# Minimal Lagrangian submanifolds in adjoint orbits and upper bounds on the first eigenvalue of the Laplacian 

By Hajime Ono<br>(Received Apr. 13, 2001)<br>(Revised Oct. 5, 2001)


#### Abstract

Let $G$ be a compact semisimple Lie group, $\mathfrak{g}$ its Lie algebra, (,) an $\operatorname{Ad}_{G}$-invariant inner product on $\mathfrak{g}$, and $M$ an adjoint orbit in $\mathfrak{g}$. In this article, if $\left(M,(,)_{\mid M}\right)$ is Kähler with respect to its canonical complex structure, then we give, for a closed minimal Lagrangian submanifold $L \subset M$, upper bounds on the first positive eigenvalue $\lambda_{1}(L)$ of the Laplacian $\Delta_{L}$, which acts on $C^{\infty}(L)$, and lower bounds on the volume of $L$. In particular, when $\left(M,(,)_{\mid M}\right)$ is Kähler-Einstein, $(\rho=c \omega$, where $\rho$ and $\omega$ are Ricci form and Kähler form of $\left(M,(,)_{\mid M}\right)$ with respect to the canonical complex structure respectively, and $c$ is a positive constant,) we prove $\lambda_{1}(L) \leq c$. Combining with a result of $\mathrm{Oh}[5]$, we can see that $L$ is Hamiltonian stable if and only if $\lambda_{1}(L)=c$.


## 1. Introduction.

Let $\boldsymbol{C P} \boldsymbol{P}^{n}$ be the $n$-dimensional complex projective space and $g$ be the FubiniStudy metric of $\boldsymbol{C} \boldsymbol{P}^{n}$ with its holomorphic sectional curvature 1. In [6], A. Ros gave upper bound of the first positive eigenvalue of the Laplacian and lower bound of the volume of closed CR-minimal submanifolds of $\boldsymbol{C P}{ }^{n}$. The technique used in that paper is as follows; let $H M(n+1)=\{A \in \mathfrak{g l}(n+1 ; \boldsymbol{C}) \mid \bar{A}=$ $\left.{ }^{t} A\right\}$ and define an inner product $($,$) on H M(n+1)$ as $(A, B)=2 \operatorname{trace}(A B)$. Then $\left(\boldsymbol{C P}^{n}, g\right)$ is isometrically embedded in $(H M(n+1),()$,$) , and using esti-$ mates for the total mean curvature of a closed Riemannian manifold isometrically embedded in a Euclidean space, proved by B.-Y. Chen in [2], [3], the desired bounds were obtained. In this article, we will apply this technique to closed minimal Lagrangian submanifolds in adjoint orbits.

Let $G$ be a compact semisimple Lie group, $\mathfrak{g}$ its Lie algebra, (,) an $\operatorname{Ad}_{G^{-}}$ invariant inner product on $\mathfrak{g}$, and $M$ an adjoint orbit in $\mathfrak{g}$. Suppose that the Lie group $G$ acts on $M$ effectively. (In this paper, when we say "adjoint orbit", we suppose that it satisfies this condition.) Then $M$ has canonical complex structure $J$, and canonical symplectic form $F$, which is Kähler with respect to $J$, see [1] or section 3 below. We regard that $M$ is isometrically embedded in $(\mathfrak{g},()$,$) . The$

[^0]2-form associated with $(,)_{\mid M}$ and $J$, which is defined by $\omega(X, Y):=(J X, Y)_{\mid M}$, is not always Kähler. But, when this associated 2 -form is equal to $\alpha$ times the canonical symplectic form for a positive constant $\alpha$, we get the following bounds.

Theorem 1.1. Let $G$ be a compact semisimple Lie group, $\mathfrak{g}$ its Lie algebra, $($,$) an \operatorname{Ad}_{G}$-invariant inner product on $\mathfrak{g}$, and $M^{2 m}$ an adjoint orbit in $\mathfrak{g}$ with the associated 2-form being equal to $\alpha$ times the canonical symplectic form for a positive constant $\alpha$, i.e. $\omega(X, Y):=(J X, Y)_{\mid M}=\alpha F(X, Y)$. If $L \subset M$ is a closed minimal Lagrangian submanifold, then

$$
\operatorname{Vol}(L) \geq\left(\frac{2 m^{2}}{s}\right)^{m / 2} c_{m}
$$

where $s$ is the scalar curvature of $(,)_{\mid M}$ and $c_{m}$ is the volume of unit m-sphere.
Moreover, if $(,)_{\mid M}$ is Kähler-Einstein with respect to the canonical complex structure J, and its Ricci form equals to co for a positive constant c, we have

$$
\operatorname{Vol}(L) \geq\left(\frac{m}{c}\right)^{m / 2} c_{m}
$$

Theorem 1.2. Suppose that the situation is the same as Theorem 1.1. Then

$$
\lambda_{1}(L) \leq \frac{s}{2 m},
$$

where $\lambda_{1}(L)$ is the first positive eigenvalue of the Laplacian $\Delta_{L}$, which acts on $C^{\infty}(L)$. Let $l: L \rightarrow \mathfrak{g}$ denote the embedding. Then the equality holds if and only if there is a constant vector $d$ in $\mathfrak{g}$ such that, $l-d$ is an embedding of order 1 , namely, for a fixed basis of $\mathfrak{g}$, all of its coordinate functions $l^{j}-d^{j}$ are $\lambda_{1}(L)$ eigenfunctions. (This property is independent of the choice of the basis.) Also the dimension of the space of $\lambda_{1}(L)$-eigenfunctions is greater than $m$.

