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Abstract. In this paper, we apply the methods of Maynard and Tao to
the set of products of two distinct primes (Ez-numbers). We obtain several
results on the distribution of Eg-numbers and primes. Among others, the
result of Goldston, Graham, Pintz and Yildirim on small gaps between m
consecutive Fo-numbers is improved.

1. Introduction.

The famous twin prime conjecture asserts that there exist infinitely many prime
numbers p for which p+2 is also a prime, and this conjecture is widely believed to be true.
More generally, about one hundred years ago, Hardy and Littlewood [9] conjectured the
following, called the Hardy—Littlewood prime k-tuple conjecture. Let H = {hy,... hy}
be a set of k distinct non-negative integers. Then, the number of those n below N such
that all of n + hq,...,n + hi are primes will be asymptotically

10§N1;[(1_VP;H)) (1_;)_k

provided that v,(H) < p for all primes p, where v,(H) denotes the number of residue
classes mod p covered by H. In this case we say that the set H is admissible. In particular,
the twin prime conjecture is the case k = 2 and H = {0,2}. Although this conjecture is
still far from our reach, several remarkable results toward it have been established. For
example, in a celebrated paper [1], Chen proved that there exist infinitely many primes

p for which p + 2 is either a prime or a product of two primes which are not necessarily
distinct.

Recently the studies toward the twin prime conjecture have produced further
progress. In 2009, Goldston, Pintz and Yildirim [2] proved that
fpn+1 ~Pn _ 0 (1.1)

lim in ,

n—oo  logpn
where p,, denotes the n-th prime. Their method is called the GPY sieve. Moreover,
they proved that if primes have the level of distribution 6 for some 1/2 < § <1 (see the
definition of BV'[§, P] below), then
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lim inf(p,,4+1 — pp) < 00. (1.2)
n—oo
The above assumption seems to be extremely difficult to prove, although it is known
that the Bombieri-Vinogradov theorem assures that this is valid for § < 1/2. With
6 = 1/2 one obtains (1.1). The case § = 1 is called the Elliott—Halberstam conjecture
(EH). Several improvements have been made by the above three authors (see [3], [4],
[5]). Among others, their best result on gaps between consecutive primes is that

liminf ——Lrfl = Pn (1.3)

n—oo +/log p,(loglog pn)?

Later, Pintz [13] improved this result and obtained

. . Pn+1 — Pn
lim inf <
oo (log pn)?/7 (log log pn) /7

00. (1.4)

(See also [6].) In 2013, a stunning result was established by Zhang [17]. He obtained a
stronger version of the Bombieri—Vinogradov theorem that is applicable when the moduli
are free from large prime divisors, and using this, he proved that

lim inf (p, 11 — pn) <7 % 107, (1.5)

that is, there exist infinitely many consecutive primes for which the gap is at most 7 x 107.
The upper bound 7 x 107 has been improved by several experts successively. In the
Polymath8a paper [14], the right hand side of (1.5) was replaced by 4680. Slightly later,
Maynard [10] and Tao (private communication with Maynard) invented a refinement of
the GPY sieve. In particular, Maynard proved that

liminf(pp+1 — pn) < 600. (1.6)
n—oo
They also proved the existence of the bounded gaps between m-consecutive primes for
any fixed m > 2. One of the remarkable points is that their method is relatively quite
simple, compared with Zhang’s, and it is very convenient to extend or generalize to other
situations. The current world record of the small gaps between primes is accomplished
by the Polymath project [15], in which the upper bound

lim inf(pry1 — pn) < 246 (1.7)
n—oo
is obtained unconditionally. Moreover, it is proved that the right hand side of (1.7) may
be replaced by 6 if we assume a strong form of the Elliott—Halberstam conjecture and
that is the limit of this method.

In this paper, we treat the integers expressed by products of two distinct primes,
called the Es-numbers in [7], together with the prime numbers. In the papers [7], [8],
Goldston, Graham, Pintz and Yildirim investigated the distribution of Es-numbers. We
denote by ¢, the n-th Es-numbers. That is, g1 = 6,¢2 = 10,93 = 14,94 = 15,.... Using
the GPY sieve, they proved that
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lim inf (g 411 — ¢n) < 6. (1.8)
n—oo

Moreover, they proved that if the Fo-numbers have the level of distribution 6 for some
0 < 0 < 1, then for any sufficiently large p € N,

liminf (g4 — g) < p(1+o0(1)) exp (=7 + 25 (1.9)
holds. Later Thorne [16] generalized their results to the set of products of r distinct
primes for any r > 2. He applied the result to some related problems in number theory,
for example, divisibility of class numbers, nonvanishing of L-functions at the central
point, and triviality of ranks of elliptic curves.

The purpose of this paper is to apply the method of Maynard [10] and Tao to the
distribution of Eo-numbers. Their multi-dimensional sieve enables us to establish rather
small gaps between consecutive several F-numbers. In particular, the estimate (1.9)
can be remarkably improved. We denote by & the set of all Es-numbers. We denote by
P the set of all prime numbers, and put P» = P U &,. For a sufficiently large natural
number N, we define

1 (n=pips, Y < p; < N2 < py)

Bln) = {0 (otherwise), (1.10)

where Y = N7, 1 <« n < 1/4. Throughout this paper, the implicit constants might be
dependent on this 1. (We will not necessarily mention this fact every time.) Next we
define
T (N) :=#{p e PN <p< 2N},
ﬂ'b(N;q,a) =#Hp E’P‘N <p<2N,p=a(modq)},

m(N) = Y Bn), m(N):= Y Bln),

N<n<2N N<n<2N
(n,q)=1
m5(Nig,a):= > B(n).
N<n<2N
n=a(mod q)

We write the following hypotheses:

HypoTHESIS 1. (BV[0,P]). For any € > 0, the estimate

2 b
p-(q) max |7’ (N;q,a) —
“§6(%m4 ( v(q)

Wb(N)’ N (N5 ) (1.11)

<
4 logA N
holds for any A > 0.

HYPOTHESIS 2. (BV[0,&;]). We fix an arbitrary 0 < n < 1/4 in the definition of
the function 8. For any € > 0, the estimate
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> w*(g) max

i (a,q)=1

m3,4(N) N

m3(N;q,a) — <
pNiga) v(q) 4 log N

(N — 00) (1.12)

holds for any A > 0.

We say that the set P (resp. &) has level of distribution 6 if BV[0,P] (resp. BV[0, &3])
holds. The Bombieri—Vinogradov theorem asserts that BV[f,P] is valid for § = 1/2.
Motohashi [12] proved that BV[#, ;] also holds for § = 1/2. The Elliott-Halberstam
conjecture asserts that BV[0,P] will be valid for 6 = 1, and we expect that BV[f, &]
will be valid for the same value. Hence we call BV[1,P] (resp. BV[1,&;] ) the Elliott—
Halberstam conjecture for P (resp. &).

The main theorems of this paper are as follows:

THEOREM 1.1.  Assume that the sets P and E have level of distribution 6 > 0.
Then, for any € > 0, there exists p. > 0 such that for any integer p > pe, the inequality

o 2+¢e)p
liminf(gni, —gn) < exp ( 30102 p (1.13)

holds. In particular, unconditionally we have

2<2+6)p> (1.14)

linrgio%f(q"“ ~n) S oxp ( 3logp

for any p > pe.

THEOREM 1.2.  For any admissible set H = {hy, ha, ..., hg}, there exist infinitely
many n such that at least three of n 4+ h1,n + ha,...,n+ hg are in Ps.

