € I',. Moreover, since we only integrate over a compact subset of I',, we can write

Ul () F — Iow () Fl| 3, S Sup le”"* (A= 2)"(F = F.(2))]],, S eI Flly-
IRe(z)[<3

Since the left-hand side does not depend on p € (0,1], we can let u go to 0, which
concludes the proof. O

By Proposition 3.1 and Lemma 3.2 applied with ¢ = e~7*/4, we finally obtain the
following result:

PROPOSITION 3.3.  There exists C' > 0 such that for t > 0 and F € H we have

||e—it.AF _ Ilow(t)FH’H < Ce”t/4||F||H~
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The rest of the paper is devoted to the analysis of Ijoy (t)F.

4. Low frequency analysis in the periodic setting.

Let

L) = — [ x(Re(2))e " (Ap — 2) " dz. (4.1)

2ir Jr,

This coincides with oy (t) (see (3.8)) in the particular case of a purely periodic setting.
In this case the result of Proposition 3.3 gives

e~ A F — I (t)F||,, < Ce /4 ||F |, . (4.2)

In this section we analyse I,(f). With (4.2), this will prove Theorem 1.3, and hence
Theorem 1.1.

4.1. Floquet—Bloch decomposition of the periodic problem.

If G(z) = Gp(x), a(z) = ap(z) and w(x) = wp(x), then the medium in which our
wave propagates is exactly Z?periodic. However, the initial data and the solution itself
are not periodic, so we cannot see our problem as a problem on the torus. We will use the
Floquet-Bloch decomposition to write a function in L?(R?) as an integral of Z?-periodic
contributions.

We denote by Li the space of L120C and Z%-periodic functions on R?. Tt is endowed
with the natural norm defined by

a3y, = [ fute)? do.
T

Then we set L4 = Li X Li. For k € N we also define H;”E as the space of Z%periodic

and Hf . functions, endowed with the obvious norm.

The Floquet—-Bloch decomposition is standard in this kind of context. We begin
this section by recording the definitions and properties which we are going to use in this
paper. For u € S, 0 € R? and z € R? we set

uy(x) = Z u(x 4 n)e @, (4.3)

nezd
For all o € R? the function ug, belongs to Lz#.
ProrosSITION 4.1.  Let u,v € S.

(i) For x € R% we have

(ii) Fory € L2# and o € R? we have
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() = [ (i) da

z€R4
(iii) We have

2 1 a |2
e T P

or, more generally,

1 o ag
(U, V) p2(gay = @ /UG%T <u#,v#>Li do.

PRrOOF. For the first statement we only have to write

/aem e TuG(x)do = Y ulx+ n)/ e~ do = (27)%u(z).

nezd oce2nT
The second property follows from

<u;g,1/1>Li = /G'Jl‘ Z u(y+n)e*i(y+n).a@dy
y

nezd

> / July n)e WYy + n) dy
IS

nezd

= /m . u(z)e” " Y(z) da.

In particular

Uy, v do = / / e Ty () v(z 4+ n)e'@T 7 dy do
/z7€27r']l‘< # #>Li oce2nT JzeRE Z

nezd

_ / RGP IRICETD / €™ do dx

nezd oce2nT
= (27r)d/ .y u(z)v(z) de.
T€

The proof is complete. 0

If u € LY(R%) and ¢ € Li N L>=(R?) then by Proposition 4.1 we have for all o € R?

< HUHLl(Rd) H¢||L°°(Rd) :

<“;ﬁ7 ¢>Li

If 9 is not assumed to be in L> but u € L*? for some § > d/2 (then L?% C L') we have
a similar estimate. More generally, we have the following result.
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COROLLARY 4.2. Let k> 1. Let s € [0,d/2] and p = 2d/(d — 2s) € [2,+0c0]. Then
there exists C > 0 such that for u € S and ¢, € LP (27T, Li) we have

PROOF. Thecase s =0, p = 2, simply follows from the Cauchy—Schwarz inequality
and Proposition 4.1. For the case s = d/2 and p = co we use again Proposition 4.1 and
the Cauchy—Schwarz inequality to write

<uc:;i£a ¢U>L2

2 <C ||u||L2="‘S(Rd) Hz/’aHLgc(zﬂ,Li)'

LY (2nT)

()| < [ @ @) (@) 0 (@) do

1/2
—rd
< Nl oo / o) 3 (y+n) " dy
T nezd

< Nl s 19515, -

The general case follows by interpolation (we recall that for § € [0, 1] we have L?9%d/2

(L2, L?%/2) g and (L%, L>)g = LP with 1/p = (1 —6)/2).

o

REMARK 4.3. Notice that it is usual (see for instance Theorem 4.3.1 in [BLP78])
to decompose directly ug with respect to the basis of Li given by the eigenfunctions for
the (selfadjoint) periodic problem under study (the Bloch waves). This strategy is used in
[OZPO01] for the wave equation with constant damping. In this case, the eigenfunctions
of the wave operator are related to those of the Laplacian operator, which form a Hilbert
basis. The same strategy cannot be used here with a non-constant absorption index.

Let
Ap = ( 0 “”’1> (4.4)

Py —iap

(notice that all the results of Section 2 hold in particular when G = Gp, a = a, and
w = wp). For u € S and z € RY we can write

1 o, o 1 -0 po, o
Ppu(x) = (ZT)d /0-627”1‘ Ppe U#(IL') do = (27‘()‘1\/0_627[_1,6 Ppu#(x) dO', (45)

where for o € R? we have set

PS = e ™ PLet™? = —(div +ioT)Gp(x)(V +ic).

p

Now let U = (u,v) € S x S. For 0 € R? and x € R? we set Ug(x) = (u;ﬁ(x),v;ﬁ(x))
Then we write

1 .
ApU = W/ , Te””"’./élgU;‘; do, (4.6)
oclnm
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where

Ay = < 0 “’?_1> .
Py —iap
The interest of the decomposition (4.6) of the operator A, is that each A, has a

compact resolvent, hence its spectrum is given by a sequence of isolated eigenvalues of
finite algebraic multiplicities:

PROPOSITION 4.4. Let o € R4,

(i) Then A, defines an operator on H;& X Li with domain H;& X Hi# Moreover, it
has a compact resolvent.