Moreover, if $(,)_{\mid M}$ is Kähler-Einstein with respect to the canonical complex structure J, and its Ricci form equals to co for a positive constant c, we have

$$
\lambda_{1}(L) \leq c
$$

and the constant $d \in \mathfrak{g}$ above is equal to 0 .
For minimal Lagrangian submanifolds in a Kähler manifold $(X, \omega)$, Y.-G. Oh defined a Hamiltonian stability in [5] as follows. Let $l: L \hookrightarrow X$ be a Lagrangian embedding and $V$ be a normal variation vector along $L$. Since $L$ is totally real and $2 \operatorname{dim} L=\operatorname{dim} M$, we can regard $\left.l^{*}(V\rfloor \omega\right)$ as a 1 -form on $L$. When the 1 -form $\left.l^{*}(V\rfloor \omega\right)$ is exact, $V$ is called a Hamiltonian variation vector. A smooth family $\left\{l_{t}\right\}$ of embeddings of $L$ into $X$ is called a Hamiltonian deformation, if its derivative is Hamiltonian. Note that Hamiltonian deformations leave Lagrangian submanifolds Lagrangian. We say that a minimal

Lagrangian submanifold is Hamiltonian stable, if, for any Hamiltonian variation $V$, the second variation along $V$ of the volume functional is non-negative. When $(X, \omega)$ is Kähler-Einstein with a positive scalar curvature and its Ricci form satisfies $\rho=c \omega$, Oh [5] proved that a compact minimal Lagrangian submanifold $L$ is Hamiltonian stable if and only if $\lambda_{1}(L) \geq c$.

So we have the following corollary.
Corollary 1.3. The situation being as in Theorem 1.1 , suppose that $(,)_{\mid M}$ is Kähler-Einstein with respect to the canonical complex structure J, and its Ricci form equals to co for a positive constant c. Then the following three conditions are equivalent;
(1) $L$ is Hamiltonian stable.
(2) $\lambda_{1}(L)=c$.
(3) All of the coordinate functions $l^{i}$ are $\lambda_{1}(L)$-eigenfunctions.

The auther would like to express his hearty thanks to Professor Akito Futaki who gave him valuable advices.

## 2. Estimates on volume and $\lambda_{1}$.

Let an $m$-dimensional Riemannian manifold $\left(X^{m}, g\right)$ be isometrically embedded in a Euclidean space $\left(\boldsymbol{R}^{k},(),\right)$, and $Y^{n} \subset X$ be a closed minimal submanifold. Then we can obtain the upper bound of the first positive eigenvalue $\lambda_{1}(Y)$ of the Laplacian $\Delta_{Y}$, which acts on $C^{\infty}(Y)$, and the lower bound of the volume of $Y$ as follows.

For the embeddings $X \hookrightarrow \boldsymbol{R}^{k}, Y \hookrightarrow X$ and $Y \hookrightarrow \boldsymbol{R}^{k}$, we denote their second fundamental forms $\sigma, \bar{\sigma}$ and $\tilde{\sigma}$ respectively. Then, from the definition of the second fundamental forms, we have

$$
\begin{equation*}
\tilde{\sigma}_{x}(A, B)=\bar{\sigma}_{x}(A, B)+\sigma_{x}(A, B) \quad \text { for } x \in Y, A, B \in T_{x} Y . \tag{2.1}
\end{equation*}
$$

We can think of (2.1) as the decomposition of $\tilde{\sigma}$ to the component tangent to $X$, which is $\bar{\sigma}$, and the one normal to $X$, which is $\sigma$. Since $Y \hookrightarrow X$ is minimal, the mean curvature vector $\tilde{H}$ of embedding $Y \hookrightarrow \boldsymbol{R}^{k}$ is obtained by

$$
\begin{equation*}
\tilde{H}_{x}=\tilde{H}_{x}^{\perp}:=\frac{1}{n} \sum_{j=1}^{n} \sigma_{x}\left(e_{j}, e_{j}\right) \tag{2.2}
\end{equation*}
$$

where $x \in Y$ and $\left\{e_{j}\right\}_{j=1}^{n}$ is an orthonormal basis of $T_{x} Y$.
To get the bounds of $\lambda_{1}(Y)$ and volume of $Y$, we use next two theorems by B.-Y. Chen (2] and [3]).

