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Abstract. A quantity concerning the solutions of a quadratic Diophan-

tine equation in n variables coincides with a mass of a special orthogonal group
of a quadratic form in dimension n− 1, via the mass formula due to Shimura.
We show an explicit formula for the quantity, assuming the maximality of a
lattice in the (n−1)-dimensional quadratic space. The quantity is determined

by the computation of a group index and of the mass of the genus of maximal
lattices in that quadratic space. As applications of the result, we give the
number of primitive solutions for the sum of n squares with 6 or 8 and also

the quantity in question for the sum of 10 squares.

1. Introduction.

We consider an n-dimensional vector space V over a totally real number field F and

a nondegenerate symmetric F -bilinear form φ : V ×V → F , where 2 < n ∈ Z. We denote

by φ[x] the quadratic form φ(x, x) on V . We assume that φ is totally definite. Let L be

a maximal lattice in V with respect to φ, that is, L is a g-lattice in V which is maximal

among g-lattices on which the values φ[x] are contained in g. Here g is the maximal

order of F . For simplicity, when φ is fixed on V , we will often refer to a maximal lattice

in V , omitting reference to the φ needed to define it. Put

L[q, b] = {x ∈ V | φ[x] = q, φ(x, L) = b}

for given q ∈ F× and fractional ideal b of F . Assuming L[q, b] ̸= ∅, we take an element

h of L[q, b]. Put W = {x ∈ V |φ(x, h) = 0} and let ψ be the restriction of φ to W . Let

SOψ(W ) be the special orthogonal group of ψ and we regard it as the subgroup {α ∈
SOφ(V ) |hα = h} of the special orthogonal group SOφ(V ) of φ. Here we understand

that every F -linear automorphism of V acts on V on the right. Put

C(L) = {γ ∈ SOφ(V )A |Lγ = L}, (1)

where SOφ(V )A is the adelization of SOφ(V ) as usual.

It was shown by Shimura in [7, (3.7)] that∑
y∈Y

[Γ(Ly−1) : 1]−1#(Ly−1)[q, b] = m(SOψ(W ), SOψ(W )A ∩ C(L)). (2)

Here Y is a complete set of representatives for SOφ(V )\SOφ(V )A/C(L), Γ(Ly
−1) = {γ ∈

SOφ(V ) | (Ly−1)γ = Ly−1}, and m(SOψ(W ), SOψ(W )A∩C(L)) is the mass of SOψ(W )
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relative to the group SOψ(W )A ∩ C(L); see [7, (3.1)] for the definition. Formula (2)

connects the solutions of the equation φ[x] = q in n variables, satisfying the condition

φ(x, L) = b, with the mass of the group SOψ(W ) in dimension n − 1. Thus through

this mass formula, we are naturally interested in the computation of the right-hand side

of (2).

In fact, the purpose of this paper is to give an explicit formula for the mass

m(SOψ(W ), SOψ(W )A ∩C(L)); see (2.10) and (3.13). To do this, we restrict our inves-

tigation to the following case:

The g-lattice L ∩W in W is maximal with respect to ψ. (3)

As for the maximality of L∩W in W , we have one criterion in [10, Theorem 6.3]. That

is given as (4.2) in this paper. From this the ideal b for which L ∩W is maximal in W

is explicitly determined by given (V, φ) and q.

Here we explain further details about our results. For a moment, we take a

maximal lattice M in W and put E = SOψ(W )A ∩ C(L) for simplicity. By [7,

(3.3)] we have [E : E ∩ C(M)]m(SOψ(W ), E) = m(SOψ(W ), E ∩ C(M)) = [C(M) :

E ∩ C(M)]m(SOψ(W ), C(M)), where C(M) = {γ ∈ SOψ(W )A |Mγ = M}. Therefore

m(SOψ(W ), E) can be given as follows:

m(SOψ(W ), E) =
[C(M) : E ∩ C(M)]

[E : E ∩ C(M)]
m(SOψ(W ), C(M)). (4)

As for the mass m(SOψ(W ), C(M)) of the genus of all maximal lattices in W , when

the case where the dimension of W over F is even, or the dimension of W is odd and

det(ψ)g is a square ideal of F , it can be obtained by applying the exact formula due

to Shimura [3, Theorem 5.8] to m(SOψ(W ), C(M)), since M is maximal in W . When

the case where the dimension of W is odd and det(ψ)g is not a square ideal of F , a

similar formula for m(SOψ(W ), C(M)) is given by [1, Propositions 7.4 and 7.5] due to

Gan, Hanke, and Yu. However, we take up again a formula for m(SOψ(W ), C(M)) in

the latter case, employing the same ideas in the proof of [3, Theorem 5.8]. By doing so,

we can obtain the formula via the determination of a certain group index in Lemma 2.5

below, which is closely connected with the local representation density of (2.9) below at

a given prime. In this paper we shall restate the formula in both cases for convenience

of the reader (Corollary 2.7).

We now suppose that L ∩W is maximal in W . Then we may assume M = L ∩W ,

and hence E is a subgroup of C(M). Therefore we have

[C(M) : E ∩ C(M)]

[E : E ∩ C(M)]
= [C(M) : E]. (5)

The right-hand side is given by the product of local indices [C(Mv) : Ev] for all

nonarchimedean primes v of F . Here C(Mv) = {γ ∈ SOψv (Wv) |Mvγ = Mv},
Ev = SOψv (Wv) ∩ C(Lv), and C(Lv) = {γ ∈ SOφv (Vv) |Lvγ = Lv}; see Section 2.1

regarding the symbols Wv, ψv, Mv, etc. The main result of this paper is to give

[C(Mv) : Ev] under the assumption that Lv∩Wv is maximal inWv, whereMv = Lv∩Wv.
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This will be stated in Theorem 3.8. We hope to discuss our investigation on the removal

of (3) in the future.

As applications of our results, we give #L[q, b] for a squarefree positive integer q

and the ideal b such that L ∩W is maximal in W , by taking V = Q1
n (n = 6 or 8),

φ[x] =
∑n
i=1 x

2
i for x = (xi)

n
i=1 ∈ V , and a maximal lattice L in V (Proposition 4.3

(i) and (ii)). For example, when n = 6 and q ≡ 2 (mod 8), we obtain #L[q,Z] =

3
∏
p|q(p

2+(−1
p )). Here p runs over all prime factors of q and (−1

p ) is the quadratic residue

symbol. We also apply the results to the case where V = Q1
10 and φ[x] =

∑10
i=1 x

2
i . In

this case the class number of SOφ(V ) with respect to C(L) is 2 (cf. [2, Section 3.2] due

to Hiraoka). Let {L1, L2} be a complete set of representatives for the SOφ(V )-classes

in the genus of all maximal lattices in V ; see [6, Section 9.3] for the definition of the

SOφ(V )-class. An explicit choice of each Li (i = 1, 2) is given in (4.3). Then we give∑2
i=1[Γ(Li) : 1]

−1#Li[q, b] for a squarefree positive integer q (Proposition 4.3 (iii)). For

example, when q ≡ 1, 2 (mod 4), we have

2∑
i=1

#Li[q,Z]

[Γ(Li) : 1]
=

1

219 · 35 · 52 · 7
∏
p|q

(
p4 +

(
−1

p

))
·


25 if q ≡ 1 (mod 4),

17 if q ≡ 2 (mod 8),

3 · 5 if q ≡ 6 (mod 8).

Moreover, a few numerical computation in both sides of above equality is given after

Proposition 4.3. In Section 4.1 we will explain the relationship between the set L[q, b]

and a set of primitive solutions of a quadratic Diophantine equation.
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Notations. We follow the notion and the notation in Shimura’s book [6] and our

previous paper [10].

If X is a set, then #X denotes the cardinality of X. If X is a disjoint union of its

subsets Y1, · · · , Ym, we write X =
⊔m
i=1 Yi or X = Y1 ⊔ · · · ⊔ Ym. For a subgroup H of a

group G we let [G : H] = #(H \G). For a real number a we denote by [a] the greatest

integer not greater than a.

If R is an associative ring with identity element, then R× is the group of units of R.

Put R×2 = {a2 | a ∈ R×}. If K is a finite algebraic extension of a field F , then DK/F

denotes the relative discriminant of K over F .

Let F be a number field or its completion, and V an n-dimensional vector space over

F . By a g-lattice in V , we understand a finitely generated g-module in V that spans V

over F . Here g is the maximal order of F . We write dimF (V ) for the dimension of V

over F . We denote by 1V the identity map of V . If R = F or g, then we write Rmn for

the R-module of all m× n-matrices with entries in R. We denote by 0 the zero element
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of Rmn . Put Mn(R) = Rnn when we regard Rnn as a ring. We let 1n denote the identity

element of Mn(R). Put GLn(R) = Mn(R)
×. For a matrix x we denote by tx, det(x),

and tr(x) the transpose, determinant, and trace of x. Put N(a) = Na = [g : a] for an

integral ideal a of g.

2. The mass m(SOψ(W ), C(M)).

2.1. For a given quadratic space (V, φ) over F equipped with a totally-definite

symmetric F -bilinear form φ, we assume that

the dimension of V is odd and det(φ)g is not a square ideal of F . (2.1)

We will determine the mass of the genus of all maximal lattices in the quadratic

space (V, φ). Once a formula for the mass is obtained, the formula is applicable to

m(SOψ(W ), C(M)) in (4) if (W,ψ) satisfies (2.1). Here M = L∩W is a maximal lattice

in W . When the case where the dimension of W over F is even, or the dimension of W

is odd and det(ψ)g is a square ideal of F , the formula in [3, Theorem 5.8] is applicable

to m(SOψ(W ), C(M)) in question.

Let L be a maximal lattice in V and define C(L) by (1). Let φv be the Fv-linear

extension of φ to Vv = V ⊗F Fv and put Lv = L ⊗g gv for v ∈ h. Here Fv is the

v-completion of F , gv is the maximal order of Fv, and h is the set of all nonarchimedean

primes of F . Put L̃ = {x ∈ V | 2φ(x, L) ⊂ g}. Let e be the product of all prime ideals

for which L̃v ̸= Lv.

First, in the same manner as in [3, Section 7.10], we obtain

m(SOφ(V ), C(L)) = m(SOφ(V ), D(a))
∏
v|a

2

[D(Lv) : D
φ
v ]

(2.2)

for an integral ideal a of g such that a ⊂ e and 2 /∈ av for every v | a. Here D(a) =

{γ ∈ C(L) | L̃v(γv − 1) ⊂ avLv for every v | a}, D(Lv) = {γ ∈ Oφv (Vv) |Lvγ = Lv}, and
Dφ
v = {γ ∈ D(Lv) | L̃v(γ − 1) ⊂ avLv}.

The mass m(SOφ(V ), D(a)) in (2.2) is given as follows:

m(SOφ(V ), D(a)) = mn(a)[L̃ : L](n−1)/2,

mn(a) = 21−g(n−1)/2N(a)n(n−1)/2D
[(n−1)2/4]
F

[(n−1)/2]∏
i=1

{
D

1/2
F [(2i− 1)!(2π)−2i]gζF,a(2i)

}
.

