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Abstract. We study rationally connected (projective) manifolds X via the concept
of a model (X,Y), where Y is a smooth rational curve on X having ample normal
bundle. Models are regarded from the view point of Zariski equivalence, birational on
X and biregular around Y. Several numerical invariants of these objects are introduced
and a notion of minimality is proposed for them. The important special case of models
Zariski equivalent to (P",line) is investigated more thoroughly. When the (ample)
normal bundle of Y in X has minimal degree, new such models are constructed via
special vector bundles on X. Moreover, the formal geometry of the embedding of Y in
X is analysed for some non-trivial examples.

0. Introduction.

A complex projective manifold is rationally connected if there is a rational
curve passing through two general points of it. Rationally connected manifolds
were introduced by Kollar, Miyaoka and Mori in and turned out to be a
very useful generalization to higher dimensions of the classical notion of rational
surface. For instance, rational connectedness is both birationally invariant and
deformation invariant; moreover, unirational manifolds and Fano manifolds are
rationally connected.

The main purpose of this paper is to propose a point of view in the study
of rationally connected manifolds by introducing the concept of a model, defined
to be a pair (X, Y), where X is a projective manifold and Y is a smooth rational
curve with ample normal bundle in X. The existence of such a curve Y on X is
actually equivalent to the fact that X is rationally connected in the sense of [18].
There is an obvious notion of isomorphism of models. More importantly, we
want to study them from the point of view of Zariski equivalence: two models
(X,Y) and (X', Y') are said to be Zariski equivalent if there are open subsets
UcX, YcUand U' c X', Y < U’, and an isomorphism ¢ : U — U’ with
9(Y)=7Y'. The advantage of this notion is that it provides a convenient link
between the birational and the biregular point of view (e.g. see Remark 1.5). We
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also propose (see [Definition 1.15) a notion of minimal Zariski model, which is
a normal (in general singular) model (X, Y) such that Y meets every effective
divisor of X. |Proposition 1.21 shows that this definition generalizes the usual
(relatively) minimal models of rational surfaces. However, at present, neither
existence, nor uniqueness of a minimal Zariski model in a Zariski equivalence
class of models, is proved.

In the first section we examine systematically natural local and global numer-
ical invariants of models. Several nontrivial examples show that these invariants
are in general independent. We pay special attention to models (X, Y) for which
there is some divisor D on X with (D-Y)=1 and s =:dim|D| > 1. This par-
ticular class of models is studied in [Theorem 1.12; the result states that, modulo
a deformation of Y, we may find a Zariski equivalent model (X', Y’) admitting
a surjective morphism with connected fibres ¢ : X’ — P* and mapping Y’ to a
line. Moreover, ¢ is smooth along Y’ and smooth fibres of ¢ are rationally
connected. In case s = dim(X) we get that (X', Y') is Zariski equivalent to the
simplest possible model, (P’ line); in particular, it follows that X is rational.
This improves Theorem 4.4 from [I].

In section two we propose a conjecture (see 2.3) in which models (X, 7Y)
Zariski equivalent to (P”",line) are characterized by the presence of a linear
system |D| on X having the highest possible dimension with respect to (D - Y)
(see also [Proposition 2.1 for the precise statement). In [Proposition 2.10| we show
(using Mori’s solution of Hartshorne’s conjecture, see [23]) that our conjecture
follows from the existence of a smooth minimal Zariski model equivalent to the
given one.

In the third section we study polarizations of models and their deformations.
The main result here is [Theorem 3.2l which shows that, modulo deformations,
there are only finitely many isomorphism classes of polarized models (X, Y, H)
having fixed dimension and ‘“degree” =: (Y - H) (here H is an ample divisor on
X). The proof uses Matsusaka’s theorem ([22]) together with its refinement in
and several facts from Mori theory.

In the last section we investigate models (X, Y) where Y is a quasi-line in the
sense of [1], i.e. the (ample) normal bundle of Y in X has minimal degree, Ny y ~
Opi (1)@ - @ Opi(1). We first give a useful construction which produces new
such models starting with a given one and with a suitable vector bundle on X (see
IProposition 4.2). Next we answer in the negative Questions 5.2, 5.3 and 5.7
from [I]. First we show by an example that a smooth minimal Zariski model
(X, Y), where Y is a quasi-line, need not be Fano (see |Proposition 4.6). Then
we construct a model (X, Y), where X ~ P(T}p:), such that the formal comple-
tions )?|Y and Pﬁine are not 1somorphic, although the local numerical invariants
of (X,Y) and (P, line) are the same (see [Corollary 4.9 and [Proposition 4.10).
Here we use standard local cohomology techniques (see [8]) and results of Hart-
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shorne ([9] and [10]) relating cohomological dimension and the properties G2, G3
introduced by Hironaka and Matsumura ([12]).

In writing down this paper we were largely motivated by [1]. For instance,
all results in the fourth section of |1] are generalized to the case of models; we also
quoted several nontrivial examples from [I]. Moreover, as already explained, we
answered (in the negative) Questions 5.2, 5.3 and 5.7 from [1].

We work over C and we follow the standard notation in algebraic geometry
(see e.g. [11]).

1. Models and their Zariski equivalence.
Let X be a complex projective manifold of dimension n > 2.

DerFINITION 1.1. (cf. [18]) X is said to be rationally connected if it contains
some smooth rational curve having ample normal bundle.

This definition, which is better suited for our purposes, is apparently stronger
than the original one in [18], but it turns out to be equivalent to it. Indeed,
if n>3 and X is rationally connected in the sense of [18], Theorem 3.9 from
Chapter IV yields the existence of a smooth rational curve with ample
normal bundle on X. In case n =2, being rationally connected in the sense of
[18] is equivalent to being rational, and every rational surface contains a smooth
rational curve of positive self-intersection.

The main properties of rationally connected manifolds are summarized in the

following theorem (see [18], [19], [2] or [16], Chapter IV).