The set H = {0,4,6,10,12,16} is an admissible set with six elements. Hence if we
denote by r, the n-th element of Py = P U &;, unconditionally we have

liminf(r,42 — r,) < 16. (1.15)

n—0o0

If we assume the Elliott—Halberstam conjecture for both P and &, far stronger results
can be obtained:

THEOREM 1.3.  Assume the Elliott—Halberstam conjecture for P and Ey. Then,
there exist infinitely many n such that all of n,n + 2,n+ 6 are in Ps. In particular,

liminf(r,4o — ) < 6. (1.16)

n—oo

We note that Maynard [11] unconditionally proved that n(n 4+ 2)(n + 6) has at
most seven prime factors infinitely often. Theorem 1.3 is regarded as a (conditional)
improvement of his theorem. Finally,

THEOREM 1.4. Assume the Elliott—Halberstam conjecture for P and E. Then we
have
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liminf(gn42 — gn) < 12. (1.17)
n—oo

2. Notation and preparations for the proofs.

Let H = {hy,...,hi} be an admissible set. Throughout this paper, we assume that
the elements of H are bounded, that is, there exists a positive constant C' = C}, depending
only on k such that h; < C holds for i = 1,...,k. We denote by yp the characteristic
function of P. We put

Dy = logloglog N, W = H p < (loglog N)2.
p<Do

We assume that both prime numbers and Es-numbers have level of distribution 6. By
the Chinese remainder theorem, we can choose vy € N so that all of vy +h; (i =1,...,k)
are coprime to W. For a smooth function F : R* — R supported in

k
Z‘la-~-7$k2072$i§1}a

=1

Ry = {(xl,...,xk)

b ,u(Hk ri)? log 1 log 7
R M(di)di) =Y ( ) (2.1)
1 & (H m;m Hf:1 o(r;) log R log R
(re ,W)=1(V1)

if (dy,...,dy) satisfies the conditions that Hle d; is square-free, Hle d; < R, and
(di,W) =1fori =1,...,k, where R = N92-9 and § is a sufficiently small positive
constant. If (di, ..., dy) does not satisfy at least one of these conditions, put Ag, ... 4, := 0.
We define the weight w,, by

Wy = ( Z )‘dl,m,dk) . (22)

di|n+h; (Vi)
To find small gaps between Fs-numbers, for a natural number p, we consider the sum

k
S(N,p) = Z (Z B(n + hi) — P) W, (2.3)

N<n<2N m=1
n=vg(mod W)

If S(N, p) becomes positive for any sufficiently large N, there exists n € [N,2N) such
that at least p+ 1 of n+ hq,...,n + hy are Ey-numbers. Hence one has

o . < Rl
hnnilgf(%ﬁ-p Qn) = 1;?%?(5]6 ‘hj h7|
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Similarly, to find small gaps between the set of primes and Es-numbers, for a natural
number p, we consider the sum

k
Sp= 3 (Z (B + hom) + xp (1 + o)) — p> o (24)
N<n<2N
n=vg(mod W)

m=1

If S/(N, p) becomes positive for any sufficiently large N, there exists n € [N,2N) such
that at least p+ 1 of n+ hy,...,n+ hg are in P U E;. Hence our problem is to evaluate
the sums

So= > we, S™M= 3 xp(n+ h)w, (2.5)
N<n<2N N<n<2N
n=vg(mod W) n=vg(mod W)
and
N<n<2N

n=vg(mod W)

for m = 1,...,k. Maynard ([10, Proposition 4.1]) computed the sums in (2.5). The
results are as follows:

ProrosiTION 2.1.  We put

1 1
Ik(F):/O /0 F(ty,... tg)2dty - - - dty,
2

1 1 1
J,ﬁ’”’(F):/O /0 (/0 F(th...,tk)dtm) Aty Aty dbmyy - dty

form=1,... k. Then, if I,(F) # 0, we have

o = (1+ 0(1))%V15/Jr)fN(log R)ka(F)7 @7)

and if J,gm) (F) # 0, we have

(1 +0(1)p(W)*N(log R)* 1 ()

(m) _
St = Wk+1log N k

(F) (m=1,....k) (2.8)

as N — oo.

Hence the main problem of this paper is the computation of Sém). By substituting
(2.2) into (2.6) and interchanging the summations, we have



Small gaps between the set of products of at most two primes 87

Sém = Z )\dl AdiNer,.en, Z ﬁ(n + hm) (29)
di,... N<n<2N
€1, Pk n=vg(mod W)

The integers d,,, e, must satisfy
Ay €m |0+ Py, (2.10)

Since S(n + hy,) = 0 unless n+ hy,, = p1p2, ¥ < p1 < N2 < p,, and since Ady
unless Hle d; < R < N'/2, only the following four types contribute to the sum above:
) dn=pen=1 (Y <p<R),

2) dm=1le;;=p (Y <p<R),

3) dp=€m =1,

4) dp=en=p (Y <p<R).

Correspondingly we decompose

.....

S§™ = S(m) + Sé mt Sén;}f + 55"}3/ (2.11)
The following three sections will be devoted to compute these terms.

3. The computation of Sé";), Sé";}

We first compute Sg?)(: Sé"}}) By interchanging the summations, we have

s =3 Z Mt Nerer S B+ hy). (3.1)

Y<p<R di,.. N<n<2N
e1,.. ’ek n=vo(mod W)
dm=p,em=1 [dies]|n+h; (Vi)

By our choice of 1y and the assumption that the elements of H are bounded, the inner

sum is empty if W, [dy,e1],...,[dk, ex] are not pairwise coprime. We put
k
g =W ][]ldi,ei.
i=1
When W, [dy,e1],...,[dk, ex] are pairwise coprime, the sum over n in (3.1) is rewritten

as a sum over a single residue class modulo ¢. That is, there exists a unique v (mod ¢)
such that v = vy (mod W), v + h; =0 (mod [d;, e;]) and

Y Bthm)= D> B+ hn) (3.2)
N<n<2N N<n<2N
n=vo(mod W) n=v(mod q)

holds. We put v,;, = v + h,;,. Then,

(Vm,q) = p- (3.3)
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We will check this briefly. Since [d,,,en] = p, p divides ¢, and since v,,, = v + hy,, =0
(mod [dpn, em)), p divides v,,. Clearly, p? does not divide ¢. Let p’ be another prime and
assume that p’|(vy,, W). Since p'|v,,, we have v+ h,, =0 (mod p’). Since p'|W, we have
v =1 (mod p’). Therefore, we find that vy + h,, = 0 (mod p'), hence p'|(vy + Ay, W).
This fact contradicts our assumption that vy + h,, is coprime to W. If p’|(v,,d;) for
some j # m, then v + h,,, = 0 (mod p’) and v = —h; (mod p’). Hence h,, = h; (mod
p'). However, since d; is coprime to W, the condition p'|d; implies p’ > logloglog N.
Therefore, the conclusion that h,, = h; (mod p’) (j # m) contradicts our assumption
that the elements of 7 are bounded. Hence p’ does not divide (vp,,d;). In a similar way,
we find that p’ does not divide (v, e;). Thus we obtain (3.3).

Therefore, there exists a unique v}, (mod ¢/p) such that pv), = v, (mod ¢) and the
right hand side of (3.2) becomes

Y fth)= Y ) +0()
N<n<2N N<n<2N
n=v(mod q) n=vp,(mod q)

= Y. B)+0()
N/p<n’<2N/p
n’=v! (mod q/p)

=Y ) +00). (3.4)
N/p<n’<2N/p
n’=v/, (mod q/p)

We note that (v],,¢/p) = 1, by (3.3). The sum in the right hand side of (3.4) becomes

m

1 N
> xp(n') = (a/p) Y. xp()+A <; qﬂ%)
N/p<n'<2N/p PYUP) yp<nr<anyp pop
n’=v! (mod q/p)

m

__t (N Noa
~ w(a/p) (p)+A<p’p’ m)’ (3.5)
where
M a) = n)— Lb(N)

n=a(mod q)

By combining (3.4), (3.5), we have

YN
> 5(n+hm)=7ﬂ( /p) +A<;,um> +0(1). (3.6)
NN e(q/p) p
nzuo_(mod W)

By substituting (3.6) into (3.1), we obtain
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1 N oA A
s — _— o () Ady,.di Nenyeek
2L (W) 2 p) 2 [Lim 2([dis €i])

Y<p<R 150k
€1,..,€k
dm=p,em=1

' N
+o| > > Adl,.,,,dk&h.,m(‘A(p;i,u;n)‘ﬂ) . (3.7)

