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Abstract. Ribbon tangles are proper embeddings of tori and cylinders
in the 4-ball B4, “bounding” 3-manifolds with only ribbon disks as singulari-
ties. We construct an Alexander invariant A of ribbon tangles equipped with
a representation of the fundamental group of their exterior in a free abelian
group G. This invariant induces a functor in a certain category Ribg of tan-
gles, which restricts to the exterior powers of Burau—Gassner representation
for ribbon braids, that are analogous to usual braids in this context. We de-
fine a circuit algebra Cobg over the operad of smooth cobordisms, inspired
by diagrammatic planar algebras introduced by Jones [Jon99], and prove
that the invariant A commutes with the compositions in this algebra. On
the other hand, ribbon tangles admit diagrammatic representations, through
welded diagrams. We give a simple combinatorial description of A and of the
algebra Cobg, and observe that our construction is a topological incarnation
of the Alexander invariant of Archibald [Arc10]. When restricted to dia-
grams without virtual crossings, A provides a purely local description of the
usual Alexander poynomial of links, and extends the construction by Bigelow,
Cattabriga and the second author [BCF15].

1. Introduction.

A ribbon torus link is a locally flat embedding of disjoint tori S* x S in the ball B*,
bounding locally flat immersed solid tori S* x D? whose singular sets are finite numbers of
ribbon disks. These elementary singularities are 4-dimensional analogues of the classical
notion of ribbon introduced by Fox [Fox73]. Ribbon torus links are considered up to
ambient isotopy; the fundamental groups of their complement and the derived Alexander
modules provide topological invariants.

In this paper, we consider ribbon tangles that are ribbon proper embeddings of
disjoint tori and cylinders in the ball B*. The intersection of a given tangle T with 9B* =
93 is a trivial link L. For a given free abelian group G, tangles are colored with a group
homomorphism ¢: H;(B*\ T) — G. We construct an Alexander invariant A of colored
ribbon tangles, lying in the exterior algebra of the homology Z[G]-module HY (S3\ L),
twisted by the morphism induced by ¢, see Definition 2.4. This invariant coincides with
the Alexander polynomial in the case of tangles with only two boundary components, see
Proposition 2.6. The construction of A is based on the Alexander function introduced
by Lescop [Les98]. The proof of the invariance and the main properties follow from
algebraic and homological arguments developed in a paper by the second author and
Massuyeau [FM15].
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Ribbon colored tangles can be splitted into morphisms in a category Ribg. We
show that the invariant A induces a functor from Ribg to the category of Z[G]-graded
modules, see Theorem 2.10. In the case of ribbon braids, that are the analogues of braids
in this context, the functor coincides with the exterior powers of the ad-hoc colored
Burau-Gassner representation, multiplied by a certain relative Alexander polynomial,
see Proposition 2.9.

The multiplicativity of A fits naturally in the context of planar algebras, introduced
by Jones [Jon99]. We construct an algebra Cobg over the colored cobordisms operad,
see Theorem 3.3. The cobordisms are smooth cylinder in B* with a finite collection of
disjoint “small” balls removed, and the compositions are given by identification of some
boundary components. We observe that cobordisms act on tangles and that A commutes
with this action, see Theorem 3.4.

Ribbon knotted objects admit representations as broken surfaces via projections on
the 3-dimensional space, and through welded diagrams which are representations in the
2-dimensional space. These representations were first introduced by Yajima [Yaj64] and
Satoh [Sat00]. A complete description is given in the papers by Audoux, Bellingeri,
Meilhan and Wagner [ABMW17], [Aud16]. This offers perspectives from both point
of view: diagrams permit combinatorial computations of invariants of ribbon knotted
objects, and ribbon knotted objects provide topological realizations of welded diagrams.
Moreover, a presentation of the group of ribbon knotted objects is obtained from the
diagrams by a Wirtinger type algorithm, see [ABMW17].

We give a diagrammatic description of the invariant A, see Theorem 4.6 and show
that it extends the multivariable Alexander polynomial of virtual tangles developed
by Archibald and Bar-Natan. For futher details on these objects, see also [BNS13]
and [Pol10]. The algebra Cobg appears as a topological incarnation of a circuit algebra
of diagrams Weld,,, essentially introduced in [Arc10]. The compatibility of A with
this structure allows local calculations in the diagram. If these diagrams do not have
any virtual crossing, the construction holds for usual links, and we obtain a purely local
description of the usual Alexander polynomial. This extends the construction of the
Alexander representation by the second author, Bigelow and Cattabriga, see [BCF15].

Our construction arises in the context of defining generalizations of Alexander
polynomials to tangle-like objects, in which we can include, in addition to [BCF15]
concerning usual tangles and [Arcl0], [Pol10] concerning virtual tangles, also the
works of Cimasoni and Turaev, through Lagrangian categories [CT05], Bigelow [Bigl2]
and Kennedy [Kenl3] which studied diagrammatical invariants of usual tangles,
Sartori [Sarl5], who defined quantum invariants of framed tangles, and Zibrowius
in [Zib16]. This last one in particular defines an invariant for usual tangles which con-
sists in a finite set of Laurent polynomials, and states, without explicit calculation, that
on usual tangles, one can calculate Archibald’s invariant from his set of invariants and
vice versa. However, nothing seems to appear in the literature about the 4-dimensional
case of ribbon tangles.

In Section 2, we recall the definitions of ribbon tangles and construct the invariant A.
Section 3 is devoted to the circuit algebra Cobg over the cobordism operad, and the
properties of A with respect with the action of cobordisms on tangles. In Section 4,
we describe the diagrammatic construction of A and a circuit algebra Weld,, related



Alezander invariants of ribbon tangles and planar algebras 1065
to Cobg. In Section 5, we compute some examples.

