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Abstract. In this paper, we apply the methods of Maynard and Tao to
the set of products of two distinct primes (E2-numbers). We obtain several

results on the distribution of E2-numbers and primes. Among others, the
result of Goldston, Graham, Pintz and Yıldırım on small gaps between m
consecutive E2-numbers is improved.

1. Introduction.

The famous twin prime conjecture asserts that there exist infinitely many prime

numbers p for which p+2 is also a prime, and this conjecture is widely believed to be true.

More generally, about one hundred years ago, Hardy and Littlewood [9] conjectured the

following, called the Hardy–Littlewood prime k-tuple conjecture. Let H = {h1, . . . , hk}
be a set of k distinct non-negative integers. Then, the number of those n below N such

that all of n+ h1, . . . , n+ hk are primes will be asymptotically

N

logk N

∏
p

(
1− νp(H)

p

)(
1− 1

p

)−k

provided that νp(H) < p for all primes p, where νp(H) denotes the number of residue

classes mod p covered byH. In this case we say that the setH is admissible. In particular,

the twin prime conjecture is the case k = 2 and H = {0, 2}. Although this conjecture is

still far from our reach, several remarkable results toward it have been established. For

example, in a celebrated paper [1], Chen proved that there exist infinitely many primes

p for which p+ 2 is either a prime or a product of two primes which are not necessarily

distinct.

Recently the studies toward the twin prime conjecture have produced further

progress. In 2009, Goldston, Pintz and Yıldırım [2] proved that

lim inf
n→∞

pn+1 − pn
log pn

= 0, (1.1)

where pn denotes the n-th prime. Their method is called the GPY sieve. Moreover,

they proved that if primes have the level of distribution θ for some 1/2 < θ ≤ 1 (see the

definition of BV [θ,P] below), then
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lim inf
n→∞

(pn+1 − pn) < ∞. (1.2)

The above assumption seems to be extremely difficult to prove, although it is known

that the Bombieri–Vinogradov theorem assures that this is valid for θ ≤ 1/2. With

θ = 1/2 one obtains (1.1). The case θ = 1 is called the Elliott–Halberstam conjecture

(EH). Several improvements have been made by the above three authors (see [3], [4],

[5]). Among others, their best result on gaps between consecutive primes is that

lim inf
n→∞

pn+1 − pn√
log pn(log log pn)2

< ∞. (1.3)

Later, Pintz [13] improved this result and obtained

lim inf
n→∞

pn+1 − pn
(log pn)3/7(log log pn)4/7

< ∞. (1.4)

(See also [6].) In 2013, a stunning result was established by Zhang [17]. He obtained a

stronger version of the Bombieri–Vinogradov theorem that is applicable when the moduli

are free from large prime divisors, and using this, he proved that

lim inf
n→∞

(pn+1 − pn) < 7× 107, (1.5)

that is, there exist infinitely many consecutive primes for which the gap is at most 7×107.

The upper bound 7 × 107 has been improved by several experts successively. In the

Polymath8a paper [14], the right hand side of (1.5) was replaced by 4680. Slightly later,

Maynard [10] and Tao (private communication with Maynard) invented a refinement of

the GPY sieve. In particular, Maynard proved that

lim inf
n→∞

(pn+1 − pn) ≤ 600. (1.6)

They also proved the existence of the bounded gaps between m-consecutive primes for

any fixed m ≥ 2. One of the remarkable points is that their method is relatively quite

simple, compared with Zhang’s, and it is very convenient to extend or generalize to other

situations. The current world record of the small gaps between primes is accomplished

by the Polymath project [15], in which the upper bound

lim inf
n→∞

(pn+1 − pn) ≤ 246 (1.7)

is obtained unconditionally. Moreover, it is proved that the right hand side of (1.7) may

be replaced by 6 if we assume a strong form of the Elliott–Halberstam conjecture and

that is the limit of this method.

In this paper, we treat the integers expressed by products of two distinct primes,

called the E2-numbers in [7], together with the prime numbers. In the papers [7], [8],

Goldston, Graham, Pintz and Yıldırım investigated the distribution of E2-numbers. We

denote by qn the n-th E2-numbers. That is, q1 = 6, q2 = 10, q3 = 14, q4 = 15, . . . . Using

the GPY sieve, they proved that
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lim inf
n→∞

(qn+1 − qn) ≤ 6. (1.8)

Moreover, they proved that if the E2-numbers have the level of distribution θ for some

0 < θ < 1, then for any sufficiently large ρ ∈ N,

lim inf
n→∞

(qn+ρ − qn) ≤ ρ(1 + o(1)) exp
(
−γ +

ρ

2θ

)
(1.9)

holds. Later Thorne [16] generalized their results to the set of products of r distinct

primes for any r ≥ 2. He applied the result to some related problems in number theory,

for example, divisibility of class numbers, nonvanishing of L-functions at the central

point, and triviality of ranks of elliptic curves.

The purpose of this paper is to apply the method of Maynard [10] and Tao to the

distribution of E2-numbers. Their multi-dimensional sieve enables us to establish rather

small gaps between consecutive several E2-numbers. In particular, the estimate (1.9)

can be remarkably improved. We denote by E2 the set of all E2-numbers. We denote by

P the set of all prime numbers, and put P2 = P ∪ E2. For a sufficiently large natural

number N , we define

β(n) :=

{
1 (n = p1p2, Y < p1 ≤ N1/2 < p2)

0 (otherwise),
(1.10)

where Y = Nη, 1 ≪ η < 1/4. Throughout this paper, the implicit constants might be

dependent on this η. (We will not necessarily mention this fact every time.) Next we

define

π♭(N) := ♯{p ∈ P N ≤ p < 2N},

π♭(N ; q, a) := ♯{p ∈ P N ≤ p < 2N, p ≡ a (mod q)},

πβ(N) :=
∑

N<n≤2N

β(n), πβ,q(N) :=
∑

N<n≤2N

(n,q)=1

β(n),

πβ(N ; q, a) :=
∑

N<n≤2N

n≡a(mod q)

β(n).

We write the following hypotheses:

Hypothesis 1. (BV [θ,P]). For any ϵ > 0, the estimate

∑
q≤Nθ−ϵ

µ2(q) max
(a,q)=1

∣∣∣∣π♭(N ; q, a)− π♭(N)

φ(q)

∣∣∣∣≪A
N

logA N
(N → ∞) (1.11)

holds for any A > 0.

Hypothesis 2. (BV [θ, E2]). We fix an arbitrary 0 < η < 1/4 in the definition of

the function β. For any ϵ > 0, the estimate



84

84 K. Sono

∑
q≤Nθ−ϵ

µ2(q) max
(a,q)=1

∣∣∣∣πβ(N ; q, a)− πβ,q(N)

φ(q)

∣∣∣∣≪A
N

logA N
(N → ∞) (1.12)

holds for any A > 0.

We say that the set P (resp. E2) has level of distribution θ if BV [θ,P] (resp. BV [θ, E2])
holds. The Bombieri–Vinogradov theorem asserts that BV [θ,P] is valid for θ = 1/2.

Motohashi [12] proved that BV [θ, E2] also holds for θ = 1/2. The Elliott–Halberstam

conjecture asserts that BV [θ,P] will be valid for θ = 1, and we expect that BV [θ, E2]
will be valid for the same value. Hence we call BV [1,P] (resp. BV [1, E2] ) the Elliott–

Halberstam conjecture for P (resp. E2).
The main theorems of this paper are as follows:

Theorem 1.1. Assume that the sets P and E2 have level of distribution θ > 0.

Then, for any ϵ > 0, there exists ρϵ > 0 such that for any integer ρ > ρϵ, the inequality

lim inf
n→∞

(qn+ρ − qn) ≤ exp

(
(2 + ϵ)ρ

3θ log ρ

)
(1.13)

holds. In particular, unconditionally we have

lim inf
n→∞

(qn+ρ − qn) ≤ exp

(
2(2 + ϵ)ρ

3 log ρ

)
(1.14)

for any ρ > ρϵ.

Theorem 1.2. For any admissible set H = {h1, h2, . . . , h6}, there exist infinitely

many n such that at least three of n+ h1, n+ h2, . . . , n+ h6 are in P2.

The set H = {0, 4, 6, 10, 12, 16} is an admissible set with six elements. Hence if we

denote by rn the n-th element of P2 = P ∪ E2, unconditionally we have

lim inf
n→∞

(rn+2 − rn) ≤ 16. (1.15)

If we assume the Elliott–Halberstam conjecture for both P and E2, far stronger results

can be obtained:

Theorem 1.3. Assume the Elliott–Halberstam conjecture for P and E2. Then,

there exist infinitely many n such that all of n, n+ 2, n+ 6 are in P2. In particular,

lim inf
n→∞

(rn+2 − rn) ≤ 6. (1.16)

We note that Maynard [11] unconditionally proved that n(n + 2)(n + 6) has at

most seven prime factors infinitely often. Theorem 1.3 is regarded as a (conditional)

improvement of his theorem. Finally,

Theorem 1.4. Assume the Elliott–Halberstam conjecture for P and E2. Then we

have
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lim inf
n→∞

(qn+2 − qn) ≤ 12. (1.17)

2. Notation and preparations for the proofs.

Let H = {h1, . . . , hk} be an admissible set. Throughout this paper, we assume that

the elements ofH are bounded, that is, there exists a positive constant C = Ck depending

only on k such that hi ≤ C holds for i = 1, . . . , k. We denote by χP the characteristic

function of P. We put

D0 = log log logN, W =
∏

p≤D0

p ≪ (log logN)2.

We assume that both prime numbers and E2-numbers have level of distribution θ. By

the Chinese remainder theorem, we can choose ν0 ∈ N so that all of ν0+hi (i = 1, . . . , k)

are coprime to W . For a smooth function F : Rk → R supported in

Rk :=

{
(x1, . . . , xk)

∣∣∣∣ x1, . . . , xk ≥ 0,
k∑

i=1

xi ≤ 1

}
,

we put

λd1,...,dk
=

(
k∏

i=1

µ(di)di

) ∑
r1,...,rk
di|ri(∀i)

(ri,W )=1(∀i)

µ(
∏k

i=1 ri)
2∏k

i=1 φ(ri)
F

(
log r1
logR

, . . . ,
log rk
logR

)
(2.1)

if (d1, . . . , dk) satisfies the conditions that
∏k

i=1 di is square-free,
∏k

i=1 di < R, and

(di,W ) = 1 for i = 1, . . . , k, where R = Nθ/2−δ and δ is a sufficiently small positive

constant. If (d1, . . . , dk) does not satisfy at least one of these conditions, put λd1,...,dk
:= 0.