Theorem 2.1 (Chen [2]). Let $M$ be an m-dimensional closed submanifold of a Euclidean space $\left(\boldsymbol{R}^{k},(),\right)$, and $H$ be its mean curvature vector. Then we have

$$
\begin{equation*}
\int_{M}(H, H)^{m / 2} d v \geq c_{m}, \tag{2.3}
\end{equation*}
$$

where $c_{m}$ is the volume of unit $m$-sphere. The equality holds if and only if $M$ is embedded as the standard $m$-sphere in an affine ( $m+1$ )-space.

Theorem 2.2 (Chen [3]). Let $x:\left(M^{m}, g\right) \rightarrow\left(\boldsymbol{R}^{k},(),\right)$ be an isometric immersion of a closed m-dimensional Riemannian manifold into a Euclidean space, and $H$ be its mean curvature vector. Then we have

$$
\begin{equation*}
\int_{M}(H, H)^{m / 2} d v \geq\left(\frac{\lambda_{1}(M)}{m}\right)^{m / 2} \operatorname{Vol}(M), \tag{2.4}
\end{equation*}
$$

where $\lambda_{1}(M)$ is the first positive eigenvalue of the Laplacian $\Delta_{M}$. The equality holds if and only if there is a vector $c$ in $\boldsymbol{R}^{k}$ such that $x-c$ is an embedding of order 1 , namely, its $j$-th coordinate function $x^{j}-c^{j}$ is the first eigenfunction of $\Delta_{M}$, for each $j$.

We apply these theorems to the case $x:\left(X^{m}, g\right) \hookrightarrow\left(\boldsymbol{R}^{k},(),\right)$ is an isometric embedding and $Y^{n} \subset X$ is a closed minimal submanifold.

Corollary 2.3. Let $\left(X^{m}, g\right)$ be an m-dimensional Riemannian manifold and $Y^{n} \subset X$ be a closed $n$-dimensional minimal submanifold. Suppose that there is an isometric embedding $x:(X, g) \hookrightarrow\left(\boldsymbol{R}^{k},(),\right)$ of $X$ into the Euclidean space $\left(\boldsymbol{R}^{k},(),\right)$. Then we have

$$
\begin{equation*}
\operatorname{Vol}(Y) \geq \frac{c_{n}}{\max _{y \in Y}\left(\tilde{H}_{y}^{\perp}, \tilde{H}_{y}^{\perp}\right)^{n / 2}}, \tag{2.5}
\end{equation*}
$$

where $\tilde{H}_{y}^{\perp}:=(1 / n) \sum_{j=1}^{n} \sigma_{y}\left(e_{j}, e_{j}\right), \sigma$ is the second fundamental form of embedding $x, y \in Y$, and $\left\{e_{j}\right\}_{j=1}^{n}$ is an orthonormal basis of $T_{y} Y$.

Corollary 2.4. Notation being as in Corollary 2.3, we have

$$
\begin{equation*}
\lambda_{1}(Y) \leq n\left(\frac{\int_{Y}\left(\tilde{H}^{\perp}, \tilde{H}^{\perp}\right)^{n / 2} d v}{\operatorname{Vol}(Y)}\right)^{2 / n} . \tag{2.6}
\end{equation*}
$$

The equality holds if and only if there is a constant vector $c \in \boldsymbol{R}^{k}$ such that the embedding $x_{\mid Y}-c: Y \rightarrow \boldsymbol{R}^{k}$ is an embedding of order 1 .

In section 4 , we will apply these corollaries to the case of the adjoint orbits.

## 3. The adjoint orbits of compact semisimple Lie groups.

In this section, we review the chapter 8 of [1].

Let $G$ be a compact semisimple Lie group, $\mathfrak{g}$ its Lie algebra, (,) an $\operatorname{Ad}_{G^{-}}$ invariant inner product on $\mathfrak{g}$, and $M$ an adjoint orbit in $\mathfrak{g}$. Suppose that the Lie group $G$ acts on $M$ effectively. In this paper, when we say "adjoint orbit", we assume that it satisfies this condition. For $U \in \mathfrak{g}$, the fundamental vector field attached to $U, X_{U}$ is defined by

$$
\begin{equation*}
X_{U}(w)=[U, w] \quad(w \in M), \tag{3.1}
\end{equation*}
$$

under the identification $\mathfrak{g} \simeq T_{w} \mathfrak{g} \supset T_{w} M,(w \in M)$. Since $G$ acts on $M$ transitively, any tangent vector in $T_{w} M$ is written as the value of a fundamental vector field, and we can identify

$$
T_{w} M \simeq \operatorname{Im}\left(\mathrm{ad}_{w}: \mathfrak{g} \rightarrow \mathfrak{g}\right)=: M_{w} \quad(w \in M) .
$$

