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Abstract. If we have a finite number of sections of a complex vector bundle E over

a manifold M, certain Chern classes of E are localized at the singular set S, i.e., the set

of points where the sections fail to be linearly independent. When S is compact, the

localizations define the residues at each connected component of S by the Alexander

duality. If M itself is compact, the sum of the residues is equal to the Poincaré dual of

the corresponding Chern class. This type of theory is also developed for vector bundles

over a possibly singular subvariety in a complex manifold. Explicit formulas for the

residues at an isolated singular point are also given, which express the residues in terms

of Grothendieck residues relative to the subvariety.

Let E be a complex vector bundle of rank r over a manifold M. If we have

a section s of E, the top Chern class crðEÞ of E is ‘‘localized’’ at the zero set, or

‘‘the singular set’’, S of s. More presicely, there is a canonical class crðE; sÞ in

the relative cohomology H 2rðM;MnSÞ which lifts the class c rðEÞ in H 2rðMÞ. If

S is compact, by the Alexander duality, crðE; sÞ defines the ‘‘residue’’ in the

homology of each connected component of S. If M itself is compact, we have

the residue formula which says that the sum of the residues is equal to the

Poincaré dual of crðEÞ.

The residue at an isolated singular point is expressed as a Grothendieck

residue when M is a complex manifold of dimension n ¼ r and when E and s are

holomorphic, see for example [Su2, Theorem 3.1]. Special cases of this include

the Poincaré-Hopf index of a holomorphic vector field as a section of the tangent

bundle and the multiplicity (or Milnor number) of a holomorphic function with

its di¤erential considered as a section of the cotangent bundle. In the global

situation, the residue formula leads to the Poincaré-Hopf theorem, in the first

case, and to the ‘‘multiplicity formula’’ (or the ‘‘Milnor number formula’’) [I],

see also [F, Example 14.1.5] and [HL, VI 3], in the second case.
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In this note, we consider the case where we are given an l-tuple s of sections

of the bundle E. In this case, if we denote by S the set of points where the

members of s fail to be linearly independent, there is a canonical localization

c iðE; sÞ in H 2iðM;MnSÞ of the Chern class c iðEÞ, for each i ¼ r� lþ 1; . . . ; r.

Again, if S is compact, by the Alexander duality, c iðE; sÞ defines the residue in

the homology of each connected component of S and, if M is compact, we have

the residue formula (Proposition 2.5 below). We give an explicit formula for the

residue at an isolated singular point when M is a complex manifold of dimension

n ¼ r� lþ 1 and E and s are holomorphic. It is also expressed by a Gro-

thendieck residue (Theorem 5.2 and Section 6).

The definition of residues and the residue formula are readily generalized

to the case of vector bundles over singular subvarieties in complex manifolds

(Proposition 3.3). We also have a similar expression for the residue at an

isolated singular point of a variety as a Grothendieck residue relative to the

subvariety (Theorem 5.7 and Section 6).

The above localization theory fits nicely into the framework of the theory

of integration on the Čech-de Rham cohomology, which we recall in Section 1.

The computation of the residues is also done in this framework. We give, in

Section 4, some fundamental material necessary for this purpose.

For an application, we refer to [IS], where the multiplicity of a function

on a singular variety is defined and the aforementioned multiplicity formula is

generalized to the case of functions on singular varieties. The multiplicity at

an isolated singular point can be computed using the formulas in this note.

I would like to thank M. Oka, M. Saito and H. Yamada for helpful con-

versations.

1. Chern classes in the Čech-de Rham cohomology.

We refer to [BT], [L1-2] and [Su1] for the material in this section.

(A) Čech-de Rham cohomology and dualities.

Let M be a (connected) oriented Cy manifold of dimension m. For an

open set U in M, we denote by AqðUÞ the space of complex valued Cy q-forms

on U . For an open covering U ¼ fUaga of M, we denote by A�ðUÞ the Čech-

de Rham complex associated to the covering U with di¤erential D and by

H qðA�ðUÞÞ its cohomology [Su1, Chapter II, 3]. We have a canonical iso-

morphism

H qðM;CÞ !
@

H qðA�ðUÞÞ;ð1:1Þ

where H qðM;CÞ denotes the de Rham cohomology of M. We also have the

cup product in A�ðUÞ, which induces the cup product in H �ðA�ðUÞÞ compatible,

via (1.1), with the usual one in the de Rham cohomology.
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If M is compact, taking a ‘‘system of honey-comb cells’’ fRaga adapted to

U, we may define the integration

ð
M

: HmðA�ðUÞÞ ! C ;

which is compatible, via (1.1), with the usual integration on the de Rham coho-

mology. The composition of the cup product and the integration induces the

Poincaré duality

P : H qðM;CÞFH qðA�ðUÞÞ !
@

Hm�qðA�ðUÞÞ4FHm�qðM;CÞ:

Now let S be a closed set in M. Letting U0 ¼ MnS and U1 a neighborhood

of S in M, we consider the covering U ¼ fU0;U1g of M. In this case, an

element s in AqðUÞ may be written as s ¼ ðs0; s1; s01Þ with s0 and s1 q-forms

on U0 and U1, respectively, and s01 a ðq� 1Þ-form on U01 ¼ U0 VU1. If we

set

AqðU;U0Þ ¼ fs A AqðUÞ j s0 ¼ 0g;

A�ðU;U0Þ forms a subcomplex of A�ðUÞ and we have a canonical isomorphism

H qðA�ðU;U0ÞÞFH qðM;MnS;CÞ:

Suppose S is compact (M may not be). Let R1 be a compact manifold of

dimension m with Cy boundary qR1 in U1, containing S in its interior IntR1,

and set R0 ¼ MnIntR1. Then fR0;R1g is a system of honey-comb cells adapted

to U. In this situation, we have the integration on AmðU;U0Þ defined by
ð
M

s ¼

ð
R1

s1 þ

ð
R01

s01;ð1:2Þ

where R01 ¼ R0 VR1 ¼ �qR1 (qR1 with opposite orientation). This induces the

integration
ð
M

: HmðA�ðU;U0ÞÞ ! C :

The cup product in A�ðUÞ induces a pairing AqðU;U0Þ � Am�qðU1Þ ! AmðU;U0Þ

given by ðð0; s1; s01Þ; t1Þ 7! ð0; s15t1; s015t1Þ. This, followed by the integra-

tion, gives a pairing

AqðU;U0Þ � Am�qðU1Þ ! C :

If we further assume that U1 is a regular neighborhood of S, this induces the

Alexander duality

A : H qðM;MnS;CÞFH qðA�ðU;U0ÞÞ !
@

Hm�qðU1;CÞ4FHm�qðS;CÞ:
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If M is compact, the following diagram is commutative:

H qðM;MnS;CÞ ���!j
�

H qðM;CÞ

o

???yA o

???yP

Hm�qðS;CÞ ���!i� Hm�qðM;CÞ;

ð1:3Þ

where i and j denote, respectively, the inclusions S ,! M and ðM;qÞ ,!
ðM;MnSÞ.

