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Abstract. We study rationally connected (projective) manifolds X via the concept

of a model ðX ;YÞ, where Y is a smooth rational curve on X having ample normal

bundle. Models are regarded from the view point of Zariski equivalence, birational on

X and biregular around Y. Several numerical invariants of these objects are introduced

and a notion of minimality is proposed for them. The important special case of models

Zariski equivalent to ðP n
; lineÞ is investigated more thoroughly. When the (ample)

normal bundle of Y in X has minimal degree, new such models are constructed via

special vector bundles on X. Moreover, the formal geometry of the embedding of Y in

X is analysed for some non-trivial examples.

0. Introduction.

A complex projective manifold is rationally connected if there is a rational

curve passing through two general points of it. Rationally connected manifolds

were introduced by Kollár, Miyaoka and Mori in [18] and turned out to be a

very useful generalization to higher dimensions of the classical notion of rational

surface. For instance, rational connectedness is both birationally invariant and

deformation invariant; moreover, unirational manifolds and Fano manifolds are

rationally connected.

The main purpose of this paper is to propose a point of view in the study

of rationally connected manifolds by introducing the concept of a model, defined

to be a pair ðX ;YÞ, where X is a projective manifold and Y is a smooth rational

curve with ample normal bundle in X. The existence of such a curve Y on X is

actually equivalent to the fact that X is rationally connected in the sense of [18].

There is an obvious notion of isomorphism of models. More importantly, we

want to study them from the point of view of Zariski equivalence: two models

ðX ;YÞ and ðX 0
;Y 0Þ are said to be Zariski equivalent if there are open subsets

U HX , Y HU and U 0
HX 0, Y 0

HU 0, and an isomorphism j : U ! U 0 with

jðYÞ ¼ Y 0. The advantage of this notion is that it provides a convenient link

between the birational and the biregular point of view (e.g. see Remark 1.5). We
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also propose (see Definition 1.15) a notion of minimal Zariski model, which is

a normal (in general singular) model ðX ;YÞ such that Y meets every e¤ective

divisor of X. Proposition 1.21 shows that this definition generalizes the usual

(relatively) minimal models of rational surfaces. However, at present, neither

existence, nor uniqueness of a minimal Zariski model in a Zariski equivalence

class of models, is proved.

In the first section we examine systematically natural local and global numer-

ical invariants of models. Several nontrivial examples show that these invariants

are in general independent. We pay special attention to models ðX ;Y Þ for which

there is some divisor D on X with ðD � Y Þ ¼ 1 and s ¼: dimjDjb 1. This par-

ticular class of models is studied in Theorem 1.12; the result states that, modulo

a deformation of Y, we may find a Zariski equivalent model ðX 0
;Y 0Þ admitting

a surjective morphism with connected fibres j : X 0 ! P
s and mapping Y 0 to a

line. Moreover, j is smooth along Y 0 and smooth fibres of j are rationally

connected. In case s ¼ dimðX Þ we get that ðX 0
;Y 0Þ is Zariski equivalent to the

simplest possible model, ðP s
; lineÞ; in particular, it follows that X is rational.

This improves Theorem 4.4 from [1].

In section two we propose a conjecture (see 2.3) in which models ðX ;YÞ

Zariski equivalent to ðPn
; lineÞ are characterized by the presence of a linear

system jDj on X having the highest possible dimension with respect to ðD � YÞ

(see also Proposition 2.1 for the precise statement). In Proposition 2.10 we show

(using Mori’s solution of Hartshorne’s conjecture, see [23]) that our conjecture

follows from the existence of a smooth minimal Zariski model equivalent to the

given one.

In the third section we study polarizations of models and their deformations.

The main result here is Theorem 3.2 which shows that, modulo deformations,

there are only finitely many isomorphism classes of polarized models ðX ;Y ;HÞ

having fixed dimension and ‘‘degree’’ ¼: ðY �HÞ (here H is an ample divisor on

X ). The proof uses Matsusaka’s theorem ([22]) together with its refinement in

[17] and several facts from Mori theory.

In the last section we investigate models ðX ;YÞ where Y is a quasi-line in the

sense of [1], i.e. the (ample) normal bundle of Y in X has minimal degree, NY jX F

O
P

1ð1Þl � � �lO
P

1ð1Þ. We first give a useful construction which produces new

such models starting with a given one and with a suitable vector bundle on X (see

Proposition 4.2). Next we answer in the negative Questions 5.2, 5.3 and 5.7

from [1]. First we show by an example that a smooth minimal Zariski model

ðX ;YÞ, where Y is a quasi-line, need not be Fano (see Proposition 4.6). Then

we construct a model ðX ;YÞ, where X FPðT
P

2Þ, such that the formal comple-

tions X̂XjY and P̂P
3
jline are not isomorphic, although the local numerical invariants

of ðX ;YÞ and ðP3
; lineÞ are the same (see Corollary 4.9 and Proposition 4.10).

Here we use standard local cohomology techniques (see [8]) and results of Hart-
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shorne ([9] and [10]) relating cohomological dimension and the properties G2, G3

introduced by Hironaka and Matsumura ([12]).

In writing down this paper we were largely motivated by [1]. For instance,

all results in the fourth section of [1] are generalized to the case of models; we also

quoted several nontrivial examples from [1]. Moreover, as already explained, we

answered (in the negative) Questions 5.2, 5.3 and 5.7 from [1].

We work over C and we follow the standard notation in algebraic geometry

(see e.g. [11]).

1. Models and their Zariski equivalence.

Let X be a complex projective manifold of dimension nb 2.

Definition 1.1. (cf. [18]) X is said to be rationally connected if it contains

some smooth rational curve having ample normal bundle.

This definition, which is better suited for our purposes, is apparently stronger

than the original one in [18], but it turns out to be equivalent to it. Indeed,

if nb 3 and X is rationally connected in the sense of [18], Theorem 3.9 from

[16] Chapter IV yields the existence of a smooth rational curve with ample

normal bundle on X. In case n ¼ 2, being rationally connected in the sense of

[18] is equivalent to being rational, and every rational surface contains a smooth

rational curve of positive self-intersection.