(2.3)

Here g = [F : Q], DF is the discriminant of F , ζF,a(s) = ζF (s)
∏
v|a(1 − N(pv)

−s),

ζF is the Dedekind zeta function of F , and pv is the prime ideal of g corresponding to

v. Formula (2.3) can be obtained in exactly the same manner as in the proof of [3,

Theorem 5.8], more precisely, as in the argument in [3, Section 7].

2.2. We are going to compute the index [D(Lv) : Dφ
v ] in (2.2) for v | a. We fix

such a v and drop the subscript v for simplicity, until the end of the proof of Lemma 2.5.
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Let π be a prime element of g and p the prime ideal of g. From assumption (2.1) we may

assume that

dimF (V ) = n /∈ 2Z and det(φ) ∈ πg×F×2. (2.4)

Otherwise the desired index is given by [3, Proposition 3.9].

Put Di = Dφ
i = {γ ∈ D(L) | L̃(γ − 1) ⊂ piL} for 0 < i ∈ Z. Then we have

Dφ = Dν with ν ∈ Z such that a = pν . It can be seen that [D(L) : Dφ] = [D(L) :

D1]
∏ν−1
i=1 [Di : Di+1]. The same argument as in the proof of [3, Lemma 8.5] gives

[Di : Di+1] = qn(n−1)/2, where q = [g : p]. Thus we obtain

[D(L) : Dφ] = [D(L) : D1]q
(ν−1)n(n−1)/2. (2.5)

2.3. To determine the index [D(L) : D1] in (2.5), let us recall a Witt decomposition

of V with respect to φ as follows (cf. [6, Lemma 6.5]):

V = Z +
r∑
i=1

(Fei + Ffi), L = N +
r∑
i=1

(gei + gfi). (2.6)

Here ei and fi are elements of V such that φ(ei, ej) = φ(fi, fj) = 0 and φ(ei, fj) = 2−1δij ,

Z = {x ∈ V |φ(ei, x) = φ(fi, x) = 0 for every i}, N = {x ∈ Z |φ[x] ∈ g}, and the

restriction θ of φ to Z is anisotropic. Then we say that Z is a core subspace of V with

respect to φ. By [6, Lemma 6.4], note that N is a unique maximal lattice in Z, and

therefore Oθ(Z) = D(N). Put t = dimF (Z), then n = 2r + t. We call t the core

dimension of (V, φ). We have t ≤ 4 by [6, Theorem 7.6 (ii)]. We note that t = 1 or 3 in

our assumption (2.4). Hereafter we fix such a decomposition until the end of the proof

of Lemma 2.5.

Let us further recall some basic facts on the core subspace Z of dimension t ≤ 4 over

F , following [6, Section 7], which will be needed in our determination and in the next

section. For an element q of g we put N [q] = {z ∈ N | θ[z] = q}. Throughout this paper,
we denote by A(V ) the Clifford algebra of φ for a quadratic space (V, φ) and by A+(V )

its even Clifford algebra.

If t = 1, then Z = Fg with some g ∈ Z. We identify Z with F via the map of Z

onto F defined by ag 7→ a. Then, putting c = θ[g], we have θ[a] = ca2 for a ∈ F . Let

cg = pε. We see that N = p−[ε/2]. Clearly N [q] = ∅ if and only if cq /∈ F×2.

Assume t = 2. Let Z = Fg + Fk with some elements g and k such that θ(g, k) = 0.

We consider the even Clifford algebra A+(Z) of θ and putK = A+(Z). Then via the map

ag 7→ a, (Z, θ) is isomorphic to (K, cκ), where κ is the norm form on K and c = θ[g]. Put

cg = pε. Note that K is a quadratic extension of F , which gives the discriminant field

F ([− det(θ)]1/2) of (Z, θ). We identify (Z, θ) with (K, cκ) through the isomorphism. If K

is ramified over F , then we can take c so that c ∈ g×F×2. Then N = q−ε, where q is the

prime ideal of the maximal order r of K. If K is unramified over F , then N = p−[ε/2]r.

Clearly N [q] = ∅ if and only if q /∈ cκ[K×]. Also by [8, Theorem 20.8 (ii)], c ∈ κ[K×] if

and only if the Clifford algebra A(Z) of θ is isomorphic to M2(F ).

If t = 3, then A+(Z) is a division quaternion algebra B over F . Put B◦ = {x ∈
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B |x+ xι = 0} with the main involution ι of B and let β◦ be the restriction of the norm

form β on B to B◦. There is an element ζ of A(Z)× such that Z = B◦ζ. Thus (Z, θ) is

isomorphic to (B◦, dβ◦) via the map defined by x 7→ xζ−1, where d is an element of F×

such that dF×2 = det(θ)F×2. Put dg = pε. We identify (Z, θ) with (B◦, dβ◦) through

the isomorphism. Then we have B = J + Jω with an unramified quadratic extension

J of F and an element ω of B◦ such that ω2 ∈ πg× and aω = ωaι for a ∈ J . Take an

element u of J such that r = g[u] and u − uι ∈ r×, where r is the maximal order of J .

Then Z = Fη + Jω and N = p−ε/2(gη + rω) or N = p−(ε−1)/2(gη + rω−1) according

as d ∈ g×F×2 or d ∈ πg×F×2, where η = u − uι. Note by [6, Proposition 5.15 (ii)]

that N [q] = ∅ if and only if −dq ∈ F×2. Even if θ is isotropic, we can employ the

setting similar to the anisotropic case. Namely, taking B = M2(F ), β[x] = det(x), and

B◦ = {x ∈M2(F ) | tr(x) = 0}, we regard (Z, θ) as (B◦, dβ◦) with d ∈ F×.

Assume t = 4. Then by [6, Theorem 7.5 (ii)], we may identify (Z, θ) with (B, β)

with a division quaternion algebra B over F and the norm form β on B. Then N is the

maximal order of B. We note that det(θ) ∈ F×2.

Lemma 2.4. Assume (2.4). Then

[D(N) : Dθ
1] =

{
2 if t = 1,

4q2(q + 1) if t = 3.

Here Dθ
1 is defined in a similar way to Dφ

1 with N in place of L.

Proof. Assume t = 1. Then Z = F and θ[a] = ca2 with c ∈ πg×, since φ satisfies

(2.4). We have D(N) = Oθ(Z) = {±1}. Because N = g, clearly Ñ = (2p)−1. Hence we

obtain Dθ
1 = {1}. Thus [D(N) : Dθ

1] = 2.

Assume t = 3. Then Z = Fη+ Jω, θ[z] = dβ◦[z], and N = gη+ rω−1 with d ∈ πg×

by (2.4). We see that Ñ = (2p)−1η+rω−1. For a ∈ B, let τa be an F -linear automorphism

of Z defined by xτa = a−1xa for x ∈ Z. Put C = {τa | a ∈ O×}, where O is the maximal

order of B. Then, in a similar way to the proof of [3, Lemma 3.7], we can show that

D(N) = C⊔(−1Z)C⊔τωC⊔(−1Z)τωC, D
θ
1 ⊂ C, and Dθ

1 = {τa | a ∈ g×(1+P2)}, where
P is the prime ideal of O. Thus we obtain [D(N) : Dθ

1] = 4[C : Dθ
1] = 4q2(q + 1). This

completes the proof. □

Throughout this paper, for a subspace X of a given quadratic space (V, φ) we put

X⊥ = {y ∈ V |φ(y,X) = {0}} .

Lemma 2.5. Assume (2.4); put ℓ = (n− 1)/2 and k = n(n− 1)/2. Then

[D(L) : Dφ
ν ] = 2qνk ·

{
2(1− q−ℓ)

∏ℓ−1
i=1(1− q−2i) if t = 1,

2(1 + q−ℓ)
∏ℓ−1
i=1(1− q−2i) if t = 3

for ν as in (2.5).

When (2.4) is not satisfied, the index [D(L) : Dφ
ν ] is given by [3, Proposition 3.9].
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Proof. By (2.5) it is enough to determine [D(L) : D1]. If r = 0, then this index is

given by Lemma 2.4. Assume r > 0. Put W = (Fe1+Ff1)
⊥ and let σ be the restriction

of φ to W . Put M = L ∩W . Then we shall show that

[D(L) : Dφ
1 ] = qn−2A0[D(M) : Dσ

1 ] (2.7)

with the value A0 given as follows:

A0 =

{
q(qℓ − 1)(qℓ−1 + 1) if t = 1,

q(qℓ + 1)(qℓ−1 − 1) if t = 3.

If σ is anisotropic onW , then (2.7) together with Lemma 2.4 gives the index [D(L) : Dφ
1 ].

If σ is isotropic on W , (2.7) is applicable to [D(M) : Dσ
1 ] instead of [D(L) : Dφ

1 ].

Repeating this process, we obtain [D(L) : Dφ
1 ].

The proof of (2.7) can be seen in a similar way to [3, Section 3] in view of the

difference between the present form φ and the quadratic form in [3, Section 3], which

does not satisfy (2.4). Let us give an outline of the proof.

Put C ′ = {α ∈ D(L) | e1α − e1 ∈ pL, f1α − f1 ∈ pL}. Then Dφ
1 ⊂ C ′ ⊂ D(L), and

hence [D(L) : Dφ
1 ] = [D(L) : C ′][C ′ : Dφ

1 ]. It can be seen that [C ′ : Dφ
1 ] = [D(M) : Dσ

1 ]

in the same manner as in the proof of [3, Proposition 3.9]. Furthermore we see that

[D(L) : C ′] = qn−2#Y0, where Y0 = {x+ pL ∈ L/pL |x /∈ pL,φ[x] = 0}. Then we have

#Y0 = #Y − q, (2.8)

where Y = {x + pL ∈ L/pL |φ[x] ∈ p}. To see (2.8), suppose t = 3. Then Z =

Fη + Jω, θ[z] = dβ◦[z], and N = gη + rω−1 with d ∈ πg× by (2.4). By employing this

setting, the argument similar to [3, Lemma 3.8] shows #Y − #Y0 = #{aη + bω−1 +

pN ∈ N/pN | a ∈ g, b ∈ pr}. Hence we have (2.8). Still assuming t = 3, put I(φ) =∑
x∈L/pL

∑
ξ∈g/p χ(ξφ[x]/π). Here χ is a T-valued character of the additive group F

such that g = {a ∈ F |χ(ag) = 1}, where T = {z ∈ C | |z| = 1}. We see that

I(φ) = #Y · q. The equality I(φ) = qn − qr+t + qrI(θ) is valid even for the present φ,

where I(θ) is defined in a similar way to I(φ) with N and θ in place of L and φ. We then

find that I(θ) = q2. To sum up, we have [D(L) : C ′] = qn−2A0 with A0 in the statement

in the case t = 3. Similarly we obtain the assertion in the case t = 1. This proves (2.7),

which completes the proof. □

The index [D(L) : Dφ
ν ] in Lemma 2.5 is connected with a local representation density.