We define the weight wn by

wn =

( ∑
di|n+hi(∀i)

λd1,...,dk

)2

. (2.2)

To find small gaps between E2-numbers, for a natural number ρ, we consider the sum

S(N, ρ) =
∑

N≤n<2N

n≡ν0(mod W )

(
k∑

m=1

β(n+ hm)− ρ

)
wn. (2.3)

If S(N, ρ) becomes positive for any sufficiently large N , there exists n ∈ [N, 2N) such

that at least ρ+ 1 of n+ h1, . . . , n+ hk are E2-numbers. Hence one has

lim inf
n→∞

(qn+ρ − qn) ≤ max
1≤i<j≤k

|hj − hi|.
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Similarly, to find small gaps between the set of primes and E2-numbers, for a natural

number ρ, we consider the sum

S
′
(N, ρ) =

∑
N≤n<2N

n≡ν0(mod W )

(
k∑

m=1

(β(n+ hm) + χP(n+ hm))− ρ

)
wn. (2.4)

If S
′
(N, ρ) becomes positive for any sufficiently large N , there exists n ∈ [N, 2N) such

that at least ρ+ 1 of n+ h1, . . . , n+ hk are in P ∪ E2. Hence our problem is to evaluate

the sums

S0 =
∑

N≤n<2N

n≡ν0(mod W )

wn, S
(m)
1 =

∑
N≤n<2N

n≡ν0(mod W )

χP(n+ hm)wn, (2.5)

and

S
(m)
2 =

∑
N≤n<2N

n≡ν0(mod W )

β(n+ hm)wn (2.6)

for m = 1, . . . , k. Maynard ([10, Proposition 4.1]) computed the sums in (2.5). The

results are as follows:

Proposition 2.1. We put

Ik(F ) =

∫ 1

0

· · ·
∫ 1

0

F (t1, . . . , tk)
2dt1 · · · dtk,

J
(m)
k (F ) =

∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

F (t1, . . . , tk)dtm

)2

dt1 · · · dtm−1dtm+1 · · · dtk

for m = 1, . . . , k. Then, if Ik(F ) ̸= 0, we have

S0 =
(1 + o(1))φ(W )kN(logR)k

W k+1
Ik(F ), (2.7)

and if J
(m)
k (F ) ̸= 0, we have

S
(m)
1 =

(1 + o(1))φ(W )kN(logR)k+1

W k+1 logN
J
(m)
k (F ) (m = 1, . . . , k) (2.8)

as N → ∞.

Hence the main problem of this paper is the computation of S
(m)
2 . By substituting

(2.2) into (2.6) and interchanging the summations, we have
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S
(m)
2 =

∑
d1,...,dk

e1,...,ek

λd1,...,dk
λe1,...,ek

∑
N≤n<2N

n≡ν0(mod W )

[di,ei]|n+hi(∀i)

β(n+ hm). (2.9)

The integers dm, em must satisfy

dm, em|n+ hm. (2.10)

Since β(n+ hm) = 0 unless n+ hm = p1p2, Y < p1 ≤ N1/2 < p2, and since λd1,...,dk
= 0

unless
∏k

i=1 di < R < N1/2, only the following four types contribute to the sum above:

1) dm = p, em = 1 (Y < p < R),

2) dm = 1, em = p (Y < p < R),

3) dm = em = 1,

4) dm = em = p (Y < p < R).

Correspondingly we decompose

S
(m)
2 = S

(m)
2,I + S

(m)
2,II + S

(m)
2,III + S

(m)
2,IV . (2.11)

The following three sections will be devoted to compute these terms.

3. The computation of S
(m)
2,I , S

(m)
2,II .

We first compute S
(m)
2,I (= S

(m)
2,II). By interchanging the summations, we have

S
(m)
2,I =

∑
Y <p<R

∑
d1,...,dk

e1,...,ek
dm=p,em=1

λd1,...,dk
λe1,...,ek

∑
N≤n<2N

n≡ν0(mod W )

[di,ei]|n+hi(∀i)

β(n+ hm). (3.1)

By our choice of ν0 and the assumption that the elements of H are bounded, the inner

sum is empty if W, [d1, e1], . . . , [dk, ek] are not pairwise coprime. We put

q = W
k∏

i=1

[di, ei].

When W, [d1, e1], . . . , [dk, ek] are pairwise coprime, the sum over n in (3.1) is rewritten

as a sum over a single residue class modulo q. That is, there exists a unique ν (mod q)

such that ν ≡ ν0 (mod W ), ν + hi ≡ 0 (mod [di, ei]) and∑
N≤n<2N

n≡ν0(mod W )

[di,ei]|n+hi(∀i)

β(n+ hm) =
∑

N≤n<2N

n≡ν(mod q)

β(n+ hm) (3.2)

holds. We put νm = ν + hm. Then,

(νm, q) = p. (3.3)
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We will check this briefly. Since [dm, em] = p, p divides q, and since νm = ν + hm ≡ 0

(mod [dm, em]), p divides νm. Clearly, p2 does not divide q. Let p′ be another prime and

assume that p′|(νm,W ). Since p′|νm, we have ν+hm ≡ 0 (mod p′). Since p′|W , we have

ν ≡ ν0 (mod p′). Therefore, we find that ν0 + hm ≡ 0 (mod p′), hence p′|(ν0 + hm,W ).

This fact contradicts our assumption that ν0 + hm is coprime to W . If p′|(νm, dj) for

some j ̸= m, then ν + hm ≡ 0 (mod p′) and ν ≡ −hj (mod p′). Hence hm ≡ hj (mod

p′). However, since dj is coprime to W , the condition p′|dj implies p′ ≥ log log logN .

Therefore, the conclusion that hm ≡ hj (mod p′) (j ̸= m) contradicts our assumption

that the elements of H are bounded. Hence p′ does not divide (νm, dj). In a similar way,

we find that p′ does not divide (νm, ej). Thus we obtain (3.3).

Therefore, there exists a unique ν′m (mod q/p) such that pν′m ≡ νm (mod q) and the

right hand side of (3.2) becomes∑
N≤n<2N

n≡ν(mod q)

β(n+ hm) =
∑

N≤n<2N

n≡νm(mod q)

β(n) +O(1)

=
∑

N/p≤n′<2N/p

n′≡ν′
m(mod q/p)

β(pn′) +O(1)

=
∑

N/p≤n′<2N/p

n′≡ν′
m(mod q/p)

χP(n
′) +O(1). (3.4)

We note that (ν′m, q/p) = 1, by (3.3). The sum in the right hand side of (3.4) becomes∑
N/p≤n′<2N/p

n′≡ν′
m(mod q/p)

χP(n
′) =

1

φ(q/p)

∑
N/p≤n′<2N/p

χP(n
′) + ∆

(
N

p
;
q

p
, ν′m

)

=
1

φ(q/p)
π♭

(
N

p

)
+∆

(
N

p
;
q

p
, ν′m

)
, (3.5)

where

∆(N ; q, a) =
∑

N≤n<2N

n≡a(mod q)

χP(n)−
π♭(N)

φ(q)
.

By combining (3.4), (3.5), we have

∑
N≤n<2N

n≡ν0(mod W )

[di,ei]|n+hi(∀i)

β(n+ hm) =
π♭(N/p)

φ(q/p)
+ ∆

(
N

p
;
q

p
, ν′m

)
+O(1). (3.6)

By substituting (3.6) into (3.1), we obtain
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S
(m)
2,I =

1

φ(W )

∑
Y <p<R

π♭

(
N

p

) ∑
d1,...,dk

e1,...,ek
dm=p,em=1

′ λd1,...,dk
λe1,...,ek∏

i ̸=m φ([di, ei])

+O


∑

Y <p<R

∑
d1,...,dk

e1,...,ek
dm=p,em=1

′
|λd1,...,dk

λe1,...,ek |
(∣∣∣∣∆(N

p
;
q

p
, ν′m

)∣∣∣∣+ 1

)
 , (3.7)

where the sum
∑′

indicates that d1, . . . , dk, e1, . . . , ek are restricted to those satisfying

the condition that W, [d1, e1], . . . , [dk, ek] are pairwise coprime. We now evaluate the

error term of (3.7). The conductor q is square-free, and satisfies q < R2W . Moreover, p

divides q. The number of pairs (d1, . . . , dk, e1, . . . , ek) satisfying

q = W
k∏

i=1

[di, ei]

is at most τ3k(q). Therefore, by the Cauchy–Schwarz inequality, we have∑
Y <p<R

∑
d1,...,dk

e1,...,ek
dm=p,em=1

′
|λd1,...,dk

λe1,...,ek |
(∣∣∣∣∆(N

p
;
q

p
, ν′m

)∣∣∣∣+ 1

)

≪ λ2
max

∑
Y <p<R

∑
q<R2W

p|q

µ2(q)τ3k(q)

(∣∣∣∣∆(N

p
;
q

p
, ν′m

)∣∣∣∣+ 1

)

≪ λ2
max

∑
Y <p<R

 ∑
q′<R2W/p

µ2(pq′)τ3k(pq
′)2

N

pφ(q′)

1/2 ∑
q′<R2W/p

µ2(q′)∆∗
(
N

p
; q′
)1/2 ,

where

λmax = sup
d1,...,dk

|λd1,...,dk
|, ∆∗(N ; q) = max

(a,q)=1
|∆(N ; q, a)|.

Under the assumption of BV [θ,P], the above is at most

≪A λ2
max

∑
Y <p<R

p−1/2N1/2(logN)ak · (N/p)1/2

(logN)A

≪A λ2
maxN(logN)ak−A

∑
Y <p<R

1

p
≪B

λ2
maxN

(logN)B
,

(3.8)

where ak is some positive integer depending only on k, and A is an arbitrary positive

number, and B = A− ak − 1. Here, we evaluated the first q′-sum by a standard method.

Hence we may regard B as an arbitrary positive number, once k is fixed. Combining
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(3.7), (3.8), we have

S
(m)
2,I =

1

φ(W )

∑
Y <p<R

(p− 1)π♭

(
N

p

) ∑
d1,...,dk

e1,...,ek
dm=p,em=1

′ λd1,...,dk
λe1,...,ek∏k

i=1 φ([di, ei])
+OB

(
λ2
maxN

(logN)B

)
.