(i) Let z € C. Then (A, — z) € L(Hy x Hy, Hj, x L3) has a bounded inverse if and
only i —izbp — 2%wp) € , as a bounded inverse, which we denote
ly if (PS — izby — 22wp) € L(H2,1%) has a bounded i hich we d
by R,(2), and in this case we have

-1 _ Ry (2)(ibp + zwp) Ro(2)
(-/40 - Z) - (wp +RU(Z)(ipr +22wp) 2R, Z)) . (47)

In particular, (A; —z)~" extends to a bounded operator from L, x H%l to Hy x L.
(iii) Any z € C4 belongs to the resolvent set of Ay .

PROOF. e The operator Py with domain HJ is selfadjoint on LZ,. As in
the proof of Proposition 2.1, we can check that for z € C, the operator (P;,’ —
izbp — 2%wp) indeed has a bounded inverse, and that when R, (z) is well defined in
Z(L%, HE) it extends to a bounded operator from H' to HJ.

o Let z € C. If R,(z) is well defined, then we can check by direct computation that
the right-hand side of (4.7) defines a bounded inverse for (A, — 2)~!. Conversely,
assume that z belongs to the resolvent set of A,. Then for g € Li we set

U= (g) = (A, —2)7! (2)

Ro(z)g=u € Hj.

and

This defines a bounded operator from Li to Hi Moreover, we compute (A, —z)U
and get

(Pg — izby — 2*wp)u = g,
which proves that R,(z) is an inverse for (Pg — izb, — z%wp).

e Finally we observe that H; X H;E is compactly embedded in Hi# X Li, so A, has
a compact resolvent, and the proof is complete. O
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For F € § x S and z € C,; we have

- 1 T - o
(Ap —2)'F = @) /Jezﬂe“ (As — 2) 7' Fg do,

where (A, — 2)~! is as given by (4.7). The equality remains valid for any z in the
resolvent sets of Ap and A, for all o € 27T.

4.2. Reduction to the contributions of small & and of the first Bloch

wave.

With the Floquet—Bloch decomposition we have somehow reduced the spectral anal-
ysis of Ap, to an eigenvalue problem for the family of operators A,, o € 2nT. Because of
the non-selfadjointness of these operators, the corresponding sequences of eigenfunctions
do not form an orthogonal basis (and, in fact, not even a Riesz basis), but we can show
that the decay of I,(t)F is only governed by the contribution of o close to 0 and of the
“first” eigenvalue of the operator 4,. This is the purpose of this paragraph.

We first observe that for o € R, A € C and U = (u,v) € H%E X H;& we have

(Pg — iXbp — A2wp)u =0,

4.8
v = Awpl. (4.8)

AU =\U <— {

ProposITION 4.5.  The following assertions hold.
(i) If A € Sp(A,) for some o € 27T, then Im(A) < 0 or A = 0.

(ii) There exist r > 0, 72 > 0 and v1 € (0,min(1,v2)) such that for o € B(r) (the
ball of radius r centered in 0) the operator A, has a unique eigenvalue A\, with
[Ao| <71 and all the other eigenvalues with real part in [—3, 3] have an imaginary
part smaller than —vy,. Moreover the eigenvalue A\, is algebraically simple.

(iii) There exists vo € (0,71) such that for o € 2aT \ B(r) and A € Sp(A,) with
[Re(A)| < 3 we have Im(A) < —vp.

Without loss of generality we can assume that the constant v > 0 used in the
definition of '), (see (3.5)) is smaller than .

PROOF. o Let 0 € 27T, A € Sp(Ay) and let U = (u,v) € Hi X H%E be a
corresponding eigenvector. By (4.8) we have

((Pg — iAbp — Nwp)u, “>Li =0. (4.9)
Taking the real and imaginary parts gives
<Pgu, u) +Im(A) (bpu, u) + (Im(X)? — Re(N)?) (wpu, u) = 0 (4.10)
and

—Re(X) (bpu, u) —2Re(N) Im(A) (wpu, u) = 0. (4.11)
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Assume that Re(\) # 0 and Im(A) > 0. By (4.11) we have bpu = 0, which implies in
particular that Pyu — )\pru = 0. Since by, is not identically zero, this also implies
that u vanishes on an open subset of R%. Thus @ : 2 + ¢ “u(x) vanishes on an
open subset of R? and is a solution of Ppii—A2w,i = 0. By unique continuation we
have @ = 0 and hence u = 0. Then v = 0 and U = 0, which gives a contradiction.
If Re(A) = 0 and Im(\) > O then all the terms in (4.10) are non-negative. Again,
we have bpu = 0 and we get a contradiction. This proves the first statement and
the fact that 0 is the only possible real eigenvalue.

Now assume that A = 0, so that A,U = 0. By (4.8) we have v = 0 and

(Gp(z)(V +io)u, (V + iU)“>Li = (Pgu, u>Li =0,

so (V+io)u = 0. Since u is periodic and non-zero, this is only possible if 0 = 0 and
u is constant. Conversely, if u is constant we indeed have U = (u,0) € H;& X H;&
and A,U = 0. This proves that 0 is an eigenvalue of A, if and only if ¢ = 0, and
that 0 is a geometrically simple eigenvalue of Ay. Since Ag is not selfadjoint, it
may have Jordan blocks, so we also have to prove that ker(A3) C ker(Ag). Let
U = (u,v) € Dom(A3) be such that A3U = 0. Since AqU € ker(Ag) there exists
a € C such that AU = («,0), which gives

—1,, _
wp U= q,
Ppu —iapv = 0.
Then, since u is periodic, we have

O:/Ppu:ia/bp.
T T

This implies that & = 0, and hence U € ker(Ap). Finally, 0 is an algebraically
simple eigenvalue of Ag.

The family of operators (Ay),cra 0n Ly is analytic of type B in the sense of Kato
(see [Kat80]) with respect to each o;, j € {1,...,d}. Since 0 is a simple and
isolated eigenvalue of Aj, there exist » > 0 and v, > 0 such that for o € B(r)
the operator A, has a unique eigenvalue A, in the disk D(0,~;) of C. Moreover,
this eigenvalue is algebraically simple. Let o € B(r). There exists 7, > 0 and a
neighborhood V,, of o such that if s € V,, and A € Sp(A,)\{As} with Re(\) € [-3, 3]
then Im()\) < —v,. Since B(r) is compact, we can find o1, ..., 04 € B(r) such that
B(r) c Ule Vo,. Then we set 72 = min {7,,,1 < j < k}. Choosing r and v
smaller if necessary we have v, > 1, which gives the second statement.

