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Abstract. We show vanishing theorems of L2-cohomology groups of
Kodaira–Nakano type on complete Hessian manifolds by introducing a new
operator ∂′

F . We obtain further vanishing theorems of L2-cohomology groups

L2Hp,q

∂̄
(Ω) on a regular convex cone Ω with the Cheng–Yau metric for p > q.

Introduction.

A flat manifold (M,D) is a manifold M with a flat affine connection D, where an

affine connection is said to be flat if the torsion and the curvature vanish identically. A

flat affine connection D gives an affine local coordinate system {x1, . . . , xn} satisfying

D∂/∂xi

∂

∂xj
= 0.

A Riemannian metric g on a flat manifold (M,D) is said to be a Hessian metric if g

can be locally expressed in the Hessian form with respect to an affine coordinate system

{x1, . . . , xn} and a potential function φ, that is,

gij =
∂2φ

∂xi∂xj
.

The triplet (M,D, g) is called a Hessian manifold. The Hessian structure (D, g) induces

a holomorphic coordinate system {z1, . . . , zn} and a Kähler metric gT on TM such that

zi = xi +
√
−1yi,

gTij̄(z) = gij(x),

where {x1, . . . , xn, y1, . . . , yn} is a local coordinate system on TM induced by the affine

coordinate system {x1, . . . , xn} and fiber coordinates {y1, . . . , yn}. In this sense, Hessian

geometry is a real analogue of Kähler geometry.

A (p, q)-form on a flat manifold (M,D) is a smooth section of ∧p,q := ∧pT ∗M ⊗
∧qT ∗M . On the space of (p, q)-forms, a flat connection D induces the Dolbeault-like

operator ∂̄ =
∑

i e(dx
i)D∂/∂xi , where dxi = 1 ⊗ dxi and e(dxi) = dxi∧. For a flat

line bundle (F,DF ) over M , the operator ∂̄ can be extended on the space of F -valued
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(p, q)-forms and satisfies ∂̄2 = 0. Then the cohomology group Hp,q

∂̄
(M,F ) is defined with

respect to ∂̄. On compact Hessian manifolds, Shima proved an analogue of the Kodaira–

Nakano vanishing theorem for Hp,q

∂̄
(M,F ) by using the theory of harmonic integrals

when there exist a fiber metric h on F and a Riemannian metric g on M such that the

second Koszul forms B = −Dd log h(s, s) and β = (1/2)Dd log det[gij ] satisfy B+β > 0,

where s is a local frame field on F such that DF s = 0.

Theorem 2.2.7 ([2]). Let (M,D) be an oriented n-dimensional compact flat man-

ifold and (F,DF ) be a flat line bundle over M . Assume there exist a fiber metric h on

F and a Riemannian metric g on M such that B+ β is positive definite, where B and β

are the second Koszul forms with respect to h and g, respectively. Then we have

Hp,q

∂̄
(M,F ) = 0, for p+ q > n.

However, many important examples of Hessian manifolds such as regular convex

domains (cf. [3, Theorem 1.2.4]) are noncompact. In Section 3.2, we prove the following

theorem which corresponds to Theorem 2.2.7 in the case of complete Hessian manifolds.

Main Theorem 2. Let (M,D, g) be an oriented n-dimensional complete Hessian

manifold and (F,DF ) a flat line bundle over M . We denote by h a fiber metric on F .

Assume that there exists ε > 0 such that B+β = εg where B and β are the second Koszul

forms with respect to fiber metric h and Hessian metric g respectively. Then for p+q > n

and all v ∈ L2(M,F ⊗ ∧p,q) such that ∂̄v = 0, there exists u ∈ L2(M,F ⊗ ∧p,q−1) such

that

∂̄u = v, ∥u∥ ≤ {ε(p+ q − n)}−1/2∥v∥.

In particular, we have

L2Hp,q

∂̄
(M,F ) = 0, for p+ q > n.

The L2-cohomology group L2Hp,q

∂̄
(M,F ) is often also written as Hp,q

(2) (M,F ).

Note that we cannot use the harmonic theory for the proof and we need the method

of functional analysis as in the case of complete Kähler manifolds. To prove Main The-

orem 2, we introduce a operator ∂′
F (cf. Definition 2.3.1) which is not defined in [2] and

we obtain the following as an analogue of Kodaira–Nakano identity.

Theorem 2.3.8. Let (D, g) be a Hessian structure. Then we have

□̄F = □′
F + [e(β +B),Λ],

where □̄F and □′
F are the Laplacians with respect to ∂̄ and ∂′

F , respectively, and Λ is the

adjoint operator with respect to e(g).

An open convex cone Ω in Rn is said to be regular if Ω contains no complete straight

lines. We can apply Main Theorem 2 to regular convex cones with the Cheng–Yau metric

(cf. [3, Theorem 1.2.4]). Further, we have stronger vanishing theorems as follows in
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Section 3.3.

Main Theorem 3. Let (Ω, D, g = Ddφ) be a regular convex cone in Rn with the

Cheng–Yau metric. Then for p > q ≥ 1 and all v ∈ L2(Ω,∧p,q) such that ∂̄v = 0, there

exists u ∈ L2(Ω,∧p,q−1) such that

∂̄u = v, ∥u∥ ≤ (p− q)−1/2∥v∥.

In the case of p > q = 0, if v ∈ L2(Ω,∧p,0) satisfies ∂̄v = 0, then v = 0. In particular,

we have

L2Hp,q

∂̄
(Ω) = 0, for p > q.

In the case of a regular convex cone (Rn, D, g = −Dd log(x1 . . . xn)), we have sharp

vanishing theorem in Section 3.4.

Main Theorem 4. For p ≥ 1, q ≥ 1 and v ∈ L2(Rn
+,∧p,q) such that ∂̄v = 0, there

exists u ∈ L2(Rn
+,∧p,q−1) such that

∂̄u = v, ∥u∥ ≤ p−1/2∥v∥.

In the case of p > q = 0, if v ∈ L2(Rn
+,∧p,0) satisfies ∂̄v = 0, then v = 0. In particular,

we have

L2Hp,q

∂̄
(Rn

+) = 0, for p ≥ 1 and q ≥ 0.

1. Hessian manifolds.

In this chapter we give a brief review of Hessian manifolds.

1.1. Hessian manifolds.

An affine connection D on a manifold M is said to be flat if the torsion tensor

TD and the curvature tensor RD vanish identically. A manifold M endowed with a flat

connection D is called a flat manifold, which is denoted by (M,D). On a flat manifold

(M,D), there exists a local coordinate system {x1, . . . , xn} such that D∂/∂xi(∂/∂xj) = 0,

which is called an affine coordinate system with respect to D. The changes between such

a local coordinate system are affine transformations.

In this paper, every local coordinate system on flat manifolds is given as an affine

coordinate system.

Definition 1.1.1. A Riemannian metric g on a flat manifold (M,D) is said to be

a Hessian metric if g is locally expressed by

g = Ddφ,

that is,

gij =
∂2φ

∂xi∂xj
.
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Then the pair (D, g) is called a Hessian structure on M , and φ is said to be a potential

of (D, g). A manifold M with a Hessian structure (D, g) is called a Hessian manifold,

which is denoted by (M,D, g).