(B) Representatives of Chern classes.

Let M be a Cy manifold of dimension m, as above, and let E be a Cy

complex vector bundle of (complex) rank r on M. For a connection ‘ for

E and for i ¼ 1; . . . ; r, we denote by c ið‘Þ the i-th Chern form defined by ‘.

Recall that it is defined by c ið‘Þ ¼ ð
ffiffiffiffiffiffiffi
�1

p
=ð2pÞÞ isiðkÞ, where siðkÞ denotes the i-th

symmetric form of the curvature matrix k of ‘ and is a closed 2i-form on M.

Its class ½c ið‘Þ� in H 2iðM;CÞ is the i-th Chern class c iðEÞ of E.

If we have pþ 1 connections ‘0; . . . ;‘p for E there is a ð2i � pÞ-form
c ið‘0; . . . ;‘pÞ alternating in the pþ 1 entries and satisfying

Xp

n¼0

ð�1Þnc ið‘0; . . . ; b‘n‘n; . . . ;‘pÞ þ ð�1Þp dc ið‘0; . . . ;‘pÞ ¼ 0;ð1:4Þ

cf. [Bo]. Here we use a di¤erent sign convention, see [Su1, Chapter II, (7.10)].

Let U ¼ fUaga be an open covering of M. For each a, we choose a con-

nection ‘a for E on Ua, and for the collection ‘? ¼ ð‘aÞa, we define the element

c ið‘?Þ in A2iðUÞ by

c ið‘?Þa0���ap ¼ c ið‘a0 ; . . . ;‘apÞ:

Then we have Dc ið‘?Þ ¼ 0 by (1.4). Moreover, it is shown that the class of

c ið‘?Þ in H 2iðA�ðUÞÞ does not depend on the choice of the collection of con-

nections ‘?. The class ½c ið‘?Þ� corresponds to c iðEÞ in H 2iðM;CÞ under the

isomorphism (1.1).

2. Localization of Chern classes.

Let E be a Cy complex vector bundle of rank r over an oriented Cy

manifold M of dimension m as in the previous section. Let s ¼ ðs1; . . . ; slÞ,
1a la r, be a Cy

l-frame of E on some open set U , namely, a set of l Cy

sections of E linearly independent at each point of U . In the sequel, an r-frame

is simply called a frame. We say that a connection ‘ for E is trivial with respect
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to s (simply, s-trivial), if ‘ðsiÞ ¼ 0 for i ¼ 1; . . . ; l. Note that if ‘0; . . . ;‘p are

s-trivial connections, we have the vanishing (see, for example, [Su1, Chapter II,

Proposition 9.1])

c ið‘0; . . . ;‘pÞ ¼ 0 for ib r� lþ 1:ð2:1Þ

Let S be a closed set in M and suppose we have a Cy
l-frame s of E on

MnS. Then, from the above fact, we will see that there is a ‘‘localization’’

c iðE; sÞ in H 2iðM;MnS;CÞ of the Chern class c iðEÞ in H 2iðM;CÞ, for ib

r� lþ 1.

Letting U0 ¼ MnS and U1 a neighborhood of S, we consider the covering

U ¼ fU0;U1g of M. Recall the Chern class c iðEÞ is represented by the cocycle

c ið‘?Þ in A2iðUÞ given by

c ið‘?Þ ¼ ðc ið‘0Þ; c
ið‘1Þ; c

ið‘0;‘1ÞÞ;ð2:2Þ

where ‘0 and ‘1 denote connections for E on U0 and U1, respectively. If

we take as ‘0 an s-trivial connection, then c ið‘0Þ ¼ 0 and the cocycle is in

A2iðU;U0Þ. Thus it defines a class in the relative cohomology H 2iðM;MnS;CÞ,

which we denote by c iðE; sÞ. It is sent to the class c iðEÞ by the canonical

homomorphism j � : H 2iðM;MnS;CÞ ! H 2iðM;CÞ. It does not depend on the

choice of the connection ‘1 or on the choice of the s-trivial connection ‘0 [Su1,

Chapter III, Lemma 3.1]. We call c iðE; sÞ the localization of c iðEÞ at S with

respect to s.

Suppose now that S is a compact set admitting a regular neighborhood

and let ðSlÞl be the connected components of S. Then we have the Alexander

duality

A : H 2iðM;MnS;CÞ !
@

Hm�2iðS;CÞ ¼ 0
l

Hm�2iðSl;CÞ:

Thus, for each l, c iðE; sÞ defines a class in Hm�2iðSl;CÞ, which we call the

residue of s at Sl with respect to c i and denote by Resc iðs;E;SlÞ. It is also

called a residue of c iðEÞ for brevity.

For each l, we choose a neighborhood Ul of Sl in U1, so that the Ul’s are

mutually disjoint, and let Rl be an m-dimensional manifold with Cy boundary

in Ul containing Sl in its interior. We set R0l ¼ �qRl. Then the residue

Resc iðs;E;SlÞ is represented by an ðm� 2iÞ-cycle C in Sl such that

ð
C

t1 ¼

ð
Rl

c ið‘1Þ5tþ

ð
R0l

c ið‘0;‘1Þ5tð2:3Þ

for every closed ðm� 2iÞ-form t on Ul. If 2i ¼ m, the residue is a number given

by
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Resc iðs;E;SlÞ ¼

ð
Rl

c ið‘1Þ þ

ð
R0l

c ið‘0;‘1Þ:ð2:4Þ

From the commutativity of (1.3), we have the ‘‘residue formula’’:

Proposition 2.5. If M is compact, for i ¼ r� lþ 1; . . . ; r, we have

X
l

ðilÞ� Resc iðs;E;SlÞ ¼ c iðEÞ _ ½M� in Hm�2iðM;CÞ;

where il denotes the inclusion Sl ,! M and the sum is taken over the connected

components of S.