Using the same continuity and compactness argument we can check that there
exists 79 > 0 such that for ¢ € 27T \ B(r) and A € Sp(A,) with |Re(N)| < 3 we
have Im(\) < —v. This concludes the proof of the proposition. O

For o € B(r) we set in Z(Hj, x L%,)
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m, = (As — Q) dC.

2 J il

It is known (see for instance [Kat80]) that I, is the projection on the line spanned by the
eigenfunctions corresponding to the eigenvalue )\, and along the subspace spanned by all
the generalized eigenfunctions corresponding to all the other eigenvalues. In particular,

Ran(Ily) = {(«,0),a € C}.

Moreover it is a holomorphic function of o, for all j € {1,...,d} and maps H# X Li& to

H;fjl X Hi for all £ € N. It also extends to a bounded operator on £4. We denote by
®, the constant function
1
by = .

Choosing r > 0 smaller if necessary, we can assume that II,® # 0 for all o € B(r).
Then for o € B(r) we set

o HO"I)O
R

Then H@UHL# =1and A,®, = A\, P, for all ¢ € B(r). By (4.8), there exists ¢, € Hj
such that

_ Yo
d, = ()x,,wpgog> . (4.12)

Moreover ¢y = 1 and ¢, is a smooth function of o.
In the following proposition we show that in I,(¢)F the important contribution is
given by A, for o small. For ¢t > 0 and F € § x § we set

T 91 (t)F) 1 / —ith. i
I,(t)F = = e "Il FY do. 4.13
(! <92(t)F 2m)? Joen(r) # (413
PROPOSITION 4.6.  There exists C' > 0 such that fort >0 and F € § x § we have
|B0F - LwF| <cerip,.

PROOF. Let F €S xS and p € (0,1]. We have

1 1 L
L,(t)F = — / / x(Re(2))e e (A, — 2) " Fg do dz. 4.14
rlf) 2im (2m)? zer,, Joe2nT (Re(=)) ( ) # ( )

We write I,(t)F = I (t)F + I(t)F + I3(t)F, where I3(t)F is defined as the right-hand
side of (4.14) but with the integral over ¢ € 27T replaced by an integral over o €
27T \ B(r). For I1(t)F and I5(t)F the integral is taken over o € B(r). In I;(¢)F (in
I1(t)F', respectively), the function I is replaced by I1, 5, (by (1—1II,)Fg, respectively).
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Given o € 27T, the integrand in (4.14) is a meromorphic function of z with |[Re(z)| < 2
(since x(Re(z)) = 1 in this region), and the poles are the eigenvalues of A,. Thus we
can change the contour I',, in this region. By Propositions 4.5 and 4.1 we get

2

IB@FI; S| [ e [ e (A - 2) G dedo
oe2nT\B(r) Im(2)=—v

2
<]
oce2nT\B(r)

< 27t Fe 2 d
~ e /0'627TT\B(T) H #H['# 7

SeIEZ

~

H

do

/ x(Re(2))e™ (A, — )"V dz
Im(z)=—v

1 2
H#XL#

We have used the fact that the resolvent (A, —2)~! is uniformly bounded as an operator
from L4 to Hi# X Li. This is due to the continuity of this resolvent with respect to z and

o, by the compactness of the contour of integration, and the compactness of 27T \ B(r).
We similarly have

2
12(H)Fll3, <

/ / X(Re(2))e "€ (Ag — 2) ' (1 = 11,) Fj do dz
Im(z)=—v JoeB(r)

- 2
Se 11, -

H

Now let ¢ € C®(R, (=72, —]) be such that ¢(7) = —~ if |7| > 2 and ¢(7) € (—y2, —71)
if |7] < 1. We set (see Figure 2)

= {T+i(l~5(T),TER}.

Re(z) = —2 Re(z) = —1 Re(z) =1 Re(z) = 2

Location of A, for Sméll o

A
k ' LL&)caution of the spectrurh for large o

Location of the rest of the spectrum for small o

Figure 2. The location of the spectrum of A, and the curve T'.
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Then by the residue theorem we have

I (t R 7ztz wvo’ )\ 71HJF0'd d
HOF 2”7 277 /UEB(T) /zer ez (o =2) #0002

— I (t 7ztz ZIO‘)\ 71HUFJd dz.
Lo(O)F o (2m)d /UEB(T)/ x(Re(z o =) # 00

We estimate the last term as above, and the proof is complete. g

4.3. Analysis of the first Bloch wave for o small.

Our purpose is now to estimate fp(t)F . For this we describe more precisely the
properties of the eigenvalue A, and the corresponding eigenvector ®, and eigenprojection
I1, for o small. We recall that the symmetric matrix G, was defined in (1.15).

PROPOSITION 4.7.  The symmetric matriz Gy, is positive and when o goes to 0 we
have

Ao = b <Gho' O)ga + O (|o*|3). (4.15)
h
Moreover
. 2
o =po+ive+ O (lo]), (4.16)
|o|—0

where 1, € Li N L is a linear function of o which satisfies (1.13).

PrOOF. We first recall that A, and ¢, are smooth functions of o, respectively in
C and in H;‘,fE for any k € N. Moreover \g = 0 and ¢¢ = 1. For o € B(r) we have

—(div +i0T)Gp(2)(V + i0) 9o — idobpps — Ao Wppe = 0. (4.17)
Taking the inner product with ¢, gives
<Gp<x)<v + ia)@ﬂv (v + 7;0-)900> - i)‘U <bP(p0’ (p0> - )‘02 <wp<Pa, <po> =0. (418)

We take the derivatives of (4.18) with respect to o, j € {1,...,d}, at point ¢ = 0. Since
(bpo, o) > 0 we see that the first derivatives of A, vanish. Thus, by Taylor expansion,
there exists a matrix @ such that

_—i g,0 03
As = —3—(Qo,0) +O(lo]").

Since 0 — ¢, is smooth, we can define 9, € Li so that (4.16) holds. This defines a
linear function of o. Taking the linear part in (4.17) gives

—idiv Gp(z)(V, + 0) = 0.

