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Abstract. Let G be a compact semisimple Lie group, g its Lie algebra, ð ; Þ an

AdG-invariant inner product on g, and M an adjoint orbit in g. In this article, if

ðM; ð ; ÞjMÞ is Kähler with respect to its canonical complex structure, then we give, for

a closed minimal Lagrangian submanifold LHM, upper bounds on the first positive

eigenvalue l1ðLÞ of the Laplacian DL, which acts on CyðLÞ, and lower bounds on the

volume of L. In particular, when ðM; ð ; ÞjMÞ is Kähler-Einstein, (r ¼ co, where r and

o are Ricci form and Kähler form of ðM; ð ; ÞjMÞ with respect to the canonical complex

structure respectively, and c is a positive constant,) we prove l1ðLÞa c. Combining

with a result of Oh [5], we can see that L is Hamiltonian stable if and only if l1ðLÞ ¼ c.

1. Introduction.

Let CP
n be the n-dimensional complex projective space and g be the Fubini-

Study metric of CP
n with its holomorphic sectional curvature 1. In ½6�, A. Ros

gave upper bound of the first positive eigenvalue of the Laplacian and lower

bound of the volume of closed CR-minimal submanifolds of CP
n. The tech-

nique used in that paper is as follows; let HMðnþ 1Þ ¼ fA A glðnþ 1;CÞ jA ¼
tAg and define an inner product ð ; Þ on HMðnþ 1Þ as ðA;BÞ ¼ 2 traceðABÞ.

Then ðCP
n
; gÞ is isometrically embedded in ðHMðnþ 1Þ; ð ; ÞÞ, and using esti-

mates for the total mean curvature of a closed Riemannian manifold isometrically

embedded in a Euclidean space, proved by B.-Y. Chen in [2], [3], the desired

bounds were obtained. In this article, we will apply this technique to closed

minimal Lagrangian submanifolds in adjoint orbits.

Let G be a compact semisimple Lie group, g its Lie algebra, ð ; Þ an AdG-

invariant inner product on g, and M an adjoint orbit in g. Suppose that the Lie

group G acts on M e¤ectively. (In this paper, when we say ‘‘adjoint orbit’’, we

suppose that it satisfies this condition.) Then M has canonical complex structure

J, and canonical symplectic form F , which is Kähler with respect to J, see [1] or

section 3 below. We regard that M is isometrically embedded in ðg; ð ; ÞÞ. The
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2-form associated with ð ; ÞjM and J, which is defined by oðX ;Y Þ :¼ ðJX ;YÞjM , is

not always Kähler. But, when this associated 2-form is equal to a times the

canonical symplectic form for a positive constant a, we get the following bounds.

Theorem 1.1. Let G be a compact semisimple Lie group, g its Lie algebra,

ð ; Þ an AdG-invariant inner product on g, and M 2m an adjoint orbit in g with the

associated 2-form being equal to a times the canonical symplectic form for a

positive constant a, i.e. oðX ;Y Þ :¼ ðJX ;YÞjM ¼ aF ðX ;YÞ. If LHM is a closed

minimal Lagrangian submanifold, then

VolðLÞb
2m2

s

� �m=2

cm;

where s is the scalar curvature of ð ; ÞjM and cm is the volume of unit m-sphere.

Moreover, if ð ; ÞjM is Kähler-Einstein with respect to the canonical complex

structure J, and its Ricci form equals to co for a positive constant c, we have

VolðLÞb
m

c

� �m=2

cm:

Theorem 1.2. Suppose that the situation is the same as Theorem 1.1. Then

l1ðLÞa
s

2m
;

where l1ðLÞ is the first positive eigenvalue of the Laplacian DL, which acts on

CyðLÞ. Let l : L ! g denote the embedding. Then the equality holds if and only

if there is a constant vector d in g such that, l � d is an embedding of order 1,

namely, for a fixed basis of g, all of its coordinate functions l j � d j are l1ðLÞ-

eigenfunctions. (This property is independent of the choice of the basis.) Also the

dimension of the space of l1ðLÞ-eigenfunctions is greater than m.

Moreover, if ð ; ÞjM is Kähler-Einstein with respect to the canonical complex

structure J, and its Ricci form equals to co for a positive constant c, we have

l1ðLÞa c;

and the constant d A g above is equal to 0.