The main properties of rationally connected manifolds are summarized in the

following theorem (see [18], [19], [2] or [16], Chapter IV).

Theorem 1.2. (Kollár-Miyaoka-Mori, Campana)

(i) If Y is a smooth rational curve with ample normal bundle on X, then the

deformations of Y with a fixed point fill up an open subset of X;

(ii) unirational manifolds and Fano manifolds are rationally connected;

(iii) being rationally connected is a birationally invariant property;

(iv) smooth deformations of rationally connected manifolds are rationally

connected;

(v) rationally connected manifolds are simply connected and they satisfy:

H 0ðX ;W
nm
X Þ ¼ 0 for m > 0 and H iðX ;OX Þ ¼ 0 for i > 0.

Definition 1.3. By a model (of rationally connected manifolds) we mean

in what follows a pair ðX ;Y Þ, where X is a projective manifold and Y HX is a

smooth rational curve with ample normal bundle in X.

Note that the simplest example is ðPn
; lineÞ.

Two models ðX ;YÞ and ðX 0;Y 0Þ are isomorphic if there is an isomorphism

j : X ! X 0 such that jðYÞ ¼ Y 0. The basic definition for us is the following.
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Definition 1.4. Two models ðX ;Y Þ and ðX 0;Y 0Þ are Zariski equivalent,

denoted ðX ;YÞ@Z ðX 0;Y 0Þ, if there are open subsets U HX , Y HU and

U 0 HX 0, Y 0 HU 0, and an isomorphism j : U ! U 0 such that jðY Þ ¼ Y 0.

Note that X and X 0 are in this case birationally equivalent.

Remark 1.5. We stress at this point that we are not merely studying

rationally connected manifolds, the fixed curve Y being part of the structure.

On the other hand, given a rationally connected manifold X, we can use models

ðX ;YÞ, for suitably chosen curves Y, in order to understand the birational

geometry of X. We illustrate this by the following example.

Example 1.6. (see [14]) Let X be a smooth quartic threefold in P
4. Being

Fano, X is rationally connected by Theorem 1.2 (ii). If one could prove that

any birational automorphism j of X induces a Zariski equivalence between two

models ðX ;Y Þ and ðX ;Y 0Þ (for some well-chosen curves Y and Y 0), it would

follow easily (see e.g. Corollary 1.19 below) that j has to be a biregular auto-

morphism of X. Actually, it was proved in [14], using delicate techniques, that

indeed, every birational automorphism of X is a biregular one. As the group of

biregular automorphisms of X is finite (see [21]) it follows that for any choice of

the curve Y, if Y 0 is a general deformation of Y, the models ðX ;Y Þ and ðX ;Y 0Þ

are not Zariski-equivalent.

We first consider local properties of a given model ðX ;YÞ, which depend

only on a neighbourhood of Y in X and thus are invariant with respect to Zariski

equivalence. Fix such a model ðX ;YÞ. By Grothendieck’s theorem (see [7]),

NY jX F0n�1

i¼1
O
P

1ðaiÞ, ai > 0 for every i. A first set of local numerical invariants

of ðX ;YÞ is:

aðX ;YÞ ¼: ða1; . . . ; an�1Þ:

We let aðX ;Y Þ ¼
Pn�1

i¼1 ai ¼ degNY jX , so we have by adjunction formula:

�ðK � YÞ ¼ aðX ;YÞ þ 2, where K is the canonical divisor of X. Recall from [1]

that Y is called a quasi-line if aðX ;YÞ ¼ ð1; . . . ; 1Þ or, equivalently, aðX ;Y Þ ¼

n� 1.

Consider now X̂XjY , the formal completion of X along Y, and KðX̂XjY Þ the

ring of formal-rational functions of X along Y. Recall the following definitions,

which make sense for any subvariety Y HX (see [12]).

Definition 1.7. (i) Y is G2 in X if KðX̂XjY Þ is a field and the extension of

fields KðX Þ ,! KðX̂XjY Þ is finite (here KðXÞ is the field of rational functions on X ).

Denote by bðX ;Y Þ the degree of this extension.

(ii) Y is G3 in X if bðX ;YÞ ¼ 1.
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For any model ðX ;YÞ, since NY jX is ample, a basic result due to Hartshorne

([9]) says that Y is G2 in X. Note that, obviously, if ðX ;YÞ@Z ðX 0;Y 0Þ then

the formal completions X̂XjY and X̂X 0
jY 0 are isomorphic. Thus bðX ;YÞ is a local

numerical invariant of the model ðX ;YÞ. For us, the importance of the G3

condition comes from the following fact, which is a consequence of results due to

Gieseker ([6]).

Proposition 1.8. If we have two models ðX ;Y Þ and ðX 0;Y 0Þ such that Y is

G3 in X, Y 0 is G3 in X 0, and moreover the formal completions X̂XjY and X̂X 0
jY 0 are

isomorphic, then ðX ;Y Þ@Z ðX 0;Y 0Þ.

We recall also the following useful notion, due to Hartshorne ([9]).

Definition 1.9. The cohomological dimension of a scheme W, denoted

cdðWÞ, is defined by

cdðWÞ ¼ minf jb 0 jH iðW ;FÞ ¼ 0; for all i > j and for all coherent

sheaves F on Wg:

The following proposition (to be used in the last section) is a special case of

results proved in [10], Chapter V, Corollary 2.2.

Proposition 1.10. Let ðX ;YÞ be a model and let n ¼: dimðX Þ.

(i) If cdðXnYÞ < n� 1, then Y is G3 in X;

(ii) if Y meets every e¤ective divisor of X and Y is G3 in X, then cdðXnY Þ <

n� 1.

We consider now another local numerical invariant of a model ðX ;YÞ:

cðX ;YÞ ¼: minfðD � Y Þ > 0 jD A DivðX Þg:

Note that cðX ;Y Þ is indeed a local invariant, since for any open subset

U HX , the restriction map PicðX Þ ! PicðUÞ is surjective. Remark that, by

Theorem 1.2 (v), the exponential sequence and the GAGA principle, we have

PicðX ÞFH 2ðX ;ZÞ. Thus cðX ;Y Þ is nothing but the order of the cokernel of

the natural restriction maps PicðXÞ ! PicðYÞFZ or H 2ðX ;ZÞ ! H 2ðY ;ZÞF

Z. Recall from [1] that Y is called an almost-line if it is a quasi-line and

moreover cðX ;Y Þ ¼ 1.