Y<p<R di,....dg

€1,..,€k
dm=p,em=1
where the sum Z/ indicates that dq,...,dg,e1,...,e, are restricted to those satisfying
the condition that W,[dy,e1],...,[dk,ex] are pairwise coprime. We now evaluate the

error term of (3.7). The conductor ¢ is square-free, and satisfies ¢ < R*W. Moreover, p
divides ¢. The number of pairs (dy,...,dg,e1,...,ex) satisfying

k
q=wW]]ldi e

=1

is at most 73x(q). Therefore, by the Cauchy—Schwarz inequality, we have

3 Z |Ad1,...,dkAe1,.~,ek|(‘A(ZZ;Z’”’/’J’“)

Y<p<R di,.
€1;.-4H ek
dm=p,em=1

N
<X Y 2@l (‘A(;q,y;n)‘ﬂ)
Y<p<R q<R2W pp
plg

1/2 1/2

SEHEDY > uz(pq’)m(pd)rz% > p)AT (N;q’> 7

Y <p<R\ ¢ <R2W/p py
where

Amax = Sup  [Aay,..a.l, A*(N;q) = max |A(N;q,a)l.
dy,...,dk (a,q)=1

Under the assumption of BV[#, P], the above is at most

B N/p)1/2
)\2. 1/2N1/2 log N)% . (
<<A max Z p ( Og ) (log N)A
Y <p<R
) 2 N (3.8)
)\2 N(loe N ap—A - max
<A max ( 0g ) Z p <B (log N)B7

Y <p<R

where aj is some positive integer depending only on k, and A is an arbitrary positive
number, and B = A —aj — 1. Here, we evaluated the first ¢’-sum by a standard method.
Hence we may regard B as an arbitrary positive number, once k is fixed. Combining
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(3.7), (3.8), we have

1 N ;A A A2
S(m) _ p—1 - () di,....dpNex,....ek +0 ( max ) )
217 (W) 2 (=1 p 2 T, o(die))  \(logN)?

Y <p<R di,...,dg
€1 4.0y €L
dm=p,em=1

Next we compute the sum

ZI )\dl ,,,,, dk,)‘el ~~~~~ ek
e
di,...dy [Tiz: ¢([di ei])
€1,...,€L
dm=p,em=1
Let g be the totally multiplicative function defined by ¢(q) = ¢ — 2 for ¢ € P. Then,
when d;, e; are square-free, we have

1 1
pdine])  wld)pler) %Ig(u)

Moreover, the condition that (d;,e;) = 1 (i # j) is replaced by multiplying
Dsisldse; 1(sig). Since Agy g, = 0 unless (di,d;) = 1 (Vi # j), we may add the
condition that s; j is coprime to u;, uj, $;.q(a # j), sp,j(b # 7). We denote by >.* the sum

over S12,...,5kk—1 restricted to those satisfying this condition. Then we have
/ )\d d e *
I T ORI LTI Sl U | Y
di,...,dg Hz 1 @([d’“el UL,y U 1=1 81,2508k, k—1 \ 1<i#j<k
€1,..,€L
dm=p,em=1
A A
% Z d]i”dk €1,.-,€k . (310)
di,e..dy Hi:1 ‘P(di%@(ei)
€1,..,€L

Uq |d1 ,€4 (VZ)
si,51di,e; (i77)
dm=p,em=1

We put

k
yi) e (p) = <Hu(m)g(m)> > M (3.11)
_ . :

dm=p

k
w e = <Hu(ri)g(n)> > Ao (3.12)

dyyeeydy Hz 1‘:0(di)

rild; (Vi)
dpm=1

and r := Hle r;. Then, yﬁﬁ”)rk (p) = 0 unless r is square-free, (r,W) =1, r < R, and
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rm = 1 or p. Similarly, yﬁT)Tk = 0 unless r is square-free, (r,IW) = 1, » < R, and
rm = 1. Then the right hand side of (3.10) is expressed by

Z ( £ Z> Z ( H .;(51J)2>y¢(l?1)ak(p)yl§:n)bkv (3.13)
=1 1,7

U
ULyeeo U g(ui) 81,2,-,8k,k—1 \ 1<i#£j<k

(2

where a; = wu; H#i Sig, bi = H#i sj;. To obtain (3.13), we used p(a;) =
(i) 1z (sig)s (i) = plwi) [T, 1(s54), g(ai) = g(ui) 12 9(si;) and g(b;) =
9(ui) [T 9(sj,1). Since s;,; is coprime to u;, uj, si.a(@ # j), sv,;(b # 1), these identities
hold. We consider the contribution of the terms with s; ; # 1 to (3.13). By the condition
of the support of yfaln),«k, only the terms with s; ; = 1 or s; ; > Dy contribute to the
sum above. Hence the contribution of the terms with s; ; # 1, a,, = 1 is at most

k-1

k2—k—1
1% (s) 12 (si,5)
(o)™ (5 )

2
Ymax\P)lrm=1 Ymax E :
Bl g9(u)

W 5i3>Do
Yk (D)lr=1 Yk (SD%/W) log R>k_1 -1- Dyt
< w(W);;:(llogf)k_ly&’Zi(p) F=1 Yt (3.14)
where
Y ()l =p = Tls.l.lprklyﬁi’?.)_i,rk ()| (p=1orp), yim = 5P g Ll

P =p

Similarly, the contribution of the terms with s; ; # 1, a,, = p is, since in this case u,, or
some s,, ; is equal to p, at most

p(W)*tlog R)* m
ka_lDo yr(nazc(p”?”m:}? yr(nazc (315)

Combining (3.10), (3.13), (3.14) and (3.15), we have

E :/ /\dlw-,dk)‘eh-.-,%

00 TIy e(disei))

€1 ,eeny €L
dm=p,em=1
. Z y’l(LTIL,),Uk(p)yi(Jzn,),uk
= k
UL yeees Uk Hi:l g(ul)
- - (m)
(W) 1(log R)*! Yo (P)|r.,
0 () ()|, g 4 LT Tm=P ) (m) 3.16

(We note that we may remove u?(u;) in (3.13), since yq(fln)uk = 0 unless ug,...,u; are
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all square-free.) We put

k
Yry,..., TR T (HN(“)@(“)) Z M (317)

k
di,...,dk Hl:l d;
rildi (Vi)

Using the test function F', this is expressed by

log 1 log 7y,
oo =F 3.18
y 15--5Tk <IOgR IOgR ( )

(see [10, p. 400]). It is proved in [10] that
)\max < ymax(log R)ka

where

Ymax = Sup ‘yrl,“.,rk|~
T1y..5Tk

Hence the error term in (3.9) is replaced by y2,. . N/(log N)B. We substitute (3.16) into

(3.9). Since
- (Y) = e 0 ()

for Y = N7 < p< R= N2 we obtain the following result:
LEMMA 3.1.  Assume BV[0,P] for 0 < < 1. Then
(m)

(m)
(m)i Yuy,' ,Uk(p)yuh HUk
< <logN>) Z logN/p Z (us)

'ng

No(W)F—2(log N m m Yok (D)=
o (MWL s N2 o) 5 <y£na2(<p>rm:1+(;'*”’

max
WH=1D, Y <p<R

+0g ((lfgyf}]);) . (3.19)

By symmetry, the same result also holds for Sé"}} Next, we compute the inner
sum in the main term of (3.19). The following result is obtained by Maynard ([10

Lemma 5.3]).

LemMA 3.2.  Ifr, =1, we have

(m)  _ Yri,Pm—1,0m, Tt 1,07k O Ymax (W) log R 3.90
) gy = 3 Pt sty o (VS RER ) (320)

. k .
Next, if [],_, d; is square-free, we have
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k
Ny, = <g“(di)di> 2 H

Aly.nny ag =1 ®

(see [10, p. 393, (5.8)]). By substituting this into (3.11) and interchanging the order of
summation, we have

(m) Yay,...,ax Hz 1 H( )
yrl,.,.,r. lu’ rl T
' (H > algak H§:1 p(ai) dl,z:, dr Hz 1e(di )

rila; (Vi) dm=p
plam ri|di,di]a; (Vi)

If r,, = 1 or p, we find that

3 [T, pn(di)di _ p(p)p 5 T o 1(di)di
k - .
i, dr Hi:l (p(dl) (p(p) i sy —1 o1 esdis Hi;&nb w(dv)
dm=p ri|di,d;ila; (ViZm)
Tzldudzlaz(v'b)
_p p(ai)rs
p—1 0 wla)

Therefore,

k
m p Yai,...,a wla;)r;
y o p) = ——— (H M(ri)g(m)> P 11 = (3.21)
3 at,..., ay Hz 1 (p(al i#Em al
rl\al(Vz)

plam

By the condition of the support of yq, ... q,, We may restrict the sum to (a;, W) =1 (V7).
Then, if a; # r;, it follows that a; > Dor;. For j # m, the contribution of such terms is
at most

k 2a-
e (ng(”)”> | 11 <Z 5<c(zj32> > e

aJ>Dgr ‘7 i#jm \rjla;
rila; am <t
(am,W)=1
2 !
g(r;)r; - K\

< ymax< QO((T))2> g(rm)Doll Z (p(p)((p(a?)