Similarly, we have an identification

$$
N_{w} M \simeq \operatorname{Ker}\left(\mathrm{ad}_{w}: \mathfrak{g} \rightarrow \mathfrak{g}\right)=: L_{w} \quad(w \in M),
$$

where $N_{w} M$ is the normal space of $M \subset \mathfrak{g}$ at $w \in M$.
Next, we will define the canonical complex structure $J$ on $M$. For $w \in M$, let $G_{w}:=\{g \in G \mid \operatorname{Ad}(g) w=w\}, S_{w}$ the connected center of $G_{w}$, and $\mathfrak{s}_{w}$ the Lie algebra of $S_{w}$. Note that $w \in \mathfrak{s}_{w}$. Then $M_{w}$ is preserved by $\operatorname{Ad}_{G_{w}}$ and $\operatorname{ad}_{L_{w}}$. Since the restriction of the adjoint action of $G_{w}$ on $M_{w}$ to $S_{w}$ is completely reducible, we have an $\operatorname{Ad}_{S_{w}}$ invariant orthogonal direct sum decomposition

$$
\begin{equation*}
M_{w}=\sum_{j=1}^{m} E_{w, j} \quad(\operatorname{dim} M=2 m), \tag{3.2}
\end{equation*}
$$

where each $E_{w, j}$ is a real 2 -dimensional vector space isomorphic, as a $S_{w^{-}}$ representation space, to the irreducible representation $\Gamma_{a_{j}}: S_{w} \rightarrow G L(2, \boldsymbol{R})$ defined by

$$
\Gamma_{a_{j}}(\exp (s))=\left(\begin{array}{cc}
\cos a_{j}(s) & -\sin a_{j}(s) \\
\sin a_{j}(s) & \cos a_{j}(s)
\end{array}\right) \quad\left(s \in \mathfrak{s}_{w}\right) .
$$

Here $a_{j} \in \mathfrak{S}_{w}^{*}$ is the weight of $\Gamma_{a_{j}}\left(\right.$ via $(,)_{\mid \mathfrak{s}_{w}}, a_{j}$ may be viewed as an element of $\left.\mathfrak{s}_{w}\right)$. We choose each $a_{j}$ so that $a_{j}(w)>0$. Then $E_{w, j}$ is oriented by the basis for which the action of $S_{w}$ is represented by $\Gamma_{a j}$. The almost complex structure $J$ on $T M$ is defined as

$$
\begin{equation*}
J_{w} X=\frac{1}{a_{j}(w)}[w, X] \quad\left(w \in M, X \in E_{w, j}\right) . \tag{3.4}
\end{equation*}
$$

This almost complex structure is integrable and $G$-invariant, see [1]. We call $J$ the canonical complex structure of $M$.

Finally, we define two $G$-invariant closed 2-forms, canonical symplectic form and $G$-invariant Ricci form. Let the 2 -form $F$ on $M$ be defined by

$$
\begin{equation*}
F_{w}(X, Y)=(w,[U, V]) \quad\left(w \in M, X, Y \in T_{w} M\right), \tag{3.5}
\end{equation*}
$$

where $U, V \in \mathfrak{g}$ such that $X=[U, w], Y=[V, w]$. Then it is proved that $F$ is the $G$-invariant Kähler form of a $G$-invariant Kähler struture compatible with the canonical complex structure of $M$, see [1]. We refer to $F$ as the canonical symplectic structure of $M$.

There is unique, up to multiplication by a positive constant, $G$-invariant volume form $\Omega$ on $M$, which is the volume form of $(,)_{\mid M}$. Since the Ricci form of a Kähler metric depends only on the complex structure and the volume form, the Ricci form of any $G$-invariant Kähler metric on $M$ relative to the canonical complex structure equals to $C \rho$, where $\rho$ is the $G$-invariant Ricci form determined by $J$ and $\Omega, C$ is a positive constant. This $G$-invariant Ricci form $\rho$ is computed as

$$
\begin{equation*}
\rho_{w}(X, Y)=(\gamma(w),[U, V]) \quad\left(w \in M, X, Y \in T_{w} M\right), \tag{3.6}
\end{equation*}
$$

where $U, V \in \mathfrak{g}$ such that $X=[U, w], \quad Y=[V, w], \mathfrak{s}_{w} \ni \gamma(w)=\sum_{j=1}^{m}\left[X_{j}, J X_{j}\right]$, $\left\{X_{j}, J X_{j}\right\}$ is a positively oriented orthonormal basis of $E_{w, j}$. Note that $\rho$ is positive definte, see [1].

## 4. The Proofs of Theorem 1.1 and 1.2.

In the same setting as in the previous section, we define the 2 -form $\omega$ by $\omega(X, Y):=(J X, Y)$. In general, this 2-form is positive definite and type $(1,1)$ with respect to $J$ but not closed. We have the following lemma.

Lemma 4.1. For a positive constant $\alpha, \omega=\alpha F$ if and only if $a_{j}(w)=$ $a_{k}(w)=\alpha$ for some $w \in M$ and any $j, k$.

