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Abstract. We give a necessary and sufficient condition for a given point on the
unit normal bundle of a closed submanifold N of a 2-dimensional complete Riemannian
manifold M to be a differentiable point of the distance function to the cut locus of N.

Let N be a closed submanifold of a complete Riemannian manifold M and
7 : Uy — N denote the unit sphere normal bundle over N. A unit speed geodesic
segment y : [0,a] — M emanating from N is called an N-segment if t = d(N,y(t))
on [0,a], where d(N,-) denotes the Riemannian distance function from N. In
[8], two functions p and A; on Uy are defined by

p(v) = sup{t > 0; 7] 4 is an N-segment},
which is called the distance function to the cut locus of N and
A(v) == sup{t > 0;7,[;p 4 has no focal point of N},

where y, is the geodesic in M with y,(0) =v. The cut locus Cy of N is defined
by

Cy :={exp(p(v)v);v € Uv, p(v) < o0},

where exp denotes the exponential map on the tangent bundle over M. Each
point of the cut locus is called a cut point of N. Note that y,(4,(v)) is the first
focal point of N (cf. [T] or [10]) along y,, when 4;(v) is finite. Some properties of
these functions were investigated in the paper [8]. For example, it was proved
that the function p on Uy is locally Lipschitz where p is finite. Therefore, from
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Rademacher’s theorem (cf. and [9]) it follows that the function min(p,r) is
differentiable almost everywhere for each r > 0, but this theorem does not tell us
whether a given point is a differentiable one of p or not. It is well-known that p
is differentiable at vy if exp(p(vo)vo) is a normal cut point, i.e., a cut point ¢ of
N 1is called normal if there exist exactly two N-segments through ¢, which is not
a focal point along either of these two N-segments. In this article, we give a
necessary and sufficient condition for a given point of Uv to be a differentiable
point of p in the case where the manifold M is 2-dimensional.

MAIN THEOREM. Let N be a closed smooth (C*) submanifold of a com-
plete 2-dimensional smooth Riemannian manifold M and Uv the unit sphere normal
bundle over N. A point v e Uv with p(v) < oo is a differentiable one of the dis-
tance function p to the cut locus of N if and only if y,(p(v)) is a focal point of N
along y, or there exist at most two N-segments through y,(p(v)).

REMARK. Under the same assumption in the Main Theorem, the set of all
normal cut points is open and dense in each component of Cy, unless the com-
ponent consists of a single point. This Main Theorem was motivated by Kok-
kendorff’s conjecture ([13]), which was in turn a result of experimentation with
the software tool “Loki”.

We refer some basic tools in Riemannian geometry to or [10]. From
now on let (M, g) denote a complete 2-dimensional smooth Riemannian manifold
with Riemannian metric g. We need the detailed structure of the cut locus of N
(cf. [4], [5], [6], [7], [11], [8] and [12]) to prove our Main Theorem. Notice that
we may assume that each connected component of N is 1-dimensional, because
if N contains an isolated point ¢, then the point ¢ and the distance function p
to the cut locus can be replaced by the distance circle {exp(ev) |v e Uy, n(v) = g}
and p,, where p,(5,(¢)) :=p(w) —e for each we UvNzn~!(g), respectively by
taking a sufficiently small positive e. Therefore we prove the Main Theorem by
assuming that each connected component of N is 1-dimensional.

From the Gauss-Bonnet theorem and the Rauch comparison theorem, we get

LemMa 1. Let A(p q r) be a geodesic triangle in an open ball B(p,dy)
centered at a point p with radius oy. If the Gaussian curvature G of M satisfies
—a* < G < a® on the open ball B(p,dy) for some positive number a and if Jy is
less than the convexity radius at p, then

(2 —cosh2ady)/q<m—/p

holds, where /p and /q denote the inner angle of the triangle at the vertices p and
q respectively.

The following four lemmas on the cut loci are fundamental.
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LEMMA 2. The inequality Ay > p holds on Uv, and A is smooth where A, is
finite.  Furthermore, if 1(vy) = p(vo) < 00, then the differential di, of 4, is zero
at vy.

For convenience we introduce a smooth Riemannian metric on Uv. The
following two lemmas follow from Lemmas 2.4 and 2.5 in respectively.