For minimal Lagrangian submanifolds in a Kähler manifold ðX ;oÞ, Y.-G.

Oh defined a Hamiltonian stability in [5] as follows. Let i : L ,! X be a

Lagrangian embedding and V be a normal variation vector along L. Since L

is totally real and 2 dimL ¼ dimM, we can regard i�ðV coÞ as a 1-form on L.

When the 1-form i�ðV coÞ is exact, V is called a Hamiltonian variation vector.

A smooth family fitg of embeddings of L into X is called a Hamiltonian

deformation, if its derivative is Hamiltonian. Note that Hamiltonian defor-

mations leave Lagrangian submanifolds Lagrangian. We say that a minimal
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Lagrangian submanifold is Hamiltonian stable, if, for any Hamiltonian varia-

tion V , the second variation along V of the volume functional is non-negative.

When ðX ;oÞ is Kähler-Einstein with a positive scalar curvature and its Ricci

form satisfies r ¼ co, Oh [5] proved that a compact minimal Lagrangian sub-

manifold L is Hamiltonian stable if and only if l1ðLÞb c.

So we have the following corollary.

Corollary 1.3. The situation being as in Theorem 1.1, suppose that ð ; ÞjM
is Kähler-Einstein with respect to the canonical complex structure J, and its Ricci

form equals to co for a positive constant c. Then the following three conditions

are equivalent;

(1) L is Hamiltonian stable.

(2) l1ðLÞ ¼ c.

(3) All of the coordinate functions l i are l1ðLÞ-eigenfunctions.

The auther would like to express his hearty thanks to Professor Akito Futaki

who gave him valuable advices.

2. Estimates on volume and l1.

Let an m-dimensional Riemannian manifold ðX m
; gÞ be isometrically

embedded in a Euclidean space ðRk
; ð ; ÞÞ, and Y n

HX be a closed minimal

submanifold. Then we can obtain the upper bound of the first positive eigen-

value l1ðY Þ of the Laplacian DY , which acts on CyðYÞ, and the lower bound of

the volume of Y as follows.

For the embeddings X ,! R
k, Y ,! X and Y ,! R

k, we denote their second

fundamental forms s, s and ~ss respectively. Then, from the definition of the

second fundamental forms, we have

~ssxðA;BÞ ¼ sxðA;BÞ þ sxðA;BÞ for x A Y ; A;B A TxY :ð2:1Þ

We can think of (2.1) as the decomposition of ~ss to the component tangent to X ,

which is s, and the one normal to X , which is s. Since Y ,! X is minimal, the

mean curvature vector ~HH of embedding Y ,! R
k is obtained by

~HHx ¼ ~HH
?

x :¼
1

n

Xn

j¼1

sxðej ; ejÞ;ð2:2Þ

where x A Y and fejg
n
j¼1 is an orthonormal basis of TxY .

To get the bounds of l1ðY Þ and volume of Y , we use next two theorems by

B.-Y. Chen ([2] and [3]).

Theorem 2.1 (Chen [2]). Let M be an m-dimensional closed submanifold of

a Euclidean space ðRk
; ð ; ÞÞ, and H be its mean curvature vector. Then we have
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ð

M

ðH;HÞm=2
dvb cm;ð2:3Þ

where cm is the volume of unit m-sphere. The equality holds if and only if M is

embedded as the standard m-sphere in an a‰ne ðmþ 1Þ-space.

Theorem 2.2 (Chen [3]). Let x : ðMm; gÞ ! ðRk; ð ; ÞÞ be an isometric immer-

sion of a closed m-dimensional Riemannian manifold into a Euclidean space, and H

be its mean curvature vector. Then we have

ð

M

ðH;HÞm=2
dvb

l1ðMÞ

m

� �m=2

VolðMÞ;ð2:4Þ

where l1ðMÞ is the first positive eigenvalue of the Laplacian DM . The equality

holds if and only if there is a vector c in R
k such that x� c is an embedding of

order 1, namely, its j-th coordinate function x j � c j is the first eigenfunction of DM ,

for each j.

We apply these theorems to the case x : ðX m; gÞ ,! ðRk; ð ; ÞÞ is an isometric

embedding and Y n
HX is a closed minimal submanifold.