Tueorem 1.2. (Kollar-Miyaoka-Mori, Campana)

(1) If Y is a smooth rational curve with ample normal bundle on X, then the
deformations of Y with a fixed point fill up an open subset of X;

(i) wunirational manifolds and Fano manifolds are rationally connected,

(ii1) being rationally connected is a birationally invariant property;

(iv) smooth deformations of rationally connected manifolds are rationally
connected,;

(v) rationally connected manifolds are simply connected and they satisfy:
HO(X, Q%" =0 for m>0 and H'(X,0x) =0 for i > 0.

DEerFINITION 1.3. By a model (of rationally connected manifolds) we mean
in what follows a pair (X, Y), where X is a projective manifold and ¥ < X is a
smooth rational curve with ample normal bundle in X.

Note that the simplest example is (P”",line).
Two models (X, Y) and (X', Y’) are isomorphic if there is an isomorphism
¢: X — X' such that ¢(Y) = Y’'. The basic definition for us is the following.
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DEerINITION 1.4, Two models (X,Y) and (X', Y') are Zariski equivalent,
denoted (X,Y) ~z (X', Y’), if there are open subsets Uc X, Y < U and
U cX', Y U, and an isomorphism ¢ : U — U’ such that ¢(Y)=Y'.

Note that X and X’ are in this case birationally equivalent.

REMARK 1.5. We stress at this point that we are not merely studying
rationally connected manifolds, the fixed curve Y being part of the structure.
On the other hand, given a rationally connected manifold X, we can use models
(X,Y), for suitably chosen curves Y, in order to understand the birational

>

geometry of X. We illustrate this by the following example.

ExampLE 1.6. (see [14]) Let X be a smooth quartic threefold in P*. Being
Fano, X is rationally connected by (ii). If one could prove that
any birational automorphism ¢ of X induces a Zariski equivalence between two
models (X,Y) and (X, Y’) (for some well-chosen curves Y and Y’), it would
follow easily (see e.g. [Corollary 1.19 below) that ¢ has to be a biregular auto-
morphism of X. Actually, it was proved in [14], using delicate techniques, that
indeed, every birational automorphism of X is a biregular one. As the group of
biregular automorphisms of X is finite (see [21]) it follows that for any choice of
the curve Y, if Y’ is a general deformation of Y, the models (X, Y) and (X, Y’)
are not Zariski-equivalent.

We first consider local properties of a given model (X, Y), which depend
only on a neighbourhood of Y in X and thus are invariant with respect to Zariski
equivalence. Fix such a model (X,Y). By Grothendieck’s theorem (see |7]),
Nyjy =~ (—B;l Opi(a;), a; > 0 for every i. A first set of local numerical invariants
of (X,Y) is:

a(X,Y) = (a,...,a,1).

We let a(X,Y) = Zf:_ll a; = degNyjy, so we have by adjunction formula:
—(K-Y)=a(X,Y)+2, where K is the canonical divisor of X. Recall from
that Y is called a quasi-line if a(X,Y)=(1,...,1) or, equivalently, a(X,Y) =
n—1.

A

Consider now X/\Y> the formal completion of X along Y, and K(X|y) the

ring of formal-rational functions of X along Y. Recall the following definitions,
which make sense for any subvariety ¥ < X (see [12]).

A

DerFiNiTION 1.7, (i) Y is G2 in X if K(X|y) is a field and the extension of
fields K(X) — K(Xy) is finite (here K(X) is the field of rational functions on X).
Denote by b(X, Y) the degree of this extension.

(i) Yis G3 in X if (X, Y)=1.
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For any model (X, Y), since Nyy is ample, a basic result due to Hartshorne
([9]) says that Y is G2 in X. Note that, obviously, if (X,Y) ~z (X', Y’) then
the formal completions )A(‘y and )2|’Y/ are isomorphic. Thus b(X, Y) is a local
numerical invariant of the model (X, Y). For us, the importance of the G3

condition comes from the following fact, which is a consequence of results due to
Gieseker ([6]).

PropPOSITION 1.8.  If we have two models (X,Y) and (X', Y') such that Y is
G3in X, Y' is G3 in X', and moreover the formal completions AA"Y and )ﬁ’y, are
isomorphic, then (X,Y) ~z (X', Y').

We recall also the following useful notion, due to Hartshorne ([9]).

DerINITION 1.9. The cohomological dimension of a scheme W, denoted
cd(W), is defined by

cd(W)=min{j > 0|H'(W,#) =0, for all i >; and for all coherent
sheaves # on W}.

The following proposition (to be used in the last section) is a special case of
results proved in [10], Chapter V, Corollary 2.2.

ProposITION 1.10. Let (X, Y) be a model and let n =: dim(X).

(i) If cd(X\Y)<n—1, then Y is G3 in X;

(ii) if Y meets every effective divisor of X and Y is G3 in X, then cd(X\Y) <
n—1.

We consider now another local numerical invariant of a model (X, Y):
c(X,Y)="min{(D-Y) >0|DeDiv(X)}.

Note that ¢(X,Y) is indeed a local invariant, since for any open subset
U c X, the restriction map Pic(X) — Pic(U) is surjective. Remark that, by
(v), the exponential sequence and the GAGA principle, we have
Pic(X) ~ H*(X,Z). Thus ¢(X,Y) is nothing but the order of the cokernel of
the natural restriction maps Pic(X) — Pic(Y) ~ Z or H*(X,Z) — H*(Y,Z) ~
Z. Recall from that Y is called an almost-line if it is a quasi-line and
moreover ¢(X,Y) = 1.

ExampLEs 1.11. (i) (cf. [1], (2.7)). For each n > 3, there is a model (X, Y)
with dim(X) =n such that:

(a) Y is an almost-line;

(b) b(X,Y)=n+1;

A ~

(C) Xv|Y = Pﬁine'
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(i) Let X be a Fano threefold of index two with Picard group generated
by the class of the hyperplane section. It was first proved in [26] (see also [1],
for a more conceptual argument) that X contains a quasi-line Y with
c(X,Y)=2.