This proves in particular that 1, is a solution of (1.13). Similarly, (4.18) gives
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(Gp(@) (VYo + 090), (Vs + 090)) — i (Qo, o) (bppo, o) = O(|o]),
and we deduce
(Qo,0) = (Gp(2) (VYo + 0), (Vs + 0)) = (Gro,0) .

Finally, since 1, is periodic its gradient cannot be the constant and non-zero function
—o. Therefore Vi), + o # 0 and hence (Gpo, o) > 0. This concludes the proof. O

COROLLARY 4.8.  There exist Ao > Ay > 0 such that for o € B(r)
Ay |o)? < Re(—ir,) < Aso]?,
and

(Gho,0)ga

Arlo]? < e

< Aglof?.

Now we describe more precisely the projection II,.

PROPOSITION 4.9.  There exists U, € Ly which depends smoothly on o € B(r)
and such that for o € B(r) and F € L4 we have

,F = (F, %), .

Moreover

W = i <bf) . (4.19)

PrOOF. Let o € B(r). Since I, is the projection on the line spanned by ®, we
have, for all F' € Ly,

,F = (II,F,®,) ®,.

Since F' — (I, F, <I>(,>£# is a continuous linear form on £4 which depends smoothly on
o, the first statement follows from the Riesz representation theorem.

The adjoint of Ay in L4 is
P,
A = ( o P) .
wp ™ iap

(AoF, W), g = TlpAF = AgIlgF = 0.

For F € Hi X H;# we have

This proves that ¥y € Dom(Af) and A{¥y = 0. We can check by direct computation
b
that this implies that there exists a € C such that ¥y = « ( ip > Since
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1= <q)0,\lf()> = a/bp,
T

we have a = b, 1, and the proof is complete. O

REMARK 4.10.  Since F' — (Il F, ®5) . is also a smooth function in E(Li X

H', Ly) we can also see W, as a smooth function of o in L2, x H,.

4.4. Comparison between the periodic wave equation and the heat equa-
tion.
In this paragraph we prove Theorem 1.3. Given F' = (ug, iwuy) € S X S, we denote
by up(t) the solution of the heat problem (1.16)—(1.17). Our purpose is to compare the
solution uy(t) of (1.9) with up (t). We set

bpuo + wpy
Vo=
br
and we denote by 9y the Fourier transform of vyg. We first recall that the decay of up(t)

is also governed by the contribution of low frequencies.

LEMMA 4.11.  Let r > 0 be given by Proposition 4.5. Then there exists 7 > 0 such
that for t > 1 we have in L?(R?)

1 ; 5
_ ix-& —t/bn (Gr&,& ~ —At
un(t) = (2m)d /geB(r) e tEn >Rdv0(€) de+ O(e k ) HUOHLQ(R‘U’

]. . iz — o~ —~
Vup(t) = W/&Bm iget ™ E et /on(GnE ) s gy (€) dé+0(e” ) lvoll p2(ray »
. _ —iwp, iz-e \GRE )R 4 /b (Gne €)oa ~ —Ft
iupdrun(t) = (271’)‘i/§€B(r)e b niEmE gy (§) dg + O (e llvoll o) -

PrOOF. We prove for instance the second estimate. The others are similar. For
t > 1 and z € R? we have

1 e _
Vup(t) = Veftph/bhﬂo = W/ ., e Se t/bh<Gh€’€>UO(£) dg.
£eR

By Corollary 4.8 we have

/ i€ttt/ (GRED G (¢ de
£ERN\B(r)

< / €] et M1 5 (6 de.
EERINB(r)

The estimate then follows from the Cauchy—Schwarz inequality and the Plancherel equal-
ity. O

Theorem 1.3 is a consequence of Propositions 3.3 and 4.6 together with the following
estimates. We recall that 6, (¢t) and 65(¢) were defined in (4.13). Moreover, we recall that
by density it is enough to prove Theorem 1.3 for Uy = F € § x S.
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PROPOSITION 4.12.  Let 51,2 € [0,d/2] and k > 1. Then there exists C' > 0 which
does not depend on F € § x § and such that for t > 1 we have

161(6)F — up(8)]| p2r—ney < C (8" H/D=1E2 0y
V0L (8)F — W¥up (8)]| oy < C ()7 T2 2R 1y

and
162 (8 F = iwpOpun () 2, ey < C (1) D7D 2Py

Proor. For j € {1,2} we set p; = 2d/(d — 2s;) € [2,4+00]. Then py € [1,400] is
defined by

1 1 1

— =+ — =1

bPo Pp1 P2

We begin with the last estimate. By Propositions 4.7 and 4.9, and (4.12), we have

1 iz-o ,—t/bn((Gro,o)+O(|o|®)) / o
O (t)F = 2n) /JGB(T) e % <F#, \I/g>£# Ao Wp o do.
Let
1 ix-o ,—t/bh(Gro,o o
vmﬂ::@mdlgmme et ERE) (B Wo) Agwpps do.

For g € § we have by Proposition 4.1

<em‘awp<»0mg>L2(Rd) = <wp‘PU7g;£>L2# )

SO

|(62()F = v1(8), 9) 2oy

1 —t/bp {(Gro,o O(lo]® o .
o7 gy O () 1) (), (o), 0

S [ e ) 1] (8,9, s )|
oc€B(r)

< / tlo|? e Mt OUD | (Fg W) || (wper, o) | do
oce€B(r)

Choosing r > 0 smaller if necessary we obtain

‘<02(t)F — ’Ul(t),g>L2(Rd) S, /GB( )t‘g|5ei(/\1t|d\2)/2| <F;;,\I/U> | | <wp<pg,g;:> }dO’

By the Holder inequality we have
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|02(00F = v1(0), 9) 2y
e

L20(B(r)) ||<wp‘p0’9;é>||L§1(B(r)) {Fg. \I/0>||L§2(B(r)) :

If pp = oo (i.e. if 81 + s3 = 0) then

<1

| (#112)7/2etenstotr2) <
L5°(B(r))

And if py < o0,

H (t ‘U|2)5/2e—(tA1\a\2)/2‘

Lg% (B(r))
1/1’0
_ (td/2/ |n|5p0 ef(po/\1|77|2)/2 d??) < t—4/2p0 — 4—(s14s2)/2
B(Vtr)