Corollary 2.3. Let ðX m; gÞ be an m-dimensional Riemannian manifold and

Y n
HX be a closed n-dimensional minimal submanifold. Suppose that there is an

isometric embedding x : ðX ; gÞ ,! ðRk; ð ; ÞÞ of X into the Euclidean space ðRk; ð ; ÞÞ.

Then we have

VolðYÞb
cn

maxy AY ð ~HH
?

y ;
~HH
?

y Þ
n=2

;ð2:5Þ

where ~HH
?

y :¼ ð1=nÞ
Pn

j¼1 syðej ; ejÞ, s is the second fundamental form of embedding

x; y A Y , and fejg
n
j¼1 is an orthonormal basis of TyY .

Corollary 2.4. Notation being as in Corollary 2.3, we have

l1ðYÞa n

Ð

Y
ð ~HH

?
; ~HH

?
Þn=2 dv

VolðY Þ

 !2=n

:ð2:6Þ

The equality holds if and only if there is a constant vector c A R
k such that the

embedding xjY � c : Y ! R
k is an embedding of order 1.

In section 4, we will apply these corollaries to the case of the adjoint orbits.

3. The adjoint orbits of compact semisimple Lie groups.

In this section, we review the chapter 8 of [1].
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Let G be a compact semisimple Lie group, g its Lie algebra, ð ; Þ an AdG-

invariant inner product on g, and M an adjoint orbit in g. Suppose that the Lie

group G acts on M e¤ectively. In this paper, when we say ‘‘adjoint orbit’’, we

assume that it satisfies this condition. For U A g, the fundamental vector field

attached to U , XU is defined by

XUðwÞ ¼ ½U ;w� ðw A MÞ;ð3:1Þ

under the identification gFTwgITwM, ðw A MÞ. Since G acts on M tran-

sitively, any tangent vector in TwM is written as the value of a fundamental

vector field, and we can identify

TwMF Imðadw : g ! gÞ ¼: Mw ðw A MÞ:

Similarly, we have an identification

NwMFKerðadw : g ! gÞ ¼: Lw ðw A MÞ;

where NwM is the normal space of MH g at w A M.

Next, we will define the canonical complex structure J on M. For w A M,

let Gw :¼ fg A G jAdðgÞw ¼ wg, Sw the connected center of Gw, and sw the Lie

algebra of Sw. Note that w A sw. Then Mw is preserved by AdGw
and adLw

.

Since the restriction of the adjoint action of Gw on Mw to Sw is completely

reducible, we have an AdSw
invariant orthogonal direct sum decomposition

Mw ¼
X

m

j¼1

Ew; j ðdimM ¼ 2mÞ;ð3:2Þ

where each Ew; j is a real 2-dimensional vector space isomorphic, as a Sw-

representation space, to the irreducible representation Gaj : Sw ! GLð2;RÞ defined

by

Gaj ðexpðsÞÞ ¼
cos ajðsÞ �sin ajðsÞ

sin ajðsÞ cos ajðsÞ

� �

ðs A swÞ:ð3:3Þ

Here aj A s
�
w is the weight of Gaj (via ð ; Þjsw , aj may be viewed as an element of

sw). We choose each aj so that ajðwÞ > 0. Then Ew; j is oriented by the basis

for which the action of Sw is represented by Gaj . The almost complex structure

J on TM is defined as

JwX ¼
1

ajðwÞ
½w;X � ðw A M; X A Ew; jÞ:ð3:4Þ

This almost complex structure is integrable and G-invariant, see [1]. We call J

the canonical complex structure of M.
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Finally, we define two G-invariant closed 2-forms, canonical symplectic form

and G-invariant Ricci form. Let the 2-form F on M be defined by

FwðX ;Y Þ ¼ ðw; ½U ;V �Þ ðw A M; X ;Y A TwMÞ;ð3:5Þ

where U ;V A g such that X ¼ ½U ;w�, Y ¼ ½V ;w�. Then it is proved that F is

the G-invariant Kähler form of a G-invariant Kähler struture compatible with

the canonical complex structure of M, see [1]. We refer to F as the canonical

symplectic structure of M.