2. The Alexander invariant A.
In this section, G is a free abelian group, and R is the group ring Z[G].

2.1. Ribbon tangles.

Let m be a positive integer and X a submanifold of the m-dimensional ball B™.
An immersion Y C X is locally flat if and only if it is locally homeomorphic to a linear
subspace RF in R™ for some k < m, except on X and/or Y, where one of the R
summands should be replaced by Ry. An intersection Y1 NY; C X is flatly transverse
if it is locally homeomorphic to the intersection of two linear subspaces R** and R*2 in
R™ for some positive integers ki, ka < m except on 90X, 9Y; and/or 9Ys, where one of
the R summands is replaced by R..

An intersection D = Y1 ﬁYg C S*is a ribbon disk if it is homeomorphic to the 2-disk
and satisfies: D C Yl, Dc Y2 and 0D is an essential curve in dY5. More details on
ribbon knotted objects can be found in [ABMW17], [Aud16]. Denote I = [0;1].

DEFINITION 2.1.  Let L be an oriented trivial link with 2n components in S® = 9B*.
A ribbon tangle T is a locally flat proper embedding in B* of oriented disjoint annuli
S! x I denoted Aq,..., A, and disjoint tori S' x S' denoted Ei,..., E,, such that:

i) There exist locally flat immersed solid tori F; for ¢ = 1,...,m such that OF; = E;.

ii) 0A; C L and the orientation induced by A; on 9A; coincides with the given orien-
tation of the two components of L.

iii) There exist n locally flat immersed 3-balls B; ~ B? x I such that, for all i €

{1,...,n}k:
OB; = A; Uy (B? x {0,1}).

iv) The singular set of the fillings B; and F} is composed by a finite number of ribbon
disks.

A G-colored ribbon tangle is a pair (T, ¢) where T is a ribbon tangle with comple-
ment X7 = B*\ T, equipped with a group homomorphism ¢: Hy(Xr) — G.

2.2. Definition of the Alexander invariant A.
Let (X,Y) be a pair of topological spaces. Denote p: X — X the maximal abelian
cover. For a ring homomorphism ¢: Z[H;(X)] — R, we define the twisted chain complex

CHX,Y) = C(X,p~ (V) @z, x)) R

whose homology is denoted HY (X,Y; R), or simply Hf (X,Y).
Let (T, ) be a G-colored ribbon tangle. The homomorphism ¢ extends to a ring
homomorphism ¢: Z[H;(X7)] — R. For the rest of this section, we set H = H{ (X, *).

PROPOSITION 2.2. The R-module H admits a presentation with deficiency n.
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We postpone the proof of Proposition 2.2 to the end of Section 4.1. Consider a
presentation of H of the form:

H={(V, s Yntq | T1,---:Tq)-

Let I' be the free R-module generated by (v1,. .., Vntq): the relators rq,...,r, are words
in these generators in I'. Let us denote r =r1 A---Argand v = v1 A -+ AYptq. The
Alexander function A%: A" H — R is the R-linear map defined by

rAta=A%(u) -y

for all w = uy A--- Au, € N"H, where 4y,---,U, are arbitrary lifts in I" and @ =
Uy A« -+ Ally,. Different n-deficient presentations will give rise to Alexander functions that
differ only by multiplication by a unit in R. Note that if H is free of rank n, then A% is
a volume form.

Let us consider the ¢ x (¢ + n) matrix defined by the presentation of H. If one
adds to this matrix the row vectors giving u1, ..., u, in the generators vi,...,744n, then
AX.(u) is the determinant of the resulting (¢ + n) x (¢ + n) matrix.

ExXaMPLE 2.3. Suppose that G has rank 2 and is generated by t1,t5. Consider the
module H whose presentation has generators 71, ...,v4 and two relations given by the

matrix:
-10 1 0
0 —11—tity) "

The values of the Alexander function A: A? H — R are

A1 Ay2) =t2, A1 Av3) =0, Alyi Aya) =1,
A2 Ay3) = —to, A2 Ava) =1—1t1, A(y3Ay) =1

Let Hy = H{(S®\ L,*), which is the free R-module of rank 2n, generated by the
meridians of L. Let my: Hy — H be induced by the inclusion map S®\ L < X7. For
short, for a given z € A"Hp, we use the notation mgz for A"mg(z).

DEFINITION 2.4. The element A(T, ) of A" Hp is the (colored) isotopy invariant
defined by the following property:

Vz e A"Hy, AT(mpz) = wa(A(T, @) A 2) (2.1)
where wy is a volume form on Hjy.

2.3. The Alexander polynomial of a (1 — 1)-tangle.

Given a finitely generated R-module H, and k& > 0, the k-th Alexander polynomial
of H is the greatest common divisor of all minors of order (m —k) in a ¢ X m presentation
matrix of H. This invariant of H, denoted Ag(H) € R, is defined up to multiplication
by a unit of R.
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DEFINITION 2.5. The Alexander polynomial A¥(T) € R of a G-colored ribbon
tangle (T, ) is Ao (HY (Xr)).

Similarly to classical knot theory, T is a (1 — 1)-tangle if n = 1. The components of
T in B* consist of m tori and a cylinder whose boundary is a 2-component trivial link L
in 8% = OB%. Let x; and x5 be the meridians of the components of L. Note that in X7,
both z; and —x5 are homologous to the meridian x of the cylinder. We use the same
notations z; and x5 for the homology classes of their lifts in HY (S®\ L, *).

PROPOSITION 2.6. Let (T,¢) be a G-colored (1 — 1)-tangle, such that ¢ is not
trivial. Denote t = p(x) and let r be the rank of o(H1(Xr1)). Then the element A(T, o)
of Hy is given by

A(T, ) = (t—1AL(T) - (v1—22)  ifr>2,
) A‘/’(T)(il —£E2) ZfT: 1.

It is worth noticing that, up to a unit in R, the result is independent of the order
chosen on the components of L. For the reader’s convenience, we give a short proof of
Proposition 2.6. More detailed arguments can be found in [FM15, Section 3].