(3.9)

Next we compute the sum ∑
d1,...,dk

e1,...,ek
dm=p,em=1

′ λd1,...,dk
λe1,...,ek∏k

i=1 φ([di, ei])
.

Let g be the totally multiplicative function defined by g(q) = q − 2 for q ∈ P. Then,

when di, ei are square-free, we have

1

φ([di, ei])
=

1

φ(di)φ(ei)

∑
ui|di,ei

g(ui).

Moreover, the condition that (di, ej) = 1 (i ̸= j) is replaced by multiplying∑
si,j |di,ej

µ(si,j). Since λd1,...,dk
= 0 unless (di, dj) = 1 (∀i ̸= j), we may add the

condition that si,j is coprime to ui, uj , si,a(a ̸= j), sb,j(b ̸= i). We denote by
∑∗

the sum

over s1,2, . . . , sk,k−1 restricted to those satisfying this condition. Then we have

∑
d1,...,dk

e1,...,ek
dm=p,em=1

′ λd1,...,dk
λe1,...,ek∏k

i=1 φ([di, ei])
=

∑
u1,...,uk

k∏
i=1

g(ui)
∑

s1,2,...,sk,k−1

∗
( ∏

1≤i ̸=j≤k

µ(si,j)

)

×
∑

d1,...,dk

e1,...,ek
ui|di,ei(∀i)

si,j |di,ej(i̸=j)

dm=p,em=1

λd1,...,dk
λe1,...,ek∏k

i=1 φ(di)φ(ei)
. (3.10)

We put

y(m)
r1,...,rk

(p) =

(
k∏

i=1

µ(ri)g(ri)

) ∑
d1,...,dk

ri|di(∀i)
dm=p

λd1,...,dk∏k
i=1 φ(di)

, (3.11)

y(m)
r1,...,rk

=

(
k∏

i=1

µ(ri)g(ri)

) ∑
d1,...,dk

ri|di(∀i)
dm=1

λd1,...,dk∏k
i=1 φ(di)

, (3.12)

and r :=
∏k

i=1 ri. Then, y
(m)
r1,...,rk(p) = 0 unless r is square-free, (r,W ) = 1, r < R, and
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rm = 1 or p. Similarly, y
(m)
r1,...,rk = 0 unless r is square-free, (r,W ) = 1, r < R, and

rm = 1. Then the right hand side of (3.10) is expressed by

∑
u1,...,uk

(
k∏

i=1

µ2(ui)

g(ui)

) ∑
s1,2,...,sk,k−1

∗
( ∏

1≤i ̸=j≤k

µ(si,j)

g(si,j)2

)
y(m)
a1,...,ak

(p)y
(m)
b1,...,bk

, (3.13)

where ai = ui

∏
j ̸=i si,j , bi = ui

∏
j ̸=i sj,i. To obtain (3.13), we used µ(ai) =

µ(ui)
∏

j ̸=i µ(si,j), µ(bi) = µ(ui)
∏

j ̸=i µ(sj,i), g(ai) = g(ui)
∏

j ̸=i g(si,j) and g(bi) =

g(ui)
∏

j ̸=i g(sj,i). Since si,j is coprime to ui, uj , si,a(a ̸= j), sb,j(b ̸= i), these identities

hold. We consider the contribution of the terms with si,j ̸= 1 to (3.13). By the condition

of the support of y
(m)
r1,...,rk , only the terms with si,j = 1 or si,j > D0 contribute to the

sum above. Hence the contribution of the terms with si,j ̸= 1, am = 1 is at most

y(m)
max(p)|rm=1 y(m)

max

 ∑
u<R

(u,W )=1

µ2(u)

g(u)


k−1(∑

s

µ2(s)

g(s)2

)k2−k−1( ∑
si,j>D0

µ2(si,j)

g(si,j)2

)

≪ y(m)
max(p)|rm=1 y(m)

max

(
φ(W )

W
logR

)k−1

· 1 ·D−1
0

≪ φ(W )k−1(logR)k−1

W k−1D0
y(m)
max(p)|rm=1 y(m)

max, (3.14)

where

y(m)
max(p)|rm=p := sup

r1,...,rk
rm=p

|y(m)
r1,...,rk

(p)| (p = 1 or p), y(m)
max := sup

r1,...,rk

|y(m)
r1,...,rk

|.

Similarly, the contribution of the terms with si,j ̸= 1, am = p is, since in this case um or

some sm,j is equal to p, at most

φ(W )k−1(logR)k−1

pW k−1D0
y(m)
max(p)|rm=p y(m)

max. (3.15)

Combining (3.10), (3.13), (3.14) and (3.15), we have∑
d1,...,dk

e1,...,ek
dm=p,em=1

′ λd1,...,dk
λe1,...,ek∏k

i=1 φ([di, ei])

=
∑

u1,...,uk

y
(m)
u1,...,uk(p)y

(m)
u1,...,uk∏k

i=1 g(ui)

+O

(
φ(W )k−1(logR)k−1

W k−1D0

(
y(m)
max(p)|rm=1 +

y
(m)
max(p)|rm=p

p

)
y(m)
max

)
. (3.16)

(We note that we may remove µ2(ui) in (3.13), since y
(m)
u1,...,uk = 0 unless u1, . . . , uk are
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all square-free.) We put

yr1,...,rk =

(
k∏

i=1

µ(ri)φ(ri)

) ∑
d1,...,dk

ri|di(∀i)

λd1,...,dk∏k
i=1 di

. (3.17)

Using the test function F , this is expressed by

yr1,...,rk = F

(
log r1
logR

, . . . ,
log rk
logR

)
(3.18)

(see [10, p. 400]). It is proved in [10] that

λmax ≪ ymax(logR)k,

where

ymax = sup
r1,...,rk

|yr1,...,rk |.

Hence the error term in (3.9) is replaced by y2maxN/(logN)B . We substitute (3.16) into

(3.9). Since

(p− 1)π♭

(
N

p

)
=

N

logN/p
+Oη

(
N

(logN)2

)
for Y = Nη < p < R = N (θ/2)−δ, we obtain the following result:

Lemma 3.1. Assume BV [θ,P] for 0 < θ ≤ 1. Then

S
(m)
2,I =

N

φ(W )

(
1 +O

(
1

logN

)) ∑
Y <p<R

1

logN/p

∑
u1,...,uk

y
(m)
u1,...,uk(p)y

(m)
u1,...,uk∏k

i=1 g(ui)

+O

Nφ(W )k−2(logN)k−2

W k−1D0
y(m)
max

∑
Y <p<R

(
y(m)
max(p)|rm=1 +

y
(m)
max(p)|rm=p

p

)
+OB

(
Ny2max

(logN)B

)
. (3.19)

By symmetry, the same result also holds for S
(m)
2,II . Next, we compute the inner

sum in the main term of (3.19). The following result is obtained by Maynard ([10,

Lemma 5.3]).

Lemma 3.2. If rm = 1, we have

y(m)
r1,...,rk

=
∑
am

yr1,...,rm−1,am,rm+1,...,rk

φ(am)
+O

(
ymaxφ(W ) logR

WD0

)
. (3.20)

Next, if
∏k

i=1 di is square-free, we have
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λd1,...,dk
=

(
k∏

i=1

µ(di)di

) ∑
a1,...,ak

di|ai(∀i)

ya1,...,ak∏k
i=1 φ(ai)

(see [10, p. 393, (5.8)]). By substituting this into (3.11) and interchanging the order of

summation, we have

y(m)
r1,...,rk

(p) =

(
k∏

i=1

µ(ri)g(ri)

) ∑
a1,...,ak

ri|ai(∀i)
p|am

ya1,...,ak∏k
i=1 φ(ai)

∑
d1,...,dk

dm=p

ri|di,di|ai(∀i)

∏k
i=1 µ(di)di∏k
i=1 φ(di)

.

If rm = 1 or p, we find that

∑
d1,...,dk

dm=p

ri|di,di|ai(∀i)

∏k
i=1 µ(di)di∏k
i=1 φ(di)

=
µ(p)p

φ(p)

∑
d1,...,dm−1,dm+1,...,dk

ri|di,di|ai(∀i ̸=m)

∏
i ̸=m µ(di)di∏
i ̸=m φ(di)

= − p

p− 1

∏
i ̸=m

µ(ai)ri
φ(ai)

.

Therefore,

y(m)
r1,...,rk

(p) = − p

p− 1

(
k∏

i=1

µ(ri)g(ri)

) ∑
a1,...,ak

ri|ai(∀i)
p|am

ya1,...,ak∏k
i=1 φ(ai)

∏
i ̸=m

µ(ai)ri
φ(ai)

. (3.21)

By the condition of the support of ya1,...,ak
, we may restrict the sum to (ai,W ) = 1 (∀i).

Then, if aj ̸= rj , it follows that aj > D0rj . For j ̸= m, the contribution of such terms is

at most

ymaxr
−1
m

(
k∏

i=1

g(ri)ri

) ∑
aj>D0rj

rj |aj

µ2(aj)

φ(aj)2

 ∏
i ̸=j,m

( ∑
rj |aj

µ2(aj)

φ(aj)2

) ∑
p|am

am<R

(am,W )=1

µ2(am)

φ(am)

≪ ymax

( ∏
i ̸=m

g(ri)ri
φ(ri)2

)
· g(rm) ·D−1

0 · 1 ·
∑

a′
m<R/p

(a′
m,W )=1

µ2(a′m)

φ(p)φ(a′m)

≪ ymaxg(rm)φ(W ) logR/p

WD0φ(p)
.

Hence we have
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y(m)
r1,...,rk

(p) = − p

p− 1

( ∏
i ̸=m

µ2(ri)g(ri)ri
φ(ri)2

)
µ(rm)g(rm)

∑
p|am

yr1,...,rm−1,am,rm+1,...,rk

φ(am)

+O

(
ymaxg(rm)φ(W ) logR/p

WD0φ(p)

)
. (3.22)

Since yr1,...,rk = 0 unless r1, . . . , rk are square-free, we may remove the factors µ2(ri)

(i ̸= m). Finally, by applying

p

p− 1
= 1 +O(N−η),

∏
i ̸=m

g(ri)ri
φ(ri)2

= 1 +O(D−1
0 )

(
if

( ∏
i ̸=m

ri,W

)
= 1

)
,

we obtain the following result:

Lemma 3.3. If rm = 1 or p, we have

y(m)
r1,...,rk

(p) = −µ(rm)g(rm)
∑
am

p|am

yr1,...,rm−1,am,rm+1,...,rk

φ(am)

+O

(
ymaxg(rm)φ(W ) logR/p

WD0φ(p)

)
. (3.23)

By (3.23), we have

y(m)
max(p)|rm=p ≪ ymaxφ(W ) logR/p

W
, (3.24)

and

y(m)
max(p)|rm=1 ≪ ymaxφ(W ) logR/p

pW
. (3.25)

Next we compute the sum over am. For this purpose, we use the following lemma, proved

in [8] (see Lemma 6.1 of [10]).