LEMMA 3. Let w(t) be a unit speed smooth curve in Uv with p(w(0)) < oo.
Then there exist positive constants 0 and C; such that

Cult = s| < L(Duin (P(W(0))) sy (P(w(5))))
holds for any s,t € [—09,0] with 7,y (p(w(2))) = Py (p(W(s))). Here

Z(yw(l) (p(W([))), yn(s)(p(w(s))))
denotes the angle made by the two tangent vectors j,,,(p(w(1))) and p,,(p(w(s))).

LemMa 4. Let w(t) be a unit speed smooth curve in Uv with p(w(0)) =
21(w(0)) < co. Then for any ¢ > 0 there exists a positive number 6 such that for

any 1€ [0.0], 7,0)[P((0)) = &, p(w(0)) + 2] and 1,9 [p(w()) = & p(¥(1)) + ] have
a common point.

Let p be a cut point of N and ¢ a positive number less than the injectivity
radius at p. Each component of B(p,é)\uyerp Y[d(N,p)—9d,d(N, p)|, where I,
denotes the set of all N-segments through p, is called a sector at p. It was
proved in [5] (cf. also [12]) that for any cut point p of N and any neighborhood
U around p, there exists a neighborhood V' < U around p such that for any
x,y€ VNCy, x and y can be joined by a unique rectifiable Jordan arc, i.e., an
arc homeomorphic to a closed interval, in "N Cy. This property was proved by
making use of a sector. The following lemma is proved in [12].

LEMMA 5. Let X be a sector at a cut point p of N and m:|[0,1] —
{p}U(CyN2) a Jordan arc issuing from p = m(0). Then the curve m bisects the
sector X at p. Furthermore, let {a, : [0,1,] — Cy} denote an infinite sequence of
arcs in Cy N X with a,(0) ¢ m[0, 1] such that each o, is the unit speed minimal arc
in Cy from 0,(0) to m[0,1] and lim,_,, 0,(0) = p. Then there exists a sequence
{2} of sectors X, at the cut point q, = o,(l,) € m|0, 1], which is the nearest point
on m[0,1] from o,(0), satisfying the following four properties.

1. q,#p for any n and lim,_., q, = p.

2. a,(0) €2, for any sufficiently large n.

3. The sequence of the inner angles of the sectors X, at g, converges to zero.

4. The two N-segments y, and y; , which determine X, bound a disk domain
D(X,) together with the subarc of N cut off by these two N-segments, if n is
sufficiently large.
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Let v(¢) be a unit speed smooth curve on Uv with 4;(v(0)) = p(v(0)) < co.
For simplicity, we put

p(1) = p(u(t), At) :== A4 (v(1), p = exp(p(0)v(0)).
By [Lemma 2, we have

(1) limigfw < lim supw < d(5(0)) = 0
=+ t—+0
and
2) 0 = diy(8(0)) < limi%fw < lim supw.
== t——0

We assume that there exists a monotone decreasing sequence {#,} of positive
numbers convergent to zero such that

limM:: k

n— oo 1,

is positive and each p, :=exp(p(t,)v(t,)) is a normal cut point. Thus A(¢,) >
p(t,) for each n. Let 0 be a positive number less than the convexity radius
at p. Without loss of generality, we may assume that the Gaussian curvature
G of M satisfies |G| <1 on B(p,0). Choose a positive number Jy < J with
cosh2dy < 2. For each g e B(p,dp)\{p}, let 0(q) denote the angle made by
~75(0)(P(0)) and exp!(¢q), where exp~! denotes the local inverse mapping of
exp, on B(p,dy). Let y, denote the unit speed minimal geodesic joining p =

72(0) to py.

LEMMA 6. There exists a positive constant C; such that 0(p,) < Cqt, for
any n.

Proor. Since

p(0) = p(t)

In

lim

n— oo

is positive, for any sufficiently large n there exists a unique point r, on the geo-
desic segment yv(0)|(07 2(0)) which is the nearest point on the segment from p,.
Fix any sufficiently large n, so that r, is defined and A(7) < co on the interval
[0,2,]. Then, by definition,

) d(pnsr) < jo Y (olen)s () d,

where Yy(t;0(7)) is the N-Jacobi field along the geodesic y,,) defined by
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@) Va(t;0(0) =+ exp(in(r).

and

1Y (p(ta); o) = Vg (Ya(p(ta); 0(2)), Yar(p(tn): v(2))).

Since Yy (A(7);v(7)) = 0, there exists a positive constant C3, which is independent
of n, such that

(5) 1 Yn(p(tn); ()| < Glp(2a) = A(7)].