itm 7 a’ <R/[I m

(a;rﬂW):l

< ymaxg(rm)(p(W) IOg R/p

W Dop(p)

Hence we have
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2
m p p?(ri)g(ra)rs T Yrss P 1 G Pt T
y7(~1,.)..,rk (p) == < H (7"‘)2 ;U'(rm)g(rm) : - = :
3

p—1 i#m ¥ plam W(am)
Lo <ymaxg(7“m)<p(W) log R/p) (3.22)
WDop(p)
Since yr,,...,r, = 0 unless ry,...,7); are square-free, we may remove the factors 1i*(r;)

(i # m). Finally, by applying

p _
—— =1+O0O(N"
S =L oW, l;[n

i}(r); =1+0(Dyh) (if <H mw) = 1),

we obtain the following result:

LEMMA 3.3.  Ifr,, =1orp, we have

Yri,e P —1,@m T 15057k
yﬁ??ﬂ’k(p) = _,U/(T'm)g(rm)z 71y T —158m,Tmt Ly 5Tk

@ p(am)
plam
Ymaxg(Tm)p(W)log R/p
. 2
+O( W Doo(p) (8.23)
By (3.23), we have
max@(W)log R
YD) mp < LB TD, (3.24)
and
max?(W)log R
(D) rmr < 2 SO(pVS/ Blt/p. (3.25)

Next we compute the sum over a,,. For this purpose, we use the following lemma, proved
in [8] (see Lemma 6.1 of [10]).

LEMMA 3.4. Let A1, Ao, L > 0 and v be a multiplicative function satisfying

nggl_Ala
q
1
pe Y Malsg 2y,
wegse 1 v
qEP

for any 2 < w < z. Let h be the totally multiplicative function defined by

hg) v(q)

V=00

for primes q. For a smooth function G : [0,1] — R, put
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CTVmax = Ssup (|G(t)| + |G/(t)|)
tE[O,l]

Then, we have

2 logd = og z 1 x)ax
S tna)G (2E2) = log: [ Glajde + 0(SLGww).

log z
d<z &
where

-1 ) ()

qeP

The implied constant is dependent on Ay, As.
The following lemma is a direct consequence of Lemma 3.4:

LEMMA 3.5.  Under the same situation as in Lemma 3.4, put

B log R/p logp
Grl7) G( log R <10gR/p+x>)'

Then, we have

log pd R [!
2 _
g p(d)h(d)G (logR> = Glog » /0 Gp(z)dx + O(GLGmax)-

d<R/p

PROOF. Since

logpd o logd
¢ <IOgR> N Gp <log R/p> ’ (Gp)max < Ghax,

by applying Lemma 3.4 with z = R/p, we obtain the result. (|

We compute the sum in (3.23). Using the conditions of the support of y,, . .., we
have

2 : Yri s P —1,Gm T 15Tk

o o(am)

plam

_ 1 2 : Yri,Pm—1,pal, ,Pmi1, Tk

e(p) < p(ar,)
(p,aén):1
1 12 (ar,)
= Z .
o) Sy Plam)

(a, . pW ngm ri)=1

Y F log 1 logr,m—1 logpal, logrm,i1 log 7,
logR”"""7 logR * logR = logR '~~logR )’

(3.26)
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We apply Lemma 3.5 with

(g) = {(1) Egtﬁzvgjm ri) (3.27)

The prime number theorem assures that the conditions in Lemma 3.4 are satisfied with
A1 = 1/2 and sufficiently large As > 1. In this case, we have

lo
L<i+ Y e4
alpW Iz i 4

<« Z log q n Z loglog R

log R
q<log R 9 W I i &

q>log R

< loglog N.
Moreover, since (r;,p) = 1 (Vi # m), we have

_ 1\ e@e(W) 1 elr)
s= 1l (1 Q)_ W 1=

. 7
alpW Iz i i#Em

Therefore, by applying Lemma 3.5 to the right hand side of (3.26), we obtain

E y"'la-“/"mfl;amyrm+17---;7k

a e(am)

plam

_ (,D(W) 10g E H 90(7'1) /1 F[Em] 10g (a1 o log Tm—1 u, 10g Tm+1 o log ’f’k) du
pW P i ri Jo log R log R log R log R

+0 (WFMX log log N) : (3.28)
P

where the function F(---) is obtained by replacing the m-th component z of F(-- )
with ((log R/p)/log R)((logp/log R/p) + ), and

" |oF
Foax = (tl,,__i;.l)%[og]k <|F(t17 coote)| + ; afti(tl, ceoytr) ) .
We put
Fom = /1 Fim (1°g” . Joermo | l0BTmr logr’“> du.  (3.29)
TLyeeasT o log R log R log R log R

By substituting (3.28) into (3.23) and using ¢max < Fmax, log R/p < log R, we obtain
the following result:

LEmMMA 3.6.  Ifr,, =1, we have
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(m) _ p(r; Fom 40 < Frnaxtp(W) log R) 330

e ) Sl SURLES RER
forY <p < R, where Fr(p’m) . 48 defined by (3.29).

The summand in the main term of (3.19) is zero unless uy, ..., uy satisfy u,, = 1,
(ui,uj) =1 (i # j), HZ LU < R, Hz 1 U; is square-free and (uz,pW) =1 (Vi). Tt is
proved in [10, p. 403, (6.13)] that if uy, ..., uy satisfy these conditions, we have

™ i) | i) Finaxp(W) log R
Y, = (log R)E (Hl ” ) o u, +O < D . (331
where
i B /1 » log uq log tm—1  logUmt1 log uy, p (3.32)
Uty Uy 0 IOgR""v logR » Uy logR PR logR . .

Combining (3.30), (3.31), we obtain

m m QO(W)Q SO U7 m m
U DI = = e (08 ) log II Flem, F

i#m l
(W)2F2 1og2 R
0] s 3.33
if u,, = 1. In the above computation, we used the trivial estimates
sup |F[m] | € Frax, sup |F} P’m)uk| & Foax-
UL, U UL, U
We substitute this into the sum over wuy, ..., u; in (3.19). The contribution of the error
term is
< @(W)QFr%lax 10g2 R Z 1 < @(W)k-i_lFr?lax logk+1 N
2 E F+1 :
pW=Do oot g <R L Liz1 9(1i) pWET Do
(us,W)=1(Vi)
Therefore,

> U (DI
k
UL yeeny Uk Hi:l g(ul)

pUV)? R 2 () plw)® \
= — pW2 (logR) logg Z H ( F(Pm?UR ‘l;‘idn’]m’u,c
ULy Uk i#m
U =1
(wiru; ) =1(Vi#j)
(u; ,pW)=1(V1)
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W1 E2  Joehtl
ka+1D0
We compute the sum over uq,...,u; in (3.34). First, we remove the condition that w;

and u; are coprime if ¢ # j. Since (u;, W) = (u;, W) = 1, if (u;,u;) > 1, there exists a
prime ¢ > Dy such that g|u;, u;. Therefore, the possible error is at most

k—1

= ( o(g)! ) p(u)? F2p(W)" 1 (log R)*~!
max N
q>Dg u<R

9(q)%q* u?g(u) < DoWh=1

(u,W)=1
Hence we have

2 2
3 | R PR
uZg(ug) )7 e T

ULyeny Uk i#=m
Um=1
(wiyu;)=1(Vi#j)
(ui,pW)=1(Vi)

= Z HM Fm)  plm]

U yeens Uk i#=m
Upm=1
(us,pW)=1(V1)
Faaxp(W)* ! (log R)**
O == . 3.35
+ ( D0Wk71 ( )
Now we apply Lemma 3.4 with
2
q°—3q+1
_ 4 THT W
() = F-F-2g+1 W) (3.36)
0 (otherwise)
to the sum over uj, ..., Um—1,Um+1,--.,Us. LThen we have
Z ( HQ(U;)@(Ui)Q)F(p;m) Flml
. Ulyees Uy~ ULyeen, U
UL ey Uk i#£m i g(ul)
Uy =1

(ui,pW)=1(Vi)
=&" log R)*!