In fact, by (2.5) and [3, Theorem 8.6] we have [D(L) : Dφ
ν ] = qνk−κn[L̃ : L]−1e(2φ0),

where 2g = pκ and

e(2φ0) = lim
m→∞

q−mk ·#
{
y ∈ gnn/π

mgnn
∣∣ ty(2φ0)y − 2φ0 ∈ πmgnn

}
. (2.9)

Here φ0 is the matrix that represents φ with respect to a g-basis of L.

We are now ready to state the formula for m(SOφ(V ), C(L)) containing the case

where φ does not satisfy (2.1).
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Proposition 2.6. Let V be an n-dimensional vector space over a totally real num-

ber field F and φ a totally-definite symmetric F -bilinear form on V , where n is an ar-

bitrary integer greater than 1. Let L be a maximal lattice in V with respect to φ. Put

C(L) = {γ ∈ SOφ(V )A |Lγ = L} and

mn(g) = 2D
[(n−1)2/4]
F

[(n−1)/2]∏
i=1

{
D

1/2
F

[
(2i− 1)!(2π)−2i

]g
ζF (2i)

}
·

{
2−g(n−1)/2 if n is odd,

N(d)1/2D
1/2
F [(m− 1)!(2π)−m]

g
L(m,σ) if n is even.

Here DF is the discriminant of F , g = [F : Q], m = n/2, and d is the differ-

ent of F ([(−1)m det(φ)]1/2) relative to F ; ζF is the Dedekind zeta function of F and

L(s, σ) is the L-function of the Hecke character σ of F corresponding to the extension

F ([(−1)m det(φ)]1/2)/F . Then

m(SOφ(V ), C(L)) = mn(g)[L̃ : L](n−1)/2
∏
v|e

λv ·

{
1 if n is odd,

N(d)−1/2 if n is even

with the value λv given as follows:

1 if tv = 1, v | 2, and det(φ) ∈ g×v F
×2
v ,

2−1(1 + q
−(n−1)/2
v ) if tv = 1 and det(φ) ∈ πvg

×
v F

×2
v ,

2−1(1 + qv)
−1(1 + q1−mv )(1 + q−mv ) if tv = 2, dv = rv, and Ñv ̸= Nv,

2−1 if tv = 2 and dv ̸= rv,

2−1(1 + qv)
−1(1− q1−nv ) if tv = 3 and det(φ) ∈ g×v F

×2
v ,

2−1(1− q
−(n−1)/2
v ) if tv = 3 and det(φ) ∈ πvg

×
v F

×2
v ,

2−1(1 + qv)
−1(1− q1−mv )(1− q−mv ) if tv = 4.

Here L̃ = {x ∈ V | 2φ(x, L) ⊂ g}, e is the product of all prime ideals for which L̃v ̸= Lv,

and r is the maximal order of F ([(−1)m det(φ)]1/2); tv is the core dimension of (Vv, φv),

Ñv = {x ∈ Zv | 2φv(x,Nv) ⊂ gv}, Nv and Zv are as in (2.6), and qv is the norm of the

prime ideal of gv.

We note that v ∤ e if tv = 0, if tv = 1, v ∤ 2, and det(φ) ∈ g×v F
×2
v , or if tv = 2,

dv = rv, and Ñv = Nv. Also note that F ([(−1)n/2 det(φ)]1/2) is a quadratic extension of

F if tv = 2.

Proof. When φ does not satisfy (2.1), the formula is nothing but the exact for-

mula given in [3, Theorem 5.8]. When φ satisfies (2.1), there exists v ∈ h satisfying

(2.4). For such a v, [D(Lv) : D
φ
v ] in (2.2) is given by Lemma 2.5. If v does not satisfy

(2.4), then [3, Proposition 3.9] gives [D(Lv) : D
φ
v ]. Combining this with (2.2) and (2.3),

we obtain the desired formula. □
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By applying Proposition 2.6 to m(SOψ(W ), C(M)) in (4) in the introduction, we

obtain the following formula for this mass:

Corollary 2.7. Let V be an n-dimensional vector space over a totally real number

field F and φ a totally-definite symmetric F -bilinear form on V , where 2 < n ∈ Z. Let

L be a maximal lattice in V with respect to φ. Assume L[q, b] ̸= ∅ with q ∈ F× and

a fractional ideal b of F . For an element h of L[q, b], put W = (Fh)⊥ and let ψ be

the restriction of φ to W . We regard SOψ(W ) as the subgroup {α ∈ SOφ(V ) |hα = h}
of SOφ(V ). Assume that the g-lattice L ∩W is maximal in W . Put M = L ∩W and

C(M) = {γ ∈ SOψ(W )A |Mγ =M}. Also we put

mn−1(g) = 2D
[(n−2)2/4]
F

[(n−2)/2]∏
i=1

{
D

1/2
F

[
(2i− 1)!(2π)−2i

]g
ζF (2i)

}
·

{
2−g(n−2)/2 if n is even,

N(dK)1/2D
1/2
F

[
(ℓ− 1)!(2π)−ℓ

]g
L(ℓ, σK) if n is odd.

Here K = F (
√
(−1)n−1δq)/F , δ = (−1)n(n−1)/2 det(φ), dK is the different of K relative

to F , ℓ = (n − 1)/2, and L(s, σK) is the L-function of the Hecke character σK of F

corresponding to the extension K/F ; DF , g, and ζF are as in Proposition 2.6. Then

m(SOψ(W ), C(M)) = mn−1(g)[M̃ :M ](n−2)/2
∏
v|e

λv ·

{
1 if n is even,

N(dK)−1/2 if n is odd

(2.10)

with the value λv given as follows:

1 if sv = 1, v | 2, and δq ∈ g×v F
×2
v ,

2−1(1 + q
−(n−2)/2
v ) if sv = 1 and δq ∈ πvg

×
v F

×2
v ,

2−1(1 + qv)
−1(1 + q1−ℓv )(1 + q−ℓv ) if sv = 2, (dK)v = rv, and ÑWv ̸= NWv ,

2−1 if sv = 2 and (dK)v ̸= rv,

2−1(1 + qv)
−1(1− q2−nv ) if sv = 3 and δq ∈ g×v F

×2
v ,

2−1(1− q
−(n−2)/2
v ) if sv = 3 and δq ∈ πvg

×
v F

×2
v ,

2−1(1 + qv)
−1(1− q1−ℓv )(1− q−ℓv ) if sv = 4.

Here M̃ = {x ∈ W | 2ψ(x,M) ⊂ g}, e is the product of all prime ideals for which

M̃v ̸= Mv, and r is the maximal order of K ; sv is the core dimension of (Wv, ψv),

ÑWv = {x ∈ ZWv | 2ψv(x,NWv ) ⊂ gv}, NWv (resp. ZWv ) is defined in a similar way to

Nv (resp. Zv) with Mv (resp. Wv) in place of Lv (resp. Vv) in (2.6), and qv is the norm

of the prime ideal of gv.

3. The index [C(M) : SOψ(W )A ∩ C(L)].

3.1. We will determine [C(M) : SOψ(W )A∩C(L)] in (5) in the introduction, with

a fixed element h of L[q, b] and a maximal lattice M = L ∩W in W . We start with the
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equality

[C(M) : SOψ(W )A ∩ C(L)] =
∏
v∈h

[C(Mv) : SO
ψv (Wv) ∩ C(Lv)].

Here we regard SOψv (Wv) as the subgroup {α ∈ SOφv (Vv) |hα = h} of SOφv (Vv) and

put C(Mv) = {γ ∈ SOψv (Wv) |Mvγ = Mv} and C(Lv) = {γ ∈ SOφv (Vv) |Lvγ = Lv}.
It is sufficient to determine the index [C(Mv) : SO

ψv (Wv)∩C(Lv)] for given h ∈ Lv[q, bv]

and v ∈ h. Hereafter until the end of this section we fix v ∈ h and drop the subscript v

for simplicity.

We take a Witt decomposition of V with respect to φ as in (2.6) and fix such a

decomposition throughout this section. We use the same letter φ for the restriction of φ

to Z.

Before proceeding our arguments, we need to change h for a representative for the

set {x ∈ L |φ[x] = c2q} under the modulo C(L) with some c ∈ F×, as stated in [10,

Theorem 3.5]. Let us here explain the idea of changing h. First, we can find c ∈ F×

satisfying c2q ∈ g and cb ⊂ 2−1g. Then we easily see that the g-lattice L+ gch contains

L and satisfies φ[L+ gch] ⊂ g. From the maximality of L, this lattice coincides with L,

and hence we have ch ∈ {x ∈ L |φ[x] = c2q}. [10, Theorem 3.5] gives a complete set

of representatives for {x ∈ L |φ[x] = c2q}/C(L). Hence there exists some representative

u such that (ch)γ = u with some γ ∈ C(L). The element u can be taken from the

subset N + (ger + gfr) of V in the notation of (2.6). It should be noted that the index

[C(M) : SOψ(W )∩C(L)] defined with h is the same as the index defined with chγ. Also

note that L ∩ (Fu)⊥ is a maximal lattice in (Fu)⊥. Thus we may determine the index

[C(L∩ (Fu)⊥) : SOφ((Fu)⊥)∩C(L)] instead of [C(M) : SOψ(W )∩C(L)]. In this sense,

hereafter we identify h with u. Then we have

h ∈

{
N if N [q] ̸= ∅,
N + (ger + gfr) if N [q] = ∅, (3.1)

where N [q] = {z ∈ N |φ[z] = q}. We also note that h ∈ L[q, b] with q ∈ g and b ⊂ 2−1g,

and that

L ∩W is maximal in W (3.2)

under our identification. According to (3.2) and [10, Theorem 5.3], the ideal b satisfies

2b = pτ(q), (3.3)

where the value τ(q) only depends on (V, φ) and q and is given in [10, Theorem 3.5]. Let

qg = pν .

For a subspace X of V we regard Oφ(X) as the subgroup {α ∈ Oφ(V ) |xα =

x for any x ∈ X⊥} of Oφ(V ). In particular, Oψ(W ) = {α ∈ Oφ(V ) |hα = h}. We under-

stand Oψ(Y ) in a way similar for a subspace Y ofW . Put D(L) = {γ ∈ Oφ(V ) |Lγ = L}
and D(M) = {γ ∈ Oψ(W ) |Mγ =M}.



905(27)

On the solutions of quadratic Diophantine equations II 905

Proposition 3.2. Let the notation be the same as in Section 3.1. Then the fol-

lowing assertions hold :

(i) [Oψ(W ) ∩D(L) : SOψ(W ) ∩ C(L)] = 2.

(ii) [C(M) : SOψ(W ) ∩ C(L)] = [D(M) : Oψ(W ) ∩D(L)].

Proof. By [6, Lemma 6.8] we obtain [D(M) : C(M)] = 2. Assertion (ii) follows

from this and (i). Let us show (i). Since det(Oψ(W )∩D(L)) ⊂ {±1}, we have [Oψ(W )∩
D(L) : SOψ(W ) ∩ C(L)] ≤ 2. Thus it is enough to show that there exists an element

σ of Oψ(W ) ∩ D(L) such that det(σ) = −1. By (3.1) recall that h ∈ N if N [q] ̸= ∅
and that h ∈ N + (ger + gfr) if N [q] = ∅. First suppose that r ≥ 1 if N [q] ̸= ∅, and
that r ≥ 2 if N [q] = ∅. Then we have h ∈ (Fe1 + Ff1)

⊥. We can show (i) in a similar

way to the case t = 1 in the proof of [6, Proposition 11.12 (v)]. Next suppose r = 0.