Proof. For $w \in M, \quad X_{j} \in E_{w, j}, \quad X_{k} \in E_{w, k} \quad$ with $j \neq k, \quad$ we have $\left[\left(1 /\left(a_{j}(w)\right)\right) J_{w} X_{j}, w\right]=X_{j}$ and thus

$$
\begin{aligned}
F_{w}\left(X_{j}, X_{k}\right) & =\left(w,\left[\frac{1}{a_{j}(w)} J_{w} X_{j}, \frac{1}{a_{k}(w)} J_{w} X_{k}\right]\right) \\
& =\frac{1}{a_{j}(w) a_{k}(w)}\left(\left[w, J_{w} X_{j}\right], J_{w} X_{k}\right) \\
& =0
\end{aligned}
$$

where the second equality is derived from the $\operatorname{Ad}_{G}$ invariance of inner product
$($,$) on \mathfrak{g}$, and the third one is derived from $\left[w, J_{w} X_{j}\right] \in E_{w, j}$ and $J_{w} X_{k} \in E_{w, k}$. Similarly, we have $\left[-\left(1 /\left(a_{j}(w)\right)\right) X_{j}, w\right]=J_{w} X_{j}$ and thus

$$
\begin{aligned}
F_{w}\left(X_{j}, J_{w} X_{j}\right) & =\left(w,\left[\frac{1}{a_{j}(w)} J_{w} X_{j},-\frac{1}{a_{j}(w)} X_{j}\right]\right) \\
& =\frac{1}{\left(a_{j}(w)\right)^{2}}\left(\left[w, X_{j}\right], J_{w} X_{j}\right) \\
& =\frac{1}{a_{j}(w)} \omega\left(X_{j}, J X_{j}\right)
\end{aligned}
$$

Since $a_{j}(w)$ is $\operatorname{Ad}_{G}$-invariant, Lemma 4.1 follows immediately.
Lemma 4.2. Let $M \subset \mathfrak{g}$ be an adjoint orbit with $\omega=\alpha F$, and $\sigma, H$ be the second fundamental form and the mean curvature vector of embedding $M \subset \mathfrak{g}$ respectively. Then, for each $w \in M$, we have

$$
\begin{gather*}
\sigma_{w}(X, Y)=p_{w}([V,[U, w]]) \quad(X, Y \text { are vector fields on } M)  \tag{4.1}\\
\sigma_{w}(J X, J Y)=\sigma_{w}(X, Y)  \tag{4.2}\\
H_{w}=\frac{-1}{m \alpha} \gamma(w) \tag{4.3}
\end{gather*}
$$

$$
\begin{equation*}
(H, H)=\frac{s}{2 m^{2}} \quad\left(s \text { is the scalar curvature of }(,)_{\mid M}\right) \tag{4.4}
\end{equation*}
$$

where $U, V \in \mathfrak{g}$ such that $X(w)=[U, w], Y(w)=[V, w]$, and $p_{w}: \mathfrak{g} \rightarrow L_{w}$ is the orthogonal projection.

Proof. For the equation (4.1), since $\sigma$ is tensor, it is sufficient that we prove (4.1) for fundamental vector fields $X_{U}, X_{V}$. But we easily see that $D_{X_{U}} X_{V}(w)=$ $[V,[U, w]]$, where $D$ is the Levi-Civita connection of $(\mathfrak{g},()$,$) . So, by the def-$ inition of the second fundamental form, we have proved the equation (4.1).

From the equation (4.1), we have

$$
\begin{aligned}
\sigma_{w}(J X, J Y) & =\sigma_{w}(J Y, J X) \\
& =p_{w}\left[-\frac{X(w)}{\alpha}, J Y(w)\right] \\
& =p_{w}\left[\frac{J Y(w)}{\alpha}, X(w)\right] \\
& =\sigma_{w}(X, Y)
\end{aligned}
$$

Let $\left\{e_{j}, J e_{j}\right\}$ be the orthonormal basis of $E_{w, j} \subset M_{w}$. Then

$$
\begin{aligned}
H_{w} & =\frac{1}{2 m} \sum_{j=1}^{m}\left\{\sigma_{w}\left(e_{j}, e_{j}\right)+\sigma_{w}\left(J e_{j}, J e_{j}\right)\right\} \\
& =\frac{1}{m} \sum_{j=1}^{m}\left\{\sigma_{w}\left(e_{j}, e_{j}\right)\right\} \\
& =\frac{1}{m} p_{w}\left(\sum_{j=1}^{m}\left[\frac{J e_{j}}{\alpha}, e_{j}\right]\right) \\
& =\frac{-1}{m \alpha} \gamma(w) .
\end{aligned}
$$

The last equality holds since $\gamma(w) \in \mathfrak{s}_{w} \subset L_{w}$.
Finally, from the direct computation, we have

$$
\begin{aligned}
\frac{s}{2} & =\sum_{j=1}^{m} \rho_{w}\left(e_{j}, J e_{j}\right) \\
& =\sum_{j=1}^{m}\left(\gamma(w),\left[\frac{J e_{j}}{\alpha},-\frac{e_{j}}{\alpha}\right]\right) \\
& =\frac{1}{\alpha^{2}}(\gamma(w), \gamma(w))
\end{aligned}
$$

Corollary 4.3. Let $x: M \hookrightarrow \mathfrak{g}$ be a closed adjoint orbit with $\omega=\alpha F$. Moreover, suppose that $(M, \omega)$ is Kähler-Einstein with respect to the canonical complex structure $J$ and that its Ricci form equals to co for a positive constant c. Then $x$ is the embedding of order 1.