Let (M,D) be a flat manifold and TM the tangent bundle over M . We denote by

{x1, . . . , xn, y1, . . . , yn} a local coordinate system on TM induced by an affine coordi-

nate system {x1, . . . , xn} on M and fiber coordinates {y1, . . . , yn}. Then a holomorphic

coordinate system{z1, . . . , zn} on TM is given by

zi = xi +
√
−1yi.

For a Riemannian metric g on M we define a Hermitian metric gT on TM by

gT =
∑
i,j

gijdz
i ⊗ dz̄j .

It should be remarked that gT is a Kähler metric if and only if g is a Hessian metric.

Example 1.1.2. (1) Let (D, g) be the pair consisting of the standard affine con-

nection D and the Euclidean metric on Rn. Then (D, g) is a Hessian structure. Indeed,

if we set φ(x) = (1/2)
∑

j(x
j)2, we have

∂2φ

∂xi∂xj
= δij = gij ,

where δij is the Kronecker delta, that is,

δij =

{
1 (i = j)

0 (i ̸= j).

Moreover, the Kähler metric gT on TRn ≃ Cn is also the Euclidean metric.

(2) We set R+ = (0,∞). Let D be the standard affine connection, that is, the restriction

of the standard affine connection on Rn to Rn
+. We define a Riemannian metric g on

Rn
+ by

gij(x) =
δij

(xj)2
.

Then (D, g) is a Hessian structure. Indeed, if we set φ(x) = − log(x1 . . . xn), we have

∂2φ

∂xi∂xj
= gij .

When n = 1, the Kähler metric gT on TR+ ≃ R+ ⊕
√
−1R is the Poincaré metric.

Definition 1.1.3. Let M be a manifold and D a torsion-free affine connection on

M . We denote by g a Riemannian metric on M , and by ∇ the Levi-Civita connection

of g. We define the difference tensor γ of ∇ and D by
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γ = ∇−D.

We denote by X (M) the space of vector fields onM . Since∇ andD are torsion-free,

it follows that for X,Y ∈ X (M)

γXY = γY X.

It should be remarked that the components γi
jk of γ with respect to affine coordinate

systems coincide with the Christoffel symbols of ∇.

Definition 1.1.4. Let M be a manifold and D a torsion-free affine connection on

M . We denote by g a Riemannian metric on M . We define another affine connection D∗

on M as follows:

Xg(Y, Z) = g(DXY, Z) + g(Y,D∗
XZ), X, Y, Z ∈ X (M).

We call D∗ the dual connection of D with respect to g.

Proposition 1.1.5 ([1]). Let (M,D) be a flat manifold and g a Riemannian man-

ifold on M . Then the following conditions are equivalent.

(1) (D, g) is a Hessian structure.

(2) (DXg)(Y, Z) = (DY g)(X,Z), X, Y, Z ∈ X (M) (⇔ ∂gjk/∂x
i = ∂gik/∂x

j).

(3) g(γXY, Z) = g(Y, γXZ), X, Y, Z ∈ X (M) (⇔ γijk = γjik).

(4) (DXg)(Y, Z) = 2g(γXY,Z), X, Y, Z ∈ X (M) (⇔ ∂gij/∂x
k = 2γijk).

(5) D +D∗ = 2∇.

1.2. Koszul forms on flat manifolds.

We introduce Koszul forms which play important roles in Hessian geometry.

Definition 1.2.1. Let (M,D) be a flat manifold and g a Riemannian metric on

M . We define a d-closed 1-form α and a symmetric bilinear form β by

α =
1

2
d log det[gij ], β = Dα.

Remark that since the changes between affine coordinate systems are affine transforma-

tions, α and β are globally well-defined. We call α and β the first Koszul form and the

second Koszul form for (D, g), respectively.

Proposition 1.2.2 ([1]). Let (M,D, g) be a Hessian manifold. Then we have the

following equations.

αi := α

(
∂

∂xi

)
=

∑
r

γr
ri, βij := β

(
∂

∂xi
,

∂

∂xj

)
=

∑
r

∂γr
ri

∂xj
.

Definition 1.2.3. Let (M,D, g) be a Hessian manifold. If there exists λ ∈ R such

that β = λg, we call g a Hesse–Einstein metric.
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It should be remarked that a Hessian metric g on M is a Hesse–Einstein metric if

and only if the Kähler metric gT on TM is a Kähler–Einstein metric ([1]).

A convex domain in Rn which contains no full straight lines is called a regular convex

domain. By the following theorem, on a regular convex domain there exists a complete

Hesse–Einstein metric g which satisfies g = β. It is called the Cheng–Yau metric.

Theorem 1.2.4 ([3]). On a regular convex domain Ω ⊂ Rn, there exists a unique

convex function φ such thatdet

[
∂2φ

∂xi∂xj

]
= e2φ

φ(x) → ∞ (x → ∂Ω).

In addition, the Hessian metric g = Ddφ is complete, where D is the standard affine

connection on Ω.

Proposition 1.2.5. The Cheng–Yau metric g defined by Theorem 1.2.4 is invari-

ant under affine automorphisms of Ω, where an affine automorphism of Ω is restriction

of an affine transformation A : Rn → Rn to Ω which satisfies AΩ = Ω.

Proof. An affine transformation A is denoted by

Ax = ((Ax)1, . . . , (Ax)n), (Ax)i =
∑
j

aijx
j + bi.

We define a function φ̃ on Ω by

φ̃(x) = φ(Ax) + log | det[aij ]|.

Then we have

φ̃(x) → ∞ (x → ∞).

Moreover we obtain

∂2φ̃

∂xi∂xj
(x) =

∑
k,l

aki a
l
j

∂2φ

∂xk∂xl
(Ax).

Hence φ̃ is a convex function. Furthermore, it follows that

det

[
∂2φ̃

∂xi∂xj
(x)

]
= | det[aij ]|2 det

[
∂2φ

∂xi∂xj
(Ax)

]
= e2(φ(Ax)+log | det[ai

j ]|) = e2φ̃(x).

Therefore φ̃ is also a convex function which satisfies the condition of Theorem 1.2.4.

From the uniqueness of the solution we have φ̃ = φ, that is,

φ(x) = φ(Ax) + log | det[aij ]|.

Hence we have
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gij(x) =
∑
k,l

aki a
l
jgkl(Ax).

This implies that g is invariant under affine automorphisms. □

Example 1.2.6. Let (Rn
+, D, g = Ddφ) be the same as in Example 1.1.2 (2). Then

φ(x) = − log(x1 . . . xn) satisfies the condition of Theorem 1.2.4.

2. (p, q)-forms on flat manifolds.

Hereafter, we assume that (M,D) is an oriented flat manifold and g is a Riemannian

metric on M . In addition, let F be a real line bundle over M endowed with a flat

connection DF and a fiber metric h. Moreover, we denote by s a local frame field on F

such that DF s = 0.

2.1. (p, q)-forms and fundamental operators.

We denote by Ap,q(M) the space of smooth sections of ∧p,q := ∧pT ∗M⊗∧qT ∗M . An

element in Ap,q(M) is called a (p, q)-form. For a p-form ω and a q-form η, ω⊗η ∈ Ap,q(M)

is denoted by ω ⊗ η̄.