Let (X,Y) be a model such that ¢(X,Y)=1; fix some D e Div(X) with
(D-Y)=1 and let s=:dim|D|. We remark (e.g. by applying
2.1 below) that we must have s < n; actually, in our special case, we can say
more. The following result is a generalization of Theorem 4.4 in [I], where Y
was assumed to be an almost-line and, moreover, s was supposed to take on its
maximal value, s = dim(X).

THEOREM 1.12.  Keeping the above notation and assumptions, suppose more-
over that s > 1. Then, for a general deformation of Y, say Y|, there is a model
(X', Y'") Zariski equivalent to (X,Y,) such that the following hold:

(1) there is a surjective morphism with connected fibres ¢ : X' — P°, which is
smooth along Y';

(ii) there is a line [ in P* such that Z =: ¢~ ' (1) is smooth and Y' is contained
in Z such that Ny z is ample; moreover, Y' is a section for 25

(iii) any smooth fibre of ¢ is rationally connected.

ProOF. The proof runs parallel to that of Theorem 4.4 in [1]. Note, how-
ever, that here we shall proceed by induction on s, while in induction was
made with respect to n. We include the details, for reader’s convenience. Write
|D| = E+ |M]|, E being the fixed part and |M| the moving part of |D|, respec-
tively. We have (E-Y) >0 and (M -Y) >0 since both Y and M move. The
relation (E-Y)+ (M -Y)=(D-Y)=1 implies (M -Y)=1; so, by replacing
|D| by |M|, we may assume |D| to be free from fixed components. Next, using
Hironaka’s desingularization theory, we may find a composition of blowing-ups
along smooth centers, say ¢ : X’ — X such that ¢*(|D|) = E' + |D’|, where |D’| is
base points free, £’ is the fixed part of |E’ 4+ D'| and o(Supp(E’)) is contained in
the base locus of |D|. We let ¢ = ¢ : X' — P°. Using [16], Chapter 11, Prop-
osition 3.7, we can find a deformation of Y, say Yj, having ample normal bundle
and not meeting the base locus of |[D|. We let Y’ =:67!(Y;). The proof of (i)
proceeds by induction on s. In case s =1, we only have to remark that the
fibres of ¢ are connected, since (D-Y) = (D'-Y’)=1. Assume now that s > 2.
Using again that (D’ Y') =1, it follows that ¢ is not composed with a pencil.
As s> 2, by Bertini’s theorem we may find a smooth, connected, member
A e |D'| passing through two general points x, y € X’. Using (i) we
may replace Y’ by a deformation of it (still having ample normal bundle) that
passes through x and y. As (4-Y’) =1, it follows that Y’ < 4. Consider the
exact sequence of conormal bundles:
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O_) (QPI(—I) _)N;/lxl _>N;<//|A _>O

Since H'(P', Upi(—1)) =0 and HY(Y', Ny, ) =0, it follows that H(Y', Ny, ,)
=0. Therefore Ny, is ample. We also have the standard exact sequence:

0— 0)(/ — (QX/(D/) — @A(D/) — 0

and we know by [Theorem 1.2 (v) that H'(X' Ox/)=0. It follows that
dim]D|’ | =s—1, so we may apply the induction hypothesis to the model (4, Y”).
In particular, as we have 4 = ¢ '(H) for some hyperplane H ~ P*"! = P*, we
get that the restriction of ¢ to 4 maps 4 onto H. As the image of ¢ is non-
degenerate in P°, ¢ must be surjective, too. It also follows that the general fibre
of ¢ is connected. This ensures (using Stein factorisation) that all fibres of ¢ are
connected, since ¢ is surjective and P* is normal (in fact smooth). This proves
(i). (i) follows by the preceding argument noting that, if x,ye X’ are two
general points, the line / in P° determined by ¢(x), ¢(y) is also general, so
Z =: ¢~ (1) is smooth, by Bertini’s theorem. To show (iii), by what we already
proved and by [Theorem 1.7 (iv), it is enough to see that a general fibre of ¢|,
is rationally connected. To this end we shall use the model (Z,Y’). Let z be
a general point of Z and let F be the fibre of ¢|, passing through z. Take
some other point z' € F. It follows that there is some deformation of Y’ inside
Z which is a tree T of rational curves joining z and z’. Since we have (F - Y') =
(F-T) =1, it follows that the intersection number of F with an irreducible com-
ponent of 7 can take on only the values zero or one. Moreover, there is exactly
one component for which this intersection number is one and the components
of T contained in F give a chain of rational curves joining z and z’. So F is
rationally connected (see [18]). O

Keeping the notations and assumptions of [Theorem 1.12) let a(X,Y) =
(ai,...,ay-1).

CoroLLARY 1.13.  We have:

(1) card{i|a;=1} >5—1;

(ii) (cf. [1], Theorem 4.4) if s=n, (X', Y') ~z (P", line);
(iti) if s=n—1, the general fibre of ¢ : X' — P" ! is P!,

Proor. With the same notations as in the proof of [Theorem 1.12], we have:
Nzyly, =~ Nyps ~ (QPI(I)@(FI)-
Moreover, the exact sequence:
0 — Nyjz — Nyxr — Nzjxi|y = Pl(l)@(kl) — 0

splits. If we let a(X,Y))=a(X",Y')=(a],...,a, ), it follows that

* ¥n—1
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card{i|a; =1} >s—1. As Y; is a general deformation of Y, we have
moreover: card{i|a; = 1} > card{i|a = 1} (see [16], Chapter II, Lemma 3.9.2).
This proves (i). (ii) follows by induction on s=mn, as in the proof of the
theorem. Note that in [I], Theorem 4.4 we assumed moreover Y to be an
almost-line. But this follows from part (i) of the corollary. (iii) comes directly

from [I'heorem 1.12 (iii). ]

REMARK 1.14. 1t is not clear if, given a model (X, Y) with ¢(X,Y) =1, we
can always find D € Div(X) such that (D-Y)=1 and dim|D| > 1 (we do not
know the answer even for the special case when Y is an almost-line).