Lemma 3.4. Let A1, A2, L > 0 and γ be a multiplicative function satisfying

0 ≤ γ(q)

q
≤ 1−A1,

−L ≤
∑

w≤q≤z

q∈P

γ(q) log q

q
− log

z

w
≤ A2

for any 2 ≤ w ≤ z. Let h be the totally multiplicative function defined by

h(q) =
γ(q)

q − γ(q)

for primes q. For a smooth function G : [0, 1] → R, put
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Gmax = sup
t∈[0,1]

(|G(t)|+ |G′(t)|).

Then, we have

∑
d<z

µ2(d)h(d)G

(
log d

log z

)
= S log z

∫ 1

0

G(x)dx+O(SLGmax),

where

S =
∏
q∈P

(
1− γ(q)

q

)−1(
1− 1

q

)
.

The implied constant is dependent on A1, A2.

The following lemma is a direct consequence of Lemma 3.4:

Lemma 3.5. Under the same situation as in Lemma 3.4, put

Gp(x) = G

(
logR/p

logR

(
log p

logR/p
+ x

))
.

Then, we have

∑
d<R/p

µ2(d)h(d)G

(
log pd

logR

)
= S log

R

p

∫ 1

0

Gp(x)dx+O(SLGmax).

Proof. Since

G

(
log pd

logR

)
= Gp

(
log d

logR/p

)
, (Gp)max ≪ Gmax,

by applying Lemma 3.4 with z = R/p, we obtain the result. □

We compute the sum in (3.23). Using the conditions of the support of yr1,...,rk , we

have ∑
am

p|am

yr1,...,rm−1,am,rm+1,...,rk

φ(am)

=
1

φ(p)

∑
a′
m

(p,a′
m)=1

yr1,...,rm−1,pa′
m,rm+1,...,rk

φ(a′m)

=
1

φ(p)

∑
a′
m<R/p

(a′
m,pW

∏
i̸=m ri)=1

µ2(a′m)

φ(a′m)

× F

(
log r1
logR

, . . . ,
log rm−1

logR
,
log pa′m
logR

,
log rm+1

logR
, . . . ,

log rk
logR

)
. (3.26)
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We apply Lemma 3.5 with

γ(q) =

{
1 (q |/pW

∏
i̸=m ri)

0 (otherwise).
(3.27)

The prime number theorem assures that the conditions in Lemma 3.4 are satisfied with

A1 = 1/2 and sufficiently large A2 > 1. In this case, we have

L ≪ 1 +
∑

q|pW
∏

i̸=m ri

log q

q

≪
∑

q<logR

log q

q
+

∑
q|pW

∏
i ̸=m ri

q≥logR

log logR

logR

≪ log logN.

Moreover, since (ri, p) = 1 (∀i ̸= m), we have

S =
∏

q|pW
∏

i ̸=m ri

(
1− 1

q

)
=

φ(p)φ(W )

pW

∏
i ̸=m

φ(ri)

ri
.

Therefore, by applying Lemma 3.5 to the right hand side of (3.26), we obtain∑
am

p|am

yr1,...,rm−1,am,rm+1,...,rk

φ(am)

=
φ(W )

pW
log

R

p

∏
i ̸=m

φ(ri)

ri

∫ 1

0

F [m]
p

(
log r1
logR

, . . . ,
log rm−1

logR
, u,

log rm+1

logR
, . . . ,

log rk
logR

)
du

+O

(
φ(W )

pW
Fmax log logN

)
, (3.28)

where the function F
[m]
p (· · · ) is obtained by replacing the m-th component x of F (· · · )

with ((logR/p)/ logR)((log p/ logR/p) + x), and

Fmax := sup
(t1,...,tk)∈[0,1]k

(
|F (t1, . . . , tk)|+

k∑
i=1

∣∣∣∣∂F∂ti (t1, . . . , tk)
∣∣∣∣
)
.

We put

F (p;m)
r1,...,rk

=

∫ 1

0

F [m]
p

(
log r1
logR

, . . . ,
log rm−1

logR
, u,

log rm+1

logR
, . . . ,

log rk
logR

)
du. (3.29)

By substituting (3.28) into (3.23) and using ymax ≪ Fmax, logR/p ≪ logR, we obtain

the following result:

Lemma 3.6. If rm = 1, we have
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y(m)
r1,...,rk

(p) = −φ(W )

pW
log

R

p

( ∏
i ̸=m

φ(ri)

ri

)
F (p;m)
r1,...,rk

+O

(
Fmaxφ(W ) logR

pWD0

)
(3.30)

for Y < p < R, where F
(p;m)
r1,...,rk is defined by (3.29).

The summand in the main term of (3.19) is zero unless u1, . . . , uk satisfy um = 1,

(ui, uj) = 1 (i ̸= j),
∏k

i=1 ui < R,
∏k

i=1 ui is square-free and (ui, pW ) = 1 (∀i). It is

proved in [10, p. 403, (6.13)] that if u1, . . . , uk satisfy these conditions, we have

y(m)
u1,...,uk

= (logR)
φ(W )

W

(
k∏

i=1

φ(ui)

ui

)
F (m)
u1,...,uk

+O

(
Fmaxφ(W ) logR

WD0

)
, (3.31)

where

F [m]
u1,...,uk

=

∫ 1

0

F

(
log u1

logR
, . . . ,

log um−1

logR
, v,

log um+1

logR
, . . . ,

log uk

logR

)
dv. (3.32)

Combining (3.30), (3.31), we obtain

y(m)
u1,...,uk

(p)y(m)
u1,...,uk

= −φ(W )2

pW 2
(logR)

(
log

R

p

)( ∏
i ̸=m

φ(ui)
2

u2
i

)
F (p;m)
u1,...,uk

F [m]
u1,...,uk

+O

(
φ(W )2F 2

max log
2 R

pW 2D0

)
(3.33)

if um = 1. In the above computation, we used the trivial estimates

sup
u1,...,uk

|F [m]
u1,...,uk

| ≪ Fmax, sup
u1,...,uk

|F (p;m)
u1,...,uk

| ≪ Fmax.

We substitute this into the sum over u1, . . . , uk in (3.19). The contribution of the error

term is

≪ φ(W )2F 2
max log

2 R

pW 2D0

∑
u1,...,um−1,um+1,...,uk<R

(ui,W )=1(∀i)

1∏k
i=1 g(ui)

≪ φ(W )k+1F 2
max log

k+1 N

pW k+1D0
.

Therefore,

∑
u1,...,uk

y
(m)
u1,...,uk(p)y

(m)
u1,...,uk∏k

i=1 g(ui)

= −φ(W )2

pW 2
(logR)

(
log

R

p

) ∑
u1,...,uk

um=1

(ui,uj)=1(∀i ̸=j)

(ui,pW )=1(∀i)

( ∏
i ̸=m

µ2(ui)φ(ui)
2

u2
i g(ui)

)
F (p;m)
u1,...,uk

F [m]
u1,...,uk
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+O

(
φ(W )k+1F 2

max log
k+1 N

pW k+1D0

)
. (3.34)

We compute the sum over u1, . . . , uk in (3.34). First, we remove the condition that ui

and uj are coprime if i ̸= j. Since (ui,W ) = (uj ,W ) = 1, if (ui, uj) > 1, there exists a

prime q > D0 such that q|ui, uj . Therefore, the possible error is at most

F 2
max

( ∑
q>D0

φ(q)4

g(q)2q4

) ∑
u<R

(u,W )=1

φ(u)2

u2g(u)


k−1

≪ F 2
maxφ(W )k−1(logR)k−1

D0W k−1
.

Hence we have

∑
u1,...,uk

um=1

(ui,uj)=1(∀i̸=j)

(ui,pW )=1(∀i)

( ∏
i ̸=m

µ2(ui)φ(ui)
2

u2
i g(ui)

)
F (p;m)
u1,...,uk

F [m]
u1,...,uk

=
∑

u1,...,uk

um=1

(ui,pW )=1(∀i)

( ∏
i ̸=m

µ2(ui)φ(ui)
2

u2
i g(ui)

)
F (p;m)
u1,...,uk

F [m]
u1,...,uk

+O

(
F 2
maxφ(W )k−1(logR)k−1

D0W k−1

)
. (3.35)

Now we apply Lemma 3.4 with

γ(q) =

1− q2 − 3q + 1

q3 − q2 − 2q + 1
(q |/pW )

0 (otherwise)
(3.36)

to the sum over u1, . . . , um−1, um+1, . . . , uk. Then we have

∑
u1,...,uk

um=1

(ui,pW )=1(∀i)

( ∏
i ̸=m

µ2(ui)φ(ui)
2

u2
i g(ui)

)
F (p;m)
u1,...,uk

F [m]
u1,...,uk

= Sk−1(logR)k−1

×
∫ 1

0

· · ·
∫ 1

0

{∫ 1

0

F [m]
p (u1, . . . , um−1, u, um+1, . . . , uk)du

}
×
{∫ 1

0

F (u1, . . . , um−1, u, um+1, . . . , uk)du

}
du1 · · · dum−1dum+1 · · · duk

+O(Sk−1L(logR)k−2F 2
max).

In this case,
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L ≪ 1 +
∑
q|pW

log q

q
≪ logD0,

S =

 ∏
q|/pW

(
1− 1

q
+O

(
1

q2

))−1(
1− 1

q

) ∏
q|pW

(
1− 1

q

)

=
φ(p)φ(W )

pW

∏
q≥D0

q ̸=p

(
1 +O

(
1

q2

))

=
φ(p)φ(W )

pW
(1 +O(D−1

0 )).