Remarks 2.6. 1. From the fact that c iðE; sÞ does not depend on ‘0, we

see that, for i ¼ r� lþ 2; . . . ; r, we have c iðE; sÞ ¼ c iðE; s 0Þ, where s 0 denotes

an ðr� i þ 1Þ-frame made of r� i þ 1 arbitrary members of s. Thus the case

i ¼ r� lþ 1 will be of essential interest.

2. It is rather a strong hypothesis to assume the existence of an l-frame

on MnS, unless m ¼ 2ðr� lþ 1Þ. It is more reasonable to assume, taking some

triangulation or cellular decomposition of M compatible with S, the existence of

an l-frame on the 2ðr� lþ 1Þ-skeleton of MnS, see [St]. We may still define a

canonical localization c iðE; sÞ in H 2iðM;MnS;CÞ and the residue Resc iðs;E;SlÞ

in Hm�2iðSl;CÞ, for i ¼ r� lþ 1, by modifying the above arguments, see [BLSS]

and [L3].

3. We may also define the localization c iðE; sÞ via obstruction theory. In

this case, c iðE; sÞ is in the integral cohomology H 2iðM;MnS;ZÞ, which shows

that the above residue Resc iðs;E;SlÞ is in fact in the integral homology (and is

an integer, if 2i ¼ m).

3. Chern classes on singular varieties.

We refer to [Su1, Chapter IV, 2, Chapter VI, 4] for details of the material

in this section.

Let V be an analytic variety of pure dimension n in a complex manifold

W of dimension nþ k. We denote by SingðVÞ the singular set of V and set

V 0 ¼ VnSingðVÞ. First, suppose V is compact and let ~UU be a regular neigh-

borhood of V in W . Let U ¼ f ~UUaga be an open covering of ~UU . Taking a

system f ~RRaga of honey-comb cells adapted to U such that V is transverse to each
~RRa0���ap ¼ ~RRa0 V � � �V ~RRap , we may define the integration

ð
V

: H 2nðA�ðUÞÞ ! C :

We have H 2nðA�ðUÞÞFH 2nð ~UU ;CÞ and the above integration is compatible with
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the integration
Ð

V
: H 2nð ~UU ;CÞ ! C induced from the integration of 2n-forms on

~UU over the 2n-cycle V .

Also the bilinear pairing defined as the composition of the cup product in

A�ðUÞ and the integration over V induces the ‘‘Poincaré homomorphism’’

P : H qðV ;CÞFH qðA�ðUÞÞ ! H 2n�qðA�ðUÞÞ4FH2n�qðV ;CÞ;

which is not an isomorphism in general. Note that in [Br] the above homo-

morphism P, as well as the Alexander homomorphism defined below, is defined

by a combinatorial method in homology and cohomology with integral coe‰-

cients. The homomorphism P is given by the cap product with the fundamental

class ½V �.

Now suppose V may not be compact. Let S be a compact set in V

admitting a regular neighborhood in W such that there is an open set U in V

with SHU and UnSHV 0. Let ~UU1 be a regular neighborhood of S in W with
~UU1 VV HU and ~UU0 a tubular neighborhood of UnS in W with Cy projection

r : ~UU0 ! UnS. We consider the covering U ¼ f ~UU0;
~UU1g of ~UU ¼ ~UU0 U

~UU1, which

may be assumed to be a regular neighborhood of U . We also define the sub-

complex A�ðU; ~UU0Þ of A�ðUÞ as in Section 1 (A). Then we see that

H qðA�ðU; ~UU0ÞÞFH qðU ;UnS;CÞ:

Let ~RR1 be a compact real 2ðnþ kÞ dimensional manifold with Cy boundary

in ~UU1 such that S is in its interior and that q ~RR1 is transverse to U . We set

R1 ¼ ~RR1 VU and R01 ¼ �qR1. Then we have the integration on A2nðU; ~UU0Þ

given as (1.2), with M replaced by U , for s ¼ ð0; s1; s01Þ in A2nðU; ~UU0Þ. This

again induces the integration on the cohomology
ð

U

: H 2nðA�ðU; ~UU0ÞÞ ! C :

As in Section 1 (A), we have a bilinear pairing AqðU; ~UU0Þ � A2n�qð ~UU1Þ ! C ,

which induces the ‘‘Alexander homomorphism’’

A : H qðU ;UnS;CÞFH qðA�ðU; ~UU0ÞÞ ! H 2n�qð ~UU1;CÞ4FH2n�qðS;CÞ:

Note that the above is not an isomorphism in general.

Suppose V is compact and let S be a compact set in V which admits a

regular neighborhood in W and contains SingðVÞ. Then the following diagram

is commutative [Su1, Chapter VI, Proposition 4.4]:

H qðV ;VnS;CÞ ���!
j �

H qðV ;CÞ
?
?
?
y
A

?
?
?
y
P

H2n�qðS;CÞ ���!
i�

H2n�qðV ;CÞ;

ð3:1Þ
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where i and j denote, respectively, the inclusions S ,! V and ðV ;qÞ ,!

ðV ;VnSÞ.

Remark 3.2. In the above, the assumption that UnS is in the regular part

V 0 ¼ VnSingðVÞ is not necessary. However, with this condition, to define a

cochain s ¼ ðs0; s1; s01Þ in AqðUÞ, we only need to define s0 on UnS, since there

is a Cy retraction r : ~UU0 ! UnS.

Again, let V be a variety of dimension n in a complex manifold W . First

suppose V is compact and let ~UU and U be as above. For a complex vector

bundle E over ~UU , we have the i-th Chern class c iðEÞ in H 2iðA�ðUÞÞFH 2iðV ;CÞ.

The corresponding class in H 2iðV ;CÞ is denoted by c iðEjV Þ. We also have the

class Pðc iðEÞÞ ¼ c iðEÞ _ ½V � in H2n�2iðV ;CÞ.