Next we turn to some global properties of models (X, Y). It follows from
(v) that Pic(X) ~ H?(X,Z) is a free abelian group of finite rank;
we denote by p(X) =: rank Pic(X) the base-number of X. Clearly, p is not an
invariant for Zariski equivalence. For instance, if ¢: X' — X is a birational
morphism between projective manifolds and Y < X is a smooth rational curve
with ample normal bundle, we may apply [16], Chapter II, Proposition 3.7 to
find a deformation Y; of Y and a curve Y’ in X’ such that ¢ induces a Zariski
equivalence between the models (X', Y’) and (X, Y;). It is then natural to
seek for a model in each Zariski equivalence class having a minimal base-
number p.

DeriNiTION 1.15. Let X be a normal projective variety such that:

(i) there is a smooth rational curve Y contained in the smooth locus of X,
such that Nyy is ample;

(ii) Y meets every effective (Weil) divisor of X.
We call the pair (X, Y) a minimal Zariski model.

Two natural questions arise:

I. Existence: is every model Zariski equivalent to a minimal one?

II.  Uniqueness: are two Zariski equivalent minimal models isomorphic?

For the moment it is not clear to us what is the “good” class of singularities
that we may allow on a minimal Zariski model in order to ensure a reasonable
answer to the above questions. We hope to return to this matter in the future.
We shall see in |Proposition 1.21 below that singularities are necessary even in
the simplest case, n =2. With some extra-hypothesis we can sometimes ensure
uniqueness, as in the following.

DErFINITION 1.16. A smooth model (X, Y) is anticanonical (or Fano) if —Ky
is ample.

ProrosiTION 1.17. Two smooth anticanonical minimal Zariski models which
are Zariski equivalent are isomorphic.
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Proor. Let (X,Y) and (X', Y’) be two such models. Assume that
¢:X---— X' is a birational map yielding a Zariski equivalence between (X, Y)
and (X', Y’). By minimality X and X' are isomorphic in codimension one.
In particular ¢*(Ky/) = Ky. Since |-mKy| and |-mKy-| are very ample for
m > 0, it follows that ¢ 1s actually an isomorphism. ]

CoroLLARY 1.18. Let (X,Y) be a model which is Zariski equivalent to a
model (Xo, Yo) with p(Xo) = 1. Then any two smooth minimal Zariski models of
(X,Y) are isomorphic.

PrOOF. Any two smooth minimal Zariski models of (X, Y) are isomor-
phic in codimension one. In particular, their base number is the same. Since a
model with p =1 is both minimal and anticanonical, the result follows from the
proposition. ]

CoroLLARY 1.19. If p(X) = 1, any birational automorphism of X inducing a
Zariski equivalence between two models (X,Y) and (X,Y') is a biregular auto-
morphism of X (so (X,Y)~ (X,Y")).

RemMARK 1.20. Recall from [Theorem 1.2 (v) that any smooth model is
simply connected. In general, a singular minimal Zariski model need not be
simply connected. Indeed, the examples constructed in [I], Example 2.7 and
denoted there by (Z, Y) are minimal (by construction) but they are not simply
connected. Otherwise, by minimality, an open Zariski neighbourhood of Y in Z
would be simply connected (since it is got by throwing out a closed subset of real
codimension > 4) and this is not the case.

The following proposition shows that in case » =2 we have a clear and
complete picture of all models, together with their minimal Zariski models; in
particular, it appears that our “minimal Zariski models” are an attempt to gen-
eralize the classical “relative minimal models” of rational surfaces. The notation
follows that of [11], Chapter V, Section 2.

PropoOSITION 1.21.  Assume that n=2. Given a model (X,Y), there is a
unique minimal Zariski model (Xo, Yo) and a birational morphism ¢ : X — Xj
inducing a Zariski equivalence between (X,Y) and (Xy, Yo). Moreover, (X, Yo)
is one of the following:

i) Xo~F, e=0, Yoe|Co+pf|, f>e

(i) Xp =~ P>, Y, is a line or a conic;

(iti) Xy is the cone in P over the rational normal curve of degree e in P,
e>2, Yy is a hyperplane section.

a(X,Y) = (Y?) can take on any positive value, Y is always G3 in X (so
X, Y)=1) and ¢(X,Y)e{1,2}.
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ProOF. Y is nef and big, so H!(X,0x(—Y)) = 0 by the vanishing theorem.
The exact sequence:

0— Ox(=Y)— Oy — Up1 — 0

shows that H'(X,0y) = 0 (of course, this is a special case of (v)).
Let a=: (Y?) > 0. The exact sequence:

0— Oy — Ox(Y) = Opi(a) = 0

together with the vanishing of H'(X, y) show that the linear system |Y| is base
points free and 2°(X, Ox(Y)) = a+2. Therefore we may consider the morphism
p=¢y X — P“*! and we denote by Xj its image. We have deg X - degp =
a. As dim Xy =2 and X, is nondegenerate in P”“, we have moreover:

a>deg Xy >codimXy+1=a.

So ¢ is birational and Xj is a surface of minimal degree. By a classical
result, going back to Del Pezzo, (see e.g. [4] for a modern proof) Xj is either:

(i) a rational normal scroll, or

(i) P?* or its Veronese embedding v:(P?) < P°, or

(iii) a cone over the Veronese embedding of P! in P“.
Both the fact that ¢ is an isomorphism along Y and the uniqueness of minimal
Zariski models follow in our case from Zariski’s Main Theorem, since Xj is
normal. See [10], p. 208 for the fact that Y is G3 in X. The rest is standard
(see [11], Chapter V, Section 2). O

Let us point out that, for n > 3, there are examples of models (X, Y) whose
minimal Zariski model is (P",line), such that there is no birational morphism
from X to P" (see [1], Example 4.7).

2. Models of (P" line).

Let (X, Y) be a model and consider some effective divisor D € Div(X). As
Y moves, we have (D-Y) >0 and moreover, (D-Y) >0 if dim|D| > 1. The
following result goes back to Oxbury ([26]), who stated and proved it in a special
case.