Therefore,

∑
u1,...,uk

um=1

(ui,pW )=1(∀i)

( ∏
i ̸=m

µ2(ui)φ(ui)
2

u2
i g(ui)

)
F (p;m)
u1,...,uk

F [m]
u1,...,uk

=
φ(p)k−1φ(W )k−1

pk−1W k−1
(logR)k−1

×
∫ 1

0

· · ·
∫ 1

0

{∫ 1

0

F [m]
p (u1, . . . , um−1, u, um+1, . . . , uk)du

}
×
{∫ 1

0

F (u1, . . . , um−1, u, um+1, . . . , uk)du

}
du1 · · · dum−1dum+1 · · · duk

+O

(
φ(p)k−1φ(W )k−1

D0pk−1W k−1
(logR)k−1F 2

max

)
. (3.37)

We put

J
(m)
k [p] =

∫ 1

0

· · ·
∫ 1

0

{∫ 1

0

F [m]
p (u1, . . . , um−1, u, um+1, . . . , uk)du

}
×
{∫ 1

0

F (u1, . . . , um−1, u, um+1, . . . , uk)du

}
du1 · · · dum−1dum+1 · · · duk.

(3.38)

By substituting (3.37), (3.38) into (3.35), we have

∑
u1,...,uk

um=1

(ui,uj)=1(∀i ̸=j)

(ui,pW )=1(∀i)

( ∏
i ̸=m

µ2(ui)φ(ui)
2

u2
i g(ui)

)
F (p;m)
u1,...,uk

F [m]
u1,...,uk

=
φ(p)k−1φ(W )k−1

pk−1W k−1
(logR)k−1J

(m)
k [p] +O

(
F 2
maxφ(W )k−1(logR)k−1

D0W k−1

)
. (3.39)

We substitute (3.39) into (3.34). Since logR ≪ logN , we obtain
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∑
u1,...,uk

y
(m)
u1,...,uk(p)y

(m)
u1,...,uk∏k

i=1 g(ui)

= −φ(p)k−1φ(W )k+1

pkW k+1
(logR)k

(
log

R

p

)
J
(m)
k [p] +O

(
F 2
maxφ(W )k+1(logN)k+1

pD0W k+1

)
= −φ(W )k+1

pW k+1
(logR)k

(
log

R

p

)
J
(m)
k [p] +O

(
F 2
maxφ(W )k+1(logN)k+1

pD0W k+1

)
. (3.40)

We substitute this into (3.19). We compute the sum over p. Recall that J
(m)
k [p] is defined

by (3.38), and the function F
[m]
p is obtained by replacing the m-th component u of F

with ((logR/p)/ logR)(log p/(logR/p) + u). To see how the sum over p becomes, let us

compute the sum

∑
Y <p<R

1

p

(
log

R

p

)(
log

N

p

)−1

f

(
logR/p

logR

(
log p

logR/p
+ u

))
(3.41)

for any smooth function f , where Y = Nη, R = N (θ/2)−δ. We denote by π(v) the number

of primes equal or less than v. Then, the sum (3.41) is expressed by∫ N(θ/2)−δ

Nη

1

v

(
log

R

v

)(
log

N

v

)−1

f

(
logR/v

logR

(
log v

logR/v
+ u

))
dπ(v).

Using the Prime Number Theorem, this is asymptotically∫ N(θ/2)−δ

Nη

1

v

(
log

R

v

)(
log

N

v

)−1

f

(
logR/v

logR

(
log v

logR/v
+ u

))
dv

log v
.

By putting log v/ logN = ξ, this becomes∫ (θ/2)−δ

η

(θ/2)− δ − ξ

1− ξ
f

(
ξ

(θ/2)− δ
+

(θ/2)− δ − ξ

(θ/2)− δ
u

)
dξ

ξ
.

We put

Fm,δ(u1, . . . , uk; ξ)

:= F

(
u1, . . . , um−1,

ξ

(θ/2)− δ
+

(θ/2)− δ − ξ

(θ/2)− δ
um, um+1, . . . , uk

)
, (3.42)

L
[m]
k,δ (ξ) :=

∫ 1

0

· · ·
∫ 1

0

{∫ 1

0

Fm,δ(u1, . . . , uk; ξ)dum

}
×
{∫ 1

0

F (u1, . . . , uk)dum

}
du1 · · · dum−1dum+1 · · · duk. (3.43)

Then, by the above argument and simple estimate



101

Small gaps between the set of products of at most two primes 101

∑
Y <p<R

1

p logN/p
≪η

1

logN
(Y = Nη, R = N (θ/2)−δ),

we have

∑
Y <p<R

1

logN/p

∑
u1,...,uk

y
(m)
u1,...,uk(p)y

(m)
u1,...,uk∏k

i=1 g(ui)

= −φ(W )k+1

W k+1
(logR)k(1 + o(1))

∫ (θ/2)−δ

η

(θ/2)− δ − ξ

1− ξ
L
[m]
k,δ (ξ)

dξ

ξ

+O

(
F 2
maxφ(W )k+1(logN)k

D0W k+1

)
, (3.44)

if the integral of the main term is not zero. Finally, by substituting this into (3.19), and

combining (3.24), (3.25) and

y(m)
max ≪ φ(W )

W
Fmax logN, ymax ≪ Fmax

(see [10, p. 403]), we obtain the following result:

Proposition 3.7. Assume BV [θ,P]. Then, if

L
(m)
k,δ (F ) :=

∫ (θ/2)−δ

η

(θ/2)− δ − ξ

1− ξ
L
[m]
k,δ (ξ)

dξ

ξ
̸= 0,

we have

S
(m)
2,I = −φ(W )kN

W k+1
(logR)k(1 + o(1))L

(m)
k,δ (F )

+O

(
F 2
maxφ(W )kN(logN)k

D0W k+1

)
+OB

(
NF 2

max

(logN)B

)
(3.45)

as N → ∞, where L
[m]
k,δ (F ) is defined by (3.43).

Notice that the same result holds for S
(m)
2,II . If L

(m)
k,δ (F ) = 0, the leading term vanishes

and hence

S
(m)
2,I = S

(m)
2,II = o

(
F 2
maxφ(W )kN(logN)k

W k+1

)
+OB

(
NF 2

max

(logN)B

)
.

4. The computation of S
(m)
2,III .

To compute

S
(m)
2,III :=

∑
d1,...,dk

e1,...,ek
dm=em=1

λd1,...,dk
λe1,...,ek

∑
N≤n<2N

n≡ν0(mod W )

[di,ei]|n+hi(∀i)

β(n+ hm), (4.1)
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we use the following lemma:

Lemma 4.1. Let β(n) be the function defined by (1.10) with Y = Nη, 1 ≪ η < 1/4.

Then, we have ∑
N≤n<2N

(n,q)=1

β(n) =
N

logN
log

1− η

η
+O

(
N log logN

(logN)2

)
(4.2)

uniformly for q ≤ N . Here, the implicit constant might be dependent on η.

Proof. We denote by ω(q) the number of distinct prime factors of q. Then,∑
N≤n<2N

(n,q)=1

β(n) =
∑

Y <p1≤N1/2

(p1,q)=1

∑
N/p1≤p2<2N/p1

(p2,q)=1

1

=
∑

Y <p1≤N1/2

(p1,q)=1

{
π♭

(
N

p1

)
+O(ω(q))

}

=
∑

Y <p1≤N1/2

(p1,q)=1

π♭

(
N

p1

)
+O(N1/2ω(q))

=
∑

Y <p1≤N1/2

π♭

(
N

p1

)
+O

(
π♭

(
N

Y

)
ω(q)

)
+O(N1/2ω(q)).

By applying the Prime Number Theorem to the final line, we obtain∑
N≤n<2N

(n,q)=1

β(n) =
∑

Y <p1≤N1/2

{
N

p1 logN/p1
+O

(
N

p1(logN)2

)}
+O

(
ω(q)

N1−η

logN

)
. (4.3)

The contribution of the first error term is∑
Y <p1≤N1/2

N

p1(logN)2
≪ N log logN

(logN)2
.

On the other hand, the main term is

∑
Y <p1≤N1/2

N

p1 logN/p1
= N

∫ N1/2

Y

dπ(u)

u(logN − log u)

=
N

logN

∞∑
k=0

1

logk N

∫ N1/2

Y

logk u

u
dπ(u). (4.4)

By partial integration, we find that
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∫ N1/2

Y

dπ(u)

u
=

[
1

log u
+O

(
1

log2 u

)]N1/2

Nη

+

∫ N1/2

Nη

1

u2

(
u

log u
+O

(
u

log2 u

))
du

= log

(
1

2η

)
+O

(
1

logN

)
,

∫ N1/2

Y

log u

u
dπ(u) =

[
1 +O

(
1

log u

)]N1/2

Nη

−
∫ N1/2

Nη

1− log u

u2

(
u

log u
+O

(
u

log2 u

))
du

=

(
1

2
− η

)
logN +O(1),

and for k ≥ 2, we have

∫ N1/2

Y

logk u

u
dπ(u) =

[
logk u

u

(
u

log u
+O

(
u

log2 u

))]N1/2

Nη

−
∫ N1/2

Nη

k logk−1 u− logk u

u2

(
u

log u
+O

(
u

log2 u

))
du

=
1

k

(
1

2k
− ηk

)
logk N +O(2−k logk−1 N).

(The implied constant might be dependent on η, but independent of k.) Combining

these, we obtain

∞∑
k=0

1

logk N

∫ N1/2

Y

logk u

u
dπ(u) = log

(
1

2η

)
+

∞∑
k=1

1

k

(
1

2k
− ηk

)
+O

( ∞∑
k=1

2−k

logN

)

= log
1− η

η
+O

(
1

logN

)
. (4.5)

By substituting (4.5) into (4.4), we have∑
Y <p1≤N1/2

N

p1 logN/p1
=

N

logN
log

1− η

η
+O

(
N

log2 N

)
.

Consequently,∑
N≤n<2N

(n,q)=1

β(n) =
N

logN
log

1− η

η
+O

(
N log logN

log2 N

)
+O

(
ω(q)N1−η

logN

)
. (4.6)

Since ω(q) ≪ N ϵ (∀ϵ > 0) holds uniformly for q ≤ N , the second error term is dominated

by the first one. Hence we obtain the result. □
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We return to the computation of S
(m)
2,III , defined by (4.1). Only those (d1, . . . , dk,

e1, . . . , ek) for which W, [d1, e1], . . . , [dk, ek] are pairwise coprime and
∏k

i=1 di,
∏k

i=1 ei <

R contribute to the sum. We denote the restricted sum by
∑′

. We put

q = W
k∏

i=1

[di, ei].