Using an affine coordinate system, a (p, q)-form ω is expressed by

ω =
∑
Ip,Jq

ωIpJqdx
Ip ⊗ dxJq ,

where

Ip = (i1, . . . , ip), 1 ≤ i1 < · · · < ip ≤ n, Jq = (j1, . . . , jq), 1 ≤ j1 < · · · < jq ≤ n,

dxIp = dxi1 ∧ · · · ∧ dxip , dxJq = dxj1 ∧ · · · ∧ dxjq .

Example 2.1.1. A Riemannian metric g and the second Koszul form β (Defini-

tion 1.2.1) are regarded as (1, 1)-forms;

g =
∑
i,j

gij dx
i ⊗ dxj , β =

∑
i,j

βij dx
i ⊗ dxj .

Definition 2.1.2. We define the exterior product of ω ∈ Ap,q(M) and η ∈
Ar,s(M) by

ω ∧ η =
∑

Ip,Jq,Kr,Ls

ωIpJqηKrLsdx
Ip ∧ dxKr ⊗ dxJq ∧ dxLs ,

where ω =
∑

Ip,Jq
ωIpJqdx

Ip ⊗ dxJq and η =
∑

Kr,Ls
ηKrLsdx

Kr ⊗ dxLs .

Definition 2.1.3. For ω ∈ Ar,s(M) we define an exterior product operator e(ω) :

Ap,q(M) → Ap+r,q+s(M) by

e(ω)η = ω ∧ η.
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Definition 2.1.4. We denote by X (M) the set of smooth vector fields on M . For

X ∈ X (M) we define interior product operators by

i(X) : Ap,q(M) → Ap−1,q(M), i(X)ω = ω(X, . . . ; . . . ),

ī(X) : Ap,q(M) → Ap,q−1(M), ī(X)ω = ω( . . . ;X, . . . ).

Lemma 2.1.5 ([2]). The following equations hold for ω ∈ Ap,q(M), η ∈ Ap−1,q(M),

ρ ∈ Ap,q−1(M) and X ∈ X (M).

⟨i(X)ω, η⟩ = ⟨ω, e(̄i(X)g)η⟩,
⟨̄i(X)ω, ρ⟩ = ⟨ω, e(i(X)g)ρ⟩,

where ⟨ , ⟩ is a fiber metric on ∧pT ∗M ⊗ ∧qT ∗M induced by g.

Definition 2.1.6. Let {E1, . . . , En} be an orthonormal frame field on TM and

{θ1, . . . , θn} the dual frame field of {E1, . . . , En}. We define L : Ap,q(M) → Ap+1,q+1(M)

and Λ : Ap,q(M) → Ap−1,q−1(M) by

L := e(g) =
∑
j

e(θj)e(θ̄j), Λ :=
∑
j

i(Ej )̄i(Ej).

We obtain the following from Lemma 2.1.5.

Corollary 2.1.7 ([2]). We have

⟨Λω, η⟩ = ⟨ω,Lη⟩, for ω ∈ Ap,q(M) and η ∈ Ap−1,q−1(M).

We have the following by a direct calculation.

Proposition 2.1.8 ([2]). We have

[L,Λ] = p+ q − n, on Ap,q(M).

2.2. Differential operators for (p, q)-forms.

We define two operators ∂ and ∂̄ by using the flat connection D.

Definition 2.2.1. We define ∂ : Ap,q(M) → Ap+1,q(M) and ∂̄ : Ap,q(M) →
Ap,q+1(M) by

∂ =
∑
i

e(dxi)D∂/∂xi , ∂̄ =
∑
i

e(dxi)D∂/∂xi .

Since D is flat, we immediately obtain the following lemma.

Lemma 2.2.2. We have

∂2 = 0, ∂̄2 = 0, ∂∂̄ = ∂̄∂.

We denote by Ap,q(M,F ) the space of F -valued (p, q)-forms. Since the transition
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functions of {s} are constant, ∂ and ∂̄ are extended on Ap,q(M,F ) by

∂(s⊗ ω) = s⊗ ∂ω,

∂̄(s⊗ ω) = s⊗ ∂̄ω.

Definition 2.2.3. We denote by Ap,q
0 (M,F ) the space of elements of Ap,q(M,F )

with compact supports. We define the inner product ( , ) on Ap,q
0 (M,F ) by

(ω, η) =

∫
M

⟨ω, η⟩ vg,

where vg =
√
det[gij ] dx

1 ∧ · · · ∧ dxn, and ⟨ , ⟩ is the metric on F ⊗ ∧pT ∗M ⊗ ∧qT ∗M

induced by g and h. We set ∥ω∥ =
√
(ω, ω).

Definition 2.2.4. We define A ∈ A1,0(M) and B ∈ A1,1(M) by

A = −∂ log h(s, s), B = ∂̄A.

We call A and B the first Koszul form and the second Koszul form with respect to the

fiber metric h, respectively.

Remark 2.2.5. Since the transition functions of {s} are constant, A and B are

globally well-defined.

Example 2.2.6. Let α and β be the first Koszul form and the second Koszul form

with respect to the Riemannian metric g, respectively. Then the the first Koszul form

AK and the second Koszul form BK with respect to the fiber metric g on the canonical

bundle K = ∧nT ∗M are given by

AK = 2α, BK = 2β.

The following theorem is an analogue of the Kodaira–Nakano vanishing theorem.

Theorem 2.2.7 ([2]). Let (M,D) be an oriented n-dimensional compact flat man-

ifold and (F,DF ) be a flat line bundle over M . We set

Hp,q

∂̄
(M,F ) =

Ker[∂̄ : Ap,q(M,F ) → Ap,q+1(M,F )]

Im[∂̄ : Ap,q−1(M,F ) → Ap,q(M,F )]
.

Assume there exist a fiber metric h on F and a Riemannian metric g on M such that

B + β is positive definite, where B and β are the second Koszul forms with respect to h

and g, respectively. Then we have

Hp,q

∂̄
(M,F ) = 0, for p+ q > n.

Definition 2.2.8. We define the star operator ⋆ : Ap,q(M) → An−p,n−q(M) by

ω ∧⋆η = ⟨ω, η⟩vg ⊗ v̄g, ω, η ∈ Ap,q(M),
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where ⟨ , ⟩ is a fiber metric on ∧pT ∗M ⊗∧qT ∗M induced by g. The star operator ⋆ is

extended on Ap,q(M,F ) by

⋆(s⊗ ω) = s⊗⋆ω.

Definition 2.2.9. We define δF : Ap,q(M,F ) → Ap−1,q(M,F ) and δ̄F :

Ap,q(M,F ) → Ap,q−1(M,F ) by

δF = (−1)p⋆−1∂⋆+ i(XA+α), δ̄F = (−1)q⋆−1∂̄⋆+ ī(XA+α),

where ī(XA+α)g = A + α. The operators will be denoted by δ and δ̄ if (F,DF , h) is

trivial.

Proposition 2.2.10 ([2]). The operators δF and δ̄F are the adjoint operators of

∂ and ∂̄ with respect to the inner product ( , ) respectively, that is, for ω ∈ Ap,q(M,F ),

η ∈ Ap−1,q
0 (M,F ) and ρ ∈ Ap,q−1

0 (M,F ) we have

(δFω, η) = (ω, ∂η), (δ̄Fω, ρ) = (ω, ∂̄ρ).