Next, let S be a compact set in V (V may not be compact) admitting a

regular neighborhood in W such that there is an open set U in V with SHU

and UnSHV 0. Let ~UU1;
~UU0, U ¼ f ~UU0;

~UU1g and ~UU ¼ ~UU0 U ~UU1 be as above. For

a complex vector bundle E over ~UU , the Chern class c iðEÞ is represented by the

cocycle c ið‘?Þ in A2iðUÞ given as (2.2) with ‘0 and ‘1 connections for E on ~UU0

and ~UU1, respectively. Note that it is su‰cient if ‘0 is defined only on U0 ¼ UnS

(see Remark 3.2). Suppose that we have a Cy
l-frame s ¼ ðs1; . . . ; slÞ on U0

and let ‘0 be s-trivial. Then we have the vanishing c ið‘0Þ ¼ 0, for ib r� lþ 1,

and the above cocycle c ið‘?Þ is in A2iðU; ~UU0Þ. Thus it defines a class c iðEjV ; sÞ

in H 2iðU ;UnS;CÞ. It does not depend on the choices of various connections.

We have the Alexander homomorphism

A : H 2iðU ;UnS;CÞ ! H2n�2iðS;CÞ ¼ 0
l

H2n�2iðSl;CÞ;

where ðSlÞl are the connected components of S. Thus, for each l, c iðEjV ; sÞ

defines a class in H2n�2iðSl;CÞ, which we call the residue of s at Sl with respect

to c i and denote by Resc iðs;EjV ;SlÞ. It is also called a residue of c iðEjV Þ.

For each l, we choose a neighborhood ~UUl of Sl in ~UU1, so that the ~UUl’s

are mutually disjoint. Let ~RRl be a real 2ðnþ kÞ-dimensional manifold with Cy

boundary in ~UUl containing Sl in its interior such that the boundary q ~RRl is

transverse to V . We set R0l ¼ �q ~RRl VV . Then the residue Resc iðs;EjV ;SlÞ is

represented by a 2ðn� iÞ-cycle C in Sl satisfying an identity similar to (2.3) with

t an arbitrary closed 2ðn� iÞ-form on ~UUl. In particular, if i ¼ n, the residue

is a number given by a formula as (2.4). From the commutativity of (3.1), we

have the residue formula:

Proposition 3.3. Let V be a compact variety of dimension n in a complex

manifold W and E a complex vector bundle over a neighborhood of V in W. Let

ðSlÞl be a finite number of compact connected sets in V such that each Sl admits a
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regular neighborhood disjoint one another and that 6
l
Sl contains SingðVÞ. Then,

for an l-frame s of E on Vn6
l
Sl and for ib r� lþ 1,

X

l

ðilÞ� Resc iðs;EjV ;SlÞ ¼ c iðEÞ _ ½V � in H2n�2iðV ;CÞ:

Note that the residues Resc iðs;EjV ;SlÞ are in fact in the integral homology

and the above formula holds in the integral homology (cf. Remark 2.6.3).

4. Some local analytic geometry and others.

(A) Lemmas.

We denote by Onþk the ring of germs of holomorphic functions at the origin

0 in C
nþk and, for germs a1; . . . ; ar in Onþk, we denote by Vða1; . . . ; arÞ the germ

of variety defined by a1; . . . ; ar. The following is proved similarly as [LS, Lemma

3] and [Su1, Chapter IV, Lemma 4.4]. Here we give a more detailed proof for

later use.

Lemma 4.1. Let V be a germ of variety of dimension n at 0 in C
nþk and let

g1; . . . ; gN be germs in the ring Onþk. Suppose Vðg1; . . . ; gNÞVV ¼ f0g. Then

there exists an N � n matrix C ¼ ðcijÞ of complex numbers such that, for germs

fj ¼
PN

i¼1 cijgi, j ¼ 1; . . . ; n, we have Vð f1; . . . ; fnÞVV ¼ f0g.

Proof. Since dimV ¼ n, it su‰ces to show the following for l ¼ 1; . . . ; n:

(*) If there exists an N � ðl� 1Þ matrix ðcijÞ such that dimVð f1; . . . ; fl�1ÞVV ¼

n� lþ 1, for fj ¼
PN

i¼1 cijgi, j ¼ 1; . . . ; l� 1, then there exist complex num-

bers cil, i ¼ 1; . . . ;N, such that dimVð f1; . . . ; flÞVV ¼ n� l, for fl ¼PN
i¼1 cilgi.

In the above, when l ¼ 1, Vð f1; . . . ; fl�1Þ is understood to be (the germ at

0 of ) C
nþk. To show (*), let Vð f1; . . . ; fl�1ÞVV ¼6

q
Vq be the irreducible

decomposition. Since Vðg1; . . . ; gNÞVV ¼ f0g, for each q, there exist a point

xq in Vq and gi with giðxqÞ0 0. Let Hq denote the hyperplane in C
N ¼

fðx1; . . . ; xNÞg defined by
PN

i¼1 giðxqÞxi ¼ 0. Let ðc1l; . . . ; cNlÞ be a point in

C
Nn6

q
Hq and set fl ¼

PN
i¼1 cilgi. Then, Vi QVð flÞ, for each i. We have

Vð f1; . . . ; flÞVV ¼6
q

ðVq VVð flÞÞ:

Since each Vq is irreducible and VqQVð flÞ, dimVq VVð flÞ ¼ dimVq � 1. There-

fore, we have (*) and the lemma. r

Note that the above holds when k ¼ 0, in which case V is the germ of the

total space C
n.
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Let r and l be integers with 1a la r and denote by MðrÞ the space of r� r

matrices with the standard topology homeomorphic with C
r2 . Let I be the

set of l-tuples of integers ði1; . . . ; ilÞ with 1a i1 < � � � < ila r. Let N ¼
r

l

� �

.

Thus I contains N elements. We endow I with the lexicographic order. For a

matrix A in MðrÞ, its l-th exterior power LlA is an N �N matrix whose entries

are given by detAIJ , the l� l minor of A consisting of the rows corresponding

to I ¼ ði1; . . . ; ilÞ and of the columns corresponding to J ¼ ð j1; . . . ; jlÞ.

Lemma 4.2. For a matrix A and a neighborhood of A, there exists a matrix

A 0 in the neighborhood such that the matrix C consisting of the first n columns of

LlA 0 satisfies the condition of Lemma 4.1.