PropoOSITION 2.1. Let (X,Y) be a model with dim(X) =n and let D be an
effective divisor on X. Put d =:(D-Y). Then we have

(X, 0x(D)) < (d i ”)

n

ProoF. We may assume d > 0. Consider the d-th jet bundle of Oy (D),
denoted #,(D). Consider also, as in [26], the natural map
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u: H(X,0x(D)) ® Oy — #,(D)

which sends a section to its d-th jet. We claim that u is generically injective, so
d+n 0 0
rank #,(D) = " > rank(H"(X,0x(D)) ® Ox) = h" (X, Ox(D)).

Let s € H(X,Ox(D))\{0} and let D' =: (s),. If xe Y Nsupp(D’), by
1.2 (i) we may deform Y to some Y’ by keeping x fixed, so that the local inter-
section number (Y'-D’). be defined. Assume now that u,(s) = 0. This means
that (Y'-D’), >d = (Y - D), so s has to be zero. Thus u is injective in the open
set swept out by the deformations of Y having ample normal bundle. ]

DErFINITION 2.2. For a given model (X, Y) with dim(X) =n, an effective

d
divisor D € Div(X) such that d =: (D-Y) > 0 and h°(X, Ox(D)) = ( +n> is
called extremal. "

Characterising conveniently models Zariski equivalent to (P” line) is a
natural problem. As a step towards its solution we propose the next:

CONJECTURE 2.3.  The following are equivalent for a model (X,Y):

() some extremal divisor exists;
(i) (X,Y) ~z(P" line).

The implication (ii) = (i) is quite obvious. Moreover, a necessary condition
for the converse implication to hold is that Y has to be a quasi-line. This is
indeed the case by the following:

LemMA 2.4. Assume that the model (X,Y) admits an extremal divisor D.
Then Y is a quasi-line.

ProOF. In our case the map u: H°(X,Ox(D)) ® Ox — #,(D) from the
proof of [Proposition 2.1 is a generically injective map from a trivial vector bundle
to a vector bundle of the same rank. So its determinant is a non-zero global

section of the line bundle det( #,(D)). From the standard exact sequences of jet
bundles:

0— §"(Qx) ® Ox(D) = 4,(D) = 4, 1(D) =0
we find by successively taking determinants:
det( 7;(D)) = Ox(r(dK + (n+ 1)D)),

d+n

where r =: (l/d)(d_ :

). As det(u) is a non-zero global section of Oy (r(dK +
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(n+1)D)) it follows that (dK+ (n+1)D-Y)>0, so —(K-Y)<n+1, or
a(X,Y)<n—1; thus a(X,Y)=n—1 and Y is a quasi-line. ]

COROLLARY 2.5. The conjecture is true if n=2.

PrOOF. Indeed, by the lemma Y is a quasi-line, hence (Y?) = 1. It follows
that X admits the birational morphism ¢y, to P?, which is an isomorphism along
Y. [

ReEmMARK 2.6. We proved in [Corollary 1.13 (ii) that in case d =1 the
conjecture holds true after replacing the model (X, Y) by (X, Y;), where Y is
a general deformation of Y. Note that this result can be used as a (sufficient)
rationality criterion for a rationally connected manifold X.

COROLLARY 2.7. Let (X,Y) be a model. Assume that there is a nef and big
divisor D € Div(X) such that (D-Y)=1. Then (X,Y') ~z (P" line), where Y’
is a general deformation of Y.

The proof given in [1], Corollary 4.6 (i) in the special case of quasi-lines
works with minor changes.

It is a natural question to ask if the hypothesis of |Corollary 2.7 is also
necessary to ensure that (X, Y) is Zariski equivalent to (P",line). We show that,
for any n > 3, this is not the case.

ExampLE 2.8. (cf. [I], Example 4.7) For each n >3, there are models
(X, Y) Zariski equivalent to (P",line) such that there is no nef and big divisor D
on X with (D-Y)=1.

For the proof we need the following useful lemma, due to Fano (see [16],
Chapter V, Proposition 2.9).

LemMa 2.9. (Fano) Let D be a nef divisor on the projective n-dimensional
manifold X. Assume that for some d > 0 we have a point x € X and an algebraic
family of irreducible curves {Y,}, joining x and a general point t € X, and such that
(D-Y,) <d. Then (D")<d".

Consider now the examples (X, Y) constructed in [1], Example 4.7. If there
were a nef and big divisor D on X such that (D-Y) =1, by Thm 1.2 (i) and the
above lemma it would follow 0 < (D") <1, so (D")=1. But it was proved
in [1], Example 4.7 that the self-intersection of a nef divisor on X cannot be one.

The following proposition shows the usefulness of the existence of a smooth
minimal model in a given Zariski equivalence class.

PROPOSITION 2.10.  Assume that the model (X,Y) admits a smooth minimal
Zariski model. Then Conjecture 2.3 is true for (X,Y).
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ProOF. It is easy to see that an extremal divisor D descends to a smooth
minimal Zariski model, so we may assume that (X, Y) is minimal. We shall
prove that X ~ P". We look again at the map

u: H'(X, 0y (D)) ® Oy — #,(D)

from the proof of [Proposition 2.1, keeping the same notations. By the proof of
and our minimality hypothesis, u is actually an isomorphism. Thus
the jet bundle #;(D) is trivial. Consider now the exact sequences:

(+) 0 — S(Qx) ® Ox(D) — 4(D) = #i_,(D) — 0,

for 0 <i<d. As #,(D)is trivial, it follows that Oyx(D) = #,(D) is spanned by
global sections. Dualizing the above sequence for i = d, it follows that S9(Ty)
is also spanned by global sections, so Ty is a nef vector bundle. Recall from
Theorem 1.2 (v) that y(Cy) = 1. From the next lemma we deduce that X is a
Fano manifold. But we have seen in the proof of that det( #,(D)) ~
Ox(r(dK + (n+1)D)). As det( #,(D)) is trivial and —K is ample, it follows that
Ox (D) is ample. This in turn implies (as above, by dualising the sequence (x)
for i =d) that S9(Ty) is ample, so Ty is ample. We conclude by Mori’s
theorem (see [23]) that X ~ P”". !