PrROOF. Denote H = H{(Xr,*). From the long exact sequence of the
pair (X, *):
0 —— Hf(Xr) H HY () —— HJ(Xr) —— 0,

we deduce that TorsH{ (Xr) ~ TorsH. Moreover, tkH = rkH{ (Xr) + 1. This implies
that

Let A be the matrix of a presentation of H = (y1,...,%¢+1 | m1,...,7q), and A? be the
related Alexander function. We have

q+1
Vz1,... yZq+1 € R, .A“”(zlfyl + -+ Zq+1’yq+1) = Z det(AZ-)zi,
=1

where A; is A with the i-th column removed. Hence,
A1 (H) = god A#(H) = ged{p(h); h € H}.

If A =0, then A,(T) = 0. Consider now the connecting homomorphism 9,: H —
HY(x) ~ R. If A¥ # 0, then rank (H) = 1 and two linear maps H ® g QR — QR are
linearly dependent, where QR is the fraction field of R. Then there exist elements P, )
in R such that for each h € H, A?(h) = (P/Q)0.(h). Hence

. (h)

A®(h) = A(T) - wedo. ()
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For a loop 7 based in * with lift 4, one has 9,5 = ¢(y) — 1. Hence, ged 0.(H) is equal
to 1if r > 2 and is equal to t — 1 if r = 1. We deduce that for all h € H

AP (h) = (t—1AY(T) ifr>2,
| Av(T) if r=1.

Let wy be the volume form on Hy relative to the choice of the meridians x1,zs. By
definition, A (T, ¢) verifies A% (moz) = wa(A(T, p)Az). Since mg(z1) = x and mg(z2) =
—x, we obtain the result from

A?(z) = wa(A(T, @) A1) = —wa(A(T, ) A x2). O

2.4. The Burau functor.

We begin with defining ribbon cobordisms in B> x I. Let Ly and L; be two trivial
links in the interior of B3. Assign a sign to each component of the links. A ribbon
cobordism from Ly to L is a collection S of ribbon annuli and tori in B® x I whose
boundaries are Ly in B2 x {0} and L; in B3 x {1}, with according signs. Two cobordisms
are equivalent if there is an ambient isotopy fixing the boundary circles Lo and L.

The category Rib of ribbon cobordisms is the category whose: objects are sequences
¢ of signs +1 of length n, corresponding to trivial links with n components in B3, such
that € is a sequence of signs affected to the components; morphisms g — &1 are the
equivalence classes of ribbon cobordisms between Ly and Li. The degree of a morphism
go — €118 § = (n1 — ng)/2. The composition S o 5" of two ribbon cobordisms S and S’
in Rib is defined by identifying (B* x {1}, 5’) to (B? x {0}, 5).

The category Rib can be refined to the category of colored ribbon cobordisms Ribg.
An object is a pair (g, ), where ¢: Hy(B3\ L) — G. A morphism (g9, o) — (1, 1) is
a pair (S, ¢) such that pom; = ¢; for i = 0,1, if m; are induced by the inclusions X, —
Xs, where X7, = (B? x {i})\ L; and Xg = (B3> x I)\ S.

Let grModg be the category of Z-graded R-modules, whose morphisms are graded
R-linear maps of arbitrary degree, up to multiplication by an element of £G. We now
define a projective functor p: Ribg — gr.Modg, which will be called the Burau functor.

We fix a base point * in B>. Given a trivial link L with n components in B3, and a
homomorphism ¢: Hy(B3\ L) — G, we denote by M the free R-module of Hf (X[, *; R)
of rank n. In particular, for i = 0,1, taken L; as before on B3 x {i}, we denote by M;
the free R-module HY*(Xy,,*; R) of rank n;. The map

p: Ribg — grModg

is defined by the following construction. Let (g, ¢) be an object of Ribg, corresponding
to a trivial link L. The image by p of (g, ) is

ple, @) = AM

the exterior algebra of the free R-module M. To a morphism (S, ¢): (g0, p0) = (€1, %1),
we associate a R-linear map
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p(S, (,D)Z N My — /\]\417

of degree § as follows. Let J be the interval in B x I, which connects the base
points of the bottom and top balls. By Proposition 2.2, the R-module H{ (Xs,J; R)
admits a presentation with deficiency d = (ng + n1)/2. Consider the Alexander function
A% NYHY (X5, J; R) — R. For any integer k > 0, the image p(S, p)(z) € A*OM, of
any x € AFMj is defined by the following property

Yy € ANTFMy, AZ(ANFmo(x) AN Fma(y) = wi (p(S,9) () Ay)
where w; is a volume form on M;.
THEOREM 2.7.  The map p is a degree preserving functor Ribg — grModg.

The proof of Theorem 2.7 follows word by word the proof of [FM15, Theorem IJ.
Note that the deficiency of the presentation of H{ (Xg, J; R) depends only on ng and n;.

A G-colored ribbon tube (S,¢) is a morphism such that the inclusions mg and m;
induce isomorphisms in homology (with integer coefficients). Ribbon tubes are analogous
to string links; the links Ly and L; have the same number of components, and S has no
toric component. For a fixed ¢, the set of G-colored ribbon tubes forms a monoid 7.
Following [KLWO01, Proposition 2.1], one proves that mg and m; induce isomorphisms

(mi)s: H?(XL,: QR) — H?(Xg:QR), for i = 0,1

where QR is the quotient field of R. Set H¥ to be H?(X,; QR) = H?(Xr,; QR). Set
L = Lo = L;. The composition m; ' omg is an automorphism of H?(X1; QR).

DEFINITION 2.8. The colored Burau representation is the monoid homomorphism
r¥: T, — Aut(H?).

Let A?(Xr, X1) = Ao (HY (X1, Xr; R)) be the Alexander polynomial of the pair
(Xr,X1), see Section 2.3.

PROPOSITION 2.9.  For any G-colored ribbon tube (S, ¢) € T, we have
p(S, ) = AP (X, Xp) - Ar¥ s ANH? — ANH?.

In particular, if the ribbon tube (S, ) is monotone with respect to the coordinate
in I in B* x I, it is called a ribbon braid (sce [ABMW17], [Dam17]). In this case
A?(Xr,Xr) = 1 and p(S,¢) coincide with the exterior powers of r¥. The proof of
Proposition 2.9 can be obtained similarly to [FM15, Proposition 7.2], or in the monotone
case, to [BCF15, Section 3.1].