Examples 1.11. (i) (cf. [1], (2.7)). For each nb 3, there is a model ðX ;YÞ

with dimðXÞ ¼ n such that:

(a) Y is an almost-line;

(b) bðX ;Y Þ ¼ nþ 1;

(c) X̂XjY F P̂P
n
jline.

Models of rationally connected manifolds 147



(ii) Let X be a Fano threefold of index two with Picard group generated

by the class of the hyperplane section. It was first proved in [26] (see also [1],

Theorem 3.2 for a more conceptual argument) that X contains a quasi-line Y with

cðX ;YÞ ¼ 2.

Let ðX ;Y Þ be a model such that cðX ;Y Þ ¼ 1; fix some D A DivðXÞ with

ðD � YÞ ¼ 1 and let s ¼: dimjDj. We remark (e.g. by applying Proposition

2.1 below) that we must have sa n; actually, in our special case, we can say

more. The following result is a generalization of Theorem 4.4 in [1], where Y

was assumed to be an almost-line and, moreover, s was supposed to take on its

maximal value, s ¼ dimðX Þ.

Theorem 1.12. Keeping the above notation and assumptions, suppose more-

over that sb 1. Then, for a general deformation of Y, say Y1, there is a model

ðX 0;Y 0Þ Zariski equivalent to ðX ;Y1Þ such that the following hold:

(i) there is a surjective morphism with connected fibres j : X 0 ! P
s, which is

smooth along Y 0;

(ii) there is a line l in P
s such that Z ¼: j�1ðlÞ is smooth and Y 0 is contained

in Z such that NY 0jZ is ample; moreover, Y 0 is a section for jjZ;

(iii) any smooth fibre of j is rationally connected.

Proof. The proof runs parallel to that of Theorem 4.4 in [1]. Note, how-

ever, that here we shall proceed by induction on s, while in [1] induction was

made with respect to n. We include the details, for reader’s convenience. Write

jDj ¼ E þ jMj, E being the fixed part and jMj the moving part of jDj, respec-

tively. We have ðE � Y Þb 0 and ðM � YÞ > 0 since both Y and M move. The

relation ðE � Y Þ þ ðM � YÞ ¼ ðD � YÞ ¼ 1 implies ðM � YÞ ¼ 1; so, by replacing

jDj by jMj, we may assume jDj to be free from fixed components. Next, using

Hironaka’s desingularization theory, we may find a composition of blowing-ups

along smooth centers, say s : X 0 ! X such that s�ðjDjÞ ¼ E 0 þ jD 0j, where jD 0j is

base points free, E 0 is the fixed part of jE 0 þD 0j and sðSuppðE 0ÞÞ is contained in

the base locus of jDj. We let j ¼ jjD 0j : X
0 ! P

s. Using [16], Chapter II, Prop-

osition 3.7, we can find a deformation of Y, say Y1, having ample normal bundle

and not meeting the base locus of jDj. We let Y 0 ¼: s�1ðY1Þ. The proof of (i)

proceeds by induction on s. In case s ¼ 1, we only have to remark that the

fibres of j are connected, since ðD � Y Þ ¼ ðD 0 � Y 0Þ ¼ 1. Assume now that sb 2.

Using again that ðD 0 � Y 0Þ ¼ 1, it follows that j is not composed with a pencil.

As sb 2, by Bertini’s theorem we may find a smooth, connected, member

D A jD 0j passing through two general points x; y A X 0. Using Theorem 1.2 (i) we

may replace Y 0 by a deformation of it (still having ample normal bundle) that

passes through x and y. As ðD � Y 0Þ ¼ 1, it follows that Y 0
HD. Consider the

exact sequence of conormal bundles:
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0 ! O
P

1ð�1Þ ! N �
Y 0jX 0 ! N �

Y 0jD ! 0:

Since H 1ðP1
;O

P
1ð�1ÞÞ ¼ 0 and H 0ðY 0

;N �
Y 0jX 0Þ ¼ 0, it follows that H 0ðY 0

;N �
Y 0jDÞ

¼ 0. Therefore NY 0jD is ample. We also have the standard exact sequence:

0 ! OX 0 ! OX 0ðD 0Þ ! ODðD
0Þ ! 0

and we know by Theorem 1.2 (v) that H 1ðX 0
;OX 0Þ ¼ 0. It follows that

dimjD 0
jDj ¼ s� 1, so we may apply the induction hypothesis to the model ðD;Y 0Þ.

In particular, as we have D ¼ j�1ðHÞ for some hyperplane HFP
s�1

HP
s, we

get that the restriction of j to D maps D onto H. As the image of j is non-

degenerate in P
s, j must be surjective, too. It also follows that the general fibre

of j is connected. This ensures (using Stein factorisation) that all fibres of j are

connected, since j is surjective and P
s is normal (in fact smooth). This proves

(i). (ii) follows by the preceding argument noting that, if x; y A X 0 are two

general points, the line l in P
s determined by jðxÞ, jðyÞ is also general, so

Z ¼: j�1ðlÞ is smooth, by Bertini’s theorem. To show (iii), by what we already

proved and by Theorem 1.2 (iv), it is enough to see that a general fibre of jjZ
is rationally connected. To this end we shall use the model ðZ;Y 0Þ. Let z be

a general point of Z and let F be the fibre of jjZ passing through z. Take

some other point z 0 A F . It follows that there is some deformation of Y 0 inside

Z which is a tree T of rational curves joining z and z 0. Since we have ðF � Y 0Þ ¼

ðF � TÞ ¼ 1, it follows that the intersection number of F with an irreducible com-

ponent of T can take on only the values zero or one. Moreover, there is exactly

one component for which this intersection number is one and the components

of T contained in F give a chain of rational curves joining z and z 0. So F is

rationally connected (see [18]). r

Keeping the notations and assumptions of Theorem 1.12, let aðX ;Y Þ ¼

ða1; . . . ; an�1Þ.