There is unique, up to multiplication by a positive constant, G-invariant

volume form W on M, which is the volume form of ð ; ÞjM . Since the Ricci form

of a Kähler metric depends only on the complex structure and the volume form,

the Ricci form of any G-invariant Kähler metric on M relative to the canonical

complex structure equals to Cr, where r is the G-invariant Ricci form deter-

mined by J and W, C is a positive constant. This G-invariant Ricci form r is

computed as

rwðX ;YÞ ¼ ðgðwÞ; ½U ;V �Þ ðw A M; X ;Y A TwMÞ;ð3:6Þ

where U ;V A g such that X ¼ ½U ;w�, Y ¼ ½V ;w�, sw C gðwÞ ¼
Pm

j¼1½Xj; JXj�,

fXj; JXjg is a positively oriented orthonormal basis of Ew; j. Note that r is

positive definte, see [1].

4. The Proofs of Theorem 1.1 and 1.2.

In the same setting as in the previous section, we define the 2-form o by

oðX ;Y Þ :¼ ðJX ;YÞ. In general, this 2-form is positive definite and type ð1; 1Þ

with respect to J but not closed. We have the following lemma.

Lemma 4.1. For a positive constant a, o ¼ aF if and only if ajðwÞ ¼

akðwÞ ¼ a for some w A M and any j; k.

Proof. For w A M, Xj A Ew; j, Xk A Ew;k with j0 k, we have

½ð1=ðajðwÞÞÞJwXj ;w� ¼ Xj and thus

FwðXj;XkÞ ¼ w;
1

ajðwÞ
JwXj;

1

akðwÞ
JwXk

� �� �

¼
1

ajðwÞakðwÞ
ð½w; JwXj �; JwXkÞ

¼ 0;

where the second equality is derived from the AdG invariance of inner product
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ð ; Þ on g, and the third one is derived from ½w; JwXj � A Ew; j and JwXk A Ew;k.

Similarly, we have ½�ð1=ðajðwÞÞÞXj;w� ¼ JwXj and thus

FwðXj; JwXjÞ ¼ w;
1

ajðwÞ
JwXj;�

1

ajðwÞ
Xj

� �� �

¼
1

ðajðwÞÞ
2
ð½w;Xj�; JwXjÞ

¼
1

ajðwÞ
oðXj; JXjÞ:

Since ajðwÞ is AdG-invariant, Lemma 4.1 follows immediately. r

Lemma 4.2. Let MH g be an adjoint orbit with o ¼ aF , and s, H be

the second fundamental form and the mean curvature vector of embedding MH g

respectively. Then, for each w A M, we have

swðX ;Y Þ ¼ pwð½V ; ½U ;w��Þ ðX ;Y are vector fields on MÞ;ð4:1Þ

swðJX ; JYÞ ¼ swðX ;Y Þ;ð4:2Þ

Hw ¼
�1

ma
gðwÞ;ð4:3Þ

ðH;HÞ ¼
s

2m2
ðs is the scalar curvature of ð ; ÞjMÞ;ð4:4Þ

where U ;V A g such that X ðwÞ ¼ ½U ;w�, Y ðwÞ ¼ ½V ;w�, and pw : g ! Lw is the

orthogonal projection.

Proof. For the equation (4.1), since s is tensor, it is su‰cient that we prove

(4.1) for fundamental vector fields XU , XV . But we easily see that DXU
XV ðwÞ ¼

½V ; ½U ;w��, where D is the Levi-Civita connection of ðg; ð ; ÞÞ. So, by the def-

inition of the second fundamental form, we have proved the equation (4.1).

From the equation (4.1), we have

swðJX ; JY Þ ¼ swðJY ; JXÞ

¼ pw �
XðwÞ

a
; JYðwÞ

� �

¼ pw
JYðwÞ

a
;XðwÞ

� �

¼ swðX ;YÞ:

Minimal Lagrangian submanifolds in adjoint orbits 249



Let fej; Jejg be the orthonormal basis of Ew; j HMw. Then

Hw ¼
1

2m

X

m

j¼1

fswðej; ejÞ þ swðJej ; JejÞg

¼
1

m

X

m

j¼1

fswðej; ejÞg

¼
1

m
pw

X

m

j¼1

Jej

a
; ej

� �

 !

¼
�1

ma
gðwÞ:

The last equality holds since gðwÞ A sw HLw.

Finally, from the direct computation, we have

s

2
¼
X

m

j¼1

rwðej; JejÞ

¼
X

m

j¼1

gðwÞ;
Jej

a
;�

ej

a

� �� �

¼
1

a2
ðgðwÞ; gðwÞÞ: r

Corollary 4.3. Let x : M ,! g be a closed adjoint orbit with o ¼ aF .