Let (T, ) be a G-colored ribbon tangle in B*. Let L = Lo U L; be a splitting of L
into two disjoint (trivial) links, and let By and B; be two 3-balls such that

53 = By Us2x {0} 52 x [0; 1] Ug2x {1} By
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and L; C B; for i = 0,1. Let ¢; be induced by ¢ on Hy(B; \ L;), and &; be sequences of
signs according to the co-orientations of the components of T'. Then (T, ¢) is splitted as

a morphism (7', ¢): (g0, o) — (€1, 1). Note that 2n = ng + n;.

THEOREM 2.10. Let (T,¢) be a G-colored ribbon tangle, and (T,(p): (€0,0) —
(e1,¢1) be a splitting of (T, ) in Ribg. There is an isomorphism, well-defined up to a
unit in R,

/\nHa — HOHIR(/\Mo, /\Ml)
sending A(T, @) to ®p(—1)*0F) p (T, @), where py is the k-component of p.
An explicit example is given in Remark 5.1.
Proor. The decomposition Hy = My @ M; induces a natural isomorphism
N"Hy ~ @ ( NF My ® /\nile).
k=0

The element A (T, ) € A"Hp decomposes as 3, Ax(T, ), where Ay (T, ) € A" My ®
A""* M. Suppose now that k is fixed; the element A (T, ¢) might not be decomposable.
There exist a finite sequence of element A} € A My and Al € AE M, (depending on
k, and (T, ¢)) such that Ay (T, ¢) = >, A) @ A}. Let wy be a volume form A" My — R.
There is an isomorphism

/\kMO & /\TL—le ~ HOmR(/\no—kMO’ /\n—le)

sending A (T, ¢) to

xHZwO (x/\Aé) ~Al1.
1

We now show that this morphism coincides with pno_k(’f, ). Let z € A™7F M. Note
that we have ng —k+ ¢ = n—k and the morphism has degree §. Consider a volume form
wi: A™ M; — R and the sum wy = wg @ w1: A" Hy — R. Let A¥ be the Alexander
function related to a presentation of HY (X7, x; R) of deficiency n. Since mgy = mo @ my
we have, for all y in AR

AP (N Fmg(z) A ANFOmy (y)) = wo(A(T, ) Az Ay)
=wo(Ak(T, @) Nz Ay)

= wo(Af A ) - wi(A] Ay)
l

zwl(Zwo(Aé/\x)-All Ay).
1
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Hence 3, wo(zAAb)- AL = (=1)k(0=k)p, (T, )(x). Note that if, for cosmetic reasons,
one prefers that Ay (T, ) induces (—1)k("0=F) p, (T, p)(x) instead, one might compose
with Hodge duality AFMy — A" =% M. O

3. The circuit algebra of colored cobordisms.

In this section, we introduce the circuit algebra Cobg. The algebraic structure is
inspired by [Jon99], [Pol10], see also [Ken13], [Arc10].

DEFINITION 3.1.  Let B = By be a 4-ball and B, ..., B, be disjoint 4-balls in the
interior of B. For every i € {0,...,p}, let L; (with L = L) be a trivial oriented link
with 2n; (n = ng) components in S? = 9B; (with S3 = S3). A cobordism C is a disjoint
union of locally flat proper embedded annuli in B\ {él, cey ép}, whose boundary are
the links L;, with the conditions of Definition 2.1 but without singularities.

DEFINITION 3.2. Let C’ and C” be two cobordisms such that B! is a ball of C’
with n; = n”. The composition C'o;C" is the cobordism obtained with the identification
of B” = By with B..

As in the previous section, G is a fixed free abelian group with group ring R. A G-
colored cobordism is a pair (C, ¢) where C is a cobordism with complement X¢, equipped
with a group homomorphism ¢: Hy(B*\ C) — G. The orientation-preserving diffeomor-
phism classes of G-colored cobordisms with composition of compatible cobordisms, form
an operad denoted Cg.

Let Homg be the operad of tensor powers of R-modules and R-linear applications,
considered up to an element of +G. The composition in Homg is induced by the usual
composition of maps. We construct the circuit algebra Cobg as a morphism of operads
from Cq to Homg.

Let (L, ) be a G-colored oriented trivial link with k components in S, with com-
plement X; = S3\ L. The group homomorphism ¢: H;(S%\ L) — G induces a ring
homomorphism denoted also ¢: Z[H;(S® \ L)] — R. Let * be a base point on S3. The
R-module Hf (S3\ L,*; R) is free of rank k, generated by the meridians of L.

Let now (C, ) be a G-colored cobordism, with complement X¢o. For i = 1,...,p,
let * and x; be base points in the boundary of B; and J; be intervals (whose interiors
are disjoint, and disjoint from C') connecting * to *;. Note that the union of the J; is
contractible. The homomorphism ¢ induces a ring homomorphism Z[H;(X¢)] — R and
also denoted ¢. The inclusion m;: S? \ L; — Xr induces p;: Z[H1(S? \ L;)] — R. Set
H=H{(Xc,J), Hy = H{(S?\ L,*), and Hp, = H{(S3\ Ly, *;) fori =1,...,p. Note
that H is free of rank r = n+ny + -+ + n, and Hp, are free of rank n,;. Let wf be a
volume form w&: A" H — R, and wpy: A*™ Hy — R. Fori=1,...,p, we denote again
m;: Hp, — H the map induced by the inclusion. Let m: ®; A" Hy, — A" 7" H be
defined as m = A"'my A - AN"Pmy,.

To the cobordism (C, ) we associate

p
Yo QA" Ho, — A"Hy

i=1
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such that, for x € ®i( A H@i),
wé&(m(x) Ama(y)) = wa(Teu(2) Ay), Yy € A" Hp. (3.1)

Cobg denotes the object that associates to a pair (L, ) the homology mod-
ule HY (S \ L, *; R), and to each pair (C,¢) the linear map Y¢,,.

THEOREM 3.3. Cobg is a circuit algebra.