Corollary 1.13. We have:

(i) cardfi j ai ¼ 1gb s� 1;

(ii) (cf. [1], Theorem 4.4) if s ¼ n, ðX 0
;Y 0Þ@Z ðPn

; lineÞ;

(iii) if s ¼ n� 1, the general fibre of j : X 0 ! P
n�1 is P

1.

Proof. With the same notations as in the proof of Theorem 1.12, we have:

NZjX 0 jY 0 FNljP s FO
P

1ð1Þlðs�1Þ
:

Moreover, the exact sequence:

0 ! NY 0jZ ! NY 0jX 0 ! NZjX 0 jY 0 FO
P

1ð1Þlðs�1Þ ! 0

splits. If we let aðX ;Y1Þ ¼ aðX 0
;Y 0Þ ¼ ða 0

1; . . . ; a
0
n�1Þ, it follows that
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cardfi j a 0
i ¼ 1gb s� 1. As Y1 is a general deformation of Y, we have

moreover: cardfi j ai ¼ 1gb cardfi j a 0
i ¼ 1g (see [16], Chapter II, Lemma 3.9.2).

This proves (i). (ii) follows by induction on s ¼ n, as in the proof of the

theorem. Note that in [1], Theorem 4.4 we assumed moreover Y to be an

almost-line. But this follows from part (i) of the corollary. (iii) comes directly

from Theorem 1.12 (iii). r

Remark 1.14. It is not clear if, given a model ðX ;YÞ with cðX ;YÞ ¼ 1, we

can always find D A DivðXÞ such that ðD � Y Þ ¼ 1 and dimjDjb 1 (we do not

know the answer even for the special case when Y is an almost-line).

Next we turn to some global properties of models ðX ;YÞ. It follows from

Theorem 1.2 (v) that PicðX ÞFH 2ðX ;ZÞ is a free abelian group of finite rank;

we denote by rðX Þ ¼: rank PicðXÞ the base-number of X. Clearly, r is not an

invariant for Zariski equivalence. For instance, if j : X 0 ! X is a birational

morphism between projective manifolds and Y HX is a smooth rational curve

with ample normal bundle, we may apply [16], Chapter II, Proposition 3.7 to

find a deformation Y1 of Y and a curve Y 0 in X 0 such that j induces a Zariski

equivalence between the models ðX 0
;Y 0Þ and ðX ;Y1Þ. It is then natural to

seek for a model in each Zariski equivalence class having a minimal base-

number r.

Definition 1.15. Let X be a normal projective variety such that:

(i) there is a smooth rational curve Y contained in the smooth locus of X,

such that NY jX is ample;

(ii) Y meets every e¤ective (Weil) divisor of X.

We call the pair ðX ;Y Þ a minimal Zariski model.

Two natural questions arise:

I. Existence: is every model Zariski equivalent to a minimal one?

II. Uniqueness: are two Zariski equivalent minimal models isomorphic?

For the moment it is not clear to us what is the ‘‘good’’ class of singularities

that we may allow on a minimal Zariski model in order to ensure a reasonable

answer to the above questions. We hope to return to this matter in the future.

We shall see in Proposition 1.21 below that singularities are necessary even in

the simplest case, n ¼ 2. With some extra-hypothesis we can sometimes ensure

uniqueness, as in the following.

Definition 1.16. A smooth model ðX ;Y Þ is anticanonical (or Fano) if �KX

is ample.

Proposition 1.17. Two smooth anticanonical minimal Zariski models which

are Zariski equivalent are isomorphic.
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Proof. Let ðX ;YÞ and ðX 0;Y 0Þ be two such models. Assume that

j : X � � � ! X 0 is a birational map yielding a Zariski equivalence between ðX ;YÞ

and ðX 0;Y 0Þ. By minimality X and X 0 are isomorphic in codimension one.

In particular j�ðKX 0Þ ¼ KX . Since j�mKX j and j�mKX 0 j are very ample for

mg 0, it follows that j is actually an isomorphism. r

Corollary 1.18. Let ðX ;YÞ be a model which is Zariski equivalent to a

model ðX0;Y0Þ with rðX0Þ ¼ 1. Then any two smooth minimal Zariski models of

ðX ;YÞ are isomorphic.

Proof. Any two smooth minimal Zariski models of ðX ;Y Þ are isomor-

phic in codimension one. In particular, their base number is the same. Since a

model with r ¼ 1 is both minimal and anticanonical, the result follows from the

proposition. r

Corollary 1.19. If rðX Þ ¼ 1, any birational automorphism of X inducing a

Zariski equivalence between two models ðX ;Y Þ and ðX ;Y 0Þ is a biregular auto-

morphism of X (so ðX ;YÞF ðX ;Y 0Þ).

Remark 1.20. Recall from Theorem 1.2 (v) that any smooth model is

simply connected. In general, a singular minimal Zariski model need not be

simply connected. Indeed, the examples constructed in [1], Example 2.7 and

denoted there by ðZ;YÞ are minimal (by construction) but they are not simply

connected. Otherwise, by minimality, an open Zariski neighbourhood of Y in Z

would be simply connected (since it is got by throwing out a closed subset of real

codimensionb 4) and this is not the case.

The following proposition shows that in case n ¼ 2 we have a clear and

complete picture of all models, together with their minimal Zariski models; in

particular, it appears that our ‘‘minimal Zariski models’’ are an attempt to gen-

eralize the classical ‘‘relative minimal models’’ of rational surfaces. The notation

follows that of [11], Chapter V, Section 2.

Proposition 1.21. Assume that n ¼ 2. Given a model ðX ;YÞ, there is a

unique minimal Zariski model ðX0;Y0Þ and a birational morphism j : X ! X0

inducing a Zariski equivalence between ðX ;YÞ and ðX0;Y0Þ. Moreover, ðX0;Y0Þ

is one of the following:

(i) X0 FFe, eb 0, Y0 2 jC0 þ bf j, b > e;

(ii) X0 FP
2
;Y0 is a line or a conic;

(iii) X0 is the cone in P
eþ1 over the rational normal curve of degree e in P

e,

eb 2, Y0 is a hyperplane section.

aðX ;YÞ ¼ ðY 2Þ can take on any positive value, Y is always G3 in X (so

bðX ;YÞ ¼ 1) and cðX ;Y Þ A f1; 2g.
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Proof. Y is nef and big, so H 1ðX ;OX ð�YÞÞ ¼ 0 by the vanishing theorem.