Definition 2.2.11. We define the connection D and D on ∧pT ∗M ⊗ ∧qT ∗M as

follows: For ω ∈ Ap(M) and η ∈ Aq(M), X ∈ X (M)

DX(ω ⊗ η̄) = 2γXω ⊗ η̄ +DX(ω ⊗ η̄),

DX(ω ⊗ η̄) = 2ω ⊗ γXη +DX(ω ⊗ η̄),

where γ = ∇−D and ∇ is the Levi-Civita connection of g (cf. Definition 1.1.3).

The following lemma follows from Proposition 1.1.5.

Lemma 2.2.12 ([2]). The following conditions are equivalent.

(1) (D, g) is a Hessian structure.

(2) ∂g = 0 (⇔ ∂̄g = 0).

(3) Dg = 0 (⇔ Dg = 0).

Let D∗ be the dual connection of D with respect to g (cf. Definition 1.1.4). We

obtain the following from Proposition 1.1.5.

Lemma 2.2.13. Let (D, g) be a Hessian structure. Then we have

DX(ω ⊗ η̄) = D∗
Xω ⊗ η̄ + ω ⊗DXη,

DX(ω ⊗ η̄) = DXω ⊗ η̄ + ω ⊗D∗
Xη,

for ω ∈ Ap(M) and η ∈ Aq(M), X ∈ X (M).

When (D, g) is a Hessian structure, the operators ∂, ∂̄, δF and δ̄F are expressed

with D and D̄ .
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Proposition 2.2.14 ([2]). Let (D, g) be a Hessian structure. Then we have

∂ =
∑
j

e(θj)DEj , ∂̄ =
∑
j

e(θ̄j)DEj ,

δF = −
∑
j

i(Ej)DEj + i(XA+α), δ̄F = −
∑
j

ī(Ej)DEj + ī(XA+α),

where ī(XA+α)g = A+ α.

2.3. The new differential operator ∂′
F .

We introduce the operator ∂′
F which is not defined in [2].

Definition 2.3.1. We define the differential operator ∂′
F : Ap,q(M,F ) →

Ap+1,q(M,F ) by

∂′
F = ∂ − e(A+ α).

The operator will be denoted by ∂′ if (F,DF , h) is trivial.

Theorem 2.3.2. We have

(∂′
F )

2 = 0, ∂′
F ∂̄ − ∂̄∂′

F = e(B + β).

Proof. We obtain

(∂′
F )

2 = (∂ − e(A+ α))(∂ − e(A+ α))

= ∂2 − e(∂(A+ α)) + e(A+ α)∂ − e(A+ α)∂ + e(A+ α)e(A+ α)

= 0,

and

∂′
F ∂̄ = (∂ − e(A+ α))∂̄ = ∂∂̄ − e(A+ α)∂̄,

∂̄∂′
F = ∂̄(∂ − e(A+ α)) = ∂̄∂ − e(B + β)− e(A+ α)∂̄.

Hence

∂′
F ∂̄ − ∂̄∂′

F = e(B + β). □

Definition 2.3.3. We define δ′F : Ap,q(M,F ) → Ap−1,q(M,F ) by

δ′F = δF − i(XA+α),

where ī(X)g = A+ α. The operator will be denoted by δ′ if (F,DF , h) is trivial.

We obtain the following Corollaries from Lemma 2.1.5, Propositions 2.2.10

and 2.2.14.

Corollary 2.3.4. The operator δ′F is the adjoint operator of ∂′
F with respect to
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the inner product ( , ), that is, for ω ∈ Ap,q(M,F ), η ∈ Ap−1,q
0 (M,F ) we have

(δ′Fω, η) = (ω, ∂′
F η).

Corollary 2.3.5. Let (D, g) be a Hessian structure. Then we have

δ′F = −
∑
j

i(Ej)DEj .

The following theorem is an analogue of the Kähler identities.

Theorem 2.3.6. Let (D, g) be a Hessian structure. Then we have

Λ∂′
F + ∂′

FΛ = −δ̄F , Λ∂̄ + ∂̄Λ = −δ′F ,

Lδ′F + δ′FL = −∂̄, Lδ̄F + δ̄FL = −∂′
F .

Proof. It follows from Corollary 2.3.5, Proposition 2.2.12 and 2.2.14 that

δ′FL = −
∑
j

i(Ej)DEjL = −
∑
j

i(Ej)LDEj

= −
∑
j,k

i(Ej)e(θ
k)e(θ̄k)DEj

= −
∑
j,k

e(θ̄k)(δkj − e(θk)i(Ej))DEj

= −
∑
j

e(θ̄j)DEj +
∑
k

e(θ̄k)e(θk)
∑
j

i(Ej)DEj

= −∂̄ − Lδ′F .

Similarly, we have

−
∑
j

ī(Ej)DEj
L = −∂ + L

∑
j

ī(Ej)DEj
.

Moreover,

ī(XA+α)L = ī(XA+α)
∑
k

e(θk)e(θ̄k)

=
∑
k

e(θk){(A+ α)(Ek)− e(θ̄k )̄i(XA+α)}

= e(A+ α)− Lī(XA+α).

Hence it follows from Proposition 2.2.14 that

δ̄FL =

(
−
∑
j

ī(Ej)DEj + ī(XA+α)

)
L
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= −(∂ − e(A+ α))− L

(
−
∑
j

ī(Ej)DEj + ī(XA+α)

)
= −∂′

F − Lδ̄F .

We have the other equalities by taking the adjoint operators. □

Definition 2.3.7. We define the Laplacians □′
F and □̄ with respect to ∂′

F and

∂̄ by

□′
F = ∂′

F δ
′
F + δ′F∂

′
F , □̄F = ∂̄δ̄F + δ̄F ∂̄.

The Laplacians will be denoted by □′ and □̄ if (F,DF , h) is trivial.

The following theorem is an analogue of the Kodaira–Nakano identity.

Theorem 2.3.8. Let (D, g) be a Hessian structure. Then we have

□̄F = □′
F + [e(β +B),Λ].

Proof. It follows from Theorems 2.3.2 and 2.3.6 that

□̄F = ∂̄δ̄F + δ̄F ∂̄ = −∂̄(Λ∂′
F + ∂′

FΛ)− (Λ∂′
F + ∂′

FΛ)∂̄

= (Λ∂̄ + δ′F )∂
′
F − ∂̄∂′

FΛ− Λ∂′
F ∂̄ + ∂′

F (∂̄Λ + δ′F )

= δ′F∂
′
F + ∂′

F δ
′
F + (∂′

F ∂̄ − ∂̄∂′
F )Λ− Λ(∂′

F ∂̄ − ∂̄∂′
F )

= □′
F + [e(B + β),Λ]. □

3. Vanishing theorems of L2-cohomology groups.

We introduce L2-cohomology groups on flat manifolds and some vanishing theorems.

3.1. L2-cohomology groups on flat manifolds.

We denote by L2(M,F ⊗ ∧p,q) the completion of Ap,q
0 (M,F ) with respect to the

L2-inner product ( , ) induced by g and h. The space L2(M,F ⊗∧p,q) is identified with

the space of square-integrable sections of F ⊗ ∧p,q.