Then, there exists a unique ν (mod q) such that ν ≡ ν0 (mod W ), hi+ν ≡ 0 (mod [di, ei])

(i = 1, . . . , k) and the sum over n is rewritten as the sum over integers congruent to ν

modulo q. Therefore, ∑
N≤n<2N

n≡ν0(mod W )

[di,ei]|n+hi(∀i)

β(n+ hm) =
∑

N≤n<2N

n≡ν (mod q)

β(n+ hm)

=
∑

N<n≤2N

n≡ν′ (mod q)

β(n) +O(1), (4.7)

where ν′ = ν + hm. This ν′ satisfies (ν′, q) = 1. This fact follows from our choice of

ν0 and the condition that the elements of H are bounded. We have treated the similar

situation in Section 3, hence we omit to prove this. Hence by (4.7), we have∑
N≤n<2N

n≡ν0 (mod W )

[di,ei]|n+hi(∀i)

β(n+ hm) =
1

φ(q)

∑
N≤n<2N

(n,q)=1

β(n) + ∆β(N ; q, ν′) +O(1), (4.8)

where

∆β(N ; q, ν′) =
∑

N≤n<2N

n≡ν′ (mod q)

β(n)− 1

φ(q)

∑
N≤n<2N

(n,q)=1

β(n).

Now we apply Lemma 4.1 to the sum in (4.8). Then we have∑
N≤n<2N

n≡ν0 (mod W )

[di,ei]|n+hi(∀i)

β(n+ hm) =
XN,η

φ(q)
+ ∆β(N ; q, ν′) +O(1),

where

XN,η =
N

logN
log

1− η

η
+O

(
N log logN

(logN)2

)
. (4.9)

By substituting this into (4.1), we obtain
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S
(m)
2,III =

XN,η

φ(W )

∑
d1,...,dk

e1,...,ek
dm=em=1

′ λd1,...,dk
λe1,...,ek∏k

i=1 φ([di, ei])

+O

 ∑
d1,...,dk

e1,...,ek

′
|λd1,...,dk

λe1,...,ek |(|∆β(N ; q, ν′)|+ 1)

 . (4.10)

Under the assumption of the estimation BV [θ, E2], the error term above is evaluated by

OB(Ny2max/(logN)B). The proof of this statement is essentially the same as that in the

argument around (5.19)–(5.20) of [10], hence we omit it. Moreover, the sum in the main

term is also computed in [10] (see the proof of Lemma 5.2 of [10]). The result is

∑
d1,...,dk

e1,...,ek
dm=em=1

′ λd1,...,dk
λe1,...,ek∏k

i=1 φ([di, ei])
=

∑
u1,...,uk

(y
(m)
u1,...,uk)

2∏k
i=1 g(ui)

+O

(
(y

(m)
max)2φ(W )k−1(logN)k−1

D0W k−1

)
.

Consequently, we obtain

S
(m)
2,III =

XN,η

φ(W )

∑
u1,...,uk

(y
(m)
u1,...,uk)

2∏k
i=1 g(ui)

+O

(
(y

(m)
max)2φ(W )k−2N(logN)k−2

D0W k−1

)
+OB

(
Ny2max

(logN)B

)
. (4.11)

We put

J
(m)
k (F ) =

∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

F (t1, . . . , tk)dtm

)2

dt1 · · · dtm−1dtm+1 · · · dtk. (4.12)

By Lemma 6.3 of [10], we have

N

φ(W ) logN

∑
u1,...,uk

(y
(m)
u1,...,uk)

2∏k
i=1 g(ui)

=
φ(W )kN(logR)k+1

W k+1 logN
J
(m)
k (F ) +O

(
F 2
maxφ(W )kN(logN)k

W k+1D0

)
.

Moreover, we have

ymax ≪ Fmax, y(m)
max ≪ Fmaxφ(W ) logN

W

(see [10, p. 403]). By substituting the definition of XN,η (4.9) into (4.10) and combining

these, we obtain the following result:

Proposition 4.2. Under the assumption of BV [θ, E2], we have
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S
(m)
2,III =

φ(W )kN(logR)k+1

W k+1 logN

(
log

1− η

η

)
(1 + o(1))J

(m)
k (F )

+O

(
F 2
maxφ(W )kN(logN)k

W k+1D0

)
+OB

(
F 2
maxN

(logN)B

)
(4.13)

as N → ∞, where J
(m)
k (F ) is defined by (4.12).

5. The computation of S
(m)
2,IV .

The next problem is to compute

S
(m)
2,IV :=

∑
Y <p<R

∑
d1,...,dk

e1,...,ek
dm=em=p

λd1,...,dk
λe1,...,ek

∑
N≤n<2N

n≡ν0(mod W )

[di,ei]|n+hi(∀i)

β(n+ hm). (5.1)

Only those (d1, . . . , dk, e1, . . . , ek) for which W, [d1, e1], . . . , [dk, ek] are pairwise coprime

and
∏k

i=1 di,
∏k

i=1 ei < R contribute to the sum. We put

q = W

k∏
i=1

[di, ei].

Then, ∑
N≤n<2N

n≡ν0(mod W )

[di,ei]|n+hi(∀i)

β(n+ hm) =
∑

N≤n<2N

n≡ν (mod q)

β(n+ hm) (5.2)

for some ν (mod q), given in Section 3. The right hand side of (5.2) is given by (3.6).

Combining this and

1

φ(q/p)
=

φ(p)

φ(q)
=

p− 1

φ(q)
,

we obtain

S
(m)
2,IV =

1

φ(W )

∑
Y <p<R

(p− 1)π♭

(
N

p

) ∑
d1,...,dk

e1,...,ek
dm=em=p

′ λd1,...,dk
λe1,...,ek∏k

i=1 φ([di, ei])

+O


∑

Y <p<R

∑
d1,...,dk

e1,...,ek
dm=em=p

′
|λd1,...,dk

λe1,...,ek |
(∣∣∣∣∆(N

p
;
q

p
, ν′m

)∣∣∣∣+ 1

)
 , (5.3)
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where the sum
∑′

implies that d1, . . . , dk, e1, . . . , ek are restricted to those satisfying the

condition that W, [d1, e1], . . . , [dk, ek] are pairwise coprime. The error term is, under the

assumption of BV [θ,P], evaluated by

≪B
Ny2max

(logN)B
(5.4)

for any B > 0. The proof is almost the same as that in Section 3, hence we omit this.

Next, we compute the sum over d1, . . . , dk, e1, . . . , ek. By the similar way as (3.10), we

obtain

∑
d1,...,dk

e1,...,ek
dm=em=p

′ λd1,...,dk
λe1,...,ek∏k

i=1 φ([di, ei])
=

∑
u1,...,uk

k∏
i=1

g(ui)
∑

s1,2,...,sk,k−1

∗
( ∏

1≤i ̸=j≤k

µ(si,j)

)

×
∑

d1,...,dk

e1,...,ek
ui|di,ei(∀i)

si,j |di,ej(i ̸=j)

dm=em=p

λd1,...,dk
λe1,...,ek∏k

i=1 φ(di)φ(ei)
. (5.5)

Using the function y
(m)
r1,...,rk(p) defined by (3.11), the right hand side of (5.5) is expressed

by

∑
u1,...,uk

(
k∏

i=1

µ2(ui)

g(ui)

) ∑
s1,2,...,sk,k−1

∗
( ∏

1≤i ̸=j≤k

µ(si,j)

g(si,j)2

)
y(m)
a1,...,ak

(p)y
(m)
b1,...,bk

(p), (5.6)

where ai = ui

∏
j ̸=i si,j , bi = ui

∏
j ̸=i sj,i. Since am = p implies p = um or sm,j (∃j) and

bm = p implies p = um or sj,m (∃j), the contribution of the terms with si,j ̸= 1 (hence

si,j > D0) is at most

∑
p1,p2=1 or p

∑
u1,...,uk

k∏
i=1

µ2(ui)

g(ui)

∑
si′,j′

(i′,j′ )̸=(i,j)

∏
1≤i′ ̸=j′≤k

(i′,j′ )̸=(i,j)

µ2(si′,j′)

g(si′,j′)2

×

( ∑
si,j>D0

µ2(si,j)

g(si,j)2

)
y(m)
a1,...,ak

(p)|am=p1y
(m)
b1,...,bk

(p)|bm=p2 ,

which is bounded by

≪ y(m)
max(p)

2
rm=1

(
φ(W )

W
logR

)k−1

· 1 ·D−1
0

+
(
y(m)
max(p)rm=1y

(m)
max(p)rm=p + y(m)

max(p)
2
rm=p

)
· 1
p

(
φ(W )

W
logR

)k−1

· 1 ·D−1
0
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≪ φ(W )k−1(logR)k−1

W k−1D0
y(m)
max(p)

2
rm=1

+
φ(W )k−1(logR)k−1

pW k−1D0
max

{
y(m)
max(p)rm=1, y

(m)
max(p)rm=p

}2
. (5.7)

Combining (5.5), (5.6) and (5.7), we have

∑
d1,...,dk

e1,...,ek
dm=em=p

′ λd1,...,dk
λe1,...,ek∏k

i=1 φ([di, ei])
=

∑
u1,...,uk

y
(m)
u1,...,uk(p)

2∏k
i=1 g(ui)

+O

(
φ(W )k−1(logR)k−1

W k−1D0
y(m)
max(p)

2
rm=1

)
+O

(
φ(W )k−1(logR)k−1

pW k−1D0
Y (m)(p)2

)
, (5.8)

where

Y (m)(p) = max{y(m)
max(p)rm=1, y

(m)
max(p)rm=p}.

By substituting (5.8) into (5.3) and combining (5.4), we obtain

S
(m)
2,IV =

1

φ(W )

∑
Y <p<R

(p− 1)π♭

(
N

p

) ∑
u1,...,uk

y
(m)
u1,...,uk(p)

2∏k
i=1 g(ui)

+O

Nφ(W )k−2(logN)k−2

W k−1D0

∑
Y <p<R

(
y(m)
max(p)

2
rm=1 +

Y (m)(p)2

p

)
+OB

(
Ny2max

(logN)B

)
. (5.9)

Moreover, by the estimates (3.24), (3.25) and
∑

Y <p<R 1/p ≪η 1, the first error term of

(5.9) is at most

Nφ(W )k−2(logN)k−2

W k−1D0
· y

2
maxφ(W )2(logN)2

W 2
=

y2maxNφ(W )k(logN)k

W k+1D0
.