Proof. Recall that, for each j ¼ 1; . . . ; n, ðc1j; . . . ; cNjÞ is determined so

that it avoids a finite number of hyperplanes in C
N . Suppose the j-th column

ðdetAIJÞI satisfies the equation
PN

i¼1 aixi ¼ 0 for one of the hyperplanes, with

J ¼ ð j1; . . . ; jlÞ the index corresponding to j. Suppose ai0 0 0 and let I0 be the

index corresponding to i0. If detAI0J ¼ 0, then there is a matrix A 0 in the given

neighborhood of A such that detA 0
I0J

0 0. We may choose A 0 so that if some

column of LlA does not satisfy a linear equation, the corresponding column of

LlA 0 does not satisfy the equation either. So we may assume that detAI0J 0 0

from the beginning. We may write

ai0 � detAI0J ¼
X

i

detBi; Bi ¼

aij1 � � � aijl
� � � � �

.

.

.
.
.

.
.
.

.

� � � � �

0

B

B

B

@

1

C

C

C

A

;

where the sum is taken over i which is not in I0. In the above, we arrange the

Bi’s so that, if i < i 0, aij1 ; . . . ; aijl do not appear in Bi 0 . Let i be the smallest i

such that detBi 0 0. By changing aij1 ; . . . ; aijl a little, we see that there is a

matrix A 0 in the given neighborhood of A such that the above equation does not

hold for A 0. We may choose A 0 so that if some column of LlA does not satisfy

a linear equation, the corresponding column of LlA 0 does not satisfy the equation

either. Continuing this process, we prove the lemma. r

(B) Grothendieck residues relative to a subvariety.

Let U be a neighborhood of 0 in C
n and let f1; . . . ; fn be holomorphic

functions on U with Vð f1; . . . ; fnÞ ¼ f0g. Thus there exists a positive num-

ber d such that f �1ðDdÞ is a compact set in U , where f denotes the map

ð f1; . . . ; fnÞ : U ! C
n and Dd the closed polydisk of radius d. For a holo-

morphic n-from o on U , the usual Grothendieck residue is defined by
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Res0
o

f1; . . . ; fn

� �

¼ 1

2p
ffiffiffiffiffiffiffi

�1
p

� �nð

G

o

f1 � � � fn
;

where G denotes the n-cycle in U given by

G ¼ Ge ¼ fp A U j j fiðpÞj ¼ ei; i ¼ 1; . . . ; ng
for ei with 0 < ei < d. It is oriented so that d argð f1Þ5 � � �5d argð fnÞb 0 (e.g.,

[GH, Chapter 5]). Note that, for various e ¼ ðe1; . . . ; enÞ, the cycles Ge are

homologous to one another and the above integral is well-defined. Moreover,

for almost all e, Ge is a Cy manifold. In the sequel, we set e1 ¼ � � � ¼ en ¼ e for

simplicity.

Now let ~UU be a neighborhood of 0 in C
nþk and V a subvariety of dimen-

sion n in ~UU which contains 0 as at most an isolated singular point. Also, let

f1; . . . ; fn be holomorphic functions on ~UU with Vð f1; . . . ; fnÞVV ¼ f0g. For a

holomorphic n-from o on ~UU , the Grothendieck residue relative to V is defined by

Res0
o

f1; . . . ; fn

� �

V

¼ 1

2p
ffiffiffiffiffiffiffi

�1
p

� �nð

G

o

f1 � � � fn
;

where G is the n-cycle expressed as above with U ¼ ~UU VV ([LS], [Su1, Chapter

IV, 8]).

If V is a complete intersection defined by h1 ¼ � � � ¼ hk ¼ 0 in ~UU , by an

iterated use of the projection formula, we see that

Res0
o

f1; . . . ; fn

� �

V

¼ Res0
o5dh15 � � �5dhk

f1; . . . ; fn; h1; . . . ; hk

� �

:

(C) Determinants of matrices of forms.

Let W ¼ ðoijÞ be an r� r matrix with di¤erential forms oij in its entries.

We define the determinant of W, denoted by detðWÞ or jWj as usual, by

detW ¼
X

s ASr

sgn s � osð1Þ1 � � �osðrÞr;

where Sr denotes the symmetric group of degree r and the products of forms are

exterior products. Note that if the entries oij are forms of even degree, possibly

except for the ones in a single column, the products in the above are commutative

and we may treat detW in the same way as a usual matrix of numbers. Also, for

n ¼ 1; . . . ; r, we define snðWÞ to be the coe‰cient of tn in detðI þ tWÞ. Let A

denote the set of n-tuples of integers ða1; . . . ; anÞ with 1a a1 < � � � < ana r. For

an element A ¼ ða1; . . . ; anÞ in A, we denote by WA the n� n matrix whose ði; jÞ-
entry is the ðai; ajÞ-entry of W. Then we have

snðWÞ ¼
X

A AA

detWA:ð4:3Þ
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5. Residue at an isolated singularity.

(A) Residue on a manifold.

Let p0 be a point in a complex manifold M of dimension n and let E be

a holomorphic vector bundle of rank r over a neighborhood U of p0 in M,

with 1a na r. Let l ¼ r� nþ 1 and suppose we have l holomorphic sec-

tions s1; . . . ; sl of E on U which are linearly independent at each point of

U0 ¼ Unfp0g. Thus s ¼ ðs1; . . . ; slÞ is a holomorphic l-frame on U0 and, in this

situation, we have the residue Resc nðs;E; p0Þ in H0ðfp0g;CÞ ¼ C (in fact in Z,

cf. Remarks 2.6). In the following, we compute this residue.

We may assume that E is trivial over U and let e ¼ ðe1; . . . ; erÞ be a

holomorphic frame of E on U . We write si ¼
Pr

j¼1 fijej, i ¼ 1; . . . ; l, with fij
holomorphic functions on U . Let F be the l� r matrix whose ði; jÞ-entry is fij .