1 1 1
X/ / {/ Flgm](uly...;um—17u7um+17"')uk)du}
0 0 0
1

X {/ Fug, ey U1, Uy Uyt 1 - - - ,uk)du} duy -+ A —1dUp g1 - - - dug
0
+O(&* *L(log R)*2F2_ ).

In this case,
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L<<1+Z <<logDo,
alpW
qxl;lwo—;w(;))l(l—b 03
= quo <1+O <q12)>
_ W(ﬁ 0(D;")).

Therefore,

2
pe(u
O e
UL,y Uk i#Em

Um =1

(us pW)=1(¥i)

_ e (W)t (log R)*1

k—lwk—l

/ / {/ [m] ul?"';u7rl—17u7um+17'"auk)du}

X {/ F(ul,...,um_l,u,um_,_l,...,uk)du} duy -+ - dtp—1dUp 41 -+ - dug,
0

Lo e(p)Fto(W)k—1
DopF—1Wk—1

(log R)*~ 1F§1ax) : (3.37)

We put

1 1 1
)[p] =/ / {/ Fzgm](ul,...,um1,u,um+1,...,uk)du}
0 0 0

1
X {/ F(ul,...,um1,u,um+1,...,uk)du} duy - A 1dum 1 -+ - dug.
0

(3.38)
By substituting (3.37), (3.38) into (3.35), we have
2(a;.
S (T ), e
UL yeeny Uk i#m u; g(ul)
Um=1
(wi,uy)=1(Vi#j)
(us,pW)=1(V1)
p(p) W)kt k-1 (m) Fraxe(W)F ! (log R)* !
= pE-1jk—1 (log R)" " J. " [p] + O 2 Dy . (3.39)

We substitute (3.39) into (3.34). Since log R < log N, we obtain
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(m )

Z yuh Uk )ym

Hz lg(ul)
sO(p)’“ Lp(W)FH! k(100 BY S0m) Fraxp (W) (log N)* !
= _ SR (log R) log— Jy lp]+ O DDV
p(W)k+ ! R ), Faax (W) (log N)M

We substitute this into (3.19). We compute the sum over p. Recall that J,gm) [p] is defined

by (3.38), and the function FIE"’] is obtained by replacing the m-th component u of F
with ((log R/p)/log R)(logp/(log R/p) + ). To see how the sum over p becomes, let us
compute the sum

2 (e5) (5) (R ) e

Y<p<R

for any smooth function f, where Y = N7, R = N(®/2)=9We denote by 7(v) the number
of primes equal or less than v. Then, the sum (3.41) is expressed by

NED= 4 R N\ logR/v [ logwv
~ | log— | ( log — d )
Lo a (o) (o) o (i (i +0)) 0

Using the Prime Number Theorem, this is asymptotically

N(©/2)=5 _1
1 R N logR/v [ logwv dv
“ (10g 2 ) (10g ~ v
/NT, U(Ogv) <Ogv> f( log R <logR/v+u logv

By putting logv/log N = £, this becomes

0/2=0(9/2) -5 — ¢ 3 (0/2) -5 —¢ \ de
/n ¢ f(<e/2>—a+ 0/2) o “)5'

We put
Fm,é(“lr--a“k%@
3 (0/2) —d6—¢

= F U1 s U1y - e UK ) S 42
(Ula y Um—1 (9/2)_54- 0/2) =0 Urn s Un41 uk> (3.42)

/ /{/ m‘;ul""vuk;f)dum}

X {/ F(uy,...,u )dum} duy -+ - dum_1dumy 1 - - - dug. (3.43)
0

Then, by the above argument and simple estimate
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Y = N", R = NW®/2-9
Z plog N/p < log N ( ’ )

Y <p<R
we have
Z yu1, 7uk yl(bh) s Uk
Y<p<R 1Og N/p ULy Uk H'L 1 g(ul)
p(W)k+! k /6/2 (0/2) =6 =& (), d€
= - (1 1 1 7[/ —
e (o 1+ o(1) | LT
max?(W) 1 (log N)*
ro (Tt , (3.4)

if the integral of the main term is not zero. Finally, by substituting this into (3.19), and
combining (3.24), (3.25) and

W)

r(:]’r;z( << 7 max IOg N Ymax << Fmax

(see [10, p. 403]), we obtain the following result:

PROPOSITION 3.7.  Assume BV[0,P]. Then, if

m O/2D=3.9/2) =6 —€ .. d
e = [ P 2o
n

we have

Sgr;) _ _M(log R)*(1 + 0(1))1’5«%)(1:‘)

W+
F2 . 0(W)EN(log N)* NFZ..
) ey (3.45)
+0 DoW +0s (log N)

as N — oo, where LE:? (F) is defined by (3.43).

Notice that the same result holds for S’én;} If Ll(;:'g) (F) = 0, the leading term vanishes
and hence

gm) _ gtm) _ [ Fraxp W) NQog N)*N o NFja
2,1 2,11 — Whtt B (log N)B

4. The computation of ,5'2 III-

To compute

Sén;}l : Z Ady i Aer e, Z B(n + hp), (4.1)
d N<n<2N
61’ ,ek n=vo(mod W)

dm=em=1 [di,ei]|n+h; (Vi)
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we use the following lemma:

LEMMA 4.1.  Let 8(n) be the function defined by (1.10) withY = N7, 1 < n < 1/4.
Then, we have

N 1—n Nloglog N
B(n) = log—— + O ( (4.2)
N§§<:2N log N 7 (log N)2
(n,q)=1

uniformly for ¢ < N. Here, the implicit constant might be dependent on 7.

PROOF. We denote by w(g) the number of distinct prime factors of g. Then,

S s = Y > 1

N<n<2N Y <p1<N1/2 N/p1<p;<2N/p1
(n,g)=1 (p1,9)=1 (p2,9)=1
N
- ¥ {r(5)+owa]
Y<pi <N1/2 P
(p1,9)=1
- X (5) o)
y<pmaniz NP1
(p1,9)=1
N N
= Z i ( ) +0 (ﬂ'b () w(q)) + O(NY2u(q)).
P1 Y
Y<p1<N1/2

By applying the Prime Number Theorem to the final line, we obtain

> o= = {0 G} 0 (0w ) 09

N<n<2N Y <pr <N1/2
(n,q)=1

The contribution of the first error term is

N N loglog N
Z < g 108

Y <p1 <N1/2 pi(log N)? (log V)2

On the other hand, the main term is

Z N B N/Nl/2 dm(u)
yep Ty P1 log N/p; y u(log N — logu)

N & 1 N2 Jogk
= dm(u). 4.4
1OgNkZ:OlogkN/Y u () (44

By partial integration, we find that
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N1/2 N1/2 N1/2

d 1 1 1
[ lmro (o), o (o (o)
v u log u log”u/ | nm nn o u® \logu log™ u

1 1
:1 B
() v ().
N1/2

N1/2
1 1
/ Ogudﬂ(u)z [1—}—0( )]
v U logu / |y

N1/2
1-1
o S (o (i)
N7 U logu ]og m

- (; _ n) log N + O(1),

and for k > 2, we have

N1/2 k k
1 1
oo e |5 (o (5)
v u u logu log® u N

_/Nl/z klogkIUQ—IngU< U +O( u2 ))du
N u log u log® u

1 /1 _ _
k;<2k k) log® N +0(2 % log" ! N).