By Corollary 4.2 we finally get in both cases

< <t>*(3/2)*(81+52)/2

|(2(00F = 01(0), 9) 2 gl e 1 s

In L4 we have ¥, = ¥y + O(|o]) so, if we set

1

_ ix-0 ,—t/bp(Gro,o) o
velf) = (2m)d /aeB(r) e <F#7 \IJ0>L# Ao Wppg o,

then we similarly obtain

< [ T g )] (5. e 90) o
oceB(r)

S [ ol )] (P P ) do
oceB(r) |0|

< <t>*(3/2)*(81+82)/2

<U1 (t) — V2 (t), g>L2(Rd)

gl L2.mer I1E N e -

Similarly,

Ao WpPo = (Gro,o) wp + (9( |U|3 ),

7
bn
S0

< (1)~ (/D= (rtsa)/2

~

(v2(t) — v3(t), 9) 12 (Ra) gl L2.wer 1E N e

where we have set
1 1

_ ix-oc _—t/bph{Gro,o o
W>mw%wf€“h%mmwww

Finally, by (4.19) and Proposition 4.1 we have
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(P %0) = 3 ()3 bp) + (i) 1)
= blh/eRd e (bp(z)ug(z) + wpuy (z)) da

= 79(0).

With Lemma 4.11 we have [[vz(t) — iwpdun(t)| = O(e~7"||F||), which concludes the
proof of the third estimate. For the first estimate, we proceed similarly except that
AsWpyo is replaced by ¢,. For the second we start from

1 ) 3
Vo,(t) F = 7/ ¢i7'0 = t/bn((Groa)+0(o ")) F, 0, 10wy + Vo) do.
1(t) M Joeni (Fg >z:# ( )

By Proposition 4.7 and (1.14) we have
i0s + Vi, =io 4+ iVipe + O( \a|2) =iW(z)o + O( o|? ) (4.20)

so we can proceed as above to get the second estimate and conclude the proof. O

5. Low frequency analysis in the perturbed setting.

In this section we prove Theorem 1.4. By Proposition 3.3, it is enough to estimate
the difference between Iy (t) and I, (t) (defined by (3.8) and (4.1), respectively). Since
the perturbation breaks the periodic structure, it is no longer possible to reduce the
analysis to a family of problems on the torus. Here, we will deduce the time decay from
resolvent estimates. We recall that the contour I', was defined in (3.5).

We start from

(Now(t) — Ip(t))F = / x(1)e MO TIR (7 406, (7)) F dr,
R

where

1 -1 -1
R(z) = ﬁ((A —2)7 = (Ap—2) )
By partial integrations we obtain, for all £ € N,

1 —it(T+110, (T .
(Liow (t) = Ip(t)) " = W/Re HOED LY (X(T)R(7 + 6, (7)) F dr,

where
d 1
L,=——-—.
" dr 1+ iGL(T)

We recall that (fiow(t) — Ip(t))F does not depend on p € (0,1]. However, if we assume
that the derivatives of ,, are bounded uniformly in p, the estimates given by this equality
are of the form
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et , .
(o (®) = O)F S S sup_sup [RO (- +i8,(7))||
|71<30<5<k

In Z(L?(R%)), the resolvents blow up near 0, so we cannot simply let z go to 0 to get rid
of the exponential factor. However, it is standard in this kind of contexts that in suitable
weighted spaces some derivatives of these resolvents can be uniformly bounded. In this
section, we prove uniform estimates for the derivatives of R in weighted spaces. Then,
at the limit ;1 — 0, this will give polynomial decay for the difference (fiow (t) — Ip(t))F,
hence for the difference u(t) — up(t) as in Theorem 1.4.

For 3, € N¢ we set

%0 00 10
@Oﬁ’”:z(b 0), @(1)::<01> and @8::(0()).

We recall that the solution e =AUy of (2.4) is of the form (u(t), iwd;u(t)) where u(t) is
the solution of (1.1). Thus, for 6 € R, ; € {0,1} and 8, € N such that £; + |8.| < 1
we have

Bz —itA ~
|efe 4w, = |

o7 o= u(t)|

L2,-5(Rd)

(recall that the £~%—norm is defined in Section 1.3). For 3, € N¢ we also set

~ 00 ~ 10
@BT = (afm 0) and @0 = Id[/ = (O 1) .

This odd notation will prove to be useful in the sequel.

5.1. Resolvent estimates in the periodic case.
In order to prove estimates on the derivatives of (A — z)~! and of the difference
(A—2)"1 = (Ap — 2)71, we need more information about the resolvent of A,.

PROPOSITION 5.1.  Let 8 € {0,1} and B, B € N with Bt +18z] <1 and |5~x| <1.
Let s1,s2 € [0,d/2) and k > 1. Then there exist a neighborhood U of 0 in C and C > 0
such that for z € C4 NU and m € N we have

|05 (4p )70,

<C (1 + ‘Z|ﬂt+(|ﬁz|+\/§z\)/2+(81+82)/2—(1+m)) )
L(Lrs2 Lmre1)

ProOOF. We set & = /k. Without loss of generality we can assume that x is so
close to 1 that & max(s1, s2) < d/2. We follow the same ideas as for the propagator. For
this we can still use the Floquet-Bloch decomposition. Thus, for ¢ € R? we set

ng (0) = e_”“’@gf e,

We similarly define (:)@ (0). Let F,G € § x S. We can write
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(0 (Ap—2) 1 7"05 F.G)

1 B —1-mQ o o
- (27T)d /oe27r11‘ <®Bt (J)(AU - Z) GB” (U)F#’ G#>£# do
1 1 B 5 ¢ o
= W B W <®5t (U)HU@BI (U)F#, G#>£# do + <B(Z)F, G>£7

where B € Z(L) is holomorphic in a neighborhood of 0 in C and

<@g; (0)1,0; (0)F, G;>E = <F;, CH (a)*\pg>ﬁ <e§; (0)s, G;>£ .
# # #
By Proposition 4.7 and the fact that Im(z) > 0 we have
1 < i .
|A0'_Z| Al |CT| +|Z|

By Remark 4.10 and the expression of ¥y in Proposition 4.9 we have

) =0(Jo™").