We set

I ¼ fði1; . . . ; ilÞ j 1a i1 < � � � < ila rg

as in Section 4 (A). For an element I ¼ ði1; . . . ; ilÞ in I, let FI denote the l� l

matrix consisting of the columns of F corresponding to I and set fI ¼ detFI . If

we write eI ¼ ei1 5 � � �5eil , we have

s15 � � �5sl ¼
X

I AI

fIeI :

Noting that the set of common zeros of the fI ’s consists only of p0, we have,

from Lemmas 4.1 and 4.2:

Lemma 5.1. We may choose a holomorphic frame e ¼ ðe1; . . . ; erÞ of E so

that there exist n elements I ð1Þ; . . . ; I ðnÞ in I with the property

f p A U j fI ð1ÞðpÞ ¼ � � � ¼ fI ðnÞðpÞ ¼ 0g ¼ fp0g:

Note that we may assume that I ð1Þ; . . . ; I ðnÞ are the first n elements in I

with the lexicographic order. Let e ¼ ðe1; . . . ; erÞ be a frame of E on U as in

Lemma 5.1. Let us write I ðaÞ ¼ ði
ðaÞ
1 ; . . . ; i

ðaÞ
l

Þ, a ¼ 1; . . . ; n, and let F ðaÞ be the

r� r matrix obtained by replacing the i
ðaÞ
j -th row of the r� r identity matrix by

the j-th row of F , j ¼ 1; . . . ; l. Note that detF ðaÞ ¼ fI ðaÞ . Let �FF ðaÞ denote the

adjoint matrix of F ðaÞ and set

YðaÞ ¼ �FF ðaÞ � dF ðaÞ
;

which is an r� r-matrix whose entries are holomorphic 1-forms.

Recall that (Section 4, (C)), for an n-tuple of integers A ¼ ða1; . . . ; anÞ with

1a a1 < � � � < ana r, we denote by Y
ðaÞ
A the n� n matrix whose ði; jÞ-entry is

the ðai; ajÞ-entry of YðaÞ. For a permutation r of degree n, we denote by YAðrÞ
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the n� n-matrix whose i-th column is that of Y
ðrðiÞÞ
A and, for the collection

Y ¼ fYðaÞga, we set

snðYÞ ¼
1

n!

X

A AA

X

r ASn

sgn r � detYAðrÞ:

Note that snðYÞ is a holomorphic n-form on U .

Theorem 5.2. In the above situation, we have

Resc nðs;E; p0Þ ¼ Resp0
snðYÞ

fI ð1Þ ; . . . ; fI ðnÞ

� �

:

Proof. This is done similarly as for [Su2, Theorem 3.1]. The main dif-

ferences are:

1) We cannot say that we have the vanishing as (3.5) in [Su2] simply

because of the triviality of the connections involved. We need to look at this

form a little more closely to have this.

2) The computation of the n-form finally to be integrated is much more

complicated.

On U0, we let ‘0 be an s-trivial connection for E and, on U1, we let ‘1 be

the connection for E trivial with respect to the frame e. Since cnð‘1Þ ¼ 0 and

R01 ¼ �qR1, from (2.4) we have

Resc nðs;E; pÞ ¼ �

ð

qR1

cnð‘0;‘1Þ:ð5:3Þ

We consider the covering U ¼ fU ðaÞgn
a¼1 of U0 defined by

U ðaÞ ¼ fp A U0 j fI ðaÞðpÞ0 0g;

and work on the Čech-de Rham cohomology with respect to U. On U ðaÞ, we

may replace, in the frame e, ðe
i
ðaÞ

1

; . . . ; e
i
ðaÞ

l

Þ by ðs1; . . . ; slÞ to obtain a frame e
ðaÞ

for E. We denote by ‘ðaÞ the connection for E on U ðaÞ trivial with respect to the

frame e
ðaÞ. Then the connection matrix yðaÞ of ‘ðaÞ with respect to the frame e

is given by

yðaÞ ¼ dF ðaÞ�1
� F ðaÞ ¼ �F ðaÞ�1

� dF ðaÞ ¼ �
1

fI ðaÞ
YðaÞ

:

Let U be the covering of U0 as above and define a cochain t in A2n�2ðUÞ by

ta1���aq ¼ cnð‘0;‘1;‘
ða1Þ

; . . . ;‘ðaqÞÞ;

which is a ð2n� q� 1Þ-form on U ða1���aqÞ ¼ U ða1Þ V � � �VU ðaqÞ. Since ‘0 and ‘ðaÞ

are all s-trivial, we have

cnð‘0;‘
ða1Þ

; . . . ;‘ðaqÞÞ ¼ 0ð5:4Þ

Residues of Chern classes 281



for qb 1. Now we compute Dt. First for q ¼ 1, we have, by (5.4),

ðDtÞa ¼ dcnð‘0;‘1;‘
ðaÞÞ ¼ �cnð‘1;‘

ðaÞÞ � cnð‘0;‘1Þ:

For q ¼ 2; . . . ; n, we compute using (5.4) as in [Su2], to get

ðDtÞa1���aq ¼ �cnð‘1;‘
ða1Þ; . . . ;‘ðaqÞÞ:

We set

R1 ¼ fp A U j j fI ð1ÞðpÞj
2 þ � � � þ j fI ðnÞðpÞj

2
a ne2g

for a small positive number e. Denoting by i the inclusion map qR1 ,! U0, we

let i�U be the covering of qR1 by the open sets qR1 VU ðaÞ. Then, as a system

fRðaÞgn
a¼1 of honey-comb cells adapted to i�U, we take

RðaÞ ¼ fp A qR1 j j fI ðaÞðpÞjb j fI ðbÞðpÞj for all bg

and, for a q-tuple ða1 � � � aqÞ with 1a a1 < � � � < aqa n, we set Rða1���aqÞ ¼

Rða1Þ V � � �VRðaqÞ, which is a ð2n� qÞ-dimensional manifold with boundary ori-

ented as an intersection of honey-comb cells. Considering the integration

ð

qR1

: A2n�1ði�UÞ ! C ;

from the identity
Ð

qR1
Dt ¼ 0, we get, as in [Su2],

Resc nðs;E; p0Þ ¼
X

n

q¼1

X

1aa1<���<aqan

ð

Rða1 ���aqÞ

cnð‘1;‘
ða1Þ; . . . ;‘ðaqÞÞ:

Now we compute the ð2n� qÞ-form cnð‘1;‘
ða1Þ; . . . ;‘ðaqÞÞ. For this, let ~‘‘

denote the connection for the bundle E � R
q over U ða1���aqÞ � R

q given by ~‘‘ ¼

ð1�
Pq

n¼1 tnÞ‘1 þ
Pq

n¼1 tn‘
ðanÞ. Then the connection matrix ~yy of ~‘‘ with respect

to the frame e is given by

~yy ¼ 1�
X

q

n¼1

tn

 !