Then V = Z, n = t ≥ 3, and L = N . Since L̃ ̸= L by [8, (29.7)], if φ does not satisfy

(2.4), then [6, Proposition 11.12 (v)] is applicable to the present case. Here L̃ is as in

Section 2.1. An argument similar to the proof of [6, Proposition 11.12 (v)] shows (i) if φ

satisfies (2.4), that is, if t = 3 and det(φ) ∈ πg×F×2. This proves (i) in the case r = 0.

Now suppose that r = 1 and N [q] = ∅. Then V = Z + (Fe1 + Ff1) and dimF (Z) ≥ 1.

If h ∈ Fe1 + Ff1, then (i) can be obtained in a similar way to the case L̃ = L and

t ̸= 1 in the proof of [6, Proposition 11.12 (v)]. Assume h /∈ Fe1 + Ff1; assume also

dimF (V ) > 3. Let z be an element of N such that h ∈ z + (ge1 + gf1). Then z ̸= 0 and

V = [Z ∩ (Fz)⊥] + (Fz + Fe1 + Ff1). We can find the desired σ in a similar way to the

case h ∈ Fe1 + Ff1.

Finally assume dimF (V ) = 3. Note that φ is isotropic on V . In this case we employ

the setting of the case t = 3 in Section 2.3. Then (V, φ) = (B◦, dβ◦), where B◦ = {x ∈
M2(F ) | tr(x) = 0}, β◦[x] = det(x), and d ∈ F×. We may assume d ∈ g×⊔πg×. Then we

have a Witt decomposition B◦ = Fg+(Fe+Ff) and L = gg+ge+gf with g =
[
1 0
0 −1

]
,

e =
[
0 −d−1

0 0

]
, and f =

[
0 0
1 0

]
. Now recall N [q] = ∅. Then there are two elements c ∈ 2−1g

and a ∈ g such that cg + ae + f belongs to L[π−2τ(q)q, 2−1g] by the same manner as

in [7, Section 1.6], where τ(q) is in (3.3). Note that πτ(q)(L[π−2τ(q)q, 2−1g]) = L[q, b].

Thus, by virtue of [7, Theorem 1.3], hγ = πτ(q)(cg + ae + f) with some γ ∈ C(L). For

the same reason as explained in Section 3.1, we may identify h with cg + ae + f . Put

ω = −g − 2cde, then {h, ω, ωh} is an orthogonal F -basis of V with respect to φ. Let

σ be the element of GL(V ) defined by hσ = h, ωσ = −ω, and (ωh)σ = ωh. Clearly

σ ∈ Oψ(W ), /∈ SOψ(W ). Moreover, in view of φ[h] = d ·det(h), observe that gσ, eσ, and
fσ belong to L. Thus Lσ ⊂ L. Because det(σ) = −1, we obtain Lσ = L. This proves

(i) in the remaining case, which completes the proof. □

We note that even when L∩W is not maximal in W , the above proposition is true.

This can be proven by changing τ(q) for j ∈ Z such that 2b = pj in the proof.

Lemma 3.3. Let the notation be the same as in Section 3.1. Put

U =

{
Z if N [q] ̸= ∅,
Z + (Fer + Ffr) if N [q] = ∅,
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where N [q] is as in (3.1). Then the following assertions hold :

(i) W = ZW +
∑rW
i=1(Fei + Ffi), which is a Witt decomposition of W with respect to

ψ. Here ZW = U ∩W , rW = r if N [q] ̸= ∅, and rW = r− 1 if N [q] = ∅. Moreover,

dimF (ZW ) =

{
t− 1 if N [q] ̸= ∅,
t+ 1 if N [q] = ∅. (3.4)

(ii) M = NW +
∑rW
i=1(gei+gfi) with NW = (L∩U)∩ZW . Moreover NW is a maximal

lattice in ZW , which is given by NW = {x ∈ ZW |ψ[x] ∈ g}.

Proof. First assume N [q] ̸= ∅. Then h ∈ N by (3.1). Assertion (i) and the

first assertion of (ii) are trivial in view of (2.6). Since N = {x ∈ Z |φ[x] ∈ g}, we

have NW = {x ∈ ZW |ψ[x] ∈ g}, which is maximal in ZW . This proves our lemma

in the case N [q] ̸= ∅. Next assume N [q] = ∅. Since h ∈ N + (ger + gfr), we have

W = ZW +
∑rW
i=1(Fei + Ffi). This is a Witt decomposition because the restriction of

ψ to ZW is anisotropic. To see that ψ is anisotropic on ZW , put k = qer + fr. Since

φ[k] = q, by [6, Lemma 1.5 (ii)], there is α ∈ SOφ(U) such that hα = k. With this

α, we may identify ZW with U ∩ (Fk)⊥. Then ZW = Z + Fg with g = qer − fr. If

t = 0, then the assertion is clear. Assume t ≥ 1 and φ[z + ag] = 0 with z ∈ Z and

a ∈ F . If a ̸= 0, then φ[a−1z] = q, which contradicts the assumption N [q] = ∅. Thus

a = 0, and hence z = 0 because φ is anisotropic on Z. This proves the desired fact.

It is obvious that dimF (ZW ) = t + 1. Thus we obtain (i). From (2.6) and (i) we have

M = NW +
∑rW
i=1(gei + gfi). By [6, Lemma 6.3 (1)], NW is maximal in ZW and hence

NW = {x ∈ ZW |ψ[x] ∈ g}. □

Lemma 3.4. Let U be as in Lemma 3.3. Take an element v of L ∩ U such that

φ(h, v)g = b. Then

L ∩ U = gv +NW (3.5)

with NW in Lemma 3.3. Moreover, put h = cv + w with c ∈ g and w ∈ NW . Then

cg = qb−1 and

Oψ(W ) ∩D(L) =
{
γ ∈ D(M) | [w + qb−1M ]γ = w + qb−1M

}
, (3.6)

Oψ(ZW ) ∩D(L) =
{
γ ∈ D(NW ) | [w + qb−1NW ]γ = w + qb−1NW

}
. (3.7)

Proof. We first remark that the element v in the statement exists whenever

φ(h,L) = b. In fact, we have φ(h,L ∩ U) = b as h ∈ L ∩ U . Hence there is a generator

φ(h, v) of b over g with some v ∈ L ∩ U , which is the required element. We also remark

that c and w are uniquely determined by h and v.

Let us prove (3.5). For any x ∈ L ∩ U we have φ(h, x) = φ(h, v)a with a ∈ g. Thus

x − av ∈ NW , which shows (3.5). Let h = cv + w as in the statement. Since c ̸= 0, we

have v = c−1(h − w), and hence b = q(cg)−1. To see (3.6) and (3.7), employing (3.5),

observe that L = gv +M . For any γ ∈ D(M) we see that γ ∈ Oψ(W ) ∩ D(L) if and

only if Lγ = L. That is the case if and only if vγ − v ∈ M , since φ(h, vγ − v) = 0. As
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v = c−1(h − w), we have thus Oψ(W ) ∩D(L) = {γ ∈ D(M) |wγ − w ∈ qb−1M}. This

proves (3.6). Noticing that Oψ(ZW ) is identified with the subgroup of Oψ(W ), we obtain

Oψ(ZW ) ∩D(L) = {γ ∈ D(NW ) | wγ − w ∈ qb−1M}. The condition wγ − w ∈ qb−1M

can be replaced by wγ−w ∈ qb−1NW , which proves (3.7). This completes the proof. □

We recall that b satisfies condition (3.3) under the assumption that L∩W is maximal

in W . Then the ideal qb−1 in Lemma 3.4 satisfies

qb−1 ⊂ p[ν/2]. (3.8)

In fact, we see that 2b ⊂ p[ν/2]. This can be found in [10, (3.9), (3.12), (3.15), (3.18)

and (3.20)] with τ(q) of (3.3). Hence we have 2φ(π−[ν/2]h,L) ⊂ g. This combined with

φ[π−[ν/2]h] ∈ g implies that π−[ν/2]h ∈ L by the maximality of L. Thus we obtain

qp−[ν/2] ⊂ b, which proves (3.8).

Lemma 3.4 is a key result to determine the index [C(M) : SOψ(W ) ∩ C(L)]. We

note that (3.6) is valid even when L ∩W is not maximal in W .

Corollary 3.5. If qb−1 = p[ν/2], then [C(M) : SOψ(W ) ∩ C(L)] = 1.

Proof. Let w be as in Lemma 3.4. Since w = h− cv, cg = qb−1, and h ∈ π[ν/2]L

as seen above, we obtain w ∈ p[ν/2]M . Then our assertion follows immediately from this,

Proposition 3.2 (ii) and (3.6). This completes the proof. □

Even when L ∩ W is not maximal in W , Corollary 3.5 is true with min(j, [ν/2])

in place of [ν/2], where j is the integer such that 2b = pj . In that case we see that

qb−1 ⊂ pmin(j,[ν/2]).

In view of (3.8) and Corollary 3.5, we only have to consider the case qb−1 ⊂ p[ν/2]+1.

For this, we need one more lemma:

Lemma 3.6. (i) Let K be an unramified quadratic extension of F and r its max-

imal order. Then 1 + p = NK/F (1 + pr).

(ii) Let B be a division quaternion algebra over F with the main involution ι of B, and

P the prime ideal of the maximal order of B. Put EB = {u ∈ B |uuι = 1}. Then

[EB : EB ∩ (1 +P)] = 1 +Np.

Proof. Clearly we have 1 + p ⊃ NK/F (1 + pr). Conversely, for any a ∈ 1 + p

there exists b ∈ r× such that a = NK/F (b). If b ∈ 1 + pr, then we obtain (i). Assume

that b /∈ 1 + pr, that is, b − 1 ∈ r×. Put u = −(bρ − 1)(b − 1)−1, where ρ is the

generator of Gal(K/F ). Then ub − 1 = (1 − a)(b − 1)−1 ∈ pr and NK/F (u) = 1. Thus

a = NK/F (ub) ∈ NK/F (1+ pr), and hence we obtain 1+ p ⊂ NK/F (1+ pr), which proves

(i). To prove (ii), let B = J + Jω with an unramified quadratic extension J of F and

ω ∈ B, as stated in the case t = 3 in Section 2.3. Put E = {a ∈ J | aaι = 1}. We observe

that

E ∩ [EB ∩ (1 +P)] = E ∩ (1 + pr), EB = [EB ∩ (1 +P)] · E,

and EB ∩ (1 +P) is a normal subgroup of EB, where r is the maximal order of J . From
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these, [E∩(1+pr)]\E is isomorphic to [EB∩(1+P)]\EB , and hence [EB : EB∩(1+P)] =

[E : E ∩ (1 + pr)] = 1 +Np by [3, Lemma 3.4]. □

Proposition 3.7. Assume qb−1 ⊂ p[ν/2]+1. For γ ∈ D(NW ) extend γ to an

element γ̃ of D(M) by setting γ̃ to be the identity map on Z⊥
W . Here ZW and NW are

as in Lemma 3.3. Then the map γ 7→ γ̃ gives a bijection of D(NW )/[Oψ(ZW ) ∩D(L)]

onto D(M)/[Oψ(W ) ∩D(L)].