We have extracted the following lemma from [3].

LemMa 2.11. (Demailly-Peternell-Schneider) Assume that for a given projec-
tive manifold X with nef tangent bundle we have y(Ox) #0. Then X is Fano.

Proor. If Ty is nef, —K is nef, so we have (—1)"(K") >0. If (K")=0,
using the Fulton-Lazarsfeld inequalities and Riemann-Roch theorem as in [3]
p. 332 we get x(Ux) = 0 and this was excluded. So (—1)"(K") > 0. Since —K
is nef, this means that —K is big. But on a manifold with Ty nef any effective
divisor is nef (see [3], p. 319); consequently, any big divisor is ample ([3], p. 320).
So —K is ample. ]

REMARK 2.12. Sommese ([27]) proved (modulo Hartshorne’s conjecture,
now Mori’s theorem) that, if a compact complex manifold possesses a line bundle
L such that #,(L) is trivial for some d > 0, then one of the following holds:

(i) Ty and L are trivial;

(i) X ~P".

Alternatively, one may use his result in order to prove |Proposition 2.10).

3. Polarizations and deformations of models.
We begin by introducing a global numerical invariant of a model (X, Y):

d(X,Y)=min{(Y - H)|H ample divisor on X}.
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Note that, clearly, we have d(X,Y) > c(X, Y); moreover, equality holds if
p(X)=1. The following proposition illustrates the use of polarizations.

PropoOSITION 3.1.  For a model (X,Y) and an ample divisor H € Div(X), let
d=:(H Y).

(1) If dK+ (a(X,Y)+2)H is nef, then X is Fano,

(i) if d(X,Y)=1, then (X,Y)~ (P" line).

Proor. (i) If dK + (a(X, Y) + 2)H is nef, by the Kawamata-Reid-Shokurov
Theorem (see [15]) it follows that |m(dK + (a(X,Y) +2)H)| is base-points free
for some m > 0. If De|m(dK + (a(X,Y)+2)H)|, it follows that (D-Y) =0
and this forces dim|D| =0, so D is trivial and X is Fano.

(i) (K4 (a(X,Y)4+2H-Y)=0, so K+ (a(X,Y)+2)H is not ample.
As we have a(X,Y)+2 > n+ 1, from [13], main theorem, it follows that X ~ P"
and Y has to be a line. [

Next we consider deformations of models. Let (X, Y) be a model. By a
deformation of (X,Y) we mean a commutative diagram

wy g
-
T —— T

where p,q are proper smooth morphisms, i is a closed embedding, T is a con-
nected scheme such that (%;,%;) is a model for each (closed) 1€ T and (X,Y) ~
(44,,%;,) for some #, e T. Remark that the special case Z = X x T, p being
the projection, was already used in the previous sections. We say that (X, Y)
and (X', Y’) are deformation equivalent if both appear as fibers of the same
deformation.

Note that ¢(X,Y) is not invariant in a deformation (see however [16],
Chapter II, Lemma 3.9.2, for a semicontinuity property), but a(X, Y) is. The
proof of Proposition 3.10 (ii) from shows that both ¢(X,Y) and d(X,Y)
behave upper semicontinuously in a deformation. As p(X) is just the second
Betti number of X, it is deformation invariant.

By a polarized model we mean a triple (X, Y,H), where (X, Y) is a model
and H is an ample divisor on X. Let d =:(H-Y). The following theorem
shows that polarized models of fixed dimension and ‘“‘degree” d are, in principle,
classifiable. See and for the actual classification of the first nontrivial
cases: n=23, a(X,Y)=(1,1) and d(X,Y) < 4.

THEOREM 3.2. Fix n>2 and d > 0. There are only finitely many isomor-
phism classes of polarized models (X,Y,H) with dim(X)=n and (H-Y)=d,
modulo deformations.
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ProOF. The proof is based on Matsusaka’s theorem (see [22]), together with
its refinement from [17]. According to the main result in [22], it is enough to
show that, for fixed n and d as above, only finitely many Hilbert polynomials of
polarized pairs (X, H) can occur. Moreover, Lemma 5.2 in shows that, in
order to ensure this finiteness condition, it is enough to bound the first two
top coefficients of the Hilbert polynomial. We refer the reader to Theorem 3
in for the precise statement. So, it will be enough to prove that (H")
and (H"'-K) are bounded by some functions depending only on n and d.
Note that already gives 0 < (H") <d”". It remains to prove that
(H"!'.K) is bounded. Set H; =:K + (n+2)H. By Mori’s Cone Theorem
(see [24]) H; is ample on X. Put dj = (H,-Y)=(K-Y)+ (n+2)d. As we
have (K-Y)<-n—-1, we get 1 <d <(n+2)d—n—1, so d; is bounded;
moreover, (H{') <d{, again by Fano’s lemma. Recall that the arithmetic genus
of an ample divisor H; is defined by the formula:

2pa(Hy) = 2= ((K+(n— 1)Hy) - H™").

It is proved in [I3], Lemma 7, that p,(H;)>0. It follows that —2 <
(K- H!"')+ (n—1)(H}"), which shows that (K- H{'"!) is bounded from below,
say by a function a(n,d). Moreover, we have:

di' 2 (H{') = (K + (n+2)H) - H{") 2 a(n.d) + (n+ 2)(H - H"").
It follows that (H - H{'"!) is bounded from above.

On the other hand, a well-known generalization of the Hodge index theorem
(see e.g. p. 301) says that for any nef divisor D and any ample H we have
(Hj+1 .Dn—j—l) ) (Hj—l .Dn—j—O—l) < (H] ) Dn—j)2.