y1 þ
X

q

n¼1

tny
ðanÞ;

where y1 is the connection matrix of ‘1 with respect to the frame e and is equal

to zero. The curvature matrix ~kk of ~‘‘ with respect to the frame e is then given

by

~kk ¼ d ~yy� ~yy5 ~yy ¼
X

q

n¼1

dtn5yðanÞ þ
X

q

n¼1

tn dy
ðanÞ �

X

q

n;m¼1

tntmy
ðanÞ5yðamÞ:ð5:5Þ

By definition,
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cnð‘1;‘
ða1Þ; . . . ;‘ðaqÞÞ ¼ p�c

nð~‘‘Þ ¼
ffiffiffiffiffiffiffi

�1
p

2p

 !n

p�snð~kkÞ;

where snð~kkÞ denotes the n-th symmetric form of ~kk and p� the integration along

the fibers of the projection p : U ða1���aqÞ � Dq ! U ða1���aqÞ with Dq the standard

q-simplex in R
q.

We claim that

cnð‘1;‘
ða1Þ; . . . ;‘ðaqÞÞ ¼ 0; if 1a qa n� 1:

In fact, when we compute p� det ~kkA (cf. (4.3)), only the term involving

dt15 � � �5dtq matters. Its coe‰cient is a holomorphic ð2n� qÞ-form on an open

set of M, which is zero if q < n.

Thus we have

Resc nðs;E; p0Þ ¼
ð

Rð1���nÞ
cnð‘1;‘

ð1Þ; . . . ;‘ðnÞÞ:

To compute cnð‘1;‘
ð1Þ; . . . ;‘ðnÞÞ, fix A and let r be a permution of degree

n. Then, by (5.5), the term in det ~kkA involving dt15 � � �5dtn is given by

ð�1Þnðn�1Þ=2X

r

sgn r � dt15 � � �5dtn5det yAðrÞ;

where yAðrÞ is defined similarly as for YAðrÞ. Therefore we obtain

cnð‘1;‘
ð1Þ; . . . ;‘ðnÞÞ ¼

X

A

X

r

sgn r � c � det yAðrÞ;

where

c ¼ ð�1Þnðn�1Þ=2
ffiffiffiffiffiffiffi

�1
p

2p

 !n
ð

Dn

dt1 � � � dtn ¼ ð�1Þnðn�1Þ=2
ffiffiffiffiffiffiffi

�1
p

2p

 !n
1

n!
:

Noting that det yAðrÞ ¼ ð�1Þnð1=ð fI ð1Þ � � � fI ðnÞÞÞ detYAðrÞ and that the n-cycle G

appearing in the Grothendieck residue with respect to fI ð1Þ ; . . . ; fI ðnÞ is given by

G ¼ ð�1Þnðn�1Þ=2
Rð1���nÞ, we obtain the formula. r

(B) Residue on a singular variety.

Let V be a subvariety of dimension n in a complex manifold W of dimen-

sion nþ k, as before. Let p0 be an isolated singular point in V and let E be a

holomorphic vector bundle of rank r, 1a na r, over a neighborhood ~UU of p0
in W . Let l ¼ r� nþ 1 and suppose we have l holomorphic sections s1; . . . ; sl
of E on ~UU such that

fp A ~UU j s15 � � �5slðpÞ ¼ 0gVV ¼ fp0g:
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Thus s ¼ ðs1; . . . ; slÞ is an l-frame of E on U0 ¼ Unfp0g, U ¼ ~UU VV , and we

have the residue Resc nðs;EjV ; p0Þ in H0ðfp0g;CÞ ¼ C (in fact in Z, cf. Remarks

2.6). In the following, we compute this residue. We may assume that E is

trivial on ~UU and let e ¼ ðe1; . . . ; erÞ be a holomorphic frame of E on ~UU . We

write si ¼
Pr

j¼1 fijej, i ¼ 1; . . . ; l, with fij holomorphic functions on ~UU . If we

let F and c be as in (A), we have

s15 � � �5sl ¼
X

I AI

fIeI :

From Lemmas 4.1 and 4.2, we have:

Lemma 5.6. We may choose a holomorphic frame e ¼ ðe1; . . . ; erÞ of E so

that there exist n elements I ð1Þ; . . . ; I ðnÞ in I with the property

fp A ~UU j fI ð1ÞðpÞ ¼ � � � ¼ fI ðnÞðpÞ ¼ 0gVV ¼ fp0g:

Note that we may assume that I ð1Þ; . . . ; I ðnÞ are the first n elements in I with

the lexicographic order. Once we choose a frame e ¼ ðe1; . . . ; erÞ of E on ~UU as

in Lemma 5.6, the rest goes exactly the same way as in (A). The only di¤erence

is that, in (A), U is a neighborhood of p0 in a manifold M, while in this sub-

section, it is a neighborhood of p0 in a possibly singular variety V . In both

cases, U0 ¼ Unfp0g is non-singular, where everything is performed. Thus by

similar notation as in (A), we have:

Theorem 5.7. In the above situation,

Resc nðs;EjV ; p0Þ ¼ Resp0
snðYÞ

fI ð1Þ ; . . . ; fI ðnÞ

� �

V

:

6. Special cases.

We consider the situations of Section 5. Thus p0 will be either

(I) a point in a complex manifold M of dimension n, or

(II) an isolated singular point of a subvariety V of dimension n in a

complex manifold.

Let U be a neighborhood of p0 in M or in V as in Section 5. In what

follows, in the case (II), we denote Rescnðs;EjV ; p0Þ simply by Rescnðs;E; p0Þ and

omit the su‰x V in the residue symbol so that the residues are expressed in the

same way in the both cases.

(1) The case l ¼ 1 and r ¼ n, with n arbitrary.

Let e ¼ ðe1; . . . ; enÞ be an arbitrary frame of E in a neighborhood of p0 and

write s1 ¼
Pn

i¼1 fiei. Then we have

Rescnðs;E; p0Þ ¼ Resp0
df15 � � �5dfn

f1; . . . ; fn

� �

:
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In fact, in Theorem 5.2 or 5.7, we have fI ðiÞ ¼ fi, i ¼ 1; . . . ; n, and we readily

see that snðYÞ ¼ df15 � � �5dfn (see also [Su2, Theorem 3.1]).