Proof. We apply Theorem 2.2 to the embedding $x: M \hookrightarrow \mathfrak{g}$. Then we have $\lambda_{1}(M) \leq 2 c$, by Lemma 4.2. On the other hand, since the Lie algebra of Killing vector fields on $M$ is non trivial, by Theorem of Matsushima 4] (see also Theorem 11.52 of [1]), we have $\lambda_{1}(M)=2 c$. By (3.5), (3.6) and the assumption $\rho=c \omega=\alpha c F$, we have $\gamma(x)=\alpha c x$. So, by (4.3), we have

$$
\begin{aligned}
\Delta_{M} x & =-2 m H_{x} \\
& =-2 m\left(\frac{-1}{m \alpha} \alpha c x\right) \\
& =2 c x
\end{aligned}
$$

Let $L \subset M$ be a Lagrangian submanifold. Then $\tilde{H}^{\perp}$ of the embeddings $L \subset$ $M \subset \mathfrak{g}$, the definition of $\tilde{H}^{\perp}$ being in Section 2, is equal to $H$.

Proposition 4.4. Let $M \subset \mathfrak{g}$ be an adjoint orbit with $\omega=\alpha F$, and $H$ be the mean curvature vector of embedding $M \subset \mathfrak{g}$. For a Lagrangian submanifold $L \subset M$, we have

$$
\tilde{H}_{w}^{\perp}=H_{w} \quad(w \in L)
$$

Proof. Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be an orthnormal basis of $T_{w} L$. Then $\left\{e_{j}, J_{w} e_{j}\right\}_{j=1}^{m}$ is the orthonormal basis of $T_{w} M$, since $L$ is totally real. So, by the definition of $\tilde{H}^{\perp}$ and (4.2), we have

$$
\begin{aligned}
\tilde{H}_{w}^{\perp} & =\frac{1}{m} \sum_{j=1}^{m} \sigma_{w}\left(e_{j}, e_{j}\right) \\
& =\frac{1}{2 m} \sum_{j=1}^{m}\left\{\sigma_{w}\left(e_{j}, e_{j}\right)+\sigma_{w}\left(J e_{j}, J e_{j}\right)\right\} \\
& =H_{w}
\end{aligned}
$$

Proof of Theorem 1.1. Let $\left(M^{2 m},(,)_{M}\right)$ be an adjoint orbit with $\omega=\alpha F$ and $L^{m} \subset M$ a closed minimal Lagrangian submanifold. Then we have

$$
\begin{aligned}
\operatorname{Vol}(L) & \geq \frac{c_{m}}{\left(\tilde{H}^{\perp}, \tilde{H}^{\perp}\right)^{m / 2}} \\
& =\left(\frac{2 m^{2}}{s}\right)^{m / 2} c_{m}
\end{aligned}
$$

by Corollary 2.3, Proposition 4.4 and (4.4).
Proof of Theorem 1.2. Let $\left(M^{2 m},(,)_{\mid M}\right)$ be an adjoint orbit with $\omega=\alpha F$ and $L^{m} \subset M$ a closed minimal Lagrangian submanifold. Then we have

$$
\begin{aligned}
\lambda_{1}(L) & \leq m\left(\tilde{H}^{\perp}, \tilde{H}^{\perp}\right) \\
& =\frac{s}{2 m}
\end{aligned}
$$

by Corollary 2.4, Proposition 4.4 and (4.4).
Moreover, if $\left(M,(,)_{\mid M}\right)$ is Kähler-Einstein, we have

$$
\begin{aligned}
\Delta_{L} l & =-m \tilde{H}_{l} \quad(\tilde{H}: \text { the mean curvature vector of } L \subset M) \\
& =-m \tilde{H}_{l}^{\perp} \quad(\text { by }(2.2)) \\
& =-m H_{l} \quad(\text { by Proposition 4.4 }) \\
& =c l \quad(\text { by Corollary 4.3). }
\end{aligned}
$$

## 5. Example.

In this section, as an example, we investigate the case $G=S U(n), \mathfrak{g}=\mathfrak{s u}(n)$, and $(X, Y)=-\operatorname{trace} X Y, X, Y \in \mathfrak{s u}(n)$.

Let $w_{0} \in \mathfrak{s u}(n)$ be

$$
w_{0}=\left(\begin{array}{cc}
i \lambda I_{p} & 0 \\
0 & i \mu I_{n-p}
\end{array}\right) \quad(\lambda, \mu \in \boldsymbol{R}, \lambda-\mu>0, p \lambda+(n-p) \mu=0)
$$

where $I_{p} \in \mathfrak{g l}(p, \boldsymbol{R}), I_{n-p} \in \mathfrak{g l}(n-p, \boldsymbol{R})$ are the identity matrixes. We consider the orbit $M \subset \mathfrak{s u}(n)$ of $w_{0}$.