The exact sequence:

0 ! OX ð�Y Þ ! OX ! O
P

1 ! 0

shows that H 1ðX ;OX Þ ¼ 0 (of course, this is a special case of Theorem 1.2 (v)).

Let a ¼: ðY 2Þ > 0. The exact sequence:

0 ! OX ! OX ðYÞ ! O
P

1ðaÞ ! 0

together with the vanishing of H 1ðX ;OX Þ show that the linear system jY j is base

points free and h0ðX ;OX ðYÞÞ ¼ aþ 2. Therefore we may consider the morphism

j ¼: jjY j : X ! P
aþ1 and we denote by X0 its image. We have degX0 � deg j ¼

a. As dimX0 ¼ 2 and X0 is nondegenerate in P
aþ1, we have moreover:

ab degX0b codimX0 þ 1 ¼ a:

So j is birational and X0 is a surface of minimal degree. By a classical

result, going back to Del Pezzo, (see e.g. [4] for a modern proof ) X0 is either:

(i) a rational normal scroll, or

(ii) P
2 or its Veronese embedding v2ðP

2ÞHP
5, or

(iii) a cone over the Veronese embedding of P
1 in P

a.

Both the fact that j is an isomorphism along Y and the uniqueness of minimal

Zariski models follow in our case from Zariski’s Main Theorem, since X0 is

normal. See [10], p. 208 for the fact that Y is G3 in X. The rest is standard

(see [11], Chapter V, Section 2). r

Let us point out that, for nb 3, there are examples of models ðX ;Y Þ whose

minimal Zariski model is ðPn
; lineÞ, such that there is no birational morphism

from X to P
n (see [1], Example 4.7).

2. Models of ðPn
; lineÞ.

Let ðX ;Y Þ be a model and consider some e¤ective divisor D A DivðX Þ. As

Y moves, we have ðD � Y Þb 0 and moreover, ðD � YÞ > 0 if dimjDjb 1. The

following result goes back to Oxbury ([26]), who stated and proved it in a special

case.

Proposition 2.1. Let ðX ;YÞ be a model with dimðX Þ ¼ n and let D be an

e¤ective divisor on X. Put d ¼: ðD � Y Þ. Then we have

h0ðX ;OX ðDÞÞa
d þ n

n

� �

:

Proof. We may assume d > 0. Consider the d-th jet bundle of OX ðDÞ,

denoted JdðDÞ. Consider also, as in [26], the natural map
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u : H 0ðX ;OX ðDÞÞnOX ! JdðDÞ

which sends a section to its d-th jet. We claim that u is generically injective, so

rankJdðDÞ ¼
d þ n

n

� �

b rankðH 0ðX ;OX ðDÞÞnOX Þ ¼ h0ðX ;OX ðDÞÞ:

Let s A H 0ðX ;OX ðDÞÞnf0g and let D 0 ¼: ðsÞ0. If x A Y V suppðD 0Þ, by Theorem

1.2 (i) we may deform Y to some Y 0 by keeping x fixed, so that the local inter-

section number ðY 0 �D 0Þx be defined. Assume now that uxðsÞ ¼ 0. This means

that ðY 0 �D 0Þx > d ¼ ðY �DÞ, so s has to be zero. Thus u is injective in the open

set swept out by the deformations of Y having ample normal bundle. r

Definition 2.2. For a given model ðX ;YÞ with dimðXÞ ¼ n, an e¤ective

divisor D A DivðXÞ such that d ¼: ðD � Y Þ > 0 and h0ðX ;OX ðDÞÞ ¼
d þ n

n

� �

is

called extremal.

Characterising conveniently models Zariski equivalent to ðPn; lineÞ is a

natural problem. As a step towards its solution we propose the next:

Conjecture 2.3. The following are equivalent for a model ðX ;Y Þ:

(i) some extremal divisor exists;

(ii) ðX ;Y Þ@Z ðPn; lineÞ.

The implication (ii) ) (i) is quite obvious. Moreover, a necessary condition

for the converse implication to hold is that Y has to be a quasi-line. This is

indeed the case by the following:

Lemma 2.4. Assume that the model ðX ;YÞ admits an extremal divisor D.

Then Y is a quasi-line.

Proof. In our case the map u : H 0ðX ;OX ðDÞÞnOX ! JdðDÞ from the

proof of Proposition 2.1 is a generically injective map from a trivial vector bundle

to a vector bundle of the same rank. So its determinant is a non-zero global

section of the line bundle detðJdðDÞÞ. From the standard exact sequences of jet

bundles:

0 ! SmðWX ÞnOX ðDÞ ! JmðDÞ ! Jm�1ðDÞ ! 0

we find by successively taking determinants:

detðJdðDÞÞ ¼ OX ðrðdK þ ðnþ 1ÞDÞÞ;

where r ¼: ð1=dÞ
d þ n

d � 1

� �

. As detðuÞ is a non-zero global section of OX ðrðdK þ
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ðnþ 1ÞDÞÞ it follows that ðdK þ ðnþ 1ÞD � YÞb 0, so �ðK � Y Þa nþ 1, or

aðX ;YÞa n� 1; thus aðX ;YÞ ¼ n� 1 and Y is a quasi-line. r

Corollary 2.5. The conjecture is true if n ¼ 2.

Proof. Indeed, by the lemma Y is a quasi-line, hence ðY 2Þ ¼ 1. It follows

that X admits the birational morphism jjY j to P
2, which is an isomorphism along

Y. r

Remark 2.6. We proved in Corollary 1.13 (ii) that in case d ¼ 1 the

conjecture holds true after replacing the model ðX ;YÞ by ðX ;Y1Þ, where Y1 is

a general deformation of Y. Note that this result can be used as a (su‰cient)

rationality criterion for a rationally connected manifold X.