We apply this for D = H; to get by induction on j that (H; - H""!) is bounded
from above.
This means that

I<(H-H")=((K+(n+2)H)-H"")

is bounded from above, hence (K- H"!) is bounded and we are done. ]

4. Models containing quasi-lines.

In this section we consider only models (X, Y) with a(X,Y) = (1,...,1), ie.
we assume Y to be a quasi-line. We first investigate the cases where X has the
structure of a projective bundle over a smooth curve.

ProposITION 4.1. Let (X,Y) be a model such that Y is a quasi-line.
Assume that X ~ P(E) 5 C, where C is a smooth projective curve, E is a rank n
vector bundle on C and m is the natural projection. Then C ~ P!,
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E~0Up(a)® - @ Upi(a)®Opi(a+1)

for some ae€ Z and Y is a section for m. Moreover, X identifies to the blowing-up
of P" with center a codimension two linear subspace L and Y identifies to the pull-
back of a line in P" not meeting L, so (X,Y) ~z(P" line).

PrOOF. Y cannot be contained in a fibre of 7, hence C must be rational.
So E is a sum of line bundles, say F ~ (—Df:l Op1(a;) and we may further assume
that 0 <a; <ay <--- <a,. Let F denote a fibre of 7 and let D be the divisor
corresponding to the line bundle Opg)(1). Adjunction formula gives:

K+nD=(ay+---+a,—2)F.
Put d=:(D-Y) and f=:(F-Y); we get:
nd—n—1=(a+ - +a,—2)f.

We find easily that A°(X,0Ox(D — a,F)) = card{i|a; = a,}. It follows that
(D—a,F)-Y >0, hence d>a,f. We shall prove that in fact d=a,f.
Otherwise we would have a,f <d —1, so

nd—n—1=(a+ - +a,—2)f <(na,—2)f <n(d-1)-2f.

It follows 2f <1, so f =0; but this is absurd since both F and Y move.
So we get that a,f =d, or (D—a,F)-Y =0. This in turn implies that
(X, 0x(D — a,F)) =1, hence a; < a, for i=1,2,...,n—1. We find:

(a4 +a,=2)f <((n—1)a,—1)+a,—2)f,

or
nd—n—1<nd—(n+1)f.

This gives f =1 and aj =a»=---=a, | =a, — 1. Recalling that a,f = d, we

find aj=---=a,.1=d-1, a,=d.

It is now standard to see that, regarding X ~ P(0p1 @ - @ Up1 ® Opi(1))
as the blowing-up of P" with center a codimension two linear subspace L, Y
identifies to the pull-back of a line in P" not meeting L. O

The following result enables us to construct new models starting from a
given one.

PROPOSITION 4.2.  Let (X, Y) be a model, where Y is a quasi-line. If E is a
vector bundle of rank r on X, denote by X' =: P(E) and by n : X' — X the natural
projection. The following conditions are equivalent:

(i) there is a quasi-line Y' on X' such that mjy, : Y' — Y is an isomorphism;

(i) Ey~0p(a)® - @ Opi(a)® Opi(a+1) for some acZ.
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ProOF. Let Z =:77!(Y).
(i) = (ii) Since my,: Y" — Y is an isomorphism it follows that NZ|X,
Ny|x. The exact sequence:

2

Y/

(**) 0 — NY/|Z — NY"X/ — NZ|X’

shows that Y’ is a quasi-line in Z = P(E|y). (ii) follows now from
4.1.

(if) = (i) We have seen in [Proposition 4.1 that Z = P(E}y) identifies to the
blowing-up of P" with center a codimension two linear subspace L. Take Y’ to
be the pull-back of a line in P" not meeting L; remark that Y’ is a quasi-line on
Z and a section of mz:Z — Y. The exact sequence (x*) shows that Y’ is in
fact a quasi-line on X'. ]

Y/zNY|X—>O

REMARK 4.3. In the above construction, if Y is an almost-line, Y is also an
almost-line.

Let £ be a rank r vector bundle on P" and assume that there is a line
[ = P" such that Ej; ~ Upi (1)@ - ® Up1(1) ® Opi1(2). By the above proposi-
tion, we get a model (X = P(E),Y), with Y an almost-line that projects iso-
morphically onto /.

LEMMA 4.4. With the above assumptions and notations, the resulting model
(X = P(E),Y) is a minimal Zariski model if and only if H'(P", E(-2)) = 0.

Proor. We first remark that E|, ~ Opi(1) @ @ Opi (1) @ Opi(2) for a
general line I’ in P™ (this fact was kindly pointed out to us by I. Coandad).
Indeed, E(-2)|, has degree 1 —r and h°(/, E(-2)|,) = 1; by semicontinuity, the
same holds true in a neighbourhood of /. Consequently, for /” in that neigh-
bourhood, the splitting-type of E|,, is the same as that of E|,. Now, let n: X =
P(E) — P" be the projection and let Z = n~'(/) = P(E;). Regard also Z as the
blowing-up ¢ : Z — P" with center a codimension two linear subspace L, so that
Y identifies to the pull-back of a line in P" not meeting L. Let D denote the
divisor class on Z corresponding to ¢z(1), let F denote the class of a fibre of 7,
and let X2 denote the exceptional divisor of o. With these notations we find
easily that 2 is linearly equivalent to D —2F. If we remark moreover that the
natural restriction map Pic(X) — Pic(Z) is an isomorphism, it follows that X
is induced by the divisor 7' — n*(2H), where T corresponds to (x(1) and H is
a hyperplane in P™. Now, if 4 is an (effective) prime divisor on X such that
(A4-Y) =0, it follows that the restriction of 4 to Z has to be of the form aZ for
some a > 0. The fact that

E|l ad Pl(l) (—B (‘D(Opl(l) (—B(QPI(Z)



160 P. Ionescu and C. Voica

for a general line / implies via a Bertini-type argument that a = 1. Putting every-
thing together, it follows that such an effective divisor 4 exists if and only if
|T —n*(2H)| # &, which is equivalent to H°(P", E(-2)) # 0. ]

LemmA 4.5. Keeping the notations and the assumptions preceeding the state-
ment of Lemma 4.4, suppose moreover that m =r. Then (X = P(E),Y) is a Fano
model if and only if either

E~0Upr(1)® - @ Opn(1) ® Upn(2)

or
E ~ Tpn.
Proor. We have that det(E) ~ Op»(m+ 1) and that
oy ~ Oy (—m) @ n*(wprn ® det(E)) ~ Ox(—m).
So wy! is ample if and only if E is ample; in this case, as Ej; has degree m + 1

and rank m, E has to be uniform (ie. E; ~ Upi(1) @ - @ Upi (1) ® Opi(2) for
any line / < P™). Now the result follows from . ]

The next question has been asked in [I], Question 5.7: is any smooth min-
imal Zariski model (X, Y), with Y a quasi-line, necessarily Fano?
4.6 below shows that, in general, the answer is no, even for threefolds.