The orbit $M$ is identified with the Grassmann manifold $\operatorname{Gr}_{n, p}(\boldsymbol{C})$ by

$$
\begin{equation*}
x \mapsto i\left(A_{j k}\right)_{j, k=1}^{n} \in \mathfrak{w u}(n) \quad\left(x \in \operatorname{Gr}_{n, p}(\boldsymbol{C})\right) \tag{5.1}
\end{equation*}
$$

where, if $x$ is represented by a complex $p$-dimensional subspace in $C^{n}$ spanned by orthonormal vectors $\left(a_{1 j}, \ldots, a_{n j}\right) \in \boldsymbol{C}^{n}(j=1, \ldots, p), A_{j k}$ is defined as

$$
\begin{gather*}
A_{j j}=(\lambda-\mu)\left(\left|a_{j 1}\right|^{2}+\cdots+\left|a_{j p}\right|^{2}\right)+\mu,  \tag{5.2}\\
A_{j k}=(\lambda-\mu)\left(a_{j 1} \bar{a}_{k 1}+\cdots+a_{j p} \bar{a}_{k p}\right) . \tag{5.3}
\end{gather*}
$$

In this example, geometrical objects at $w_{0}$ (tangent space, canonical complex structure, and so on) are

$$
\begin{aligned}
M_{w_{0}} & =\left\{\left(\begin{array}{cc}
0 & A \\
-\stackrel{t}{A} & 0
\end{array}\right) \in \mathfrak{s u}(n)\right\} \\
& \simeq\left\{X \in \mathfrak{s u}(n) \mid \operatorname{ad}_{w_{0}} X=(\lambda-\mu) J_{0} X\right\},
\end{aligned}
$$

where

$$
J_{0}=i\left(\begin{array}{cc}
I_{p} & 0 \\
0 & -I_{n-p}
\end{array}\right)
$$

the canonical complex structure at $w_{0}$ is the left multiplication by $J_{0}$,

$$
\mathfrak{s}_{w_{0}}=\operatorname{span}_{\boldsymbol{R}}\left\langle w_{0}\right\rangle,
$$

and

$$
\omega=(\lambda-\mu) F
$$

Since $\operatorname{dim} \mathfrak{s}_{w_{0}}=1$ and $\omega=(\lambda-\mu) F,\left(M,(,)_{\mid M}\right)$ is Kähler-Einstein. So, by Corollary 4.3,

$$
x \mapsto i A_{j k} \in \mathfrak{s u}(n) \quad\left(x \in \operatorname{Gr}_{n, p}(\boldsymbol{C})\right)
$$

is the embedding of order 1 .

Lemma 5.1. If the Ricci form of $(,)_{\mid M}$ equals to $c \omega$, then

$$
c=\frac{n}{(\lambda-\mu)^{2}}
$$

Proof. Let $X=\left(\begin{array}{cc}0 & A \\ -{ }^{t} \bar{A} & 0\end{array}\right), \quad Y=\left(\begin{array}{cc}0 & B \\ -^{t} \bar{B} & 0\end{array}\right) . \quad$ Then

$$
\begin{aligned}
\omega_{w_{0}}(X, Y) & =-\operatorname{trace} J_{0} X Y \\
& =i\left(\operatorname{trace} A^{t} \bar{B}-\operatorname{trace}^{t} \bar{A} B\right) .
\end{aligned}
$$

On the other hand, it is easily seen that

$$
\gamma\left(w_{0}\right)=i\left(\begin{array}{cc}
(n-p) I_{p} & 0 \\
0 & -p I_{n-p}
\end{array}\right)
$$

So we have

$$
\begin{aligned}
\rho_{w_{0}}(X, Y) & =-\frac{1}{(\lambda-\mu)^{2}} \operatorname{trace}\left(\gamma\left(w_{0}\right)\left[J_{0} X, J_{0} Y\right]\right) \\
& =\frac{n i}{(\lambda-\mu)^{2}}\left(\operatorname{trace} A^{t} \bar{B}-\operatorname{trace}{ }^{t} \bar{A} B\right)
\end{aligned}
$$

For example, by Lemma 5.1, when we regard the Grassmann manifold $\operatorname{Gr}_{n, p}(\boldsymbol{C}) \simeq M$ as the Hermitian symmetric space $S U(n) / S(U(p) \times U(n-p))$, with the metric induced from the Killing form of $\mathfrak{s u}(n)$, we have

$$
-2 n \operatorname{trace} U V=\left(X_{U}, X_{V}\right)=-(\lambda-\mu)^{2} \operatorname{trace} U V
$$

where $U, V \in T_{\left[I_{n}\right]} S U(n) / S(U(p) \times U(n-p)) \subset \mathfrak{s u}(n)$, so $c=1 / 2$.
In [5], Oh gave some examples of Hamiltonian stable closed minimal Lagrangian submanifolds in Hermitian symmetric spaces.