Corollary 2.7. Let ðX ;YÞ be a model. Assume that there is a nef and big

divisor D A DivðX Þ such that ðD � YÞ ¼ 1. Then ðX ;Y 0Þ@Z ðPn
; lineÞ, where Y 0

is a general deformation of Y.

The proof given in [1], Corollary 4.6 (i) in the special case of quasi-lines

works with minor changes.

It is a natural question to ask if the hypothesis of Corollary 2.7 is also

necessary to ensure that ðX ;YÞ is Zariski equivalent to ðPn
; lineÞ. We show that,

for any nb 3, this is not the case.

Example 2.8. (cf. [1], Example 4.7) For each nb 3, there are models

ðX ;YÞ Zariski equivalent to ðPn
; lineÞ such that there is no nef and big divisor D

on X with ðD � YÞ ¼ 1.

For the proof we need the following useful lemma, due to Fano (see [16],

Chapter V, Proposition 2.9).

Lemma 2.9. (Fano) Let D be a nef divisor on the projective n-dimensional

manifold X. Assume that for some d > 0 we have a point x A X and an algebraic

family of irreducible curves fYtgt joining x and a general point t A X , and such that

ðD � YtÞa d. Then ðDnÞa d n.

Consider now the examples ðX ;Y Þ constructed in [1], Example 4.7. If there

were a nef and big divisor D on X such that ðD � YÞ ¼ 1, by Thm 1.2 (i) and the

above lemma it would follow 0 < ðDnÞa 1, so ðDnÞ ¼ 1. But it was proved

in [1], Example 4.7 that the self-intersection of a nef divisor on X cannot be one.

The following proposition shows the usefulness of the existence of a smooth

minimal model in a given Zariski equivalence class.

Proposition 2.10. Assume that the model ðX ;Y Þ admits a smooth minimal

Zariski model. Then Conjecture 2.3 is true for ðX ;YÞ.
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Proof. It is easy to see that an extremal divisor D descends to a smooth

minimal Zariski model, so we may assume that ðX ;Y Þ is minimal. We shall

prove that X FP
n. We look again at the map

u : H 0ðX ;OX ðDÞÞnOX ! JdðDÞ

from the proof of Proposition 2.1, keeping the same notations. By the proof of

Lemma 2.4 and our minimality hypothesis, u is actually an isomorphism. Thus

the jet bundle JdðDÞ is trivial. Consider now the exact sequences:

0 ! S iðWX ÞnOX ðDÞ ! JiðDÞ ! Ji�1ðDÞ ! 0;ð�Þ

for 0 < ia d. As JdðDÞ is trivial, it follows that OX ðDÞ ¼ J0ðDÞ is spanned by

global sections. Dualizing the above sequence for i ¼ d, it follows that S dðTX Þ

is also spanned by global sections, so TX is a nef vector bundle. Recall from

Theorem 1.2 (v) that wðOX Þ ¼ 1. From the next lemma we deduce that X is a

Fano manifold. But we have seen in the proof of Lemma 2.4 that detðJdðDÞÞF

OX ðrðdK þ ðnþ 1ÞDÞÞ. As detðJdðDÞÞ is trivial and �K is ample, it follows that

OX ðDÞ is ample. This in turn implies (as above, by dualising the sequence ð�Þ

for i ¼ d ) that S dðTX Þ is ample, so TX is ample. We conclude by Mori’s

theorem (see [23]) that X FP
n. r

We have extracted the following lemma from [3].

Lemma 2.11. (Demailly-Peternell-Schneider) Assume that for a given projec-

tive manifold X with nef tangent bundle we have wðOX Þ0 0. Then X is Fano.

Proof. If TX is nef, �K is nef, so we have ð�1ÞnðK nÞb 0. If ðK nÞ ¼ 0,

using the Fulton-Lazarsfeld inequalities and Riemann-Roch theorem as in [3]

p. 332 we get wðOX Þ ¼ 0 and this was excluded. So ð�1ÞnðK nÞ > 0. Since �K

is nef, this means that �K is big. But on a manifold with TX nef any e¤ective

divisor is nef (see [3], p. 319); consequently, any big divisor is ample ([3], p. 320).

So �K is ample. r

Remark 2.12. Sommese ([27]) proved (modulo Hartshorne’s conjecture,

now Mori’s theorem) that, if a compact complex manifold possesses a line bundle

L such that JdðLÞ is trivial for some d > 0, then one of the following holds:

(i) TX and L are trivial;

(ii) X FP
n.

Alternatively, one may use his result in order to prove Proposition 2.10.

3. Polarizations and deformations of models.

We begin by introducing a global numerical invariant of a model ðX ;Y Þ:

dðX ;YÞ ¼: minfðY �HÞ jH ample divisor on Xg:
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Note that, clearly, we have dðX ;YÞb cðX ;YÞ; moreover, equality holds if

rðX Þ ¼ 1. The following proposition illustrates the use of polarizations.

Proposition 3.1. For a model ðX ;YÞ and an ample divisor H A DivðX Þ, let

d ¼: ðH � YÞ.

(i) If dK þ ðaðX ;YÞ þ 2ÞH is nef, then X is Fano;

(ii) if dðX ;Y Þ ¼ 1, then ðX ;YÞF ðPn
; lineÞ.

Proof. (i) If dK þ ðaðX ;Y Þ þ 2ÞH is nef, by the Kawamata-Reid-Shokurov

Theorem (see [15]) it follows that jmðdK þ ðaðX ;YÞ þ 2ÞHÞj is base-points free

for some m > 0. If D A jmðdK þ ðaðX ;Y Þ þ 2ÞHÞj, it follows that ðD � YÞ ¼ 0

and this forces dimjDj ¼ 0, so D is trivial and X is Fano.

(ii) ðK þ ðaðX ;YÞ þ 2ÞH � YÞ ¼ 0, so K þ ðaðX ;Y Þ þ 2ÞH is not ample.