Moreover, suppose that ðM;oÞ is Kähler-Einstein with respect to the canonical

complex structure J and that its Ricci form equals to co for a positive constant c.

Then x is the embedding of order 1.

Proof. We apply Theorem 2.2 to the embedding x : M ,! g. Then we

have l1ðMÞa 2c, by Lemma 4.2. On the other hand, since the Lie algebra of

Killing vector fields on M is non trivial, by Theorem of Matsushima [4] (see also

Theorem 11.52 of [1]), we have l1ðMÞ ¼ 2c. By (3.5), (3.6) and the assumption

r ¼ co ¼ acF , we have gðxÞ ¼ acx. So, by (4.3), we have

DMx ¼ �2mHx

¼ �2m
�1

ma
acx

� �

¼ 2cx: r

Let LHM be a Lagrangian submanifold. Then ~HH
?

of the embeddings LH

MH g, the definition of ~HH
?

being in Section 2, is equal to H.
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Proposition 4.4. Let MH g be an adjoint orbit with o ¼ aF , and H be

the mean curvature vector of embedding MH g. For a Lagrangian submanifold

LHM, we have

~HH
?

w ¼ Hw ðw A LÞ:

Proof. Let fe1; . . . ; emg be an orthnormal basis of TwL. Then fej; Jwejg
m
j¼1

is the orthonormal basis of TwM, since L is totally real. So, by the definition

of ~HH
?

and (4.2), we have

~HH
?

w ¼
1

m

X

m

j¼1

swðej; ejÞ

¼
1

2m

X

m

j¼1

fswðej; ejÞ þ swðJej; JejÞg

¼ Hw: r

Proof of Theorem 1.1. Let ðM 2m; ð ; ÞMÞ be an adjoint orbit with o ¼ aF

and Lm
HM a closed minimal Lagrangian submanifold. Then we have

VolðLÞb
cm

ð ~HH
?
; ~HH

?
Þm=2

¼
2m2

s

� �m=2

cm;

by Corollary 2.3, Proposition 4.4 and (4.4). r

Proof of Theorem 1.2. Let ðM 2m; ð ; ÞjMÞ be an adjoint orbit with o ¼ aF

and Lm
HM a closed minimal Lagrangian submanifold. Then we have

l1ðLÞamð ~HH
?
; ~HH

?
Þ

¼
s

2m
;

by Corollary 2.4, Proposition 4.4 and (4.4).

Moreover, if ðM; ð ; ÞjMÞ is Kähler-Einstein, we have

DLl ¼ �m ~HH l ð ~HH: the mean curvature vector of LHMÞ

¼ �m ~HH
?

l ðby ð2:2ÞÞ

¼ �mHl ðby Proposition 4:4Þ

¼ cl ðby Corollary 4:3Þ: r
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5. Example.

In this section, as an example, we investigate the case G ¼ SUðnÞ, g ¼ suðnÞ,

and ðX ;Y Þ ¼ �traceXY , X ;Y A suðnÞ.

Let w0 A suðnÞ be

w0 ¼
ilIp 0

0 imIn�p

� �

ðl; m A R; l� m > 0; plþ ðn� pÞm ¼ 0Þ;

where Ip A glðp;RÞ, In�p A glðn� p;RÞ are the identity matrixes. We consider the

orbit MH suðnÞ of w0.

The orbit M is identified with the Grassmann manifold Grn;pðCÞ by

x 7! iðAjkÞ
n
j;k¼1 A suðnÞ ðx A Grn;pðCÞÞ;ð5:1Þ

where, if x is represented by a complex p-dimensional subspace in C
n spanned by

orthonormal vectors ða1j ; . . . ; anjÞ A C
n ð j ¼ 1; . . . ; pÞ, Ajk is defined as

Ajj ¼ ðl� mÞðjaj1j
2 þ � � � þ jajpj

2Þ þ m;ð5:2Þ

Ajk ¼ ðl� mÞðaj1ak1 þ � � � þ ajpakpÞ:ð5:3Þ

In this example, geometrical objects at w0 (tangent space, canonical complex

structure, and so on) are

Mw0
¼

0 A

� tA 0

� �

A suðnÞ

� �

F fX A suðnÞ j adw0
X ¼ ðl� mÞJ0Xg;

where

J0 ¼ i
Ip 0

0 �In�p

� �

;

the canonical complex structure at w0 is the left multiplication by J0,

sw0
¼ spanRhw0i;

and

o ¼ ðl� mÞF :