Proor. We show that T commutes with the composition of cobordisms. Let
(C,¢") and (C”,¢") be two cobordisms with

/ 1"

p p
TC/#,/: ® /\k““ffallC — A" Hé, and TC”,Q@”: ® A™ Half/ — A" Hgn.
k=1 =1

Let ¢ be the coloring induced by ¢’ and ¢” on C’ o; C”. Then, we have to prove
that for all uy € /\fHa;c withk=1,...,p and k#iand all v; for [ =1,...,p",

Yeroomp(ur @ @ (8] v) @+ @ty ) = Torpr (Ur @+ @ Tom o (B 1) @+ D).
Let H' = Hfl (X7, J') and H” = Hf” (X7,J") be the (free) homology modules

of the exteriors of the cobordisms. Let aq,...,as, be a basis of Hy» ~ Hg;. Consider
presentations of H' and H":

H" = <m8”a17~-~>m8”a2n”,61a"'7519 ‘p17"'7p8>7

H = (miaq,...,miaon, Ciyee oy G 71,000, me).

Applying Mayer—Vietoris theorem to X7 = X7+ U X7, we obtain that the (free) module
H is generated by

merdq, ... ,ma//agn//,m;al, . ,m;a%w,ﬂl, . ,ﬂk, Clv ey Cl (32)

subject to the relations p1,..., ps,T1,. .., T, Maray — Msa, . .., Mo Qapr — Moy, Let
w' and w” be volume forms on H' and H”, and wy be the form on Hy . Let w be the
form on H induced by w’ and w”. For the computation below, we introduce the notation

UN UV =Up A AU A (01 A AU ) At A -+ Aty
We want to show that, for all y € A" Hy,

wor (Terocr (ug @ -+ @ (R v) @+ @upy ) Ay)
= wa'(TC’(Ul Q@Yo (R) 1) @ @uy) /\y).
We have

wor (Terocr (ug @ -+ ® (®If”vl) Q- ®@uy) ANy) - maraNBAmia A
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= w((m'u A; m"v) Amay) - mara A BAmMia A
=pArA(mogra—mia) A(m'uN;m"v) Amay
= Z(—l)lQleQ Sp AT Amgrag Amiag A (m'u A; mv) Amary,
Q
where the sum is taken over all subsets @ C {1,...,2n”} of cardinal n”. The number ¢
of relations r; can be chosen arbitrarily to be even and mgrag A mjag A (m'u Ay m"v)

coincides with marag Am"v A (m'uA;miag) up to a sign depending only on p” and the
n’, the sum coincides up to a sign with

Z(—l)‘Q‘eQ (p Amarag Am"v) A (r A (m'u A; miag) Amary)
Q

whose summands are equal to
(—1)1Qleq - W (manag Am'v) - W' (m'u A miag) Amay) - (mara A B Amia A Q).
It follows that, up to a sign,

wor (Yoroom(ur @ -+ ® (&% ) @+ @ up) Ay)

= Z(—l)‘Q‘eQ W (marag Am'v) - W' ((m'u As miag) Amay)
Q

= w'(Z(—l)‘Q‘eQ W (marag Am'v) - (m'u A, m;aQ) A ma/y)

Q

= w’(Z(—l)‘Q‘eQ cwar (Tern(vy @ -+~ @upr) Aag) - (m'u Ay miag) Amary)
Q

=w'((m'u A [Z(—l)‘Q‘eQ cwor (Ter(v1 @ -+~ @ upn) A ag)|miag) Amary)

Q
= w/((mlu /\7, mIi(TC//('Ul R R Up”))) A méy)

:OJQ/(TC/(’U,l®"'®TCH(®I{NU1)®"'®Up')/\y). O

3.1. Action of cobordisms on ribbon tangles.

Given a cobordism C' and a collection of ribbon tangles T3, --- ,T,, one may create
a new ribbon tangle, if n(T;) = n; for all i = 1,...,p, by gluing each T; into the internal
ball B; of C'. The action of G-colored cobordisms on GG-colored ribbon tangles is defined
once the colorings coincide on the boundary components. The following theorem states
that the invariant A respects the structure of circuit algebra Cobg.

THEOREM 3.4. Let (T,v) be the G-colored ribbon tangle obtained by gluing the
G-colored ribbon tangles (T1,¢1),- -+, (Tp, ¢p) to a G-colored cobordism (C, ). The fol-
lowing equality holds:

A(TJ?) = TC,ap (A(Th(ﬁl) Q- & A(Tpa 901))) S /\nHa

PRrROOF. For i = 1,---,p, consider a presentation of Hr, = H{'(Xr,,*;) of the
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HTi = <m8i’}/i7' s 7m8i’7%nia/617- e 76[& | Plp s 7pi,i>

and let A7’ be the Alexander function related to this presentation. Let Ho = HY (X¢, J)
be the free module, with volume form wf associated to the presentation

_ 1 1 p P
He = <m1717...,ngnl,...,mp'yh...,mp'yznp7a1,...,al | 71,00 7).

By successive Mayer—Vietoris arguments, the module Hy = H{ (X7, *) admits a presen-
tation with generators of the form mg,~i, m;vj, for j =1,...,2n; and i = 1,...,p, and
Bis---y Bg s, . They are subject to the relations mg,v; —m;~;, for j =1,...,2n;
and i = 1,...,p, and pi,...,ps, for i = 1,...,p and r1,...,7;. One has A(T,¢) =
Yoo (A(T1, 1) ® -+ @ A(T, gop)) if and only if

Vze AN"Hy, AT, ) Nz =T (A(T1,01) @ @ ATy, 0p)) Az

By Equation (2.1), wa(A(T,¥)Az) = A# (moz). For short, we write A(T;) for A(T}, ¢;),
for i =1,...,p. By definition of the Alexander function A?,