As we have aðX ;YÞ þ 2b nþ 1, from [13], main theorem, it follows that X FP
n

and Y has to be a line. r

Next we consider deformations of models. Let ðX ;Y Þ be a model. By a

deformation of ðX ;YÞ we mean a commutative diagram

Y ���!
i

X

q

?
?
?
y

p

?
?
?
y

T T

where p; q are proper smooth morphisms, i is a closed embedding, T is a con-

nected scheme such that ðXt;YtÞ is a model for each (closed) t A T and ðX ;YÞF

ðXt0 ;Yt0Þ for some to A T . Remark that the special case X ¼ X � T , p being

the projection, was already used in the previous sections. We say that ðX ;YÞ

and ðX 0;Y 0Þ are deformation equivalent if both appear as fibers of the same

deformation.

Note that aðX ;Y Þ is not invariant in a deformation (see however [16],

Chapter II, Lemma 3.9.2, for a semicontinuity property), but aðX ;Y Þ is. The

proof of Proposition 3.10 (ii) from [1] shows that both cðX ;YÞ and dðX ;YÞ

behave upper semicontinuously in a deformation. As rðX Þ is just the second

Betti number of X, it is deformation invariant.

By a polarized model we mean a triple ðX ;Y ;HÞ, where ðX ;YÞ is a model

and H is an ample divisor on X. Let d ¼: ðH � Y Þ. The following theorem

shows that polarized models of fixed dimension and ‘‘degree’’ d are, in principle,

classifiable. See [26] and [20] for the actual classification of the first nontrivial

cases: n ¼ 3, aðX ;YÞ ¼ ð1; 1Þ and dðX ;Y Þa 4.

Theorem 3.2. Fix nb 2 and d > 0. There are only finitely many isomor-

phism classes of polarized models ðX ;Y ;HÞ with dimðXÞ ¼ n and ðH � Y Þ ¼ d,

modulo deformations.
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Proof. The proof is based on Matsusaka’s theorem (see [22]), together with

its refinement from [17]. According to the main result in [22], it is enough to

show that, for fixed n and d as above, only finitely many Hilbert polynomials of

polarized pairs ðX ;HÞ can occur. Moreover, Lemma 5.2 in [17] shows that, in

order to ensure this finiteness condition, it is enough to bound the first two

top coe‰cients of the Hilbert polynomial. We refer the reader to Theorem 3

in [17] for the precise statement. So, it will be enough to prove that ðH nÞ

and ðH n�1 � KÞ are bounded by some functions depending only on n and d.

Note that Lemma 2.9 already gives 0 < ðH nÞa d n. It remains to prove that

ðH n�1 � KÞ is bounded. Set H1 ¼: K þ ðnþ 2ÞH. By Mori’s Cone Theorem

(see [24]) H1 is ample on X. Put d1 ¼: ðH1 � Y Þ ¼ ðK � YÞ þ ðnþ 2Þd. As we

have ðK � Y Þa�n� 1, we get 1a d1a ðnþ 2Þd � n� 1, so d1 is bounded;

moreover, ðH n
1 Þa d n

1 , again by Fano’s lemma. Recall that the arithmetic genus

of an ample divisor H1 is defined by the formula:

2paðH1Þ � 2 ¼ ððK þ ðn� 1ÞH1Þ �H
n�1
1 Þ:

It is proved in [13], Lemma 7, that paðH1Þb 0. It follows that �2a

ðK �H n�1
1 Þ þ ðn� 1ÞðH n

1 Þ, which shows that ðK �H n�1
1 Þ is bounded from below,

say by a function aðn; dÞ. Moreover, we have:

d n
1 b ðH n

1 Þ ¼ ððK þ ðnþ 2ÞHÞ �H n�1
1 Þb aðn; dÞ þ ðnþ 2ÞðH �H n�1

1 Þ:

It follows that ðH �H n�1
1 Þ is bounded from above.

On the other hand, a well-known generalization of the Hodge index theorem

(see e.g. [16] p. 301) says that for any nef divisor D and any ample H we have

ðH jþ1 �Dn�j�1Þ � ðH j�1 �Dn�jþ1Þa ðH j �Dn�jÞ2:

We apply this for D ¼ H1 to get by induction on j that ðH1 �H
n�1Þ is bounded

from above.

This means that

1a ðH1 �H
n�1Þ ¼ ððK þ ðnþ 2ÞHÞ �H n�1Þ

is bounded from above, hence ðK �H n�1Þ is bounded and we are done. r

4. Models containing quasi-lines.

In this section we consider only models ðX ;YÞ with aðX ;YÞ ¼ ð1; . . . ; 1Þ, i.e.

we assume Y to be a quasi-line. We first investigate the cases where X has the

structure of a projective bundle over a smooth curve.

Proposition 4.1. Let ðX ;YÞ be a model such that Y is a quasi-line.

Assume that X FPðEÞ !
p

C, where C is a smooth projective curve, E is a rank n

vector bundle on C and p is the natural projection. Then CFP
1,
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EFO
P

1ðaÞl � � �lO
P

1ðaÞlO
P

1ðaþ 1Þ

for some a A Z and Y is a section for p. Moreover, X identifies to the blowing-up

of Pn with center a codimension two linear subspace L and Y identifies to the pull-

back of a line in P
n not meeting L, so ðX ;YÞ@Z ðPn

; lineÞ.

Proof. Y cannot be contained in a fibre of p, hence C must be rational.

So E is a sum of line bundles, say EF0n

i¼1
O
P

1ðaiÞ and we may further assume

that 0 < a1a a2a � � �a an. Let F denote a fibre of p and let D be the divisor

corresponding to the line bundle OPðEÞð1Þ. Adjunction formula gives:

K þ nD ¼ ða1 þ � � � þ an � 2ÞF :

Put d ¼: ðD � YÞ and f ¼: ðF � Y Þ; we get:

nd � n� 1 ¼ ða1 þ � � � þ an � 2Þ f :

We find easily that h0ðX ;OX ðD� anFÞÞ ¼ cardfi j ai ¼ ang. It follows that

ðD� anF Þ � Yb 0, hence db an f . We shall prove that in fact d ¼ an f .

Otherwise we would have an f a d � 1, so

nd � n� 1 ¼ ða1 þ � � � þ an � 2Þ f a ðnan � 2Þ f a nðd � 1Þ � 2f :

It follows 2f a 1, so f ¼ 0; but this is absurd since both F and Y move.