Since p is locally Lipschitz and 4'(0) = 0, there exists a positive constant
C,4, which is independent of n, such that

p(ta) = p(O)] < Gty [4(0) — A(x)] < Cyz?,
Thus by the triangle inequality, we get
(6) [p(ta) = A2)| < Caltn +7°).
Combining (3), (5) and (6), we obtain

In
(7) d(pu,1n) < GGyt <1 -|-§> < GG (14 1),

Without loss of generality, we may assume that the two points r, and p, are in the
ball B(p,dp) and

p(O) = plt))
In

(8)

<

SR

Hence we get the geodesic triangle A(p r, p,) all whose edges are in B(p,dy).
From the Rauch comparison theorem and the Toponogov comparison theorem
(e.g., cf. Theorems 2.5 and 4.2 in [10]), there exists a geodesic triangle A(j 7, p,)
in the 2-dimensional sphere S?(1) of constant Gaussian curvature 1 with same
side lengths such that 6, := 0(p,) is not greater than the inner angle 0, of the
triangle A(p 7, p,) at the vertex p. From the law of sines (or equivalently
Clairaut’s relation), we have

(9) sin 0, sind(p, p,) < sind(py,ry).

By the equations (7) and (8), we may assume that 0, is less than 7/2. Since
. T .
siny < x < > sinx

on the interval [0,7/2], we get by (9)
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5 _ 7 d(pu,Ta)
10 0,<0,< =,
1o T dp.p)
On the other hand, from the triangle inequality,
(11) p(0) — p(ta)| < d(p, pu).
By the equations (7), (8), and [11), we have
7T2C3C4
0, < 1 + 1)ty
e ()
Hence the proof is complete. ]

LEMMA 7. There exists a positive constant Cg such that
— n < G30(py)

for any n. Here x,,y, denote the maximum and the minimum of
{t > 0;exp(p(t)v(t)) = p,} respectively.

PrOOF. At first, suppose that there exists a sector 2 at p whose boundary
contains a subarc of y,,. Choose a cut point p,, from p,s in such a way that
the minimal arc m: [0,1] — Cy joining p to p, lies in 2. From [Lemma 3,
the curve m bisects the sector at p containing itself. On the other hand,
lim, ., 6(p,) =0 by [Lemma 6 Thus, p, does not lie on the curve m for
any sufficiently large n. Choose any sufficiently large n satisfying p, e 2N
B(p,d9)\m[0,1] and fix it. Let a,:[0,/,] — Cy be a unit speed minimal arc in
Cy joining p, = a,(0) to m[0,1]. For each te (0,/,], let X_(a,(¢)) denote the
sector at o,(#) such that

2 (an(2)) 2 o4(t —0,0)

for a small 6 > 0. Note that 2, E (04(1,)) forms a sequence of sectors sat-
isfying the four properties in [Lemma 5 . Since p, is a normal cut point, we may
define the sector X (a,(0)) at ocn(O) if we extend o, to (—d,0] for some ¢ > 0.
Furthermore we may assume the sector X, satisfies the property 4 in [Lemma 3.
Let 0 <t <t <, and let u; < u; (respectively u, < i) denote the parameter
values of v(f) such that y,.,),7,a) (respectively y,u,), Vo)) are the N-segments
determining the sector X_(o,(#;)) (respectively X_(a,(f2))). Since the disc
domain D(X,) = D(X_(a,(l,))) contains both sectors X _(o,(#;)) and X'_(a,(22)),
D(X_(oy(21))) is a subset of D(X_(a,(#2))). Here D(2) denotes the disc domain
bounded by the two N-segments determining the sector X together with the
subarc of N cut off by these two N-segments. In particular, 7o v[uy, ;] is a
subarc of 7o v[uy, ). Thus, from Lemma 3,

(12) i —u < C7'E(Z (on(12)))
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forany 0 <t <t </l,. Here (2 _(x,(¢))) denotes the inner angle of X'_(a,(¢))
at o,(7). Let b, be the maximal number of {/, >t > 0;6(c,(?)) = 0,}, where
0, := 0(p,). Since the set of all normal cut points is open and dense in Cl,
we may assume o,(h,) is a normal cut point of N. Hence (0o a,) (h,) is non-
negative, since 0(a,(/,)) > 0, if n is sufficiently large. Since o, bisects the sector
2 (oy(2)) at a,(¢) for each ¢, we get