And we recall from (4.12), Corollary 4.8 and (4.20) that

) _ O( |O_|2,3t+|,31| )

[65.007%],

|5 (@),

For j € {1,2} we set p; = (2d)/(d — 2ks;). Then we consider py € [1, 4+00] such that
1 1 1
—+—+—=1
Po Pp1 P2

By the Hoélder inequality and Corollary 4.2 (applied with & instead of k) we get
(6 (=) 785 F.G) |

<F;,é51 (0)*\Ilg> <@g; (a)q>g,G;>
“5x| 2B:+1Bx

|0_|26t+|5.7:‘+‘5:c|

(Ar [o]” + |21+

~

Lko |0 P2 |0" jxal

|J|2Bt+|ﬁz‘+‘ﬁz|

(Ar[o]” + |21+

~

1E | L2mea (may 1G] L2mor -
L (B(r))

We have

|U|2f3n+lﬁz|+|5’m\

5 <1+ |Z‘(2’8‘+|BI|+|Bm‘)/2_(1+m) 7
oeB(r) (A1 |o|”™ + |z])1tm

so the proposition is proved if s; = so = 0 and py = co. Now assume that s; + so > 0.
Using polar coordinates in o we can write
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|U|25t+|/3m\+|31| Po

5 61 de.
(A o] + [2))tHm

< T 0(26t+‘51‘+|51|)p0
/o (A162 + [2]) (1 +mpo

L0 (B(r))

If (28 +|8:| + 8] —2(1 + m))po +d—1 > —1 then this quantity is bounded uniformly
in z € C, close to 0. Otherwise, the change of variables # = \/[2]0 gives

3 Po
|J|2/8t+|181'|+‘ﬂ:):|

(Arfof* +|z])1+m

Lg®(B(r))

< ||(BH 1B 1B oo+ ) /2= (4 m)g /T/m (Al
- 0 (A102 + 1)(1+M)po

In any case we can write the rough estimate

‘O_|2Bt+‘ﬁml+|/§m‘

< —(14+m)+(2B¢+1 B |+|Bz 1) /2+(d/2po) —¢
—— S1+]
(Arfo]” +[z])t+m

3

LEO(B(r))
where

kF—1
e Bz Dlits)
2
(in fact we can take e = 0 if (28, + |B.] + 1B2] — 21 + m))po +d —1 < —1). Since
d/po = K(s1 + s2), the conclusion follows. O

5.2. Resolvent estimates in the perturbed setting.

In this paragraph we use the estimate of the derivatives of (A, — 2)~! for z € Cy
close to 0 to obtain (better) estimates for the difference (A — 2)~! — (A, — z)~!. This
will prove that we have the same estimates for (A — 2)~! as for (A, — 2) 7%

PROPOSITION 5.2.  Let 3; € {0,1} and B, € N¢ with By + |B.] < 1. Let 51,85 €
[0,d/2) and x > 1. Let n > 0. Assume that

d
kmax(sy,s2) + k1 < min (Q,pg,pa—Fl) . (5.1)
Then there exists C' > 0 such that for z € C, with |z] <1 we have

eg(a=am == )|,

< € (14 [ AHB Dot D=1m))

We split the proof of this proposition into several intermediate results. We begin
with a remark which will be used several times in the proofs. It is based on the fact that
in the expression of the resolvent in Proposition 2.2 the lower row is, up to a term w,
equal to zw times the upper row.
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REMARK 5.3.  Let v1,v9 € L. Then for z € C; we have

(r)er-or= (g (i) oo

This also holds with A replaced by Ap. In particular for 6, € R and U € § x § we have

H (0 ”1> (A=) — (Ap—2)" U

01/2

L1
SNU g, + 12 || (A= 271 = (Ap = 2) U || ;s -

Now if we take the derivatives of (5.2) with respect to z we get for m > 1

01/2

I(62) (a-a7m = =9y

L0

S ||((A —2)"" = (Ap — Z)_m)UH£761
+ |2 ||((-A —2) 7 = (Ap — Z)ilim)UHz:—él :

We can apply this remark in particular to the operator ©Y which select the compo-
nent swdyu(t) in the solution of (2.4):

LEMMA 5.4.  Assume that the result of Proposition 5.2 holds when 8, = 0. Then it
also holds when B; = 1.

PROOF.  Assume that m > 1. By Remark (5.3) we have in .Z(L"%2, L~F51)

1O ((A =277 = (Ap —2) 7 )| S 05 ((A = 2) 7 = (Ap = 2) )|
+2l[[O5((A—2) 77" = (Ap —2) 77|

)

and the conclusion for 8; = 1 follows from the case §; = 0. We conclude similarly if
m = 0. O

After Lemma 5.4 it is enough to consider the case 8; = 0. For this we will use
perturbation arguments. We set

Py = —divGy(z)V.
Then we write
A - .Ap = P() + Do,

where

00 Ow™t— wpfl
Po = (Po O) and Dy = (0 iag ) .

Notice that w™! — w, ™! has the same decay property as wp in (1.4).
We begin with the contribution of Py. For this we set
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Av = .Ap + P().
Notice that all the general results proved for A in Section 2 also apply for A

LEMMA 5.5.  In the setting of Proposition 5.2, if 3, € N% is such that |B,| < 1 then
there exists C > 0 such that for z € Cy with |z| <1 we have

<C (1 + |Z|(‘5m‘+|ﬁz|+61+62)/2 1)

|6 (A 216,

L(Lrs2 ,Lmr51)
Proor. For z € C, we set

-1

Rp(2) = (Pp — izbp(z) — Zz“’p(w))
and

Ro(z) = (P — izbp(x) — z2wp(x))_1.
We observe from Proposition 2.2 that
O R ()0 ()T

H@gm(ﬂ— 2716, (5.3)

5l ceen ey = )

Z(L2(RY))

We have a similar estimate with A and Ry(z) replaced by Ap and Rp(z), respectively.
Let 01,09 € [0,d/2). Let B1, o € N® with |81] <1 and |32| < 1. For ¢ € S we have

)W%@@Q Wﬂ

L2(R4)
< (G@)VR(2)9 ()" 6, VRo(2)05* (a) "7 )
< (PoRo(2)9%2 (2) 7" 6, Ro(2)082 ()" )

A

ot )
+’< (i2bp + 22uwp) Ro ()02 (2)™"7% &, Ro(2)0% ()" 6)|

hence

| VR0 ()

Z(L?(R4))
1/2

< —KO2 a2 B2 —KO2
@ o Rz @y, L

~

1/2 H B2 — Koo
| Ro(02 ()
(5.4)