A?(maz) My, YANMAYNABANa=pArA (mgi —miy") Amaz

= Z (=1)®leg-pArA malfybl A A map'ygp A melf?l Ao A mp'y%p Amyz,
le---an
(3.3)

where the sum is taken over the subsets Q; C {1,. 2n2} of cardinal n; (the other terms
vanish). @; denotes the complement of @Q;, |Q| = ny + -+ n, and €¢ the signature of
the permutation @ - - Qle Qp, where the elements of ()1 --- @), in increasing order
are followed by the elements of Q1 ---@Q, in increasing order. Moreover, we can decide
arbitrarily that the number ¢ of relations in the presentation of Hc is even, and get (3.3)

to be equal to:

Z (—1 )\Q\ ~(p/\m317<1;)1/\"‘/\maﬂgp)/\(r/\mwé?lA"'AmPV%pAmaZ)
Q1,

1
= Z DIQleq - (pA mal’le “A map'ygp) wE(mivg, A A mpfy(%p Amyz)
< (may A a).
Moreover, since s1, ..., S, can also be supposed even,

pAMa G, A Ama,h = (pt Amavg,) A A (0P Ama, 6, )
= A7l (mo,1g,) - A7 (ma,7,) - ma. v A B
= wa, (A(T1) A ’y(lgl) - wa, (A(T)) A 7%,,) ~mag, Y N S.

Then Aéﬁ (m@z) coincides with the sum over @)y - - - @, of the summands
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(—1)90eq - wa, (A(T1) Ag,) - wa, (A(Ty) AYD,) - wi(mg, Vg, A+ Amg, g Amoaz)

= Wi (Y (-1)eq - wo, (A(T1) Avd,) - wo, (A(T,) A7)
. leﬁyé—h RV mev(%p Amyz).

Note that for all t = 1,...,p and x € A" Hp,, we have

v= ) cqualeig) g = Y (F)¥lequnantg) g,
|Qil=n: |Qil=n;

Moreover, (—1)I9 = (=1)I@l ... (—1)@| and egeq, - - €, do not depend on Q1 ..., Q,
but only on ny = |Q1],...,n, = |Qp|. Hence, up to a sign

4. A diagrammatic description.

Broken surfaces are locally flat immersions in the 3-ball B? of disjoint annuli and
tori, whose singularities consist of a finite number of circles. Any ribbon tangle in B* can
be projected onto a broken surface in a suitable sense. These projections can be viewed as
a way to represent ribbon tangles similarly to diagrams in usual knot theory. Conversely,
every broken surface is the projection of a ribbon tangle. This gives a correspondence
between ribbon tangles and broken surfaces (in fact, of a certain type, called symmetric).

Welded diagrams are a quotient of virtual diagrams under a certain set of moves,
see for example [Aud16]. To each welded tangle one may associate a symmetric broken
surface diagram, see [Sat00] and [Yaj62]. This define a map Tube sending any welded
tangle to the ribbon tangle associated to the symmetric broken surface resulting from
the preceding construction.

For general ribbon knotted objects, such as ribbon tangles, ribbon tubes
[ABMW17] and knotted spheres [Yan69], the Tube map is well defined and surjective,
but its injectivity is still an open question [BD16]. However, this is an isomorphisms on
ribbon braids and extended ribbon braids [BH13], [Dam17].

A combinatorial fundamental group can be defined for welded tangle diagrams, with
the Wirtinger method (virtual crossings are simply ignored). This group coincides with
the fundamental group of the complement of an associated ribbon tangle in B* [Sat00],
[Yaj64], [ABMW17]. Then, two welded tangle representing the same ribbon tangle
have isomorphic fundamental groups (and this isomorphism sends meridian to meridian).

Let D be the unit disk in C, and for any positive integer n, let z1, ..., zs, be a fixed
ordered set of points in dD.

DEFINITION 4.1. Let n be a positive integer. A welded tangle on n-strands, or
welded n-tangle is a proper immersion 7 of an oriented 1-manifold in D. It consists of
some copies of the circle and n copies of the unit interval whose boundary is {z1, ..., 22, }.
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The singular set of 7 is a finite number of transversal double points equipped with a
partial order on the preimages. By convention, this order is specified by erasing a small
neighbourhood of the lowest preimage, or by pointing the crossing if the preimages are
not comparable. If the preimages of a crossing are comparable, then the crossing is said
classical; otherwise it is said virtual. Moreover, a classical crossing is positive if the basis
made of the tangent vectors of the highest and lowest preimages is positive; otherwise,

it is negative.
R
NS
a) b) c)

Figure 1. Positive, negative and virtual crossings.

Let p be a positive integer. A p-colored welded tangle is a pair (7,1) where 7 is a
welded tangle and v is a map from the set of strands and circles to the set {t1,...,¢,}.
Two welded colored tangles are equivalent if they are related by generalized Reidemeister
moves (see [KamO7, pp. 445 and 454]), respecting the coloring.

4.1. Computation of A.

Let (7,1) be a u-colored welded tangle. It decomposes into a finite union of disjoint
oriented arcs. Label the crossings with (formal) letters, and each arc with the same letter
as the crossing it begins at. If an arc connects points on the border of 7 without meeting
any crossing, we use the convention of Figure 3. We construct a matrix MY (7) with
coefficients in Z[tlil, .. ,tfl} where the rows are indexed by crossings (positive, negative
and virtual) and points interrupting arcs, and the columns by the arcs.

e Fill row corresponding to each positive and negative crossing as shown in Figure 2,

‘ a b c
o C -1 1*7‘1 f]
‘ a b c
- C *fj ti -1 1

Figure 2. The rule to fill the matrix M¥(T), where t; and t; are not neces-
sarily different. If b = a or b = ¢ we add the contributions.

e At each point on the diagram, fill the row as shown in Figure 3.
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a

(=

Figure 3. Rule for arcs that don’t begin at crossings.

The other entries of the rows are zero. Virtual crossings can be ignored or considered as
divided arcs. Notice that, after some Reidemeister moves of type I, one might suppose
that there every arc begins at a crossing, and the receipt of Figure 3 becomes useless to
construct the matrix MY (7).

REMARK 4.2. Let p be the number of internal arcs of 7. Since 7 has 2n arcs
connected to the boundary, the total number of arcs is 2n + p. One easily observes that
the matrix MY (7) has size (p +n) x (p + 2n).