(13) %é(f(dn(bn))) < L(7a(d(Ps n(Bn)))s =T o) (P(tn))),

where  u, := min{z > 0;exp(p(£)v(¢)) = a,(b,)}. Since (Qow,) (h,) >0 and
E(Z_(ow(by))) is small, we may assume (0o 7p,,)) (p(u,)) >0. Thus from
[Lemma 4, we get a geodesic triangle A(p o,(ba) 7,0)(P(0) + &,)), where &, > 0,
in the convex ball B(p,dy). Therefore, from Lemma 1, we get

(14) L(Pp(d(pyon(bn))), _J}v(un)(p(un))) < GOy,
where Cg:= (2 —cosh2d)”". Therefore by (12), and [14), we obtain
(15) = %0 < C1E(Z (b)) < 2C7" Cobn,

if there exists a sector 2 at p whose boundary contains a subarc of y,q). Sup-
pose that there is no sector at p whose boundary contains a subarc of y,q.
This case actually occurs (e.g. see the example constructed by Gluck and Singer
in [3]). For each n let 2, be the sector at p containing p,. By (7), the sequence
{X,} shrinks to a subarc of Yo(0) @s n goes to infinity. Thus for any sufficiently
large n, the two N-segments 7, Vys,) determining 2, bound a disk domain
together with 7 o v[u,,%,]. Choose any such »n and fix it. Let g, :[0,/,] — Cy
denote the unit speed minimal arc joining p, = f,(0) to p. Let X_(p,) denote
the sector at p, disjoint from f,(0,/,]. Since D(X,) contains D(X_(p,)), we get
yn— Xy < Cy1E(X,) by Lemma 3. Here &(X,) denotes the inner angle of X,
at p. Thus we may assume that 6, < (1/2)&(2,), otherwise we get y, — x, <
2C;10,. By Lemma 3, 0(B,(¢)) > (1/2)é(X,) for any t < [, sufficiently close to
l,. Therefore there exists a maximum b, in {/, >t>0;0(p,(t)) =06,}. By the
similar argument to the first case, we have the equation [I15). This completes the
proof. ]

THEOREM 8. Let N be a closed smooth submanifold of a complete 2-
dimensional smooth Riemannian manifold M. For any unit speed smooth curve
w(t) on Uy,

L powl) ~pon(0)
t—0 t

if p(w(0)) = 41(w(0)) < oo.

=0,
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PrROOF. Suppose that

lim inf 2200 =2 v(0)
t—+0 t

£0

for some unit speed smooth curve v(¢) on Uv with p(v(0)) = 4;(v(0)) < oo.
Thus, by the equation (1), there exists a monotone decreasing sequence {#,} of
positive numbers convergent to zero such that

p(v(0)) — p(v(tn))

In

lim
n— o0

is positive. For simplicity, we put p(¢) := p(v(z)), A(?) := A1 (v(z)). Since p
is locally Lipschitz, we may assume p, :=exp(p(t,)v(¢,)) is a normal cut
point. If x, and y, denote the maximum and minimum of the set {7 > 0;
exp(p(v())o(t)) = pu} respectively, y,,, and y,,, bound a disk domain D,
together with the subarc moufy, ., of N for any sufficiently large n. Since
CvND, i1s a tree for any sufficiently large n, Cy N D, has an endpoint g, :=
exp(p(sy)v(sy)), Su € (¥, Xn), which is a focal point of N along any N-segment
through ¢,. Furthermore, for any sufficiently large n, p(s,) < p(#,). In fact, let
¢y 1 [0,1] — Cy denote the minimal arc joining ¢, = ¢,(0) to p, and X_(c,(?))
the sector at ¢,(¢) such that

2 (en(t) 2 cult,t —0)

for a small 6 > 0. Choose any sufficiently large n, so that the inner angle at
cn(t) of the sector X2_(c,(¢)) is less than n/2. Thus, from the first variational
formula, d(N,c,(¢)) is monotone increasing. This implies p(s,) = d(N,q,) <
p(t,) =d(N, p,). Therefore, from Lemmas 6 and 7, it follows that

By Lemma 2 and the equation (16), we get

n— o0 tn

<0

Y

which i1s a contradiction. Hence

i 2 =200

for any unit speed smooth curve v(z) on Uv with p(v(0)) = 4;(v(0)) < co. If w(¢)
denotes a smooth unit speed curve in Uy with 4;(w(0)) = p(w(0)) < oo, then we
have
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limint? 2D =20 WO) P o W =po W)

f——+0 t t—+0 t

where w(f) = w(—t). Since

0 = tim inf 22 =0 #(0)