Since dim sw0
¼ 1 and o ¼ ðl� mÞF , ðM; ð ; ÞjMÞ is Kähler-Einstein. So, by Cor-

ollary 4.3,

x 7! iAjk A suðnÞ ðx A Grn;pðCÞÞ

is the embedding of order 1.
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Lemma 5.1. If the Ricci form of ð ; ÞjM equals to co, then

c ¼
n

ðl� mÞ2
:

Proof. Let X ¼
0 A

� tA 0

� �

, Y ¼
0 B

�tB 0

� �

. Then

ow0
ðX ;Y Þ ¼ �trace J0XY

¼ iðtraceA tB� trace tABÞ:

On the other hand, it is easily seen that

gðw0Þ ¼ i
ðn� pÞIp 0

0 �pIn�p

 !

:

So we have

rw0
ðX ;YÞ ¼ �

1

ðl� mÞ2
traceðgðw0Þ½J0X ; J0Y �Þ

¼
ni

ðl� mÞ2
ðtraceA tB� trace tABÞ: r

For example, by Lemma 5.1, when we regard the Grassmann manifold

Grn;pðCÞFM as the Hermitian symmetric space SUðnÞ=SðUðpÞ �Uðn� pÞÞ,

with the metric induced from the Killing form of suðnÞ, we have

�2n traceUV ¼ ðXU ;XV Þ ¼ �ðl� mÞ2 traceUV ;

where U ;V A T½In�SUðnÞ=SðUðpÞ �Uðn� pÞÞH suðnÞ, so c ¼ 1=2.

In [5], Oh gave some examples of Hamiltonian stable closed minimal

Lagrangian submanifolds in Hermitian symmetric spaces.

Let s : Grn;pðCÞ ! Grn;pðCÞ be an involutive anti-holomorphic isometry

defined as x 7! x, where, for x A Grn;pðCÞ which is represented by a p-

dimensional subspace in C
n spanned by orthonormal vectors ða1j ; . . . ; anjÞ A C

n

ð j ¼ 1; . . . ; pÞ, x is represented by the subspace spanned by fða1j; . . . ; anjÞg
p
j¼1.

Then the fixed point set of s

L ¼ fx A Grn;pðCÞ j x ¼ sðxÞg

is a totally geodesic Lagrangian submanifold, by Proposition 6.1 of [5] or Lemma

1.1 of [7]. Moreover, in [7], it was proved that l1ðLÞ ¼ 1=2, when we regard

the Grassmann manifold Grn;pðCÞFM as the Hermitian symmetric space

SUðnÞ=SðUðpÞ �Uðn� pÞÞ with the metric induced from the Killing form of
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suðnÞ. So L is the Hamiltonian stable totally geodesic Lagrangian submanifold

in M. The element x A L is represented by a p-dimensional subspace in C
n

spanned by orthogonal vectors ða1j; . . . ; anjÞ A R
n
HC

n ð j ¼ a; . . . ; pÞ. Applying

Corollary 1.3 to L, we see that

L C x 7! aj1ak1 þ � � � þ ajpakp

are the eigenfunctions of l1ðLÞ.
Another example is the Cli¤ord torus ~LL embedded in CP

n defined as

~LL ¼ f½z0 : � � � : zn� A CP
n j jz0j ¼ � � � ¼ jznjg:

In particular, if the representative z ¼ ðz0; . . . ; znÞ A C
nþ1 satisfies jzj ¼ 1, then

the norm of each component zj is 1=
ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p

. The Cli¤ord torus ~LL is a mini-

mal Lagrangian submanifold in CP
n, [5]. Moreover, by computing l1ð~LLÞ, Oh

proved that, in [5], ~LL is Hamiltonian stable. So, by Corollary 1.3,

~LL C ½z0 : � � � : zn� 7! Re zjzk ð j0 kÞ

and

~LL C ½z0 : � � � : zn� 7! Im zjzk ð j0 kÞ

are the eigenfunctions of l1ð~LLÞ, where jzjj2 ¼ 1=ðnþ 1Þ for j ¼ 0; . . . ; n.
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