DEFINITION 4.3.  Let (7,9) be a p-colored welded n-tangle and Hy be the module
of rank 2n freely generated by the set of marked points {z1,...,x2,} . The invariant o
is defined to be

a(r, ) =Y |M¥(r);|-z; € \"Hop,
I

where the sum is taken for all subset I C {1,...,2n} of n elements, |[M¥(7);| is the
determinant of the (n + p)-minor of MY (7) corresponding to the columns indexed by
the internal arcs and the columns relative to the arcs indexed by I, and z; is the wedge
product of the generators x; with ¢ € I.

A computation shows that a(r,) is invariant by generalized Reidemeister moves,
up to multiplication by a unit. Otherwise the invariance is simply a consequence of
Theorem 4.6 below.

ExampLE 4.4. Consider the tangle 7 given by one positive crossing, see Figure 1.
The matrix M¥(7) coincides with the matrix of Example 2.3. The module Hj is gener-
ated by x1,...,x4 and

Oé(T,¢):t2$3/\$4+$2/\$3—t2])1 /\$4+(t1—1)$1 Nx3 4+ 1 N\ T2 E/\zHa.

Let 7 be a welded tangle. 7(7) denotes the group defined by the Wirtinger method
(ignoring the virtual crossings). Then, there is a system of generators of (1) in one-to-
one correspondance with the arcs of 7. In particular, a p-coloring of a welded tangle 7 can
be viewed as a group homomorphism ¢ from 7(7) to the free abelian group (t1,...,%,)abel
generated by tq,...,t,.

The following proposition follows directly from the results of Satoh and Yajima
[Sat00], [Yaj64].
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PROPOSITION 4.5. Let 7 be a welded tangle. For any ribbon tangle T such that T
is the image of T by the Tube map, there is an isomophism

7(1) ~ m (B*\ T)
sending arcs of T to meridians of T.

THEOREM 4.6. Let u be a positive integer and G be a free abelian group of rank p.
Let (1,4) be a p-colored welded tangle and (T, ) be a G-colored ribbon tangle, such that
T is the image of T by the Tube map. Suppose that there are generators ty,...,t, of G
such that the following diagram commutes:

m(BI\T) —— G
m(r)  —Ls () x e x (8).
Then,
A(T, ) = a(r,¥) € \"Hp.

Welded string links are string links with possibly virtual crossings; for details on
these last ones see [KLWO1]. Through the Tube map, ribbon tubes can be described
by welded string links, see [ABMW17, Section 3.3]. By Theorem 2.10, Proposition 2.9
and Theorem 4.6, the invariant « induces the usual (generalisation of) colored Burau
representation—or Gassner, if the coloring is maximal—on (welded) string links [Bar05].

PROOF. The points of 7 N dB? are in one-to-one correspondence with the com-
ponent of the trivial link L in T N 0B*, and Hp is generated by zi,...,z2,. By
Proposition 4.5 and Fox calculus, the matrix M¥(7) is a presentation matrix of the
R-module HY (X1, %), viewed as a Z[tT!, ..., tfl]—module through the choice of genera-
tors of G. Then M¥(7) is used to compute A¥. By definition, for all I C {1,...,2n}
with cardinal n:

wa(A(T, p) Ax1) = A?(moxy).

To calculate A% (mgxs), we consider the matrix MY (7), add n row vectors giving the
element max;,,...,mz;, and compute the determinant of the resulting square matrix.
Hence adding mx;; corresponds to add the p +n + 4% row (0,...,0,1,0,...,0) where 1
is at position p + j. We obtain A?(maz;) = ef|M¥(7);|, where I is the complement of
I and ¢ is the signature of the permutation IT (where the elements of I in increasing
order are followed by the elements of I in increasing order). Finally, we get

AT, ) =Y e wo(A(T, @) Aar) -ap =Y _|MY(1);] - 27 = a(r,1)). O
I I

REMARK 4.7. The invariant « coincides up to a unit with the invariant of virtual
tangles introduced by Archibald [Arc10]. It is worth mentioning that using a specific
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canonical choice for the marked points x;, her construction is well-defined, not only up
to multiplication by a unit (through the multiplication by a correction term).

PROOF OF PROPOSITION 2.2.  As observed in the proof of Theorem 4.6, the ma-
trix MY (7) is a presentation matrix of H{ (X7, *), whose size is (p +n) x (p + 2n), see
Remark 4.2. We get a presentation of deficiency n. O

4.2. The circuit algebra Weld,,.
DEFINITION 4.8. A circuit p-diagram consists of the following data:

e The unit disk D = Dy in C together with a finite set of disjoint subdisks Dy, ..., D,
in the interior of D. For every i in {0,...,p}, each D; have 2n; distinct marked
points with sign on its boundary (with n = ng), and a base point * on the boundary
of each disk.

e A finite set of embedded oriented arcs whose boundary are marked points in
the D;. They may cross each other along virtual crossings only. Each marked
point is the boundary point of some string —which meets the corresponding disk
transversally— and the sign is coherent with the orientation.

Circuit diagrams encode only the matching of marked points, see Figure 4.

Figure 4. Two equivalent circuit diagrams.

DEFINITION 4.9. Consider a circuit p’-diagram P’ and a circuit p”-diagram P”
such that D} is a disk of P’ with n} = n”, for some ¢ € {1,...,p'}. If the signs of
the marked points match, we define the diagram P = P’ o; P by rescaling via isotopy
the tangle P” so that the boundary of D" is identified with the boundary of D}, and
making its marked and base points coincide to those of D}. Then D) is removed to
obtain P’ o; P”. This operation is well defined since the starting points eliminate any
rotational ambiguity.

A p-colored circuit diagram is a pair (P,v) where P is a circuit diagram and v is
a map from the set of arcs of P to the set {t1,--- ,¢,}. Two p-colored circuit diagrams
can be composed once the coloring match on the boundary components. The p-colored
circuit diagrams form an operad D,,. Let S = Z[tF!, ... ,t/fl] be the Laurent polynomial
ring. Let Hom,, be the operad of tensor products of S-modules and S-linear maps. The
circuit algebra Weld,, is constructed as a morphism from the operad D, to Hom, as
follows.