On the other hand, the resolvent identity gives

(@) "7 O Ro(2)072 ()"
= (2)""7 O Rp(2)07 (2) " — (@) """ O Ry (2) PoRo(2)072 () "7 .
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Let 51,02 € [0,d/2) be such that k61 + kdg < pe. We have

()77 02" Rp(2) PoRo (20032 ()"

< [[@7 08 Ry (o) ()7

H ()" V Ry (2)0% (z) "7

By (5.3) and Proposition 5.1 we obtain

H<x>7ml P Ry (2)07%2 (x) ™"

< (1 + M(Iﬁl|+\Bz|+al+gz)/2_1>

(1 [P0/ ) 707§ Ry ()982 () (5.5)

We first choose 65 € (0,1) and 61 = 0. We apply this estimate with 8; = 82 and o1 = 09
on the one hand, with 81 = 0 and o7 = 0 on the other hand. This gives

(@)™ 052 Ro(2)052 (@)

< (1 + \z||ﬂ2‘+”2_1) + (1 + |z|(|’82|+02_1)/2) HVRO(Z)an <x>—rwz

and

| o002 ()"

< (1 + |Z‘(|ﬁ2|+02)/271> + (1 + ‘Z|(&271)/2) HVRO(Z)an <x>fn02

Then (5.4) gives

| VR0 (@)

5 (1+ ‘Z|(|'82|+U2_1)/2)

(14 )P |9 R ()0 ()~ v
+ 1217/ ||V Ro(=)082 (@)™
For z small enough this gives
HVRO(Z)652 (2)7 || s (14 122, (5.6)
Now we turn to the proof of
H<x>*f“~81 5590}30(2)351 (z)7F2|| < (1 + |Z‘(Iﬁw\+lﬁx|+51+82)/2*1> . (5.7)

With (5.3), this will conclude the proof of the lemma. Notice that it is enough to
prove (5.7) when s1 < 2 — |8;|. Indeed, the right-hand side does not really depend on
s1 > 2 —|Bs], so if (5.7) is proved for s; = 2 — |B;| it remains true for greater values of
s1. Similarly, it is enough to consider the case |BI\ + 59 < 2.

First assume that |8;] + s1 < 1. Then (5.7) follows from (5.5) applied with 51 = 0
and 65 = max(0, | B,| + s2 —1). Then for |8,| +s1 € [1,2] we can apply (5.5) with 65 = 0



1412 R. JoLy and J. ROYER

and 1 = |B.| + s1 — 1 € [0,1]. The proof is complete. O

LEMMA 5.6. If B; = 0 then the result of Proposition 5.2 holds with A replaced by

A.

PrROOF. We begin with the case m = 0. The resolvent identity between A and Ap
reads

(A=) = Uy =) = (A= 2) "R 2) !

~ (5.8)
=—(A—2)""Po(Ap — 2) L.
We can write
_ 5 (Gon(®) 0 gex
Po=— Z @ej< ) e
1<j,k<d
where (e, ..., eq) is the canonical basis in R%. For o1, 09 € [0,d/2) such that ko +koe <

pc we obtain by Lemma 5.5

N

< (1 + |Z|(|Bz\+31+02*1)/2) (1 + ‘Z|(0’1+32*1)/2>.

If |Bz] +s1 > 1 and s > 1 we can apply this inequality with o7 = o9 = 0 to conclude.
If |B;] + 81 > 1 we can take oo = 0 and 01 = |B;| + 51 — 1+ n. If s5 > 1 we can take
o1 =0and oy = s; —1+n. Finally, if |5, +s1 < 1 (then |8;| = 0) and s3 < 1 we choose
o1 € [0,1 — s3] and o3 € [0,1 — s1] in such a way that

01+ 02 =min(2 — s1 — s2,7).

This gives the case m = 0.
Then we proceed by induction on m. With (5.8) we can check that

e (1 —(A- z)*lpo) (Ap — 2) " H(A - 2)™™,

and
(A=2)"=(Ap—2)" Zm:(Ap —2) "Py(A -2l
k=1
This gives
(A—z)~tm
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and hence

(A—z)7m = (Ap—2) 1
= —(A—2)"'Py(Ap — 2)" 1

— (1 —(A- z)_l’Po) i(Ap — ) R P (A = 2kl (5.9)

k=1

The interest of this decomposition is that we only have factors for which we can use the
inductive assumption. We choose k € {1,...,m} and estimate

Toni(2) = (A= 2) " Po(Ap — 2) 1 FPy (A — 2)F -1,

We have

H 0 k(%) P(Lrs2 Lmron)

5 (1_|_ |Z|(‘Bz|+31+02—1)/2> (1 + |Z|(01+52)/2—k)(1+ |Z|(&1+32—1)/2—m+k,)

where 01, 09,51,02 € [0,d/2) are such that ko1 + kog < pg and k&1 + kG2 < pe. Then
we play the same game as above, except that we have four parameters to choose.

Assume that |8, + s1 > 2k + 1. Then we can take oo = 0, 01 = 2k, 65 = 0 and
1 = |Bz| + s1 — 1 — 2k + n. Similarly, if s3 > 2(m + 1) — 1 we take 51 = 0, 55 = 2k,
or=0and o2 =3 —2(m+1)+1+n.

Now assume that |3] +s1 < 2k +1 and so < 2(m+ 1) — 1. If |By] + 51 < 1 (then
|8z = 0) then we take o3 = min(1 —s1,n) and o1 = n—oa. If |B4| +s1 > 1 then we take
oo =0and o1 = |By|+s1—14+n. If s5 <1 we take 51 = min(1 — s2,n) and 69 = 1 — 1.
Finally, if so > 1 then we take 61 = 0 and 3 = s5 — 1 + 1. We can check that in any
case we have

|66 L), . S 14 [o|(Belortoatn/2=(m)
f(,{:"°27£*"51)

The other terms in (5.9) are estimated similarly. O

REMARK 5.7. With Lemma 5.5 and Lemma 5.4 applied with ag = wg = 0 we
obtain

H(ﬁ—z)—l—mH < C(1+ |z|(sl+82)/2‘(1+’”)). (5.10)
L(Lrs2 ,L7r51)