Definition 3.1.1. For ω ∈ L2(M,F ⊗ ∧p,q) we define ∂̄ω and δ̄Fω as follows:

(∂̄ω, η) = (ω, δ̄F η), for η ∈ Ap,q+1
0 (M,F ),

(δ̄Fω, ρ) = (ω, ∂̄ρ), for ρ ∈ Ap,q−1
0 (M,F ).

In general, we cannot say ∂̄ω ∈ L2(M,F ⊗ ∧p,q+1) and δ̄Fω ∈ L2(M,F ⊗ ∧p,q−1). We

set

W (M,F ⊗ ∧p,q)

= {ω ∈ L2(M,F ⊗ ∧p,q) | ∂̄ω ∈ L2(M,F ⊗ ∧p,q+1), δ̄Fω ∈ L2(M,F ⊗ ∧p,q−1)},
D(M,F ⊗ ∧p,q) = {ω ∈ L2(M,F ⊗ ∧p,q) | ∂̄ω ∈ L2(M,F ⊗ ∧p,q+1)}.
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In addition, we define the norm ∥ ∥W on W (M,F ⊗ ∧p,q) by

∥ω∥W = ∥ω∥+ ∥∂̄ω∥+ ∥δ̄Fω∥, ω ∈ W (M,F ⊗ ∧p,q).

The space W (M,F ⊗ ∧p,q) is complete with respect to ∥ ∥W .

Proposition 3.1.2 ([4]). If g is complete, the space Ap,q
0 (M,F ) is dense in

W (M,F ⊗ ∧p,q) with respect to the L2-norm ∥ ∥W .

Definition 3.1.3. We define the L2-cohomology group of (p, q)-type by

L2Hp,q

∂̄
(M,F ) =

Ker[∂̄ : D(M,F ⊗ ∧p,q) → D(M,F ⊗ ∧p,q+1)]

Im[∂̄ : D(M,F ⊗ ∧p,q−1) → D(M,F ⊗ ∧p,q)]
,

where Im[∂̄ : D(M,F ⊗ ∧p,q−1) → D(M,F ⊗ ∧p,q)] is the closure of Im[∂̄ : D(M,F ⊗
∧p,q−1) → D(M,F ⊗ ∧p,q)] with respect to the L2-norm ∥ ∥.

3.2. Vanishing theorems of Kodaira–Nakano type.

In this section we show vanishing theorems of Kodaira–Nakano type.

Lemma 3.2.1. Assume g is a Hessian metric and B + β is positive definite. For

the eigenvalues λ1 ≤ · · · ≤ λn of the matrix [
∑

k g
ik(B + β)kj ], we set bq =

∑q
j=1 λj.

Then we have

∥∂̄ω∥2 + ∥δ̄Fω∥2 ≥ ∥b1/2q ω∥2, for ω ∈ An,q
0 (M,F ).

Proof. By Theorem 2.3.8 we obtain

∥∂̄ω∥2 + ∥δ̄Fω∥2 = (□̄Fω, ω)

= (□′
Fω, ω) + ([e(B + β),Λ]ω, ω)

≥ ([e(B + β),Λ]ω, ω)

= (e(B + β)Λω, ω).

Hence it is sufficient to show (e(B + β)Λω, ω) ≥ ∥b1/2q ω∥2.
We take the orthonormal frame field {E1, . . . , En} on TM , where the matrix

[(B + β)(Ei, Ej)] is diagonal. We set µj = (B + β)(Ej , Ej). Using the dual frame

field {θ1, . . . , θn} of {E1, . . . , En}, ω ∈ An,q
0 (M,F ) is denoted by

ω =
∑
Jq

ωJq ⊗ θ̄Jq , ωJq ∈ An
0 (M,F ).

Then

e(B + β)Λω =
∑
j

µje(θ
j)e(θ̄j)

∑
k

i(Ek )̄i(Ek)
∑
Jq

ωJq ⊗ θ̄Jq

=
∑
j,Jq

µjωJq ⊗ e(θ̄j )̄i(Ej)θ̄
Jq
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=
∑
Jq

∑
j∈Jq

µjωJq ⊗ θ̄Jq .

Therefore

(e(B + β)Λω, ω) =

∫
M

∑
Jq

∑
j∈Jq

µj⟨ωJq
, ωJq

⟩vg

≥
∫
M

∑
Jq

bq⟨ωJq , ωJq ⟩vg = ∥b1/2q ω∥2. □

Main Theorem 1. Let (M,D, g) be an oriented n-dimensional complete Hessian

manifold and (F,DF ) a flat line bundle over M . We denote by h a fiber metric on F .

Assume B + β is positive definite, where B and β are the second Koszul forms with

respect to fiber metric h and Hessian metric g respectively. For q ≥ 1 let bq be the

same as in Lemma 3.2.1. Then for all v ∈ L2(M,F ⊗ ∧n,q) such that ∂̄v = 0 and

b
−1/2
q v ∈ L2(M,F ⊗ ∧n,q), there exists u ∈ L2(M,F ⊗ ∧n,q−1) such that

∂̄u = v, ∥u∥ ≤ ∥b−1/2
q v∥.

In particular, if there exists ε > 0 such that B+ β− εg is positive semi-definite, we have

L2Hn,q

∂̄
(M,F ) = 0, for q ≥ 1.

Proof. The theorem can be shown by applying the method as in complex analysis

in several variables (cf. [5, Lemma 4.1.1]) to the case of Hessian manifolds.

We set Ker ∂̄ = {ω ∈ L2(M,F ⊗ ∧n,q) | ∂̄ω = 0}. Since Ker ∂̄ is a closed subspace

in L2(M,F ⊗ ∧n,q), we have

L2(M,F ⊗ ∧n,q) = Ker ∂̄ ⊕ (Ker ∂̄)⊥,

where (Ker ∂̄)⊥ is the orthogonal complement of Ker ∂̄. A (n, q)-form ω ∈ L2(M,F⊗∧p,q)

is expressed by

ω = ω1 + ω2, ω1 ∈ Ker ∂̄, ω2 ∈ (Ker ∂̄)⊥.

For η ∈ An,q−1
0 (M,F ), we have

(δ̄Fω, η) = (ω, ∂̄η) = 0,

and so

δ̄Fω2 = 0.

Since v ∈ Ker ∂̄ by assumption, we obtain

|(v, ω)|2 = |(v, ω1)|2 = |(b−1/2
q v, b1/2q ω1)|2 ≤ ∥b−1/2

q v∥2∥b1/2q ω1∥2.

Assume ω ∈ W (M,F ⊗ ∧n,q). Then
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∂̄ω1 = 0, δ̄Fω1 = δ̄Fω ∈ L2(M,F ⊗ ∧n,q−1),

and so ω1 ∈ W (M,F ⊗ ∧n,q). Hence by Proposition 3.1.2, ω1 satisfies the inequality in

Lemma 3.2.1:

∥b1/2q ω1∥2 ≤ ∥∂̄ω1∥2 + ∥δ̄Fω1∥2 = ∥δ̄Fω1∥2 = ∥δ̄Fω∥2 < ∞.

Therefore for ω ∈ W (M,F ⊗ ∧n,q) we have

|(v, ω)|2 ≤ ∥b−1/2
q v∥2∥δ̄Fω∥2 < ∞.