Proof. First of all, we note that dimF (ZW ) ≥ 1. Indeed, if dimF (ZW ) = 0, then

by (3.4) we have t = 1 and N [q] ̸= ∅. The latter condition is equivalent to cq ∈ F×2 with

an element c of F× as in Section 2.3 under the condition t = 1. Thus by (3.3) and [10,

(3.12)] we see that qb−1 = p[ν/2], which is impossible under our assumption. Hence we

obtain the desired fact.

It is obvious that the map of our proposition is well-defined and injective. Thus we

only have to prove that this map is surjective, that is, for any γ ∈ D(M) there exists

α ∈ D(NW ) such that α̃−1γ ∈ Oψ(W ) ∩ D(L). To do this, employing the notation of

Lemma 3.4, we put h = cv + w with c and w there. For a given γ ∈ D(M), put

wγ−1 = wγ + g

with wγ ∈ NW and g ∈
∑rW
i=1(gei+ gfi) =M ∩ (ZW )⊥. Let α ∈ D(NW ). Then by (3.6),

α̃−1γ ∈ Oψ(W ) ∩D(L) if and only if wα−1γ − w ∈ qb−1M . This is the case if and only

if wγ ∈ (w + qb−1NW )α−1 and g ∈ qb−1[M ∩ (ZW )⊥]. We assert that g always belongs

to qb−1[M ∩ (ZW )⊥]. To see this, put g =
∑rW
i=1(aiei + bifi) with ai, bi ∈ g. Employing

Lemma 3.4, we have ai = 2ψ(w, fiγ) ∈ c ·2φ(v,M) ⊂ qb−1. Similarly we have bi ∈ qb−1,

and hence we obtain the required fact. Consequently, our map is surjective if and only

if for any γ ∈ D(M),

wγ ∈ (w + qb−1NW )D(NW ).

Let us consider the subspace Fw + Fwγ of ZW . Put

Zγ = Fw + Fwγ , Nγ = NW ∩ Zγ .

Then ψ is anisotropic on Zγ and Nγ = {x ∈ Zγ |ψ[x] ∈ g}, which is a unique maximal

lattice in Zγ . Moreover we consider the set

X = {x ∈ Nγ |ψ[x]− ψ[w] ∈ (qb−1)2}.

Since wγ−1 − wγ = g ∈ qb−1M , we have wγ ∈ X. Therefore if we show that

X ⊂ (w + qb−1Nγ)D(Nγ), (3.9)

then the surjectivity holds because D(Nγ) ⊂ D(NW ). We shall prove (3.9).

We first note that

ψ[w]g = qg. (3.10)
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In fact, recall that h − w = cv and cg = qb−1 by Lemma 3.4. From these (3.10)

follows under the assumption qb−1 ⊂ p[ν/2]+1. In particular, we find w ̸= 0, and hence

dimF (Zγ) = 1 or 2.

Assume dimF (Zγ) = 1. As explained in the case t = 1 in Section 2.3, we may assume

Zγ = F , ψ[a] = ca2 with some c ∈ F×, and Nγ = p−[ε/2]. Here cg = pε. Clearly X =

{a ∈ Nγ | a2 − w2 ∈ c−1(qb−1)2}. On the other hand, since D(Nγ) = Oψ(Zγ) = {±1},
we have (w+ qb−1Nγ)D(Nγ) = (w+ qb−1Nγ)∪ (−w+ qb−1Nγ). Now, take a ∈ Nγ such

that a /∈ (w+ qb−1Nγ)D(Nγ). Then (a−w)g ⊃ qb−1Nγp
−1 and (a+w)g ⊃ qb−1Nγp

−1.

Hence a2 − w2 /∈ c−1(qb−1)2. This proves (3.9) in the case dimF (Zγ) = 1.

Assume dimF (Zγ) = 2. Let Kγ be the even Clifford algebra of the restriction of ψ

to Zγ . Then we can identify (Zγ , ψ) with (Kγ , cκγ) as in the case t = 2 in Section 2.3,

with the norm form κγ on Kγ and c ∈ F×. Let cg = pε. By (3.10) we have

X = {a ∈ Nγ |κγ [a] ∈ κγ [w](1 + qb−2)}.

Suppose that Kγ is ramified over F . Then we may assume c ∈ g×F×2, and hence

Nγ = q−ε, where q is the prime ideal of the maximal order r of Kγ . Thus we have

w+qb−1Nγ = w(1+qνb−1). By [6, Lemma 5.6 (vi)] for any a ∈ X there exists b ∈ qνb−1

such that κγ [a] = κγ [wb]. Hence a ∈ wbOψ(Zγ) by [6, Lemma 1.5 (ii)], which proves

(3.9) in the present case. Suppose that Kγ is unramified over F . Because Nγ = p−[ε/2]r,

we have w + qb−1Nγ = w(1 + qb−1p−[ν/2]r). We can show that

qb−1 = pν−[ν/2], (3.11)

which will be seen below. From this and qb−1 ⊂ p[ν/2]+1 it follows that q ∈ πg×F×2

and hence w + qb−1Nγ = w(1 + pr). Also we have X = {a ∈ Nγ |κγ [a] ∈ κγ [w](1 + p)}.
Taking any a ∈ X, we have κγ [a] ∈ κγ [w(1 + pr)] by Lemma 3.6 (i). Thus an argument

similar to the case where Kγ is ramified over F proves (3.9).

Therefore our proof is finished if we show (3.11). To do this, because b = 2−1pτ(q)

by (3.3), we only have to prove τ(q) = κ + [ν/2] in the present case, where 2g = pκ.

To check the value τ(q) by means of [10, Theorem 3.5], we need the data of the core

dimension t of (V, φ) and N [q] such that

the core subspace ZW of (W,ψ) contains the 2-dimensional

subspace Zγ whose discriminant field Kγ is unramified over F . (3.12)

We distinguish the several possible dimensions for the core ZW .

First assume dimF (ZW ) = 2. Then Zγ = ZW , and hence Kγ is the discriminant

field of ZW . By (3.4) the following two cases may happen: (a) t = 1; (b) t = 3. Let

us show that case (b) is impossible as det(ψ) ∈ g×F×2. Indeed, suppose t = 3; then

h ∈ Z and Z = Fh + Zγ . Moreover, (Z,φ) is isomorphic to (B◦, dβ◦) via the map ζ

of B◦ onto Z with the same notations as in the case t = 3 in Section 2.3; particularly,

B is a division quaternion algebra over F . Here d = (−1)rq det(ψ). Put k = hζ−1 and

J = F + Fk in B. By the same way as in [6, Section 11.2], we have B = J + Jω and

B◦ = Fk+Jω with a suitable ω ∈ B× such that ω2 /∈ κJ [J
×], where κJ is the norm form

on J . Then (Zγ , ψ) is isomorphic to (Jω, dβ◦), which is also isomorphic to (J,−dω2κJ ).
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Therefore J is isomorphic to Kγ , from which we find that J is an unramified quadratic

extension of F . Thus we may take ω so that ω2 = π /∈ κJ [J
×] = g×F×2. On the other

hand, Zγ has the element w (̸= 0), so that (Zγ , ψ) is isomorphic to (Kγ , qκγ) because

of (3.10). From these isomorphisms of (Zγ , ψ) we have −dπg×F×2 = qg×F×2, that is,

det(ψ) ∈ πg×F×2. Therefore case (b) does not happen. Hence we may assume case

(a). Put Z = F and φ[a] = ca2 on Z with some c ∈ F×. To check τ(q), observe that

F (
√
cq) is the discriminant field of KW , which is unramified over F . This together with

[10, (3.12)] leads τ(q) = κ + [ν/2], which proves (3.11). At the same time, we see that

qb−1 ⊂ p[ν/2]+1 if and only if t = 1 and q ∈ πg×F×2 under the assumption that the

discriminant field of 2-dimensional ZW is unramified over F , which will be used in the

proof of Theorem 3.8 below.

Next assume dimF (ZW ) = 3. Then t = 2 or t = 4. Let ZW = Fz + Zγ with

some z such that ψ(z, Zγ) = {0}. Then we can show that det(φ) ∈ πg×F×2 in a similar

way to the case dimF (ZW ) = 2 and t = 3. From this the case t = 4 is impossible as

det(φ) ∈ g×F×2. Consequently if 3-dimensional ZW satisfies (3.12), then t = 2. In this

case we have N [q] = ∅, which is the case if and only if c−1q /∈ κ[K×] with K, κ, and c as

in the case t = 2 in Section 2.3. By [10, (3.15)] this implies τ(q) = κ+ [ν/2]. Hence we

obtain (3.11).

Finally assume dimF (ZW ) = 4. Then t = 3 and N [q] = ∅. We have (Z,φ) =

(B◦, dβ◦) with the same notations in the case t = 3 in Section 2.3. The condition of

N [q] = ∅ means F (
√
−dq) = F . Then [10, (3.18)] shows τ(q) = κ+ [ν/2], which proves

(3.11). Note that (3.11) holds when dimF (ZW ) = 4, without condition (3.12), which

will be needed in the proof of Theorem 3.8 below. This completes the proof of our

proposition. □

Let Q(φ) be the characteristic algebra of (V, φ), that is, Q(φ) is a quaternion algebra

over F such that A(V ) is isomorphic toMs(Q(φ)) if n ∈ 2Z, or that A+(V ) is isomorphic

to Ms(Q(φ)) if n /∈ 2Z, with some 0 < s ∈ Z (cf. [8, Section 28]). Note that Q(φ)

coincides with the characteristic algebra of (Z,φ). If V is a vector space of dimension 1

over F , then we define Q(φ) byM2(F ). For a quaternion algebra B over F , put χ(B) = 1

if B is isomorphic to M2(F ), and put χ(B) = −1 if B is a division algebra. For x ∈ F ,

put

ξ(x) =


1 if

√
x ∈ F,

−1 if F (
√
x) is an unramified quadratic extension of F ,

0 if F (
√
x) is a ramified quadratic extension of F .

Now we state the main result in this paper.