Indeed, consider a rank-two vector bundle on P’ constructed by Serre’s
method (cf. [25]) as an extension of the form:

0— Op:(1) = E— f{Pth}(z) — 0,

where P;, P, are two points in P>. Note that for a general line / = P2, E; ~

Opi (1) ® Opi (2).

PROPOSITION 4.6. The model (X = P(E), Y) constructed as above is a mini-
mal Zariski model, but it is not Fano.

PrOOF. The minimality follows from [Cemma 4.4, since H°(P?, E(-2)) = 0.
E is neither Op:(1) ® Up2(2) nor Tp>, so P(E) is not Fano by [Lemma 4.3. [

Our next purpose is to answer in the negative Questions 5.2 and 5.3 from
[1]. To this end we need the following simple lemma in order to compute the
cohomological dimension of X\Y, for a certain model (X,Y).

LEMMA 4.7. Let X be a projective scheme and Y1, Y, < X two closed subsets.
Put Y=Y NY, U =X\Y, Up=X\Yo, Xo=X\Y. Assume that there is
some a > 0 such that:
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(i) cd(U;) <a, for i=1,2;
(i) cd(UyNU,) <a-1.
Then cd(X)) < a.

Proor. Let Z; = XoNY; for j=1,2. For any i > a+ 1 and any coherent

sheaf F on X, we have by (ii) the exact sequence of local cohomology (see [8]):
0— Hj (X0, F) — H'(Xo,F) — H' (U N Uz, Fy,nu,) = 0.
Since Z; NZ, = &, we have by the Mayer-Vietoris exact sequence (see [8]):
Hy,z,(Xo, F) ~ Hy, (X0, F) © Hy,(Xo, F).
Moreover, by excision (see [8]) we get:
H}, (Xo,F) ~ H} (U, Fy,)
and
Hy,(Xo, F) ~ Hy (U, Fiy,)-
By (ii) and the exact sequence of local cohomology we get the exact sequences:
0 — Hy (U, Fy,) — H'(Us, Fy,) — H'(U N Us, Fy,ne,) =0
and
0 — Hj (U, Fy,) — H' (U, Fy,) — H (U N Uz, Fyne,) = 0.
Combining these exact sequences and using also (i) we get the result. ]

ProposITION 4.8.  Consider the model (X = P(Tp:),Y) constructed above.
Then Y is G3 in X.

ProoF. Regard X < P? x P? as the incidence variety. We may write ¥ =
Y1 N Yy, with Yy = p; (1), Yo = p; (), I = P? and [ = P? being suitably chosen
lines and p; : X — P?, py: X — P? being the restricted projections. Let U; =
X\Y; for i=1,2; we have U; ~ A* x P! for i=1,2. Moreover, U NU, is
affine, being the complement in X of a hyperplane section. We may apply
with @ =1 to get that cd(X\Y) <1 (actually equality holds). The
result follows now from [Proposition 1.10} (i). ]

—_

COROLLARY 4.9.  The formal completions P(Tp2)y and IA’ﬁine are not iso-
morphic.

PrOOF. Since both Y in X = P(T}p) and a line in P* are G3, if the formal
completions were isomorphic, it would follow from [Proposition 1.§ that (X, Y) ~
2(P3,line). But both are anticanonical minimal Zariski models. So, by Proposi-
tion 1.17, they would be isomorphic, which is clearly absurd. O
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Next we introduce another local numerical invariant of a model (X,Y)
in case Y is a quasi-line. Recall from [1], Lemma 3.4 that there are only finitely
many deformations of Y passing through two general points of X.

Let

e(X,Y)=:card{Y'|Y' is a deformation of Y
passing through two general points of X}.

We close up the paper by exhibiting a rather surprising example of two anti-
canonical models (X, Y) and (X', Y’') such that )A(|y and )?|’Y/ are not isomorphic
although all their numerical invariants are the same. Indeed, let (X = P(Tp2),
Y) be the above constructed model; let X’ be the blowing-up of P? with center a
point P (so X' = P(Up:(1) ® Up2(2))) and let Y’ be the inverse image of a line in
P? not passing through P.

ProprosITION 4.10. AA’| y and Aﬁ'y, are not isomorphic (in particular (X,Y)
and (X', Y') are not Zariski equivalent); moreover, (X,Y) and (X', Y') are not
deformation equivalent. However, all their numerical invariants considered in this
paper coincide:

a(X,Y)=a(X",Y") = (1,1),
b(X,Y)=b(X",Y) =1,
(X, Y)=c(X,Y) =1,
d(X,Y)=d(X',Y) =2,
e(X,Y) =X ¥Y) =1

and
p(X) = p(X') = 2.

ProoF. The fact that )2|y and Aﬁ’y, are not 1somorphic was already proved
in [Corollary 4.9. We compute easily (K;) = —48 and (K3,) = —56, so X and
X' are not deformation equivalent. The computation of the numerical invariants
1s not difficult and 1s left to the reader. ]

REMARK 4.11.  We can distinguish between the two models from
4.10 via another global invariant. Indeed, as we have already seen, we have
cd(X\Y) =1, but one computes easily that cd(X'\Y’) =2. Note that, if / is a
line in P, we have cd(P\/) = 1.
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