(2) The case n ¼ 1 and l ¼ r, with r arbitrary.

Let e ¼ ðe1; . . . ; erÞ be an arbitrary frame of E in a neighborhood of p0
and write si ¼

Pr
j¼1 fijej, i ¼ 1; . . . ; r. Let F ¼ ð fijÞ and set f ¼ detF . Then

we have

Resc1ðs;E; p0Þ ¼ Resp0
df

f

� �
:

In fact, in Theorem 5.2 or 5.7, we have fI ð1Þ ¼ f and we easily see that

snðYÞ ¼ df .

Note that Resc1ðs;E; p0Þ coincides with the residue Resc1ðs; detE; p0Þ of the

section s ¼ s15 � � �5sr of the line bundle detE ¼ L rE at p0.

(3) The case l ¼ 2 and r ¼ nþ 1 with n arbitrary.

Let s ¼ ðs1; s2Þ be a 2-frame on U0 ¼ Unfp0g and e ¼ ðe1; . . . ; enþ1Þ a frame

on U or ~UU satisfying the condition of Lemma 5.1 or Lemma 5.6, respectively.

We write si ¼
Pnþ1

j¼1 fijej, i ¼ 1; 2, as in Section 5. We may suppose that I ðaÞ ¼

ð1; aþ 1Þ, a ¼ 1; . . . ; n, so that

fI ðaÞ ¼
f11 f1;aþ1

f21 f2;aþ1

����
����

and that

fp j fI ð1ÞðpÞ ¼ � � � ¼ fI ðnÞðpÞ ¼ 0g ¼ fp0g;

in the case (I) or

fp j fI ð1ÞðpÞ ¼ � � � ¼ fI ðnÞðpÞ ¼ 0gVV ¼ fp0g;

in the case (II). In the sequel, we introduce the following notation:

jij ¼
f1i f1j

f2i f2j

����
����; yij ¼

f1i df1j

f2i df2j

����
����:

Thus fI ðaÞ ¼ j1;aþ1. With these notation, we claim that

Resc nðs;E; p0Þ ¼ Resp0
snðYÞ

fI ð1Þ ; . . . ; fI ðnÞ

� �

with

snðYÞ ¼
1

n

 
Xnþ1

i¼2

y125 � � �5y1; i�15dfI ði�1Þ 5y1; iþ15 � � �5y1;nþ1

þ
X

2ai<janþ1

ð�1Þ iþj
y115djij5y125 � � �5cy1iy1i5 � � �5cy1jy1j5 � � �5y1;nþ1

!
:
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To show this, we compute and see that the rows of the matrix YðaÞ are

zero except for the first and the ðaþ 1Þ-st, where we have �ðyaþ1;1; . . . ; yaþ1;nþ1Þ

and ðy11; . . . ; y1;nþ1Þ, respectively. For i ¼ 1; . . . ; nþ 1, let Ai denote the n-tuple

obtained from ð1; . . . ; nþ 1Þ by removing i. Then we have

snðYÞ ¼
1

n!

Xnþ1

i¼1

X

r ASn

sgn r � detYAi
ðrÞ:

Denoting by ðY
ðaÞ
Ai

Þab the ða; bÞ entry of the matrix Y
ðaÞ
Ai

, we compute

X

r ASn

sgn r � detYAi
ðrÞ ¼

X

s;r ASn

sgn s � sgn r � ðY
ð1Þ
Ai

Þsð1Þrð1Þ � � � ðY
ðnÞ
Ai

ÞsðnÞrðnÞ:ð6:1Þ

First we compute the right hand side of (6.1) for i ¼ 1. The rows of Y
ðaÞ
A1

are

zero except for the a-th, where we have ðy12; . . . ; y1;nþ1Þ. Hence we have

X

r ASn

sgn r � detYA1
ðrÞ ¼ n! � y125 � � �5y1;nþ1:ð6:2Þ

Next we compute the right hand side of (6.1) for i ¼ 2; . . . ; nþ 1. For

a ¼ 1; . . . ; i � 2, the rows of Y
ðaÞ
Ai

are zero except for the first and the ðaþ 1Þ-st,

where we have �ðyaþ1;1; . . . ;
dyaþ1; iyaþ1; i; . . . ; yaþ1;nþ1Þ and ðy11; . . . ;cy1iy1i; . . . ; y1;nþ1Þ,

respectively. Here ‘‘^’’ means that the symbol under it is to be removed. The

rows of the matrix Y
ði�1Þ
Ai

are zero except for the first, where we have

�ðyi1; . . . ; byiiyii; . . . ; yi;nþ1Þ. For a ¼ i; . . . ; n, the rows of Y
ðaÞ
Ai

are zero except

for the first and the a-th, where we have �ðyaþ1;1; . . . ;
dyaþ1; iyaþ1; i; . . . ; yaþ1;nþ1Þ and

ðy11; . . . ;cy1iy1i; . . . ; y1;nþ1Þ, respectively. Thus the terms in (6.1) are zero except

for s ¼ ð1; . . . ; i � 1Þ, the cyclic permutation of order i � 1, whose signature is

ð�1Þ i. Then we compute and see that, for i ¼ 2; . . . ; nþ 1,

X

r ASn

sgn r � detYAi
ðrÞ ¼ ð�1Þ i�1ðn� 1Þ!

�

 Xi�1

j¼1

y115 � � �5y1; j�15yij5y1; jþ15 � � �5cy1iy1i5 � � �5y1;nþ1

þ
Xnþ1

j¼iþ1

y115 � � �5cy1iy1i5 � � �5y1; j�15yij5y1; jþ15 � � �5y1;nþ1

!
:

Finally, using (6.2) and the above, we get the formula.

The formula in (2) or (3) can be used to compute the multiplicity of a

holomorphic function on a possibly singular curve of arbitrary codimension or

on a possibly singular hypersurface of arbitrary dimension, respectively, see [IS].
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Example 6.3. In the situation of (3), let n ¼ 2 and suppose that p0 is a

non-singular point. Let ðz1; z2Þ be a coordinate system around p0. If s1 ¼

z1e1 � z2e3 and s2 ¼ z2e1 þ z1e2, we have

Resc2ðs;E; p0Þ ¼ Resp0
3z1z2 dz15dz2

z21 ; z
2
2

� �

¼ Resp0
3 dz15dz2

z1; z2

� �

¼ 3:
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