Since

(p− 1)π♭

(
N

p

)
=

N

logN/p
+O

(
N

log2 N

)
,

if we replace the factor (p− 1)π♭(N/p) in (5.9) with N/(logN/p), the possible error is at

most

1

φ(W )
· N

(logN)2

∑
Y <p<R

∑
u1,...,uk

y
(m)
u1,...,uk(p)

2∏k
i=1 g(ui)
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≪ N

φ(W )(logN)2

∑
Y <p<R

{
y
(m)
max(p)|2rm=p

p
+ y(m)

max(p)|2rm=1

} ∑
u<R

(u,W )=1

1

g(u)


k−1

≪ N

φ(W )(logN)2

∑
Y <p<R

(
y2maxφ(W )2 log2 N

pW 2
+

y2maxφ(W )2 log2 N

p2W 2

)(
φ(W ) logN

W

)k−1

≪ y2maxN(logN)k−1φ(W )k

W k+1
,

which is dominated by the error term above. Therefore,

S
(m)
2,IV =

N

φ(W )

∑
Y <p<R

1

logN/p

∑
u1,...,uk

y
(m)
u1,...,uk(p)

2∏k
i=1 g(ui)

+O

(
y2maxNφ(W )k(logN)k

W k+1D0

)
+OB

(
Ny2max

(logN)B

)
. (5.10)

Let us compute the sum over u1, . . . , uk in the main term of (5.10) by using Lemma 3.3.

Let um be 1 or p. Then, by (3.23), we have

y(m)
u1,...,uk

(p)2

=

−µ(um)g(um)
∑
am

p|am

yu1,...,um−1,am,um+1,...,uk

φ(am)
+O

(
ymaxg(um)φ(W ) logR/p

WD0φ(p)

)
2

= g(um)2

∑
am

p|am

yu1,...,um−1,am,um+1,...,uk

φ(am)


2

+O

(
y2maxg(um)2φ(W )2(logR/p)2

W 2D0φ(p)2

)
.

Therefore, by taking the sum over u1, . . . , uk, we obtain

∑
u1,...,uk

y
(m)
u1,...,uk(p)

2∏k
i=1 g(ui)

=
∑

um=1,p

g(um)
∑

u1,...,um−1,um+1,...,uk

1∏
i ̸=m g(ui)

∑
am

p|am

yu1,...,um−1,am,um+1,...,uk

φ(am)


2

+O

(
y2maxφ(W )k+1(logN)k+1

W k+1D0p

)
. (5.11)

By (3.28), if u1, . . . , uk satisfy the conditions that (ui, uj) = 1 (i ̸= j), (ui, pW ) = 1

(∀i ̸= m), u1, . . . , uk are square-free, we have
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am

p|am

yu1,...,um−1,am,um+1,...,uk

φ(am)


2

=
φ(W )2

p2W 2

(
log

R

p

)2 ∏
i ̸=m

φ(ui)
2

u2
i

×
(∫ 1

0

F [m]
p

(
log u1

logR
, . . . ,

log um−1

logR
, u,

log um+1

logR
, . . . ,

log uk

logR

)
du

)2

+O

(
φ(W )2

p2W 2

(
F 2
max(log logN)2 + Fmax log

R

p
log logN

))
. (5.12)

We substitute (5.12) into (5.11). Then, the contribution of the error term is at most

∑
um=1,p

g(um)

 ∑
u1,...,um−1,um+1,...,uk

1∏
i ̸=m g(ui)

 F 2
maxφ(W )2(logR/p)(log logN)2

p2W 2

≪ F 2
maxφ(W )k+1(logN)k(log logN)2

pW k+1
,

which is dominated by the error term of (5.11). Therefore,

∑
u1,...,uk

y
(m)
u1,...,uk(p)

2∏k
i=1 g(ui)

=
φ(W )2

p2W 2

(
log

R

p

)2 ∑
um=1,p

g(um)
∑

u1,...,um−1,um+1,...,uk

′ ∏
i ̸=m

φ(ui)
2

u2
i g(ui)

×
(∫ 1

0

F [m]
p

(
log u1

logR
, . . . ,

log um−1

logR
, u,

log um+1

logR
, . . . ,

log uk

logR

)
du

)2

+O

(
F 2
maxφ(W )k+1(logN)k+1

W k+1D0p

)
. (5.13)

The sum
∑′

indicates that u1, . . . , um−1, um+1, . . . , uk are restricted to those satisfying

the conditions above. In (5.13), the contribution of the terms with um = 1 are dominated

by the error term. Hence only the terms with um = p contribute to the main term, and

since

g(p)

p2
=

1

p
+O

(
1

p2

)
=

1

p
+O

(
p−1N−η

)
,

if we replace the factor g(p)/p2 in (5.13) with 1/p, the possible error is dominated by the

error term of (5.13). Hence we have

∑
u1,...,uk

y
(m)
u1,...,uk(p)

2∏k
i=1 g(ui)
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=
φ(W )2

pW 2

(
log

R

p

)2 ∑
u1,...,um−1,um+1,...,uk

′ ∏
i ̸=m

µ2(ui)φ(ui)
2

u2
i g(ui)

×
(∫ 1

0

F [m]
p

(
log u1

logR
, . . . ,

log um−1

logR
, u,

log um+1

logR
, . . . ,

log uk

logR

)
du

)2

+O

(
F 2
maxφ(W )k+1(logN)k+1

W k+1D0p

)
. (5.14)

We remove the condition that (ui, uj) = 1 for i ̸= j. If (ui, uj) > 1, there exists a prime

q > D0 for which q|ui, uj . Therefore, the difference is at most

φ(W )2(logN)2F 2
max

pW 2

( ∑
q>D0

φ(q)4

g(q)2q4

) ∑
u<R

(u,W )=1

φ(u)2

u2g(u)


k−1

≪ F 2
maxφ(W )k+1(logN)k+1

W k+1D0p
.

Therefore,

∑
u1,...,uk

y
(m)
u1,...,uk(p)

2∏k
i=1 g(ui)

=
φ(W )2

pW 2

(
log

R

p

)2 ∑
u1,...,um−1,um+1,...,uk

(ui,pW )=1(∀i ̸=m)

∏
i ̸=m

µ2(ui)φ(ui)
2

u2
i g(ui)

×
(∫ 1

0

F [m]
p

(
log u1

logR
, . . . ,

log um−1

logR
, u,

log um+1

logR
, . . . ,

log uk

logR

)
du

)2

+O

(
F 2
maxφ(W )k+1(logN)k+1

W k+1D0p

)
. (5.15)

We apply Lemma 3.4 with

γ(q) =

1− q2 − 3q + 1

q3 − q2 − 2q + 1
(q |/pW )

0 (otherwise)
(5.16)

to the sum over u1, . . . , um−1, um+1, . . . , uk. In Section 3, we proved that

L ≪ logD0, S =
φ(p)φ(W )

pW
(1 +O(D−1

0 )).

Therefore, by the similar way as (3.37), we find that

∑
u1,...,um−1,um+1,...,uk

(ui,pW )=1(∀i ̸=m)

∏
i ̸=m

µ2(ui)φ(ui)
2

u2
i g(ui)
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×
(∫ 1

0

F [m]
p

(
log u1

logR
, . . . ,

log um−1

logR
, u,

log um+1

logR
, . . . ,

log uk

logR

)
du

)2

=
φ(p)k−1φ(W )k−1

pk−1W k−1
(logR)k−1

×
∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

F [m]
p (u1, . . . , um−1, u, um+1, . . . , uk)du

)2

· du1 · · · dum−1dum+1 · · · duk

+O

(
F 2
maxφ(p)

k−1φ(W )k−1(logN)k−1

pk−1W k−1D0

)
. (5.17)

By substituting (5.17) into (5.15) and replacing the factor φ(p)k−1/pk with 1/p (the

possible error is sufficiently small), we have

∑
u1,...,uk

y
(m)
u1,...,uk(p)

2∏k
i=1 g(ui)

=
φ(W )k+1

pW k+1
(logR)k−1

(
log

R

p

)2

×
∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

F [m]
p (u1, . . . , um−1, u, um+1, . . . , uk)du

)2

· du1 · · · dum−1dum+1 · · · duk

+O

(
F 2
maxφ(W )k+1(logN)k+1

W k+1D0p

)
. (5.18)

We substitute this into (5.10). Our next purpose is to compute the sum over p. For any

smooth function f , the sum

∑
Y <p<R

1

p

(
log

R

p

)2(
log

N

p

)−1

f

(
logR/p

logR

(
log p

logR/p
+ u

))
(5.19)

is expressed by∫ N(θ/2)−δ

Nη

1

v

(
log

R

v

)2(
log

N

v

)−1

f

(
logR/v

logR

(
log v

logR/v
+ u

))
dπ(v),

which is asymptotically∫ N(θ/2)−δ

Nη

1

v

(
log

R

v

)2(
log

N

v

)−1

f

(
logR/v

logR

(
log v

logR/v
+ u

))
dv

log v
.

By putting log v/ logN = ξ, this becomes

logN

∫ (θ/2)−δ

η

((θ/2)− δ − ξ)2

1− ξ
f

(
ξ

(θ/2)− δ
+

(θ/2)− δ − ξ

(θ/2)− δ
u

)
dξ

ξ
.
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We put

M
[m]
k,δ (ξ)

=

∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

Fm,δ(u1, . . . , uk; ξ)dum

)2

du1 · · · dum−1dum+1 · · · duk, (5.20)

where the function Fm,δ is defined by (3.42). Then, by applying the consequence of the

above argument to (5.18), we have

∑
Y <p<R

1

logN/p

∑
u1,...,uk

y
(m)
u1,...,uk(p)

2∏k
i=1 g(ui)

=
φ(W )k+1(logR)k−1 logN

W k+1
(1 + o(1))

∫ (θ/2)−δ

η

((θ/2)− δ − ξ)2

1− ξ
M

[m]
k,δ (ξ)

dξ

ξ

+O

(
F 2
maxφ(W )k+1(logN)k

W k+1D0

)
, (5.21)

if the integral is not zero. We substitute this into (5.10). Consequently we obtain the

following result:

Proposition 5.1. Assuming BV [θ,P], we have

S
(m)
2,IV =

φ(W )kN logN(logR)k−1

W k+1
(1 + o(1))M

(m)
k,δ (F )

+O

(
F 2
maxφ(W )kN(logN)k

W k+1D0

)
+OB

(
F 2
maxN

(logN)B

)
(5.22)

as N → ∞ if

M
(m)
k,δ (F ) :=

∫ (θ/2)−δ

η

((θ/2)− δ − ξ)2

1− ξ
M

[m]
k,δ (ξ)

dξ

ξ
̸= 0,

where M
[m]
k,δ (ξ) is defined by (5.20).

We note that if M
(m)
k,δ (F ) = 0, the leading term vanishes and hence

S
(m)
2,IV = o

(
F 2
maxφ(W )kN(logN)k

W k+1

)
+OB

(
NF 2

max

(logN)B

)
.