1/2

(The implied constant might be dependent on 7, but independent of k.) Combining
these, we obtain

i 1 /Nl/zlogkud() | (1>+§:1(1 k>+0 > 9k
— 7(u) =log | — —\=-n
P logk N Jy U 2n et k \ 2k Pt log N
1—n 1
=1 0] . 4.5
os =140 () (45)
By substituting (4.5) into (4.4), we have
N N 1-9 N
Z = log + 0 < 5 ) .
veq oyjz PrI0gN/p1 - log N n log” N
Consequently,
N 1-— Nloglog N Ni-7
> Bln) = - log ”+0<°g2°g>+o<“’(lq)N>. (4.6)
N<n<2N 08 N log™ N 08
(n,q)=1

Since w(q) < N€ (Ve > 0) holds uniformly for ¢ < N, the second error term is dominated
by the first one. Hence we obtain the result. O
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We return to the computation of Sg;”}l, defined by (4.1). Only those (dy,...,ds,
e1,...,ex) for which W, [dy,e1],...,[d, er] are pairwise coprime and Hle d;, Hle e; <
R contribute to the sum. We denote the restricted sum by 3. We put

k

q = WH[dl,el]

i=1

Then, there exists a unique v (mod ¢) such that v = vy (mod W), h;+v = 0 (mod [d;, €;])
(i =1,...,k) and the sum over n is rewritten as the sum over integers congruent to v
modulo g. Therefore,

> Bnthm)= Y. B+ hn)
N<n<2N N<n<2N
n=vg(mod W) n=v (mod q)

=Y Bm+on), (17)
N<n<2N
n=v’ (mod q)

where v/ = v + h,,. This 1/ satisfies (v',¢q) = 1. This fact follows from our choice of
vy and the condition that the elements of H are bounded. We have treated the similar
situation in Section 3, hence we omit to prove this. Hence by (4.7), we have

1
Z ﬁ(n‘i’hm):ﬁ Z 5(”)+A5(NQQ>’/)+O(1)> (48)
N<n<2N 1) N<n<an
n=vg (mod W) (n,q)=1

where

1
Ap(N;q,v') = Z B(n) — 2@ Z B(n).
N<n<2N via N<n<2N
n=v’ (mod q) (n,q)=1

Now we apply Lemma 4.1 to the sum in (4.8). Then we have

S Bt ) = X + Ap(N;q,v") +O(1),
N<n<2N ¢(q)
n=vg (mod W)

where

XNJI

N 1—1n O(NloglogN) (4.9)

= 1
log N o8 n (log N)?

By substituting this into (4.1), we obtain
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S(m) = XN"" ! w
o011 = E ,

p(W) di,...ds Hf:1 o([di, ei])
€1,.-,€k
dm=em=1
! /
10| 3 Padidere (1B(Nsq, ) +1) | (4.10)
dy,...,dg
€1;.-0y €k

Under the assumption of the estimation BV[f, &;], the error term above is evaluated by
Op(Ny2,,./(log N)B). The proof of this statement is essentially the same as that in the
argument around (5.19)—(5.20) of [10], hence we omit it. Moreover, the sum in the main
term is also computed in [10] (see the proof of Lemma 5.2 of [10]). The result is

ZI )\dl,..‘,dk>\e1,..‘,ek: Z (y&?ﬁ?.i,uk)Q+O<(y$§i)2g@(W)’“—1(logN)’f—1).
o Ta Thoielldne]) o Tz g(w) DW=t

€1;.-,€k
dm=em=1

Consequently, we obtain

m XN (yul ) )2
S = SR
7 (,O(W) ul,z;uk Hf:l g(ul)

(ysex) >0 (W)F~2 N (log N)¥~2 Ny o
o (WP 0 \Gogmyp ) 1

We put

2

1 1 1
J,gm><F>=/O /0 (/O F(tl,...,tk)dtm) Aty dtp_1dtmar - dty.  (4.12)

By Lemma 6.3 of [10], we have

N (yq(;n,)mk)2
@(W) 1OgN UL yene, Uk Hf:l g(ul)

W)EN(log Rk, F2. o(W)EN(log N)k
_ p(W)"N(log R) IRy +0 max (W) "N (log N)™\

Whktllog N Wkt Dy

Moreover, we have
Fraxp(W)log N
T Y R dUALL

(see [10, p. 403]). By substituting the definition of Xy, (4.9) into (4.10) and combining
these, we obtain the following result:

PROPOSITION 4.2.  Under the assumption of BV[0, Es], we have
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m) _ p(W)"N(log R)**! 1—n (m)
Sy 171 = Wi+ log N 1ogT (14 0(1))J, " (F)

+ 0 ( WEFD, ) + OB <(lOgN)B> (4.13)

as N — oo, where J( )( F) is defined by (4.12).

5. The computation of 5’2 Ve

The next problem is to compute

Sén}%/ = Z Z Ady i Aer,.er, Z B(n+ hm). (5.1)

Y<p<R di,...,dk N<n<2N
€1,..,Ck n=vg(mod W)
dm=em=p [d“el]\nJrhI(Vz)
Only those (di,...,dg, €1,...,e) for which W, [dy,e1],...,[dk, ex] are pairwise coprime

and Hle di, Hle e; < R contribute to the sum. We put

k

i=1
Then,
N<n<2N N<n<2N
n=vp(mod W) n=v (mod q)

for some v (mod ¢), given in Section 3. The right hand side of (5.2) is given by (3.6).
Combining this and

1 plp) _p-1
(a/p)  ¢(@)  ¢(q)’
we obtain
m 1 N ! Ad seensd )\e ey
55,13/ = oo (p—1)n’ () P
14 Y<p<R p di,....dy Hi:l o([di, ei])
d:;e.:ip

+0 Z Z ‘)\dl AdiNer .. ,6k| <‘A<

Y<p<R di,...,dk
€1,--+,€k
dm=em=p

=

q
N +1) , 5.3
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where the sum Z’ implies that dy,...,dg, €1, ..., e, are restricted to those satisfying the
condition that W, [dy,e1],...,[d, ex] are pairwise coprime. The error term is, under the
assumption of BV[f, P], evaluated by

Ny?
max .4
B (og N) B (5.4)

for any B > 0. The proof is almost the same as that in Section 3, hence we omit this.
Next, we compute the sum over dy,...,dg,e1,...,e,. By the similar way as (3.10), we
obtain

k
Z /\d1k7---adk>\el7---a€k _ Z Hg(uz) Z* ( H M(Si,j)>

di,...,dg Hi:l s0([Cl'b’el]) UL yeeny up 1=1 81,2545 Skk—1 \ 1<i#j<k
€1,...,€k
dm=€m=p
~ Z )\d;”“’dkAehm’ek ) (55)
di,....dp Hi:l o(di)p(ei)
€1,--,€k
u;|di,e; (Vi)
si,5ldisej(i#£7)
dm=€m=p

Using the function yi’ln)rk (p) defined by (3.11), the right hand side of (5.5) is expressed
by

k 2 Us . Sij N

U,y 1<i#j<k

where a; = u; Hj# Sij, bi = uy Hj;ﬁi ;4. Since a,, = p implies p = u,, or 8y, ; (I5) and
by, = p implies p = u,y, or s;,, (37), the contribution of the terms with s; ; # 1 (hence
si,; > Do) is at most

2
e - (50,51)
22 H ) | D
pr,p2=lorp wui,...,upi=1 EIRY 131‘/#/99 Y]
(#,5")#(4,5) (@,3")#(07)

S'l m
( ) ) I T

>D0

which is bounded by

k—1
W
< Yk (P)7, 1 (‘p;,)log R) 1-Dyt

(m) (m) (m) L (W) et 1
+ (ymax(p)rm_lymax( )Tm_p + ymax( )rm—p) : ; 7 IOgR -1 DO
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@(W)k_l(logR)k_l (m) ( )
WkilDO Ymax\P Tm=1

N e(W)*!(log R)F*
pWH1 Dy

<

m m 2
max {yl(mz( p)Tm:h yr(nazc(p)T’m:P} . (57)

Combining (5.5), (5.6) and (5.7), we have

ZI M yul’ Uk )
diyeyds HZ 1@([d1aez]) ULy Upe Hz 19( i)

€1, ek
dm=em=p

o(W)k=tlog R)*~1 .
+ 0 < ( )Wk_(lD() ) yl(nazt(p)?"mzl

k—1 o k—1
vo (LR yimge), )

where

Y(m) (p) max{ymnx(p)Tm:h yr(nn;l(p)Tm:p}

By substituting (5.8) into (5.3) and combining (5.4), we obtain

S;Zzg/zw(l)yz( < ) > yul ..... Yiro i (p)?