By this inequality a linear functional λ : δ̄FW (M,F ⊗ ∧n,q) ∋ δ̄Fω 7→ (v, ω) ∈ R is

well-defined and the operator norm C is

C ≤ ∥b−1/2
q v∥ < ∞.

We set Ker δ̄F = {ω ∈ L2(M,F ⊗∧n,q) | δ̄Fω = 0}. Ker δ̄F is also a closed subspace

in L2(M,F ⊗ ∧n,q) and

L2(M,F ⊗ ∧n,q) = Ker δ̄F ⊕ (Ker δ̄F )
⊥,

where (Ker δ̄F )
⊥ is the orthogonal complement of Ker δ̄F . In the same way we have

(Ker δ̄F )
⊥ ⊂ Ker ∂̄ and for ω̂ ∈ (Ker δ̄F )

⊥ ∩W (M,F ⊗ ∧n,q),

∥b1/2q ω̂∥2 ≤ ∥∂̄ω̂∥2 + ∥δ̄F ω̂∥2 = ∥δ̄F ω̂∥2.

Let {ηk} ⊂ δ̄FW (M,F ⊗ ∧n,q) be a Cauchy sequence with respect to the norm ∥ ∥ on

L2(M,F ⊗ ∧n,q−1). Each ηk is denoted by

ηk = δ̄F ω̂k, ω̂k ∈ (Ker δ̄F )
⊥ ∩W (M,F ⊗ ∧n,q),

and by the said inequality {ω̂k} is also a Cauchy sequence with respect to the norm ∥ ∥
on L2(M,F ⊗ ∧n,q). This implies {ω̂k} is a Cauchy sequence with respect to the norm

∥ ∥W on W (M,F ⊗ ∧n,q). Hence by completeness of W (M,F ⊗ ∧n,q) with respect to

∥ ∥W , we have

ω̂k → ω̂ ∈ W (M,F ⊗ ∧n,q) (k → ∞),

and

ηk → δ̄F ω̂ (k → ∞).

Therefore, δ̄FW (M,F ⊗∧n,q) is a closed space of L2(M,F ⊗∧p,q−1) with respect to the

norm ∥ ∥.
From the above, by applying Riesz representation theorem to the linear functional

λ : δ̄FW (M,F ⊗ ∧n,q) → R, there exists u ∈ δ̄FW (M,F ⊗ ∧n,q) such that
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λ(η) = (u, η), η ∈ δ̄FW (M,F ⊗ ∧n,q)

∥u∥ = C ≤ ∥b−1/2
q v∥.

By the first equation, for all ω ∈ An,q
0 (M,F ) we have

(v, ω) = λ(δ̄Fω) = (u, δ̄Fω),

and so

∂̄u = v.

This implies the first assertion.

Suppose there exists ε > 0 such that B + β − εg is positive semi-definite. Then by

the definition of bq, bq ≥ εq. Hence for all v ∈ L2(M,F ⊗ ∧n,q) we obtain∫
M

⟨b−1/2
q v, b−1/2

q v⟩vg ≤ (εq)−1

∫
M

⟨v, v⟩vg < ∞,

that is,

b−1/2
q v ∈ L2(M,F ⊗ ∧n,q).

This implies the second assertion. □

The following theorem corresponds to Theorem 2.2.7 in the case of complete Hessian

manifolds.

Main Theorem 2. Let (M,D, g) be an oriented n-dimensional complete Hessian

manifold and (F,DF ) a flat line bundle over M . We denote by h a fiber metric on F .

Assume that there exists ε > 0 such that B+β = εg where B and β are the second Koszul

forms with respect to fiber metric h and Hessian metric g respectively. Then for p+q > n

and all v ∈ L2(M,F ⊗ ∧p,q) such that ∂̄v = 0, there exists u ∈ L2(M,F ⊗ ∧p,q−1) such

that

∂̄u = v, ∥u∥ ≤ {ε(p+ q − n)}−1/2∥v∥.

In particular, we have

L2Hp,q

∂̄
(M,F ) = 0, for p+ q > n.

Proof. By Proposition 2.1.8, on Ap,q(M,F ) we have

[e(B + β),Λ] = ε[L,Λ] = ε(p+ q − n).

Hence by Theorem 2.3.8, for all ω ∈ Ap,q
0 (M,F ) we obtain

∥∂̄ω∥2 + ∥δ̄Fω∥2 ≥ ε(p+ q − n)∥ω∥2.

Then the assertions are proved similarly to Main Theorem 1. □
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Corollary 3.2.2. Let (Rn, g) be the Euclidean space, D be the canonical affine

connection on Rn, and (F = Rn × R, DF ) be the trivial flat line bundle on Rn. In

addition, we define a fiber metric h on F by

h(s, s) = e−φ,

where φ(x) = (1/2)
∑

i(x
i)2 and s : Rn ∋ x 7→ (x, 1) ∈ F . Then for q ≥ 1 and

v ∈ L2(Rn, F ⊗ ∧p,q) such that ∂̄v = 0, there exists u ∈ L2(Rn, F ⊗ ∧p,q−1) such that

∂̄u = v, ∥u∥ ≤ q−1/2∥v∥.

In particular, we have

L2Hp,q

∂̄
(Rn, F ) = 0, for p ≥ 0 and q ≥ 1.

Proof. The Hessian metric g = Ddφ is complete and the second Koszul forms

with respect to h and g are

B = −∂∂̄ log h(s, s) = ∂∂̄φ = g, β =
1

2
∂∂̄ det[δij ] = 0.

Hence by Main Theorem 2, for p = n we obtain the assertion.

Next, we consider the case of p = 0. For v ∈ L2(Rn, F ⊗ ∧0,q) we set

v̂ = dx1 ∧ · · · ∧ dxn ⊗ v.

Then we have v̂ ∈ L2(Rn, F ⊗ ∧n,q) and ∥v̂∥ = ∥v∥. Since ∂̄v = 0 and ∂̄v̂ = 0 are

equivalent, by Main Theorem 2 there exists û ∈ L2(Rn, F ⊗ ∧n,q−1) such that ∂̄û = v̂

and ∥û∥ ≤ q−1/2∥v̂∥. Here û can be expressed as

û = dx1 ∧ · · · ∧ dxn ⊗ u, u ∈ L0,q−1(Rn, g, F, h),

and so

dx1 ∧ · · · ∧ dxn ⊗ ∂̄u = ∂̄û = v̂ = dx1 ∧ · · · ∧ dxn ⊗ v.

Therefore, we have ∂̄u = v. Moreover, we obtain

∥u∥ = ∥û∥ ≤ q−1/2∥v̂∥ = q−1/2∥v∥.

Hence the assertion for p = 0 follows.

Finally, for p ≥ 1, v ∈ L2(Rn, F ⊗ ∧p,q) can be expressed as

v =
∑
Ip

dxIp ⊗ vIp , Ip = (i1, . . . , ip), 1 ≤ i1 < · · · < ip ≤ n, vIp ∈ L2(Rn, F ⊗∧0,q),

and we have

∥v∥2 =
∑
Ip

∥vIp∥2.
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If ∂̄v = 0, for all Ip we obtain ∂̄vIp = 0. Hence by the case of p = 0, there exists

{uIp} ⊂ L2(Rn, F ⊗ ∧0,q−1) such that ∂̄uIp = vIp and ∥uIp∥ ≤ q−1/2∥vIp∥. Here we set

u =
∑
Ip

dxIp ⊗ uIp .