Theorem 3.8. Let V be an n-dimensional vector space over a local field F and

φ a nondegenerate F -bilinear symmetric form, where 2 < n ∈ Z. Let L be a maximal

lattice in V with respect to φ. Assume L[q, b] ̸= ∅ with q ∈ F× and a fractional ideal b

of F . For an element h of L[q, b], put W = (Fh)⊥ and let ψ be the restriction of φ to

W . We regard SOψ(W ) as the subgroup {α ∈ SOφ(V ) |hα = h} of SOφ(V ). Assume

that the g-lattice L ∩W is maximal in W . (Then the ideal b satisfies the condition of
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(3.3).) Put M = L ∩W . Then

[C(M) : SOψ(W ) ∩ C(L)]

=



2 if t = 0 and q ∈ πg×F×2;

t = 1, δ ∈ g×F×2, and ξ(δq) = 0;

t = 2, ξ(δ) = −1, χ(Q(φ)) = 1, and q ∈ πg×F×2,

1 +Np if t = 1, q ∈ πg×F×2, and ξ(δq) = −1;

t = 2, ξ(δ) = 0, χ(Q(ψ)) = −1, and δq ∈ g×F×2;

t = 3, q ∈ πg×F×2, and ξ(δq) = 1,

1 otherwise. (3.13)

Here t is the core dimension of (V, φ), δ = (−1)n(n−1)/2 det(φ), Q(φ) (resp. Q(ψ)) is

the characteristic algebra of (V, φ) (resp. (W,ψ)), and Np is the norm of p.

Proof. We take a Witt decomposition of V with respect to φ as in (2.6). As

explained in Section 3.1, we retake h as in (3.1) and fix it. Recall that qb−1 ⊂ p[ν/2] by

(3.8). If qb−1 = p[ν/2], then by Corollary 3.5, [C(M) : SOψ(W ) ∩ C(L)] = 1. Hereafter

we suppose that qb−1 ⊂ p[ν/2]+1.

By Propositions 3.2 and 3.7, we obtain

[C(M) : SOψ(W ) ∩ C(L)] = [D(NW ) : Oψ(ZW ) ∩D(L)],

where ZW and NW are as in Lemma 3.3. Note that Oψ(ZW ) = D(NW ) and dimF (ZW ) ≥
1. Let us consider the set (w + qb−1NW )Oψ(ZW ) with w (̸= 0) of Lemma 3.4. Then by

(3.7) we have

(w + qb−1NW )Oψ(ZW ) =
⊔

α∈[Oψ(ZW )∩D(L)]\D(NW )

(wα+ qb−1NW ). (3.14)

Once we obtain the number of representatives of (w+qb−1NW )Oψ(ZW ) under the modulo

qb−1NW , by (3.14) it gives our desired index.

Assume dimF (ZW ) = 1. Since Oψ(ZW ) = {±1}, we have (w+ qb−1NW )Oψ(ZW ) =

(w + qb−1NW ) ∪ (−w + qb−1NW ), and hence

[D(NW ) : Oψ(ZW ) ∩D(L)] =

{
2 if 2w /∈ qb−1NW ,

1 otherwise.

To observe the condition 2w /∈ qb−1NW more precisely, we may assume ZW = F and

ψ[a] = cWa
2 with cW ∈ F×. Put cW g = pε. Also note that we have t = 0, or t = 2 and

c−1q ∈ κ[K×] with K, c, and κ as in the case t = 2 in Section 2.3. Then by (3.10) we

see that wg = p(ν−ε)/2. We have NW = p−[ε/2]. Combining these with b = 2−1pτ(q), we

see that 2w /∈ qb−1NW if and only if τ(q) ≤ ν − [ν/2] − 1. That is the case if and only

if t = 0 and q ∈ πg×F×2 because the value τ(q) can be found in [10, (3.9) and (3.15)].

This gives assertion (3.13) in the case dimF (ZW ) = 1.
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Assume dimF (ZW ) = 2. Then t = 1 or t = 3. We identify (ZW , ψ) with

(KW , cWκW ) with cW ∈ F×, where KW = A+(ZW ) and κW is its norm form. By

[6, Section 7.2] we have Oψ(ZW ) = {1, ρ}E, where ρ is the generator of Gal(KW /F )

and E = {a ∈ K×
W | aaρ = 1}. Then we see that (w + qb−1NW )Oψ(ZW ) =⊔

b∈[E∩(1+qb−1w−1NW )]\E(wb + qb−1NW ). We put cW g = pε. Recall that NW = q−ε

if KW is ramified over F , and NW = p−[ε/2]r if KW is unramified over F . Here q is

the prime ideal of the maximal order r of KW . Then by (3.10), qb−1w−1NW = qνb−1

if KW is ramified over F , and qb−1w−1NW = qb−1p−[ν/2]r if KW is unramified over F .

Therefore we obtain

[D(NW ) : Oψ(ZW ) ∩D(L)]

=

{
[E : E ∩ (1 + qνb−1)] if KW is ramified over F,

[E : E ∩ (1 + qb−1p−[ν/2]r)] if KW is unramified over F.

Suppose that KW is ramified over F . Note that KW = F (
√
cq) if t = 1, and KW =

F (
√
−dq) if t = 3 with c and d as in Section 2.3. If t = 1 and δ ∈ g×F×2, checking τ(q) by

[10, (3.12)], we have qνb−1 = d, where d is the different of KW relative to F . Therefore

employing [6, Lemma 5.6 (iv) and (iii)], we obtain [E : E ∩ (1 + qνb−1)] = 2. Similarly

for the case where t = 1 and δ ∈ πg×F×2 or t = 3, we have qνb−1 ⊋ d by [10, (3.12)

and (3.18)], and then [E : E ∩ (1 + qνb−1)] = 1 by [6, Lemma 5.6 (iv) and (v)]. Suppose

that KW is unramified over F . Our assumption qb−1 ⊂ p[ν/2]+1 implies that t = 1 and

q ∈ πg×F×2 as observed in the proof of Proposition 3.7. Note that τ(q) = κ + [ν/2].

Then applying [3, Lemma 3.4], we obtain [E : E ∩ (1 + qb−1p−[ν/2]r)] = 1 + Np. This

proves (3.13) in the case dimF (ZW ) = 2.

Assume dimF (ZW ) = 3. Then t = 2 and N [q] = ∅, or t = 4. If t = 4, then D(L)

contains D(N) = Oφ(Z) with the notation of (2.6). Since Oφ(Z) contains Oψ(ZW ) =

D(NW ), we have [D(NW ) : Oψ(ZW ) ∩D(L)] = 1.

Suppose t = 2 andN [q] = ∅. Recall that the conditionN [q] = ∅means c−1q /∈ κ[K×]

with the notation of the case t = 2 in Section 2.3. Then h is contained in L ∩ U ,

more precisely in this case, it is in N + ger + πτ(q)fr by [10, Theorem 3.5 (iii)]. Since

φ(h, er)g = b, we may take v in Lemma 3.4 as er. Then ψ[w] = −q as h − w = cv

with c as in Lemma 3.4. Employing the setting of the case t = 3 in Section 2.3, we may

identify (ZW , ψ) with (B◦, δqβ◦). Also we have B = J + Jω and B◦ = Fη+ Jω with an

unramified quadratic extension J of F , ω, and η as in Section 2.3. Put δqg = pε. Then

we have NW = p−ε/2(gη+ rω) or NW = p−(ε−1)/2(gη+ p−1rω) according as δq ∈ g×F×2

or δq ∈ πg×F×2. Also we see that NW = B◦ ∩P−ε, where P is the prime ideal of the

maximal order O of B. Then we obtain Oψ(ZW ) = C ⊔ (−1ZW )C ⊔ τωC ⊔ (−1ZW )τωC

with C = {τa | a ∈ O×} and τa defined as in the proof of Lemma 2.4.

Putting Y = w + qb−1NW for simplicity, we have Y Oψ(ZW ) = Y C ∪ Y (−1ZW )C ∪
Y τωC ∪ Y (−1ZW )τωC. We shall observe the set Y C. Since Y τa = Y for every τa ∈
C ∩ (Oψ(ZW ) ∩ D(L)) by (3.7), Y C = ⊔τa∈[C∩(Oψ(ZW )∩D(L))]\C(wτa + qb−1NW ). Let

w = π−[ε/2](µη+π−sλω) with µ ∈ g and λ ∈ r, where s = 0 or 1 according as δq ∈ g×F×2

or δq ∈ πg×F×2. Take τa ∈ C with a = k + ℓω, where k ∈ r× and ℓ ∈ r. Then we see

that
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wτa = w + a−1π−[ε/2](2µℓηω + π−s[(kι − k)λω + (ℓιλ− ℓλι)ω2]).

Hence τa ∈ Oψ(ZW ) ∩D(L) if and only if

2µℓηω + π−s[(kι − k)λω + (ℓιλ− ℓλι)ω2] ∈ qb−1P−s. (3.15)

Assume that F (
√
δ) is unramified over F . Also assume that δq ∈ πg×F×2. Then

q ∈ πg×F×2. Since N [q] = ∅, which means c−1q /∈ κ[K×], [10, (3.15)] shows qb−1 =

2qp−(ν−1)/2. We may take J = F + Fw because w2 = δ−1. Then we have λ = 0.

Thus by δβ◦[w] = −1, we obtain µg = p(ν−1)/2. These lead (3.15) for any τa ∈ C, that

is, Y C = Y . From this it follows that Y (−1ZW )C = Y τωC = (−w + qb−1NW ) ̸= Y ,

since w(−1ZW ) = wτω = −w. Also we obtain Y (−1ZW )τωC = Y . These together with

(3.14) prove [D(NW ) : Oψ(ZW ) ∩ D(L)] = 2 under the assumption that ξ(δ) = −1,

N [q] = ∅, and q ∈ πg×F×2. In particular, the condition N [q] = ∅ can be replaced by

A(Z) ≃M2(F ). That is the case if and only if χ(Q(φ)) = 1, because Q(φ) coincides with

the characteristic algebra of (Z,φ). Similarly we obtain [D(NW ) : Oψ(ZW ) ∩D(L)] = 1

when δq ∈ g×F×2. This proves (3.13) in the case where t = 2, ξ(δ) = −1, and N [q] = ∅.
Next assume that F (

√
δ) is ramified over F and δ ∈ πg×F×2. By [10, (3.15)] we find

qb−1 = qp−[ν/2]. Thus we have q ∈ πg×F×2 as qb−1 ⊂ p[ν/2]+1. Observing δβ◦[w] = −1,

we have λr = p(ν−1)/2r and µg ⊂ p(ν+1)/2. Hence (3.15) holds if and only if kι − k ∈ pr,

which is the case if and only if k ∈ g×(1 + pr) by [3, Lemma 3.4]. Therefore we have

C ∩ (Oψ(ZW ) ∩ D(L)) = {τa | a ∈ g×(1 + P)}. Then [C : C ∩ (Oψ(ZW ) ∩ D(L))] =

[O× : 1 +P][g× : 1 + p]−1 = 1 +Np. This finishes the case of Y C. To see Y (−1ZW )C,

observe that (−1ZW )τb ∈ Oψ(ZW ) ∩D(L) for any fixed element b of r× ∩ B◦. Then we

have Y (−1ZW )C = Y (−1ZW )τbC = Y C. Also we have Y τωC = Y (−1ZW )τωC = Y C.

Consequently [D(NW ) : Oψ(ZW ) ∩ D(L)] = 1 + Np if t = 2, ξ(δ) = 0, N [q] = ∅,
δ ∈ πg×F×2, and q ∈ πg×F×2. Since Q(ψ) is the division algebra B, we see that

N [q] = ∅ if and only if χ(Q(ψ)) = −1. This proves (3.13) in the present case.