6. Conclusion.

To establish the small gaps between almost primes, we consider the sum

S(N, ρ) =
k∑

m=1

S
(m)
2 − ρS0



114

114 K. Sono

=
k∑

m=1

(
S
(m)
2,I + S

(m)
2,II + S

(m)
2,III + S

(m)
2,IV

)
− ρS0 (6.1)

for ρ ∈ N. To establish small gaps between the set of primes and almost primes, we

consider the sum

S′(N, ρ) =
k∑

m=1

(S
(m)
1 + S

(m)
2 )− ρS0

=

k∑
m=1

(
S
(m)
1 + S

(m)
2,I + S

(m)
2,II + S

(m)
2,III + S

(m)
2,IV

)
− ρS0 (6.2)

for ρ ∈ N. If S(N, ρ) → ∞, there exist infinitely many n for which at least ρ + 1 of

n + h1, . . . , n + hk are E2-numbers. If S′(N, ρ) → ∞, there exist infinitely many n for

which at least ρ+1 of n+h1, . . . , n+hk are primes or E2-numbers. We have computed all

terms to obtain the asymptotic formulas for S(N, ρ) and S′(N, ρ). The terms S
(m)
2,I and

S
(m)
2,II are obtained in Proposition 3.7, the term S

(m)
2,III is obtained in Proposition 4.2, and

the term S
(m)
2,IV is obtained in Proposition 5.1. Also, the terms S0 and S

(m)
1 were obtained

by Maynard ([10]), and the result is given in Proposition 2.1. By these propositions, we

find that under the assumptions of BV [θ,P] and BV [θ, E2], S(N, ρ) is asymptotically{
−θ′

k∑
m=1

L
(m)
k,δ (F ) +

θ′2

4

(
log

1− η

η

) k∑
m=1

J
(m)
k (F ) +

k∑
m=1

M
(m)
k,δ (F )− ρθ′

2
Ik(F )

}

×
(
θ′

2

)k−1
φ(W )kN(logN)k

W k+1

and S′(N, ρ) is asymptotically{
−θ′

k∑
m=1

L
(m)
k,δ (F ) +

θ′2

4

(
1 + log

1− η

η

) k∑
m=1

J
(m)
k (F ) +

k∑
m=1

M
(m)
k,δ (F )− ρθ′

2
Ik(F )

}

×
(
θ′

2

)k−1
φ(W )kN(logN)k

W k+1
,

whenever the leading coefficient is not zero, where

θ′ = θ − 2δ.

We take the limit δ → +0 and see when the leading coefficients

−θ
k∑

m=1

L
(m)
k,0 (F ) +

θ2

4

(
log

1− η

η

) k∑
m=1

J
(m)
k (F ) +

k∑
m=1

M
(m)
k,0 (F )− ρθ

2
Ik(F ) (6.3)

or
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−θ
k∑

m=1

L
(m)
k,0 (F ) +

θ2

4

(
1 + log

1− η

η

) k∑
m=1

J
(m)
k (F ) +

k∑
m=1

M
(m)
k,0 (F )− ρθ

2
Ik(F ) (6.4)

become positive.

7. The proof of Theorem 1.1.

Let ρ ∈ N be sufficiently large. We use the same test function as in [10]. That is,

we define the test function F by

F (u1, . . . , uk) =


k∏

i=1

g(kui) (u1, . . . , uk ≥ 0, u1 + · · ·+ uk ≤ 1)

0 (otherwise),

(7.1)

where the function g : [0,∞) → R is defined by

g(u) =


1

1 +Au
(0 ≤ u ≤ T )

0 (u > T )
(7.2)

with A = log k − 2 log log k, T = (eA − 1)/A. We choose η by

η =
θT

k
∼ θ

(log k)3
.

In this case the function Fm,0 is given by

Fm,0(u1, . . . , uk; ξ) = g

(
k

(
2ξ

θ
+

θ − 2ξ

θ
um

)) ∏
i̸=m

g(kui).

When the pair (um, ξ) moves in [0, 1]× [η, θ/2], we have

k

(
2ξ

θ
+

θ − 2ξ

θ
um

)
≥ 2kη

θ
= 2T > T.

Therefore, we have Fm,0 ≡ 0, so L
(m)
k (F ) = M

(m)
k (F ) = 0 for m = 1, . . . , k. Hence if

(θ2/4) (log(1− η)/η)
∑k

m=1 J
(m)
k (F )

(θ/2)Ik(F )
> ρ, (7.3)

(6.3) becomes positive. Using the inequality in [10, p. 408], for any ϵ > 0, if k is

sufficiently large, the left hand side of (7.3) is

=
θ

2

(
log

1− η

η

)
kJ

(1)
k (F )

Ik(F )

≥ 3θ

2
(log log k)(1 + o(1))(log k − 2 log log k − 2)
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≥ 3θ

2

(
1− ϵ

4

)
(log k log log k − 3(log log k)2). (7.4)

We put

k =

[
exp

(
(2 + ϵ)ρ

3θ log ρ

)
+ 1

]
,

where [a] denotes the largest integer less than or equal to a. Then the third line of (7.4)

is

≥ 3θ

2

(
1− ϵ

4

)( (2 + ϵ)ρ

3θ log ρ
log

(
(2 + ϵ)ρ

3θ log ρ

)
− 3 log2

(
(2 + ϵ)ρ

3θ log ρ

))
≥
(
1 +

ϵ

5

)
ρ+O

(
ρ log log ρ

log ρ

)
.

This is greater than ρ whenever ρ is sufficiently large. Hence (7.3) holds

for k ∼ exp ((2 + ϵ)ρ/(3θ log ρ)). We can choose the admissible set by H =

{pπ(k)+1, pπ(k)+2, . . . , pπ(k)+k}, where pn denotes the n-th prime. Hence there exist in-

finitely many n for which at least ρ+ 1 of n+ pπ(k)+1, . . . , n+ pπ(k)+k are E2-numbers.

Since

pπ(k)+k − pπ(k)+1 ≪ k log k ≪ exp

(
(2 + 2ϵ)ρ

3θ log ρ

)
,

by replacing ϵ with ϵ/2, the proof of Theorem 1.1 is completed. □

Remark 7.1. Recently Takayuki Neshime, who belongs to the master course of

Tokyo Institute of Technology, told me that by choosing the parameter A in a different

way and evaluating the contribution of L
(m)
k (F ), we can obtain a better upper bound

lim inf
n→∞

(qn+m − qn) ≪
√
m exp

√
8m

θ
,

assuming BV [θ,P] and BV [θ, E2].

8. The proofs of other theorems.

The numerical computations below are accomplished by Mathematica. To prove

Theorem 1.2, it suffices to show that the leading coefficient (6.4) with k = 6, ρ = 2, θ =

1/2 becomes positive for some test function F . We define this by

F (x, y, z, u, v, w) = 1− 143577

50000
P1 +

12337

5000
P 2
1 +

86987

50000
P2

− 619873

1000000
P 3
1 − 156481

100000
P1P2 −

230073

5000000
P3

if x, y, z, u, v, w ≥ 0, x+y+z+u+v+w ≤ 1 and otherwise F (x, y, z, u, v, w) := 0, where

Pi = xi + yi + zi + ui + vi + wi (i = 1, 2, 3). We take η = 10−10. Then, by numerical
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computations, we find that

I6(F ) = 5.30806 · · · × 10−6, J6(F ) = 1.88915 · · · × 10−6,

L
(m)
6,0 (F ) = 9.20744 · · · × 10−6, M

(m)
6,0 (F ) = 2.22265 · · · × 10−6,

hence

− 1

2

6∑
m=1

L
(m)
6,0 (F ) +

1

16

(
1 + log

1− 10−10

10−10

) 6∑
m=1

J
(m)
6 (F ) +

6∑
m=1

M
(m)
6,0 (F )− 1

2
I6(F )

= 8.02 · · · × 10−8 > 0.

This proves Theorem 1.2. □

Next we prove Theorem 1.3. It suffices to show that the leading coefficient (6.4)

with k = 3, ρ = 2, θ = 1 becomes positive for some test function F . We define this by

F (x, y, z) =

{
(1− x)(1− y)(1− z) (x, y, z ≥ 0, x+ y + z ≤ 1)

0 (otherwise)
(8.1)

and put η = 10−10. Then, by numerical computations, we find that

I3(F ) = 0.0287919 · · · , J
(m)
3 (F ) = 0.0154828 · · · ,

L
(m)
3,0 (F ) = 0.1606331 · · · , M

(m)
3,0 (F ) = 0.0779163 · · ·

for m = 1, 2, 3. Consequently,

−
3∑

m=1

L
(m)
3,0 (F ) +

1

4

(
1 + log

1− 10−10

10−10

) 3∑
m=1

J
(m)
3 (F ) +

3∑
m=1

M
(m)
3,0 (F )− I3(F )

= 0.00204 · · · > 0.

This proves Theorem 1.3. □

To prove Theorem 1.4, we see that the number (6.3) with k = 5, ρ = 2, θ = 1

becomes positive for some test function F . We define this by

F (x, y, z, u, v) = 1 +
917

500
Q1 −

281

50
Q2

1 −
41

25
Q2 +

287

100
Q3

1 +
191

100
Q1Q2 −

81

250
Q3

if x, y, z, u, v ≥ 0, x + y + z + u + v ≤ 1, and otherwise F (x, y, z, u, v) := 0, where

Qi = xi+ yi+ zi+ui+ vi (i = 1, 2, 3). Moreover, we take η = 10−10. Then by numerical

computations, we find that

I5(F ) =
1735763

1732500000
, J

(m)
5 (F ) =

722755717

1871100000000
,

L
(m)
5,0 (F ) = 0.00392368 · · · , M

(m)
5,0 (F ) = 0.00190092 · · ·

for 1 ≤ m ≤ 5. Consequently,
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−
5∑

m=1

L
(m)
5,0 (F ) +

1

4

(
log

1− 10−10

10−10

) 5∑
m=1

J
(m)
5 (F ) +

5∑
m=1

M
(m)
5,0 (F )− I5(F )

= 2.13079 · · · × 10−6 > 0.

Since the set H = {0, 2, 6, 8, 12} is an admissible set with five elements, the statement of

Theorem 1.4 is obtained. □
Acknowledgements. The author sincerely expresses his utmost gratitude to the

referee for reading this paper carefully and giving him many valuable comments and

suggestions.
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