Then we have

∂̄u =
∑
Ip

dxIp ⊗ ∂̄uIp =
∑
Ip

dxIp ⊗ vIp = v,

∥u∥2 =
∑
Ip

∥uIp∥2 ≤
∑
Ip

q−1∥vIp∥2 = q−1∥v∥2.

This completes the proof. □

Corollary 3.2.3. Let Ω ∈ Rn be a regular convex domain, D be the canonical

affine connection on Ω, g be the Cheng–Yau metric defined by Theorem 1.2.4. Then for

p+ q > n and v ∈ L2(Ω,∧p,q) such that ∂̄v = 0, there exists u ∈ L2(Ω,∧p,q−1) such that

∂̄u = v, ∥u∥ ≤ (p+ q − n)−1/2∥v∥.

In particular, we have

L2Hp,q

∂̄
(Ω) = 0, for p+ q > n.

Proof. Since g is complete and β = g, the assertion follows from Main Theorem 2.

□

Let Ω ∈ Rn−1 be a regular convex domain and we set V = {(ty, t) ∈ Rn | y ∈ Ω, t >

0}. Let D̃ be the canonical affine connection on V and g̃ be the Cheng–Yau metric on

(V, D̃) defined by Theorem 1.2.4. In addition, we define an action ρ : Z → GL(V ) by

ρ(k)x = ekx, k ∈ Z, x ∈ V.

Then we have Z\V ≃ Ω×S1. Moreover, by Proposition 1.2.5 this action preserves (D̃, g̃)

and so a Hessian structure (D, g) on Ω × S1 is defined by projecting (D̃, g̃) on Ω × S1.

The Hessian metric g is complete and the second Koszul form with respect to g is equal

to g. Hence the following corollary follows from Main Theorem 2.

Corollary 3.2.4. Let (Ω × S1, D, g) be as above. Then for p + q > n and v ∈
L2(Ω× S1,∧p,q) such that ∂̄v = 0, there exists u ∈ L2(Ω× S1,∧p,q−1) such that

∂̄u = v, ∥u∥ ≤ (p+ q − n)−1/2∥v∥.

In particular, we have

L2Hp,q

∂̄
(Ω× S1) = 0, for p+ q > n.
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3.3. L2-cohomology groups on regular convex cones.

A regular convex domain Ω in Rn is said to be a regular convex cone if, for any

x in Ω and any positive real number λ, λx belongs to Ω. In this section we show

vanishing theorems for regular convex cones with the Cheng–Yau metrics which differ

from Corollary 3.2.3.

Proposition 3.3.1. Let (Ω, D, g = Ddφ) be a regular convex cone in Rn with the

Cheng–Yau metric (Theorem 1.2.4). Then we have the following equations.

(1)
∑
j

xj ∂φ

∂xj
= −n.

(2) gradφ = −
∑
j

xj ∂

∂xj
.

(3)
∑
k

xkγijk = −gij.

Proof. By the proof of Proposition 1.2.5, for t > 0 and x ∈ Ω we have

φ(tx) = φ(x)− n log t.

Then we obtain ∑
j

xj ∂φ

∂xj
=

d

dt

∣∣∣∣
t=1

φ(tx) = −n.

Taking the derivative of both sides with respect to xi we have

∂φ

∂xi
+
∑
j

xj ∂2φ

∂xi∂xj
= 0. (∗)

Since ∂2φ/∂xi∂xj = gij we obtain

gradφ =
∑
i,j

gij
∂φ

∂xj

∂

∂xi
= −

∑
j

xj ∂

∂xj
.

Equation (∗) is equivalent to

∂φ

∂xj
+
∑
k

xkgjk = 0.

Taking the derivative of both sides with respect to xi and applying Proposition 1.1.5 we

have

gij + gij +
∑
k

2xkγijk = 0,

that is,
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k

xkγijk = −gij . □

We set H =
∑

j x
j∂/∂xj (= − gradφ) and denote by LH Lie differentiation with

respect to H.

Proposition 3.3.2. For σ ∈ Ap(Ω) we have

LHσ = DHσ + pσ.

Proof. For X ∈ X (Ω) we obtain

DXH = X,

and so

[H,X] = DHX −DXH = DHX −X.

Then for X1, . . . , Xp ∈ X (Ω) we have

(LHσ)(X1, . . . , Xp)

= Hσ(X1, . . . , Xp)−
∑
i

σ(X1, . . . , [H,Xi], . . . , Xp)

= Hσ(X1, . . . , Xp)−
∑
i

σ(X1, . . . , DHXi, . . . , Xp) + pσ(X1, . . . , Xp)

= (DHσ)(X1, . . . , Xp) + pσ(X1, . . . , Xp). □

By Cartan’s formula we have the following.

Corollary 3.3.3. For ω ∈ Ap,q(Ω) we have

(∂i(H) + i(H)∂)ω = DHω + pω,

(∂̄ī(H) + ī(H)∂̄)ω = DHω + qω.

Main Theorem 3. Let (Ω, D, g = Ddφ) be a regular convex cone in Rn with the

Cheng–Yau metric. Then for p > q ≥ 1 and all v ∈ L2(Ω,∧p,q) such that ∂̄v = 0, there

exists u ∈ L2(Ω,∧p,q−1) such that

∂̄u = v, ∥u∥ ≤ (p− q)−1/2∥v∥.

In the case of p > q = 0, if v ∈ L2(Ω,∧p,0) satisfies ∂̄v = 0, then v = 0. In particular,

we have

L2Hp,q

∂̄
(Ω) = 0, for p > q.

Proof. As a corollary of Theorem 2.3.6 we obtain

Λ∂ + ∂Λ = −δ̄ + ī(Xα), Λ∂̄ + ∂̄Λ = −δ + i(Xα).
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Then we have

∂̄δ̄ = ∂̄(−Λ∂ − ∂Λ + ī(Xα))

= (Λ∂̄ + δ − i(Xα))∂ − ∂̄∂Λ + ∂̄ī(Xα)

= δ∂ − i(Xα)∂ + ∂̄ī(Xα) + Λ∂̄∂ − ∂̄∂Λ,

δ̄∂̄ = (−Λ∂ − ∂Λ + ī(Xα))∂̄

= −Λ∂∂̄ + ∂(∂̄Λ + δ − i(Xα)) + ī(Xα)∂̄

= ∂δ − ∂i(Xα) + ī(Xα)∂̄ − Λ∂∂̄ + ∂∂̄Λ,

and so

□̄ = □− (∂i(Xα) + i(Xα)∂) + (∂̄ī(Xα) + ī(Xα)∂̄),

where □ = ∂δ + δ∂.

Since φ is the solution of the equation in Theorem 1.2.4,

Xα = gradφ = −H.

Hence by Corollary 3.3.3,

□̄ = □+ p− q.

Therefore, for ω ∈ Ap,q
0 (Ω) we obtain

∥∂̄ω∥2 + ∥δ̄ω∥2 ≥ (p− q)∥ω∥2.

Then the assertions are proved similarly to Main Theorem 1. □

We have the following from Main Theorem 3 and Corollary 3.2.3.

Corollary 3.3.4. Let (Ω, D, g = Ddφ) be a regular convex cone in Rn with the

Cheng–Yau metric. Then we have

L2Hp,q

∂̄
(Ω) = 0, for p+ q > n or p > q.