Let $\sigma: \operatorname{Gr}_{n, p}(\boldsymbol{C}) \rightarrow \operatorname{Gr}_{n, p}(\boldsymbol{C})$ be an involutive anti-holomorphic isometry defined as $x \mapsto \bar{x}$, where, for $x \in \operatorname{Gr}_{n, p}(\boldsymbol{C})$ which is represented by a $p$ dimensional subspace in $\boldsymbol{C}^{n}$ spanned by orthonormal vectors $\left(a_{1 j}, \ldots, a_{n j}\right) \in \boldsymbol{C}^{n}$ $(j=1, \ldots, p), \bar{x}$ is represented by the subspace spanned by $\left\{\left(\bar{a}_{1 j}, \ldots, \bar{a}_{n j}\right)\right\}_{j=1}^{p}$. Then the fixed point set of $\sigma$

$$
L=\left\{x \in \operatorname{Gr}_{n, p}(\boldsymbol{C}) \mid x=\sigma(x)\right\}
$$

is a totally geodesic Lagrangian submanifold, by Proposition 6.1 of [5] or Lemma 1.1 of [7]. Moreover, in [7], it was proved that $\lambda_{1}(L)=1 / 2$, when we regard the Grassmann manifold $\operatorname{Gr}_{n, p}(\boldsymbol{C}) \simeq M$ as the Hermitian symmetric space $S U(n) / S(U(p) \times U(n-p))$ with the metric induced from the Killing form of
$\mathfrak{s u}(n)$. So $L$ is the Hamiltonian stable totally geodesic Lagrangian submanifold in $M$. The element $x \in L$ is represented by a $p$-dimensional subspace in $C^{n}$ spanned by orthogonal vectors $\left(a_{1 j}, \ldots, a_{n j}\right) \in \boldsymbol{R}^{n} \subset \boldsymbol{C}^{n}(j=a, \ldots, p)$. Applying Corollary 1.3 to $L$, we see that

$$
L \ni x \mapsto a_{j 1} a_{k 1}+\cdots+a_{j p} a_{k p}
$$

are the eigenfunctions of $\lambda_{1}(L)$.
Another example is the Clifford torus $\tilde{L}$ embedded in $\boldsymbol{C P}{ }^{n}$ defined as

$$
\tilde{L}=\left\{\left[z_{0}: \cdots: z_{n}\right] \in \boldsymbol{C} \boldsymbol{P}^{n}| | z_{0}\left|=\cdots=\left|z_{n}\right|\right\}\right.
$$

In particular, if the representative $z=\left(z_{0}, \ldots, z_{n}\right) \in \boldsymbol{C}^{n+1}$ satisfies $|z|=1$, then the norm of each component $z_{j}$ is $1 / \sqrt{n+1}$. The Clifford torus $\tilde{L}$ is a minimal Lagrangian submanifold in $\boldsymbol{C} \boldsymbol{P}^{n},[\mathbf{5}]$. Moreover, by computing $\lambda_{1}(\tilde{L})$, Oh proved that, in [5], $\tilde{L}$ is Hamiltonian stable. So, by Corollary 1.3,

$$
\tilde{L} \ni\left[z_{0}: \cdots: z_{n}\right] \mapsto \operatorname{Re} z_{j} \bar{z}_{k} \quad(j \neq k)
$$

and

$$
\tilde{L} \ni\left[z_{0}: \cdots: z_{n}\right] \mapsto \operatorname{Im} z_{j} \bar{z}_{k} \quad(j \neq k)
$$

are the eigenfunctions of $\lambda_{1}(\tilde{L})$, where $\left|z_{j}\right|^{2}=1 /(n+1)$ for $j=0, \ldots, n$.

## References

[1] A. L. Besse, Einstein manifolds, Ergeb. Math. Grenzgeb., 3, Springer-Verlag, 1987.
[2] B.-Y. Chen, On the total curvature of immersed manifolds, I, Amer. J. Math., 93 (1971), pp. 148-162.
[3] B.-Y. Chen, Geometry of submanifolds and its applications, Science University of Tokyo, 1981.
[4] Y. Matsushima, Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne, Nagoya Math J., 11 (1957), pp. 145-150.
[5] Y.-G. Oh, Second variation and stabilities of minimal lagrangian submanifolds in Kähler manifolds, Invent. Math., 101 (1990), pp. 501-519.
[6] A. Ros, Spectral geometry of CR-minimal submanifolds in the complex projective space, Kodai Math. J., 6 (1983), pp. 88-99.
[7] M. Takeuchi, Stability of certain minimal submanifolds of compact Hermitian symmetric spaces, Tohoku Math. J., 36 (1984), pp. 293-314.

[^1]
[^0]:    2000 Mathematics Subject Classification. 53D12, 53C42.
    Key Words and Phrases. minimal Lagrangian submanifold, adjoint orbit, Laplacian, first eigenvalue, volume, Hamiltonian stable.

[^1]:    Hajime Ono
    Department of Mathematics
    Tokyo Institute of Technology
    Oh-okayama, Meguro-ku
    Tokyo, 152-8551
    Japan
    E-mail: ono@math.titech.ac.jp