<p<R UL yeer, Uk z 1 g( )
No(W)k—2(log N)*~2 Y (m) (p)?
+ 0 k—1 Z yl(‘ﬂfzzc(p)rm—l +
WHDo Y<p<R p
Nyiax
+0n (oge) 59

Moreover, by the estimates (3.24), (3.25) and >y, 1/p <, 1, the first error term of
(5.9) is at most

No(W)"2(1og N)* 2 yiaxp(W)*(log N)* _ yiiax Np(W)" (log N)*

Wk=1Dy, W2 Wk+1D,

N N N
()= -
(p ) <p> logN/p+O(log2N>’

if we replace the factor (p — 1)7°(N/p) in (5.9) with N/(log N/p), the possible error is at
most

Since

1 N Z yu1 ..... uk p)2

90( ) (IOgN)2 Y<p<R ui,..., Uk z 19( )
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k-1
(m)
N Ymax (D)7 =p (m) 2 1
< 2 Z { - + ymn;x(p) Tm=1 Z
EUSIUTR o 2, oW
(u,W)=1
- N 3 <yfnax<P(W)2 log” N yaxp(W)? log” N)(so(W) 10gN>k1
2 2 27772
AWl N2 | 2 W W W
« PV (log NPl (W)
Wht1
which is dominated by the error term above. Therefore,
Sé 1%/ = Z 1’ =
SD(W) Y<p<R log N/p UL yeeny , Uk z 1 g(ul)
2 2
Ymaxe N p(W)* (log N)* Ny
O === Op | —=2% ). 5.10
* ( WD, T2 Tlog ) (510)
Let us compute the sum over uq,...,u, in the main term of (5.10) by using Lemma 3.3.

Let u,, be 1 or p. Then, by (3.23), we have

yim o (0)?

B - Yoot 15 s U 15 r U ymaxg(um)sp(W) IOgR/p
= q —(um)g(um) Z o(am) +0 < WDoe(p)

QAom
plam
2

= g(um)Q Z Yut,em—1,Gm W1 50y Uk n 0 <y12naxg(um)2 (W)Q(log R/p) )

= p(am) W2Dop(p)?
plam
Therefore, by taking the sum over uq,...,uxs, we obtain

DI COREEDS i | 20 e s

Um=1,p ULyeeesUm—1,Um41,5--4,Uk Hz;ﬁmg i Am gO(a7n)
p‘arn
2 %% k+1(1oo N)k+1
+ O ymaxgo( ) ( Og ) . (5.11)
Wk'HDOp

By (3.28), if ug,...,u, satisfy the conditions that (u;,u;) =1 (¢ # j), (u;,pW) =
(Vi £ m), uq,...,ux are square-free, we have
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Z Yur,oo i —1,0m U 415U
o(am)

Am
plam

_p(W)? ( ) p(u
i#m uf

p2W2
2
Flm] log uq log U —1 v log w41 log uy, du
Ey logR’"""’ logR 7 logR "~ logR

R
( 772 ( F2_ (loglog N)? +FmaxlogloglogN>). (5.12)
p

We substitute (5.12) into (5.11). Then, the contribution of the error term is at most

1 ‘Fglax w 2 IOgR p log lOgN 2
> glum) 3 oD p(W)*( 2W/2 ) )
Um=1,p UL ey Ui —1,Um 15, Uk Z#mg Uq V%
< Fmax‘)O(W)k_‘—l(log N)k(log IOg N)2
ka+1 )

which is dominated by the error term of (5.11). Therefore,

yul, i (P)?

ULy, Uk 1 1g(u)

W)?2 R\’ '
- A C T ED IV TSI SR -

Um=1,p ULyeeosUm —1,Um+15---,Uk l?fm
2
. (/1 Fp[m} <logU1 . log Uy —1 " log Um 11 . loguk> du)
0 log R log R log R log R
F w k+1 1 N k+1
+ O maxgp( ) ( Og ) . (513)
Wk+1 Dop

The sum Z/ indicates that wui, ..., Um—1,Um+1,...,us are restricted to those satisfying

the conditions above. In (5.13), the contribution of the terms with w,, = 1 are dominated
by the error term. Hence only the terms with u,,, = p contribute to the main term, and
since

glp) 1 <1) 1 o
D —Zto0(=)==+0(p N,
P2 p p? p ( )

if we replace the factor g(p)/p? in (5.13) with 1/p, the possible error is dominated by the
error term of (5.13). Hence we have
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w)? ’ % (u; i)
_ @(Wg (log R) Z’ M
p p UL yeosUm—1,Um 4150, Uk TFM uig(uz)
2
« /1 Flml log uy log um—1 u log Uy 41 log uy, du
0o ? logR”"""7 logR ' logR '~ logR
F2 go(W)kH(log N)k+1
max . .14
1o (Fhat g0/ 514

We remove the condition that (u;,u;) =1 for ¢ # j. If (u;,u;) > 1, there exists a prime
q > Dy for which g|u;, u;. Therefore, the difference is at most

k—1

p(W)2(log N)*F2,,. ( o(q)" ) p(u)?
Z ) u<R

pw? o5, 9@t u?g(u)
(u,W)=1
- Flap(W)* log N)*+!
W Dop '
Therefore,
Y (p)?
k
ULy Uk lelg(ul)
2
_e(W)? (log R) 3 12 (ua)p (ui)?
pw? P u?g(u;)

UL yeenyUm—15UmA 150Uk TFEM
(s W) =1 (Vi)

1 2
o / F}gm] logul7...7logum_l,u7 logumH’”.’loguk du
0 log R log R log R log R

F2 %74 k+1 loe N k+1
+ O max(p( ) ( Og ) . (5.15)
WHH1 Dop
We apply Lemma 3.4 with
2
g —3q+1
l1- = w
v(q) = ¢ —q¢?—2¢+1 (/W) (5.16)
0 (otherwise)
to the sum over uy, ..., Um—1, Um+1,---,Uk. In Section 3, we proved that
e(p)e(W)

L<logDy, &= (1+0(Dghy).

pW
Therefore, by the similar way as (3.37), we find that
Z H 12 (ui)p(uq)?
u

2
“g(u;
UL yees U —15Um 15U T£M ’g( Z)
(ui,pW)=1(Vi#m)
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1 2
y / F}gm] log uq L log Uy, —1 ul log Um+1 o log uy, du
0 log R log R log R log R

1 1 1 2
X (/ Flgm](ul,...,um_l,u,um_,_l,...,uk)du)
0 0
: dul to du7n—1dum+1 e duk

L0 F20(0)" to(W)F ! (log N)F—1
PF—1Wk-1D, :

(5.17)

By substituting (5.17) into (5.15) and replacing the factor ¢(p)*~!/p* with 1/p (the
possible error is sufficiently small), we have

m) 2
1

3 Y. (p)

k
UL yeeny Uk Hi:l g(ul)

p(W)r+! k-1 R\’

1 1 1
x/ / (/ Flgm](ul,...,um1,u,um+1,...,uk)du)
0 0 0

cduy - AU —1dUp 4 - - - dug

F2 s0(vv)k—i—l(10g N)k+1
max . 1
+0 ( WAL Dop ) (5.18)

2

We substitute this into (5.10). Our next purpose is to compute the sum over p. For any
smooth function f, the sum

£ (o) (w3) (5 (5 ee) om

Y <p<R

is expressed by

N(©/2)=8 2 —1
1 R N logR/v [ logwv
= (100 = log —
/]w7 v <og v> <og v> f( log R <10gR/v+u))dﬂ-(v)’

which is asymptotically

N(©/2)=8 2 —1
1 N 1 1 d
/ — 1og§ log — f og /v o8 v +u v
N v v v logR \logR/v log v
By putting logv/log N = £, this becomes

1OgN/W)—‘*<<e/2>—6—f)2f<( ¢ +<9/2>—6—eu) dg

1-¢ 0/2)=6  (0/2) =4 &
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We put

M[m] )
2

/ / </ m.s (U1, .. ,uk;f)dum) duy -+ dup—1dtp g1 - - dug,  (5.20)

where the function F, s is defined by (3.42). Then, by applying the consequence of the
above argument to (5.18), we have

>

Z yuh UK )
logN/p X (u;)

Y<p<R Y z:l g
p(W)* 1 (log R)* " log N OF270((6/2) =6 -€)* ) &€
_ ucl (1+0(1))/n = M,E,(;](f)g
F2 w k+1 1 N k
+ O ( ,IlaXW(I/V]3+1D(OOg ) ) ) (5.21)

if the integral is not zero. We substitute this into (5.10). Consequently we obtain the
following result:

PROPOSITION 5.1.  Assuming BV[0, P|, we have

©(W)kN log N(log R)k~1

Sy = ThEs (1+ o(1) M3 (F)
+O< WEFD, ) +OpB <(10gN)B> (5.22)

as N — oo if

" 0/2)=0 ((9/2) — & ol d
M w) = [ QUERLELS 2=l F Ao
n

where M,EZ] (&) is defined by (5.20).