=—1
10 z . ! ’
we get
limine? 2 =P ow0) o qpr o —powl0)
t—+40 t ——0 t

Thus, by (1) and (2),
lirr6/)0W(t) _poW(O) _o. a
t—

PrROOF OF MAIN THEOREM. Let w(z) be a smooth unit speed curve in
Uy. From [Theorem §, p is differentiable at w(0), if i;(w(0)) = p(w(0)) < oo.
Suppose that 4;(w(0)) > p(w(0)). Then there exist two sectors X, and X_ at
exp(p(w(0))w(0)) such that for sufficiently small é > 0,

21 = {exp(p(w(n)w(1));0 <1 <}
and
2 o {exp(p(w(t))w(1));0 > t > —0}.

Let 20, and 26_ be the inner angles of 2, and X_ at exp(p(w(0))w(0)) respec-
tively. From Lemma 2.1 and Proposition 2.2 in [8], it follows that

1) tim 2020y (p0)) ot
and
(1) tim 2P0y 0))) ot

where Y(#) := Yy (5;w(0)) denotes the N-Jacobi field along y,,)(7) defined in the
equation (4) by the unit speed curve w(z) in Uv. If there exist exactly two N-
segments through exp(p(w(0))w(0)), then 0, =7 —6_. Otherwise 0, <7 —0_.
Therefore the proof is complete. O]

The following two corollaries are ones to the Main Theorem.



240 M. TANAKA

COROLLARY 9. Let ¢: (a,b) — Uv be a smooth unit speed curve such that
each cut point exp(p(c(t))c(t)) admits at most two sectors. If p o ¢ is differentiable
on (a,b), then (po¢) :=(d/dt)(po¢) is continuous on (a,b). Hence, if there
exist at most two N-segments through exp(p(c(t))c(t)) for each t € (a,b), then the
curve exp(p(é(1))é(t)), te (a,b), is C.

Proor. If 2;(¢(¢)) > p(¢(t)), then from [17) and [18), we get

(19) (pod)(t) =~ Y1(p(e(1)))ll cot O(2).

Here Y;(¢) := Yn(£;¢(0)) and 26(¢) denotes the inner angle of a sector at ¢(7) :=
exp(p(¢(t))c(?)). Note that ¢(¢) is a normal cut point of N for each differentiable
point ¢ of poc if 4;(¢(¢)) > p(¢(0)). Thus it is clear from that (po¢)’ is
continuous at ¢ if 1;(¢(#)) > p(¢(%)). Suppose that 1;(¢(#)) = p(¢(ty)). From
Theorem §, it follows that

(20) (po@)(t) =0.

Let {a,} be a monotone sequence of points in (a,b) convergent to #, such that
J(e(ay)) > p(c(ay)). By there exists a positive constant C; such that

(21) |an — l()| < Cu?(an).

Here 26(a,) denotes the minimum of all the inner angles of the two sectors at
c(a,). Since Yi(p(c(ty))) =0, there exists a positive constant C; such that

(22) 1 Y1 (p(e(an)ll < Calp(c(an)) — p(e(t0))]-

From the equations [19), [20), [21] and [22), we get lim,_(po¢)'(a,) = 0.
Hence

lim(pod)'(t) =0=(pod)(t).

—1
Therefore (po¢)’ is continuous on (a,b). ]

CoROLLARY 10. The function p is differentiable on {v e Uv;p(v) < o0} except
a countable subset.

Proor. From the Main Theorem, if v(#) is a non-differentiable point of
p, where v(t), te€ (a,b), denotes a unit speed smooth curve on Uv such that
p(v(t)) < oo on (a,b), then Ai(v(ty)) > p(v(ty)), and exp(p(v(ty))v(ty)) admits at
least three sectors or there exists a non-constant curve w(s), se€ (a,f), in Uy
such that exp(p(w(s))w(s)) = exp(p(v(ty))v(ty)), for any s e («,f). The set S of
all such cut points is a countable set (cf. [12]). Furthermore, for each g€ S,
A(q) :={v e Uvjexp(p(v)v) = q,p(v) < 41(v)} is countable. Thus quSA(q) is
also countable. O
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