Finally assume that F (
√
δ) is ramified over F and δ ∈ g×F×2. Note that

2 ∈ p. Suppose δq ∈ g×F×2. Then q ∈ g×F×2. Thus by [10, (3.15)] we obtain

qb−1 = 2D
−1/2

F (
√
δ)/F

p2
−1ν+1. Here DF (

√
δ)/F is the square of an integral ideal of g by [10,

Lemma 5.1 (3)]. From δβ◦[w] = −1 it can be seen that

π−εδ(µ2η2 + ω2β[λ]) = 1. (3.16)

Hence we find µg = pν/2. We assert that λr = qb−1p−1r. Indeed, we have 2ψ(w,NW ) ⊂
qb−1, since w = h − cv. Combining this with 2ψ(w,NW ) = δqπ−ε(2µg + pTrJ/F (λr)),

we have λr ⊂ qb−1p−1r. If λr ̸= qb−1p−1r, then δ−1πε − µ2η2 = ω2β[λ] ∈ (qb−1)2 by

(3.16). Thus we have δ−1F×2 ⊂ η2(1 + q−1(qb−1)2)F×2, which is impossible because

δ−1 /∈ (1 + 4D−1

F (
√
δ)/F

p2)F×2 and η2 ∈ (1 + 4g)g×2 by [10, Lemma 4.2 (1)]. Thus

λr = qb−1p−1r as desired. In a similar way to the case where F (
√
δ) is ramified over F

and δ ∈ πg×F×2, we see that [C : C ∩ (Oψ(ZW ) ∩D(L))] = 1 +Np. To see Y τωC, let

λr = pmr and put λ0 = λπ−m. Observe that τωλ−1
0

∈ Oψ(ZW ) ∩D(L). Then Y τωC =

Y τωτ
−1
λ0
C = Y C. Also we have Y (−1ZW )C = Y (−1ZW )τωC = Y C. Consequently we

obtain [D(NW ) : Oψ(ZW ) ∩ D(L)] = 1 + Np if ξ(δ) = 0, δ ∈ g×F×2, χ(Q(ψ)) = −1,
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and q ∈ g×F×2. When δq ∈ πg×F×2, we see that [D(NW ) : Oψ(ZW ) ∩D(L)] = 1 in a

similar way. This proves (3.13) in the case dimF (ZW ) = 3.

Assume dimF (ZW ) = 4, that is, t = 3 and N [q] = ∅. Then qb−1 = pν−[ν/2] as

shown in the proof of Proposition 3.7. This combined with qb−1 ⊂ p[ν/2]+1 implies that

q ∈ πg×F×2, and hence qb−1 = (qp)1/2. We put (ZW , ψ) = (B, β) with the notations

as in the case t = 4 in Section 2.3. Then NW is the maximal order of B. We see that

w + qb−1NW = w(1 +P) because ψ[w]g = qg, where P is the prime ideal of NW . Since

β[w(1+P)Oψ(ZW )] = β[w(1+P)], we have w(1+P)Oψ(ZW ) = w(1+P)EB with EB =

{u ∈ B |β[u] = 1}. From these we obtain w(1 +P)Oψ(ZW ) =
⊔
u∈[EB∩(1+P)]\EB w(1 +

P)u. Hence by Lemma 3.6 (ii), [D(NW ) : Oψ(ZW ) ∩ D(L)] = 1 + Np. The condition

N [q] = ∅ is equivalent to ξ(δq) = 1. This proves (3.13) in the case dimF (ZW ) = 4. This

completes the proof of the theorem. □

4. Applications.

4.1. Let (V, φ) be a quadratic space over Q such that φ is positive definite. Let L

be a maximal lattice in V . We can compute
∑
y∈Y [Γ(Ly

−1) : 1]−1#(Ly−1)[q, b] in (2) in

the introduction under condition (3), using the explicit formula obtained by our result.

As mentioned in the introduction, the result is related to the weighted average of the

number of primitive representations of an integer by a quadratic form in a specified genus

in terms of matrices. For the definition of the genus and class of a symmetric matrix, see

[8, Section 30.10].

Let φ0 be the matrix representing φ with respect to a Z-basis of L. This matrix

φ0 is reduced as a quadratic form in the sense that if p−1φ0 · tp−1 is semi-integral with

p ∈ Mn(Z) ∩ GLn(Q), then det(p) = ±1 (cf. [8, Section 31.3]). Then the genus of

φ0 consists of all symmetric matrices that are reduced. We identify (V, φ) and L with

(Q1
n, φ0) and Z1

n. Let {Lj}j∈J be a complete set of representatives for the Oφ(V )-

classes in the genus of all maximal lattices in V . Let Lj = Z1
nαj with αj ∈ GLn(Q) for

j ∈ J . Then the set of all Oφ(V )-classes in the genus of maximal lattices in V is mapped

bijectively onto the set of all O-classes in the genus of matrices that are reduced under

the correspondence Lj 7→ αjφ0 · tαj . To reformulate the sets Lj [q, b] for j ∈ J in this

situation, put b = bZ. We observe that φ(x, Lj) = b if and only if b−1xφ0 · tαjZn1 = Z

for x ∈ V . Moreover take the smallest positive integer ℓ(φ) such that ℓ(φ)(2φ0)
−1 is

even-integral. Then assigning b−1xφ0 · tαj to x, we get a bijection of Lj [q, b] onto the set{
y ∈ Z1

n

∣∣∣ yφ̃j · ty = q̃, yZn1 = Z
}
,

where φ̃j = ℓ(φ) (2αjφ0 · tαj)
−1

and q̃ = 2−1ℓ(φ)qb−2. Thus #Lj [q, b] coincides with

#
{
y ∈ Z1

n

∣∣∣ yφ̃j · ty = q̃, yZn1 = Z
}
, which is the number of primitive solutions of the

equation φ̃j [y] = q̃. We denote the latter number by B(φ̃j , q̃). Note that q̃ is an even-

positive integer and depends on b. We also note that there is a relation between the

number B(φ̃, q̃) of primitive solutions and the number A(φ̃, q̃) of solutions of φ̃[x] = q̃ in

Z1
n as follows:
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B(φ̃, q̃) =
∑
d

d2|q̃

µ(d)A(φ̃, d−2q̃),

where µ is the Möbius function and d runs over all positive integer such that d2 | q̃.
The correspondence αjφ0 · tαj 7→ φ̃j gives a bijection of the set of all O-classes in

the genus of φ0 onto the set of all O-classes in the genus of φ̃ with φ̃ = ℓ(φ)(2φ0)
−1. Put

Γ·(Lj) = {γ ∈ Oφ(V ) |Ljγ = Lj} and E(φ̃j) = #
{
α ∈ GLn(Z)

∣∣∣ tαφ̃jα = φ̃j

}
. Then

[Γ·(Lj) : 1] = E(φ̃j) via the isomorphism γ 7→ αjγα
−1
j . Put M(φ̃) =

∑
j∈J E(φ̃j)

−1 as

was defined in [9, (41)] due to Siegel.

Now we have m(SOφ(V ), C(L)) = 2m(Oφ(V ), D(L)) by [3, Lemma 5.6 (1)], where

C(L) is of (1) in the introduction and D(L) = {γ ∈ Oφ(V )A |Lγ = L}. Also we see that∑
y∈Y [Γ(Ly

−1) : 1]−1#(Ly−1)[q, b] = 2
∑
j∈J [Γ

·(Lj) : 1]
−1#Lj [q, b] in a similar way to

the proof of [3, Lemma 5.6 (1)]. Consequently we obtain∑
y∈Y [Γ(Ly

−1) : 1]−1#(Ly−1)[q, b]

m(SOφ(V ), C(L))
=

∑
j∈J E(φ̃j)

−1B(φ̃j , q̃)

M(φ̃)
. (4.1)

Via equality (4.1), we can derive a result on primitive solutions from our result

concerning L[q, b]. For example, let V = Q1
6 and φ[x] =

∑6
i=1 x

2
i for x = (xi)

6
i=1 ∈ V .

Also put L = Ze1 + Ze2 +
∑3
i=2(Ze2i−1 + Zf2i) with the standard basis {ei}6i=1 of V

and f2i = 2−1(e2i−3 + e2i−2 + e2i−1 + e2i). Then [2, Section 3.2] shows that L is a

maximal lattice in V . The genus of all maximal lattices in V coincides with the Oφ(V )-

class of L, and also with the SOφ(V )-class of L, which is explained in [6, Section 12.12].

By applying our result to the present case, we can compute #L[q,Z] for a squarefree

positive integer q; see (4.4) below. Now the above φ0 in this case is given by φ0 = α · tα
with α ∈ GL6(Q) such that tα = [te1

te2
te3

tf4
te5

tf6]. Looking at (2φ0)
−1, we find

ℓ(φ) = 4. This can also be seen by [8, Section 31.5 and (29.9)]. Thus applying (4.1) with

b = Z, we have #L[q,Z] = B(φ̃, q̃), where φ̃ = 4(2φ0)
−1 and q̃ = 2q. Therefore #L[q,Z]

equals the number of primitive solutions of

6x21 + 6x22 + 4x23 + 16x24 + 4x25 + 8x26 + 2(4x1x2 + 2x1x3 − 8x1x4 − 2x1x5

+ 4x1x6 + 2x2x3 − 8x2x4 − 2x2x5 + 4x2x6 − 4x3x4 + 4x4x5 − 8x4x6 − 4x5x6) = 2q.

4.2. Let V = Q1
n and φ[x] =

∑n
i=1 x

2
i with n = 6, 8, or 10, where x = (xi)

n
i=1 ∈ V .

Take a maximal lattice L in V . As applications of our result, for a given square-

free positive integer q we give an explicit formula for #L[q, b] or
∑
y∈Y [Γ(Ly

−1) :

1]−1#(Ly−1)[q, b] according as n = 6 or 8, or n = 10, with b satisfying condition (3); see

Proposition 4.3 below. To state the formula, we mention some basic facts.

Take h ∈ L[q] = {x ∈ L |φ[x] = q}. Put W = (Qh)⊥ and let ψ be the restriction of

φ to W . Then by [10, Theorem 6.3],

L ∩W is maximal in W if and only if h ∈ L[q, b]. (4.2)

Here the ideal b is given by
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b = 2−1
∏
p

(pZ)τp(q)

with τp(q) in [10, Theorem 3.5] depending only on (V, φ) and q. Here p runs over all

prime numbers. By [6, (12.17)] we have L[q] = L[q, 2−1Z]⊔L[q,Z], since q is squarefree.

Thus b equals 2−1Z or Z. More precisely, [10, (7.1)] shows that

b =



Z if n = 6 and q ≡ 2, 3 (mod 4),

2−1Z if n = 6 and q ≡ 1 (mod 4),

2−1Z if n = 8,

Z if n = 10 and q ≡ 1, 2 (mod 4),

2−1Z if n = 10 and q ≡ 3 (mod 4).