It remains to add the contribution of Dy. We begin with an estimate of the powers

of (A—2z)~%

LEMMA 5.8. In the setting of Proposition 5.2 there exists C > 0 such that for
z € Cy with |z| <1 we have

[ PPNTel (RN L) §
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PRrROOF. The resolvent identity between A and A reads

(A—2)'=(A=-2)" = (A—2)"'"Dy(A—2)"". (5.11)

We can apply Remark 5.3 to the operator Dy. Moreover its coefficients decay according
o (1.4). Thus, if 0 € [0,d/2) and & > 1 are such that Ko < p,, we have by (5.10)

(@) (A=) )

< ||t 7 (A= )7 (a7

+ |z] H<;(;>_Nsl (Z— z)—l <m>—7w ‘ (A—2)" ()

S (L o227 (2 o) [ = ) )

(5.12)

If s; = 0 we apply this inequality with some o > 0. This gives the required estimate for
z small enough (which is enough since we know that the resolvent is uniformly bounded
outside some neighborhood of 0). Then we rewrite (5.12) with o = 0 to deduce the case
s1 > 0. The lemma is proved when m = 0.

Then we proceed by induction on m. With (5.11) we can check that

(A—2) 17 —(A—z) tm = — i(i- 2)TIRDG (A — ) TR, (5.13)

For m € Nand k € {0,...,m} we set

Ton(2) i= (A = 2) "1 FDy(A — 2)~ 1k, (5.14)

If K = m we obtain by Remark 5.3

()™ T2 (@) 72| S ()~ (A= )72 )

o+ Jel | () 7 (A= )7 @)

@) (A=) )

where 01,09 € [0,d/2) are such that
ko1 4 kog < pq.- (5.15)

If s5 < 2 we choose 09 = 0 and 07 = max(0,s1 —2—2m). If s > 2 we choose 017 = 0 and
09 = $3 — 2. In both cases (5.1) implies (5.15) and we obtain by (5.10) and the inductive
assumption

@7 Fo) )] 1 s/ trem. (5.16)

For k € {0,...,m — 1} we use Remark 5.3 to write
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H<$>7ml ka <m>fi<o52

< [[@) e (A= 27k gy || ) 7 (A= 2y ) e

[l | () 7ot (A= 2) 7 () . (517)

e e

where, again, 01,09 € [0,d/2) satisfy (5.15). If k € {1,...,m — 1} we obtain (5.16) with
(5.10) and the inductive assumption as above (if so < 2m — 2k we choose g2 = 0 and
o1 = max(0, s; — 2 — 2k), if s5 > 2m — 2k we choose o1 = 0 and 09 = s5 — 2m + 2k). For
k=0 we get

(@)™ o) ()~

5 (1 + |Z|(sl+52)/27(1+m)) + (|Z| + |Z|(51+02)/2) H<x>71161 (.A* Z)flfm <x>71{52

Finally,

@) (A= 71 )

5 (1 + |Z|(sl+52)/27(1+m)> + (|Z| + |Z|(51+a2)/2) H<‘r>fmrl (.A— z)—l—m <x>fn52

If s; = 0 we conclude as for the case m = 0 with o1 = 0 and oo > 0. Then
if s9 > 2 4+ 2m we conclude with o7 = 0 and 09 = s3 — 2 — 2m. Now assume that
82 < 24 2m. We choose g9 = 0. If s; < 2 we conclude with oy = 0. Then we proceed
by induction on the integer part of s1/2. If s1 € (24,2(j + 1)] for some j > 1, then we
choose 01 = s1 — 2 € (2(j — 1), 2j] to conclude. O

Finally the following lemma will conclude the proof of Proposition 5.2.
LEMMA 5.9.  The result of Proposition 5.2 holds if B; = 0.

PROOF. We start again from (5.13) and use the notation (5.14). We consider the
case k € {0,...,m — 1}. By an estimate analogous to (5.17) we obtain

(@)~ O Ton (=) ()"
< (1 + |Z|(\5m\+81+02)/2—(1+’f)> (1 + |Z|(01+32)/2—(m—k)>

+ 2| (1 + |Z|(\5w\+51+02)/2*(1+k)> (1 + |Z|(0’1+52)/2*(1+m*k)) 7

where &1,09,01,02 € [0,d/2) are such that k&1 + ko2 < p, and Koy + Koy < pq.
Choosing suitably these coefficients in the same spirit as above we get the estimates for
the contributions of Tm’k(z) for k € {0,...,m — 1}. The case k = m is similar, and the
proof is complete. O

5.3. Energy decay.
In this final paragraph we use the resolvent estimates of Proposition 5.2 to prove
Theorem 1.4. We recall from [MIR18] the following lemma. See also [Dew16].



1416 R. JoLy and J. ROYER

LEMMA 5.10.  Let KC be a Hilbert space and let I be an open bounded interval of R.
Let v >0, vy > v and C > 0. Let ¢ € C(I,K) and ¢p € C(1,C). Assume that for
m e N withm <vyg+1 and 7 € I we have

]
1

@ <o and Wz

Then there exists ¢ > 0 which only depends on I, v, vy and C such that for allt > 0 we
have

Now we can finish the proof of Theorem 1.4.

/e*itw(T)go(T) dr

I

< el exp (reuptinw) )

K I

PROOF OF THEOREM 1.4. It is enough to prove the result for x close to 1, so
without loss of generality we can assume that (5.1) holds. By density it is enough to
prove the result for F € S xS. Let u € (0,1]. By Proposition 3.3 it is enough to estimate
the difference between Iioy (t) and I (t). We recall that liow (t), Ip(t) and I', were defined
in (3.8), (4.1) and (3.5), respectively. We have

O (Low (t) — Ip(t) F
1 ) .
=5 X(T)e_”(T“G“(T))@gf ((A —(r+ ieM(T)))_l —(Ap — (74 ieM(T)))_l)FdT.
R

We can assume that the derivatives of 6, are uniform in p € (0,1]. Then, by Lemma
5.10 and the estimates of Proposition 5.2 (with 7 replaced by 7 > 1 which still satisfies
(5.1)) there exists ¢ > 0 which does not depend on F € § x S, € (0,1] or ¢t > 0 such
that

x —Bt— 21/2)—(s1+s2)/2— 2
|06 (o (8) = I () F|| | < ceti gy PPt 20Dy
Then we let u go to 0, and the conclusion follows. O
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