Consider the unit circle with a base point and a set of marked points X =
{x1,..., 29}, for k > 0 (with a sign). To this data, we associate the module A*Hp,
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where Hy is the free S-module of rank 2k generated by X. Let (P,1)) be a p-colored
circuit diagram, and M = {ci1,...,¢q} be the set of curves of P. Consider the free
module H generated by M, and the volume form w: A? H — S related to this ba-
sis. For ¢ = 1,...,p, Hp, denotes the module associated to the boundary circle 9D;
and Hp the module associated to D. Let m;: Hp, — H be the morphims defined by
m;(z;) = sign(x;)c; if x; € d¢;. The mophism my is defined similarly. Let wp, be the
volume form on Hp, related to the generating system of points of the circle 0D;. Set
m = ®; (A"mgy,). To the colored diagram (P,v) we associate

p
VP ®/\n’ffdZ — AN"Hgy

i=1
such that, for z € @; (A" Hyp,),
w&(m(xz) Ama(y)) = wa(vpw(x) ANy), Yy € A"Hp.

Then, we can prove Proposition 4.10 below, by repeating the arguments of the proof of
Theorem 3.3.

ProrositioN 4.10.  Weld,, is a circuit algebra.

Note that Weld,, is similar to half densities introduced by Archibald, see [Arc10]
for the definition of half densities and [Dam16] for the explicit correspondence. The
morphism 7yp . could be written as the interior product relative to a subset corresponding
to interior arcs of P.

The Tube map and the choice of a set of generators {ti,...,t,} of G induce a
surjective morphism of algebras

Weld,, — Cobg.

Given a colored circuit diagram P and a collection of colored tangle diagrams
Ti,...,Tp, ONe may create a new tangle, if the data on the boundaries and the color-
ings match, by gluing 7; into the internal disk D; of P. Similarly to Theorem 3.4, the
invariant o commutes with this action of p-colored circuit diagrams on p-colored welded
tangles. Indeed, one has the following proposition.

PROPOSITION 4.11.  Let (7,%) be the p-colored welded tangle obtained by gluing the
p-colored welded tangles (T1,11),- -+, (Tp,¥p) to a p-colored circuit diagram (P, x). The
following equality holds:

o, ¥) = ypy(a(r1,¥1) @ -+ @ a(1p, ¥p)) € A" Hp.

5. Examples.

Consider the tangle diagram 7, given in Figure 5. We let G = Z =<t > and v be
the coloring sending all arcs of 7 to t. In this section, we compute «(7,v) in different
ways. By Theorem 4.6, this computes the value of A(T,¢) the image of (7,%) by the
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Figure 5. A welded tangle 7.

Tube map.
First, we compute «(7,1) directly. Label the arcs of 7 with letters a to f as in
Figure 5. We obtain the matrix

a b c d e f
0 0 -1 10 0
MY (1) = -1 0 0 01 0
1-t =1 0 0 0 t

The Z[t*!]-module Hp is free, generated by w1, ...,z and a(7,1) € A3Hj is given by

a(r,)) = —x1 ANxo A5+ 11 ANxa A+ 22 Aaxs Axg+ (8 — D)z Axs A xy
—txy ANas Axg+ (1 — )z Aag Axg +txg Az Axg + tag Axy A s

— o Nxg Nxy —txs N Ty N T3.

We now consider (7,1) as the composition of the circuit diagram (P, ) with (o,)), see
Figure 6. We have to compute yp.,,: A? Hy, — A*Hp (here p = 1). Let H be the free

5 > ‘
*
* Te
T
T2

Figure 6. A welded tangle o and a circuit diagram P.

module generated by the curves of o, labelled a, b, e, f. We have that Hg, = (x1,...,24)
and Hyp = (z1,...,26). Using the volume form on H related to the choice of the ba-
sisa, b, c,e,d, f, and the maps induced by the inclusions m; : Hy, = H and mp: Hp — H,
we obtain

’}/C,’Lb(xl/\xj) :mi/\ﬂfj/\(l‘ﬁ—l'5), \V/Z,j: 1a"'74a
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and

We get
alo, ) =x1 ANxg+ (t— 1)x) Azy —tog Ay + 22 A Tg — tT3 A 4.

The composition a(7, ) = ypy(a(o,v)) gives the result. Finally, we consider 7 as the
composition of the tangle o ® 8 with the circuit @, see Figure 7. Here p = 2, and

YQ.u " /\2 H31 X H32 — /\3H3.

Ty
L5

T3 Ts5

4

x

.
. .
x

2

x
Ty 6

Tg

Figure 7. A circuit diagram @ representing a cobordism and two welded
tangles o and S.

As previously a(o,9) = 1 Axe + (t — 1)z Ay —tag Aaxg + 2o Axg —tog Aay € /\2Ha1
and y(f) = x¢ — x5 € Ha,. The composition a(7,9) = vg,4 (a(o,¢) @ a(B,v)) gives the
result again.

REMARK 5.1. In the sense of Subsection 2.4, there is a splitting of the tangle o to
an (oriented) braid o7 in Bs. We have

MO = <IE1,1‘2> and M1 = <LE3,IE4>,

and a(o,) € N2 Hp, =~ N*(My & M) ~ @i:o AF My @ A*7* M, similarly to the proof
of Theorem 2.10. Then «(c, 1)) decomposes as:

(—tw;;/\:m)@((t—1)m1®x4—tx1®x3+m2®m4)@(xl/\mg).

Let wo: A2My — R be the volume form related to the basis (x1,22). For k = 1, the
element (t — 1)1 ® x4 —tx; @ 23 + 22 ® 4 € My ® M induces the morphism My — M;:

x> (t— Dwo(x Axy) - 24 —two(r Ax1) - 23 + wo(x A x2) - 4.

The image of z7 is x4 and the image of x5 is (1 — t)x4 + txs. This corresponds to the
Burau representation. Similalrly, the other values of k give k*"-exterior powers of Burau,
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up to a sign.
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