If n = 6 or 8, then we see that # (SOφ(V )\SOφ(V )A/C(L)) = 1 from [6,

Section 12.12]. Assume n = 10. From [2, Section 3.2] and [6, Lemma 9.23 (i)],

# (SOφ(V )\SOφ(V )A/C(L)) equals 2 and {L1, L2} gives a complete set of represen-

tatives for the SOφ(V )-classes in the genus of all maximal lattices in V . Here

L1 = N1 +N2, L2 = Ze1 + Ze2 +
5∑
i=2

(Ze2i−1 + Zf2i), (4.3)

N1 = Ze1 + Ze2 +
3∑
i=2

(Ze2i−1 + Zf2i) + Zg7 + Zf8, N2 = Ze9 + Ze10

with the standard basis {ei}10i=1 of V , f2i = 2−1(e2i−3 + e2i−2 + e2i−1 + e2i), and g7 =

2−1(e1 + e3 + e5 + e7). Note that N1 (resp. N2) is a maximal lattice in
∑8
i=1 Qei (resp.

Qe9 +Qe10) by [2, Lemma 3.1].

Proposition 4.3. Let V = Q1
n and φ[x] =

∑n
i=1 x

2
i for x = (xi)

n
i=1 ∈ V , with

n = 6, 8, or 10. Let L be a maximal lattice in V . Then for a squarefree positive integer

q the following assertions hold :

(i) Assume n = 6. Then we have

#L[q,Z] =
∏
p|q

(
p2 +

(
−1

p

))
·


3 if q ≡ 2 (mod 8),

5 if q ≡ 6 (mod 8),

23 if q ≡ 3 (mod 4), (4.4)

#L[q, 2−1Z] = 60
∏
p|q

(
p2 +

(
−1

p

))
if q ≡ 1 (mod 4). (4.5)

Here p runs over all prime factors of q and (−1
p ) is the quadratic residue symbol.

We understand that
∏
p|q = 1 if q = 1.

(ii) Assume n = 8. Then we have



917(39)

On the solutions of quadratic Diophantine equations II 917

#L[q, 2−1Z] = 240
∏
p|q

(
p3 + 1

)
. (4.6)

(iii) Assume n = 10. When q ≡ 1, 2 (mod 4), we have

#L1[q,Z]

216 · 35 · 52 · 7
+

#L2[q,Z]

217 · 34 · 52 · 7
=

1

219 · 35 · 52 · 7
c(q)

∏
p|q

(
p4 +

(
−1

p

))
, (4.7)

where L1 and L2 are given in (4.3) and

c(q) =


25 if q ≡ 1 (mod 4),

17 if q ≡ 2 (mod 8),

3 · 5 if q ≡ 6 (mod 8).

When q ≡ 3 (mod 4), we have

#L1[q, 2
−1Z]

216 · 35 · 52 · 7
+

#L2[q, 2
−1Z]

217 · 34 · 52 · 7
=

17

215 · 34 · 5 · 7
∏
p|q

(
p4 +

(
−1

p

))
. (4.8)

Proof. Assume n = 6. Let us compute #L[q,Z] when q ≡ 2, 3 (mod 4). Then

[10, Theorem 7.5] asserts that L[q,Z] ̸= ∅. Thus we can take an element h of L[q,Z].

Put W = (Qh)⊥ and let ψ be the restriction of φ to W . Then L ∩W is maximal in W .

Put M = L ∩W . Because # (SOφ(V )\SOφ(V )A/C(L)) = 1, mass formula (2) in the

introduction provides

#L[q,Z] = [Γ(L) : 1] ·m(SOψ(W ), SOψ(W )A ∩ C(L)), (4.9)

where Γ(L) = SOφ(V ) ∩C(L). We see that [Γ(L) : 1] = 29 · 32 · 5 from [Oφ(V ) ∩D(L) :

1] = 210 · 32 · 5, which is given by the proof of [5, Lemma 1.6]. Now, since M is maximal

in W , (4) in the introduction combined with (5) gives

m(SOψ(W ), SOψ(W )A ∩ C(L)) = [C(M) : SOψ(W )A ∩ C(L)]m(SOψ(W ), C(M)).

(4.10)

Moreover applying Corollary 2.7 to m(SOψ(W ), C(M)), we see that

m(SOψ(W ), C(M)) = (28 · 32 · 5)−1[M̃ :M ]2
∏
p|e

λp, (4.11)

where e is the product of all prime numbers for which M̃p ̸= Mp and λp is as in Corol-

lary 2.7. From now on, we only treat the case of q ≡ 2 (mod 8), because the other cases

can be handled in a similar way.

To compute [C(M) : SOψ(W )A∩C(L)], [M̃ :M ], and
∏
p|e λp, we need to determine

the core dimension sp of (Wp, ψp), the core dimension tp of (Vp, φp) for any prime number

p, the characteristic algebra Q(φ) of (V, φ), and the characteristic algebra Q(ψ) of (W,ψ).

As for tp, by [8, (28.4)] we have tp = 0 if p ≡ 1 (mod 4), and tp = 2 if p = 2 or p ≡ 3

(mod 4). By the proof of [8, Theorem 28.5], Q(φ) is a definite quaternion algebra over



918(40)

918 M. Murata and T. Yoshinaga

Q ramified exactly at 2. Now, assume (−1
p ) = 1, then tp = 0. Hence sp = 1, and then

p is unramified in Q(ψ) by the definition. Next assume (−1
p ) = −1. Let Kp be the

discriminant field of (Vp, φp), that is, Kp = Qp(
√
−1). We have tp = 2, and hence sp = 1

or 3 according as c−1q ∈ κp[K
×
p ] or c

−1q /∈ κp[K
×
p ]. Here c and κp are as in the case

t = 2 in Section 2.3. Since Q(φ)p = M2(Qp) is the Clifford algebra of the restriction of

φp to a core subspace of Vp, we have c ∈ κp[K
×
p ] as was mentioned in the case t = 2 in

Section 2.3. Then c−1q ∈ κp[K
×
p ] if and only if p ∤ q because Kp is unramified over Qp.

Therefore if p | q, then sp = 3, and hence p is ramified in Q(ψ) because Q(ψ)p is the

even Clifford algebra of the restriction of ψp to a core subspace of Wp. Also if p ∤ q, then
sp = 1, and hence p is unramified in Q(ψ). Finally we consider the case of p = 2. By [8,

Theorem 26.6 (i)] the number of prime numbers ramified in Q(ψ) is odd, since Q(ψ) is

ramified at the archimedean prime of Q from [8, (28.3b)]. From the above argument, p

is ramified in Q(ψ) if and only if p | q and p ≡ 3 (mod 4) for an odd prime number p.

The number of these prime factors of q is even because q ≡ 2 (mod 8). Therefore 2 must

be ramified in Q(ψ). From this we have s2 = 3.

Once we obtain the data of sp, tp, Q(φ), and Q(ψ), Theorem 3.8 gives [C(M) :

SOψ(W )A ∩ C(L)] = 2ℓ, where ℓ is the number of all odd prime factors of q. Applying

[8, (21.3e) and Theorem 31.2 (iii)] to (W,ψ) and M , we find [M̃ : M ] = 2q, since the

discriminant field of ψ is Q(
√
q). By [8, (21.3b)] we have e = 2q. Thus by Corollary 2.7

we see that
∏
p|e λp = 2−(ℓ+3) · 3

∏
p|q(1 + (−1

p ) 1
p2 ). Combining these with (4.9), (4.10),

and (4.11), we obtain (4.4). Assertion (4.5) can be obtained in a similar way. This

proves (i).

Assume n = 8. Then by [10, Theorem 7.5] we have L[q, 2−1Z] ̸= ∅ for any q. [3,

Section 5.16] shows that [Oφ(V ) ∩ D(L) : 1] = 214 · 35 · 52 · 7, and hence [Γ(L) : 1] =

213 · 35 · 52 · 7. Moreover by [8, (28.4)], for any prime number p we have tp = 0. Thus

sp = 1, and hence Q(ψ) is unramified at p for any p. Using these, we obtain (ii) in a

similar way to the proof of (i).

Assume n = 10. Then from [4, Section 6.8] we obtain [Oφ(V )∩D(L1) : 1] = 217 ·35 ·
52·7 and m(Oφ(V ), D(L)) = (218·35·5·7)−1. From these we have [Γ(L1) : 1] = 216·35·52·7
and [Γ(L2) : 1] = 217 · 34 · 52 · 7. Now [10, Theorem 7.5] leads that L1[q,Z] ̸= ∅ if q ≡ 1, 2

(mod 4), and L1[q, 2
−1Z] ̸= ∅ for any q. Taking h ∈ L1[q, b] with b = Z or 2−1Z

according as q ≡ 1, 2 (mod 4) or q ≡ 3 (mod 4), we define (W,ψ) in the same manner

as in the case n = 6. Then by (2), (4), and (5) we obtain

#L1[q, b]

216 · 35 · 52 · 7
+

#L2[q, b]

217 · 34 · 52 · 7
= [C(M) : SOψ(W )A ∩ C(L)]m(SOψ(W ), C(M)).

Here M = L ∩W , which is maximal in W . Then we can show (iii) in a similar way to

the proof of (i). This completes the proof. □

We note that (4.5), (4.6), and (4.8) can also be seen by applying [4, Theorem 1.5]

to (V, φ), a maximal lattice L in V , and q in each case, since L[q] = L[q, 2−1Z]. The fact

L[q] = L[q, 2−1Z] can be obtained as follows: Taking h ∈ L[q], we have b ⊂ φ(h,L) ⊂
2−1Z from [10, Theorem 3.5], with b of (4.2). Since b = 2−1Z in the case of (4.5), (4.6),

or (4.8), we obtain h ∈ L[q, 2−1Z], which proves the desired fact.
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On the sums of n squares we remark that if n = 3, then #L[q,Z] is given by [6,

(12.10)]. Also if n = 5, 7, or 9, then [6, Theorem 13.14] provides #L[q, 2−1Z] and

#L[q,Z]. When n = 4, by [10, Theorem 7.5] we have #L[q, 2−1Z] = #L[q] if q is odd,

and #L[q,Z] = #L[q] if q is even. The number #L[q] is given by [5, Section 1.7]. Here

L is a maximal lattice in Q1
n and q is a squarefree positive integer.

Let us give a few numerical examples for (4.7). Let m(q) be the right-hand side of

(4.7) for a squarefree positive integer q. Then, for example, #L1[1,Z] = 22, #L2[1,Z] =

0, and m(1) = (214 · 35 · 52 · 7)−1; #L1[2,Z] = 22, #L2[2,Z] = 22 · 5, and m(2) =

(215 · 35 · 52 · 7)−1 · 17; #L1[58,Z] = 23 · 149 · 8069, #L2[58,Z] = 23 · 34 · 5 · 2969, and
m(58) = (214 ·35 ·52 ·7)−1 ·17 ·353641; #L1[494,Z] = #L2[494,Z] = 27 ·33 ·5 ·181 ·14281
and m(494) = (210 ·32 ·7)−1 ·181 ·14281. These numbers were verified by Yoshio Hiraoka

using a computer.
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