3.4. L2-cohomology groups on Rn
+.

The Cheng–Yau metric on a regular convex cone Rn
+ is g = −Dd log(x1 · · ·xn) =∑

i(dx
i/xi)2. We can apply Corollary 3.3.4 to (Rn

+, D, g). However, we have a stronger

vanishing theorem.

Main Theorem 4. For p ≥ 1, q ≥ 1 and v ∈ L2(Rn
+,∧p,q) such that ∂̄v = 0, there

exists u ∈ L2(Rn
+,∧p,q−1) such that

∂̄u = v, ∥u∥ ≤ p−1/2∥v∥.

In the case of p > q = 0, if v ∈ L2(Rn
+,∧p,0) satisfies ∂̄v = 0, then v = 0. In particular,

we have
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L2Hp,q

∂̄
(Rn

+) = 0, for p ≥ 1 and q ≥ 0.

In this section we show Main Theorem 4. For the canonical coordinate x =

(x1, . . . , xn) on Rn
+, we set t = (t1, . . . , tn) = (log x1, . . . , log xn).

Lemma 3.4.1. The following equations hold.

(1) g

(
∂

∂ti
,
∂

∂tj

)
= δij.

(2) D∂/∂ti
∂

∂tj
= δij

∂

∂tj
, D∗

∂/∂ti
∂

∂tj
= −δij

∂

∂tj
.

(3) D∂/∂tidt
j = −δi

jdtj , D∗
∂/∂tidt

j = δi
jdtj.

(4) α = −
∑

j dt
j, where α is the first Koszul form for (D, g).

Lemma 3.4.2. On (Rn
+, D, g) we have

δ̄ = −
∑
j

D∂/∂tj ī

(
∂

∂tj

)
.

Proof. By Proposition 2.2.14, Lemmas 3.4.1 and 2.2.13 we obtain

δ̄ = −
∑
j

ī

(
∂

∂tj

)
D∂/∂tj − ī

(∑
j

∂

∂tj

)

= −
∑
j

{
ī

(
∂

∂tj

)
D∂/∂tj + ī

(
D∂/∂tj

∂

∂tj

)}

= −
∑
j

D∂/∂tj ī

(
∂

∂tj

)
. □

Proposition 3.4.3. Let ω =
∑

Ip,Jq
ωIpJqdt

Ip ⊗ dtJq ∈ Ap,q(Rn
+). Then we have

□̄ω =
∑
Ip,Jq

(∆ + p)ωIpJqdt
Ip ⊗ dtJq ,

where ∆ = −
∑

j(∂/∂t
j)2.

Proof. It is sufficient to show the equation when ω = f dtIp ⊗ dtJq . For a multi-

index Jq = (j1, . . . , jq), j1 < · · · < jq, we define Jn−q = (jq+1, . . . , jn), jq+1 < · · · < jn,

where (Jq, Jn−q) is a permutation of (1, . . . , n). By Lemmas 3.4.1 and 3.4.2 we obtain

∂̄ω =
∑

i∈Jn−q

∂f

∂ti
dtIp ⊗ dti ∧ dtJq −

∑
i∈Ip∩Jn−q

f dtIp ⊗ dti ∧ dtJq ,

δ̄ω = −
∑
j∈Jq

D∂/∂tj

(
f dtIp ⊗ ī

(
∂

∂tj

)
dtJq

)
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= −
∑
j∈Jq

∂f

∂tj
dtIp ⊗ ī

(
∂

∂tj

)
dtJq −

∑
j∈Ip∩Jq

f dtIp ⊗ ī

(
∂

∂tj

)
dtJq ,

δ̄∂̄ω = −
∑

i∈Jn−q

∑
j∈Jq∪{i}

∂2f

∂ti∂tj
dtIp ⊗ ī

(
∂

∂tj

)
(dti ∧ dtJq )

−
∑

i∈Jn−q

∑
j∈Ip∩(Jq∪{i})

∂f

∂tj
dtIp ⊗ ī

(
∂

∂tj

)
(dti ∧ dtJq )

+
∑

i∈Ip∩Jn−q

∑
j∈Jq∪{i}

∂f

∂tj
dtIp ⊗ ī

(
∂

∂tj

)
(dti ∧ dtJq )

+
∑

i∈Ip∩Jn−q

∑
j∈Ip∩(Jq∪{i})

f dtIp ⊗ ī

(
∂

∂tj

)
(dti ∧ dtJq ),

∂̄δ̄ω = −
∑
j∈Jq

∑
i∈Jn−q∪{j}

∂2f

∂ti∂tj
dtIp ⊗ dti ∧ ī

(
∂

∂tj

)
dtJq

+
∑
j∈Jq

∑
i∈Ip∩(Jn−q∪{j})

∂f

∂tj
dtIp ⊗ dti ∧ ī

(
∂

∂tj

)
dtJq

−
∑

j∈Ip∩Jq

∑
i∈Jn−q∪{j}

∂f

∂ti
dtIp ⊗ dti ∧ ī

(
∂

∂tj

)
dtJq

+
∑

j∈Ip∩Jq

∑
i∈Ip∩(Jn−q∪{j})

f dtIp ⊗ dti ∧ ī

(
∂

∂tj

)
dtJq .

We denote by (δ̄∂̄ω)k and (∂̄δ̄ω)k the k-th terms of δ̄∂̄ω and ∂̄δ̄ω respectively, where

k = 1, 2, 3, 4. Then we have

(δ̄∂̄ω)1 + (∂̄δ̄ω)1 = −
n∑

j=1

(
∂

∂tj

)2

f dtIp ⊗ dtJq ,

(δ̄∂̄ω)2 + (∂̄δ̄ω)3 = −
∑
j∈Ip

∂f

∂tj
dtIp ⊗ dtJq ,

(δ̄∂̄ω)3 + (∂̄δ̄ω)2 =
∑
j∈Ip

∂f

∂tj
dtIp ⊗ dtJq ,

(δ̄∂̄ω)4 + (∂̄δ̄ω)4 =
∑
j∈Ip

f dtIp ⊗ dtJq = pf dtIp ⊗ dtJq .

This completes the proof. □

Corollary 3.4.4. For ω ∈ Ap,q
0 (Rn

+) we have

∥∂̄ω∥2 + ∥δ̄ω∥2 ≥ p∥ω∥2.
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Proof. A (p, q)-form ω ∈ Ap,q
0 (Rn

+) is expressed by ω =
∑

Ip,Jq
ωIpJqdt

Ip ⊗ dtJq .

By Lemma 3.4.1 and Proposition 3.4.3 we obtain

∥∂̄ω∥2 + ∥δ̄ω∥2 = (□̄ω, ω)

=
∑
Ip,Jq

(∆ωIpJq , ωIpJq ) + p∥ω∥2

≥ p∥ω∥2. □

Using the above, we have Main Theorem 4 similarly to Main Theorem 1.
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1980 Beijing symposium of differential geometry and differential equations, Science Press, Beijing,

China, Gordon and Breach, Science Publishers Inc., New York, 1982, 339–370.

[ 4 ] J.-P. Demailly, L2 estimates for the ∂̄ operator on complex manifolds, Notes de cours, Ecole d’été
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