We note that if M ,ET?)(F ) = 0, the leading term vanishes and hence

FIIIH.X@( ) 4§ N (log ) 4§ Fl’?la)(
+O0p | —2%- ).
Wk+1 (log N)E

Sg’}%, =0

6. Conclusion.
To establish the small gaps between almost primes, we consider the sum

k
S(N.p) =D 8™ — pSy

m=1
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k
Z (S(m) + Sé mt 52 it Sg?v) —pSo (6.1)

m=1

for p € N. To establish small gaps between the set of primes and almost primes, we
consider the sum

(5™ + 55™) = pSo

[
™=

S'(N, p)

m=1

SO

= (S(m) + Sén}) + Sén;} é 7+ Sén;%/) — pSo (6.2)

m

Il
—

for p € N. If S(N,p) — oo, there exist infinitely many n for which at least p + 1 of
n+hy,...,n+ hg are Ex-numbers. If (N, p) — oo, there exist infinitely many n for
which at least p+1 of n+hy,...,n+h; are primes or Fo-numbers. We have computed all
terms to obtain the asymptotic formulas for S(N, p) and S’(N, p). The terms ng}) and
Sé";} are obtained in Proposition 3.7, the term Sé”}} ; is obtained in Proposition 4.2, and
the term Sé 71 is obtained in Proposition 5.1. Also, the terms Sy and S§m) were obtained
by Maynard ([10]), and the result is given in Proposition 2.1. By these propositions, we
find that under the assumptions of BV[0,P] and BVf, &), S(N, p) is asymptotically

k k k
m 0/2 1- n m m p@
{—9’ DL )+ <log - ) DL E) DD M (F) — ()
m=1 m=1 m=1

0"\ p(W)*N (log N)*
X 9 Wh+1

and S’(N, p) is asymptotically

{ 0’ Z L{W(F

(N wwmmmk
2 Wk+1 ’

/2

(1 + log

o k k pal
)ZQWN+ZMWW%2hW}
m=1

m=1

whenever the leading coefficient is not zero, where
0" =6 —26.
We take the limit 6 — +0 and see when the leading coefficients

k
m 02 ]- - m m 9
0> LYY (F) + T <10g n”) Z I (F) + Z MIP(F) ~ %Ik(F) (6.3)

m=1 m=1 m=1

or
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k

k
1) S+ Y M) - DE) (64)
m=1 m=1

—HZL 9 (1+1og

become positive.

7. The proof of Theorem 1.1.

Let p € N be sufficiently large. We use the same test function as in [10]. That is,
we define the test function F' by

k
F(U17,Uk-): Hg(kul) (u177uk20;u1++uk§1) (71)

1=
0 (otherwise),

where the function g : [0,00) — R is defined by

1
<u<T
+ Au susT)

1
0 (u>T)

g(u) = (7.2)

with A =logk — 2loglogk, T = (e — 1)/A. We choose 1 by

_ T 0
T T og k)P

In this case the function F,, o is given by

Fm,O(ula7uk7£):g( (295—’— )) Hgkuz

i#Em

When the pair (um,, &) moves in [0,1] x [n,0/2], we have

25 —25 2kn
> =
k(e 7 ) 7 2T > T.

Therefore, we have Fy, o =0, so L,(Cm)(F) = M,Em)(F) =0form=1,...,k. Hence if

(62/4) (log(1 —n) /) Xk _, ™ (F)
oL (73)

(6.3) becomes positive. Using the inequality in [10, p. 408], for any ¢ > 0, if k is
sufficiently large, the left hand side of (7.3) is

0 < 1 —77) kI (F)
= — | log

2 n I (F)

L 3

2

(loglog k)(1 + o(1))(log k — 2loglog k — 2)
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30

€
> (1-= — 2y, )
5 (1 ) (log kloglog k — 3(loglog k)*) (7.4)

b= [exp (;20; gg) ; 1} 7

where [a] denotes the largest integer less than or equal to a. Then the third line of (7.4)

is

30 2 2 2

27(1_§> ( +€)plog (2+¢€)p ~ 3log? (2+e)p
2 4 301logp 301logp 301log p
€ ploglogp

L+ Yo (Llo8ksr),
( )T ( log p >
This is greater than p whenever p is sufficiently large. Hence (7.3) holds
for k ~ exp((24+¢€)p/(30logp)). We can choose the admissible set by H =
{Pr(k)+1>Pr(k)+2> - - - » Pr(k)+k }» Where p,, denotes the n-th prime. Hence there exist in-

finitely many n for which at least p + 1 of n + pr(r)41,- -+, 1 + Pr(k)+k are Ep-numbers.
Since

We put

v

2200

Pr(k)+k — Pr(k)+1 < klogk < exp ( 3010z p

by replacing e with €/2, the proof of Theorem 1.1 is completed. O

REMARK 7.1. Recently Takayuki Neshime, who belongs to the master course of
Tokyo Institute of Technology, told me that by choosing the parameter A in a different
way and evaluating the contribution of L,(Cm)(F ), we can obtain a better upper bound

lirginf(anrm —qn) < V/mexp 4/ STm’
assuming BV[0, P] and BV[6, &).

8. The proofs of other theorems.

The numerical computations below are accomplished by Mathematica. To prove
Theorem 1.2, it suffices to show that the leading coefficient (6.4) with k =6,p = 2,0 =
1/2 becomes positive for some test function F. We define this by

143577 12337 _, 86987

(2,9, 2,u,v,0) 50000 * T 5000 ' " 50000 >

_ 619873 5 156481 230073
1000000~ '~ 100000° "% 5000000

3

ifz,y,z,u,v,w >0, 2+y+z+u+v+w <1 and otherwise F(x,y, z,u,v,w) := 0, where
P=a'+y +2 +u + v  +w' (i =1,2,3). We take n = 1071°. Then, by numerical
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computations, we find that

Is(F) =5.30806--- x 107%,  J(F) =1.88915--- x 107¢,
L (F) =9.20744--- x 1075, M} (F) = 2.22265--- x 1075,

1 1 1-10710) & : 1
-3 STL(F) + T (1 +log 1010) STUME) + 3 MY (F) - S 16(F)
m=1 m=1 m=1

=8.02---x 107% > 0.
This proves Theorem 1.2. O

Next we prove Theorem 1.3. It suffices to show that the leading coefficient (6.4)
with &k = 3,p = 2,0 = 1 becomes positive for some test function F'. We define this by

F(:E7y,z){(()1_x)(1_y)(l_z) (r,y,2> 0,0 +y+2<1) (8.1)

(otherwise)

and put n = 1071°. Then, by numerical computations, we find that

I3(F) = 0.0287919 -, J{™(F) = 0.0154828 - - - |
L{Y(F) = 0.1606331- -, M) (F) = 0.0779163 - - -

for m = 1,2, 3. Consequently,

> 1 1-10710\ &
_ngmm+4<yu%mlo)}:gmuw+2p%?uw—hw)
m= m=1 m=1

=0.00204--- > 0.
This proves Theorem 1.3. O

To prove Theorem 1.4, we see that the number (6.3) with k = 5,p = 2,60 = 1
becomes positive for some test function F'. We define this by

917 281

41 287
5009~ 50

191 81
F(z,y,2,u,0) =1+ QF — 55 Q2 + Tgg @ + 5y @1@2 — 55

if ,y,z,u,v > 0,z +y+ 2+ u+v <1, and otherwise F(x,y,z,u,v) := 0, where
Qi =2 +y +2+u+v' (i =1,2,3). Moreover, we take n = 1071°. Then by numerical
computations, we find that

1735763 (m) 722755717
() = 17335000000 7 ) = Ts71100000000°
LYY (F) = 0.00392368 -, M{¢)(F) = 0.00190092 - -

for 1 <m < 5. Consequently,



118 K. Sono

(m) 1 1—10710N\ & () 5. )
=2 L3y (F)+ ¢ (log — =g ) D_ " (F) + D My (F) — I5(F)
m=1 m=1 m=1

=2.13079--- x 1079 > 0.

Since the set H = {0,2,6,8,12} is an admissible set with five elements, the statement of
Theorem 1.4 is obtained. O
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