So we get that an f ¼ d, or ðD� anFÞ � Y ¼ 0. This in turn implies that

h0ðX ;OX ðD� anF ÞÞ ¼ 1, hence ai < an for i ¼ 1; 2; . . . ; n� 1. We find:

ða1 þ � � � þ an � 2Þ f a ððn� 1Þðan � 1Þ þ an � 2Þ f ;

or

nd � n� 1a nd � ðnþ 1Þ f :

This gives f ¼ 1 and a1 ¼ a2 ¼ � � � ¼ an�1 ¼ an � 1. Recalling that an f ¼ d, we

find a1 ¼ � � � ¼ an�1 ¼ d � 1, an ¼ d.

It is now standard to see that, regarding X FPðO
P

1 l � � �lO
P

1 lO
P

1ð1ÞÞ

as the blowing-up of P
n with center a codimension two linear subspace L, Y

identifies to the pull-back of a line in P
n not meeting L. r

The following result enables us to construct new models starting from a

given one.

Proposition 4.2. Let ðX ;YÞ be a model, where Y is a quasi-line. If E is a

vector bundle of rank r on X, denote by X 0 ¼: PðEÞ and by p : X 0 ! X the natural

projection. The following conditions are equivalent:

(i) there is a quasi-line Y 0 on X 0 such that pjY 0 : Y 0 ! Y is an isomorphism;

(ii) EjY FO
P

1ðaÞl � � �lO
P

1ðaÞlO
P

1ðaþ 1Þ for some a A Z.

P. Ionescu and C. Voica158



Proof. Let Z ¼: p
�1ðYÞ.

(i) ) (ii) Since pjY 0 : Y 0 ! Y is an isomorphism it follows that N
ZjX 0

�

�Y 0
F

NY jX . The exact sequence:

0 ! NY 0jZ ! NY 0jX 0 ! N
ZjX 0

�

�Y 0
FNY jX ! 0ð��Þ

shows that Y 0 is a quasi-line in Z ¼ PðEjY Þ. (ii) follows now from Proposition

4.1.

(ii) ) (i) We have seen in Proposition 4.1 that Z ¼ PðEjY Þ identifies to the

blowing-up of P r with center a codimension two linear subspace L. Take Y 0 to

be the pull-back of a line in P
r not meeting L; remark that Y 0 is a quasi-line on

Z and a section of pjZ : Z ! Y . The exact sequence (��) shows that Y 0 is in

fact a quasi-line on X 0. r

Remark 4.3. In the above construction, if Y is an almost-line, Y 0 is also an

almost-line.

Let E be a rank r vector bundle on P
m and assume that there is a line

lHP
m such that Ejl FO

P
1ð1Þl � � �lO

P
1ð1ÞlO

P
1ð2Þ. By the above proposi-

tion, we get a model ðX ¼ PðEÞ;YÞ, with Y an almost-line that projects iso-

morphically onto l.

Lemma 4.4. With the above assumptions and notations, the resulting model

ðX ¼ PðEÞ;YÞ is a minimal Zariski model if and only if H 0ðPm
;Eð�2ÞÞ ¼ 0.

Proof. We first remark that Ejl 0 FO
P

1ð1Þl � � �lO
P

1ð1ÞlO
P

1ð2Þ for a

general line l 0 in P
m (this fact was kindly pointed out to us by I. Coandă).

Indeed, Eð�2Þjl has degree 1� r and h0ðl;Eð�2ÞjlÞ ¼ 1; by semicontinuity, the

same holds true in a neighbourhood of l. Consequently, for l 0 in that neigh-

bourhood, the splitting-type of Ejl 0 is the same as that of Ejl . Now, let p : X ¼

PðEÞ ! P
m be the projection and let Z ¼ p

�1ðlÞ ¼ PðEjlÞ. Regard also Z as the

blowing-up s : Z ! P
r with center a codimension two linear subspace L, so that

Y identifies to the pull-back of a line in P
r not meeting L. Let D denote the

divisor class on Z corresponding to OZð1Þ, let F denote the class of a fibre of pjZ
and let S denote the exceptional divisor of s. With these notations we find

easily that S is linearly equivalent to D� 2F . If we remark moreover that the

natural restriction map PicðXÞ ! PicðZÞ is an isomorphism, it follows that S

is induced by the divisor T � p
�ð2HÞ, where T corresponds to OX ð1Þ and H is

a hyperplane in P
m. Now, if A is an (e¤ective) prime divisor on X such that

ðA � YÞ ¼ 0, it follows that the restriction of A to Z has to be of the form aS, for

some a > 0. The fact that

Ejl FO
P

1ð1Þl � � �lO
P

1ð1ÞlO
P

1ð2Þ
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for a general line l implies via a Bertini-type argument that a ¼ 1. Putting every-

thing together, it follows that such an e¤ective divisor A exists if and only if

jT � p
�ð2HÞj0q, which is equivalent to H 0ðPm

;Eð�2ÞÞ0 0. r

Lemma 4.5. Keeping the notations and the assumptions preceeding the state-

ment of Lemma 4.4, suppose moreover that m ¼ r. Then ðX ¼ PðEÞ;Y Þ is a Fano

model if and only if either

EFOP
mð1Þl � � �lOP

mð1ÞlOP
mð2Þ

or

EFTP
m :

Proof. We have that detðEÞFOP
mðmþ 1Þ and that

oX FOX ð�mÞn p
�ðoP

m n detðEÞÞFOX ð�mÞ:

So o
�1
X is ample if and only if E is ample; in this case, as Ejl has degree mþ 1

and rank m, E has to be uniform (i.e. Ejl FO
P

1ð1Þl � � �lO
P

1ð1ÞlO
P

1ð2Þ for

any line lHP
m). Now the result follows from [5]. r

The next question has been asked in [1], Question 5.7: is any smooth min-

imal Zariski model ðX ;YÞ, with Y a quasi-line, necessarily Fano? Proposition

4.6 below shows that, in general, the answer is no, even for threefolds.

Indeed, consider a rank-two vector bundle on P
2 constructed by Serre’s

method (cf. [25]) as an extension of the form:

0 ! O
P

2ð1Þ ! E ! IfP1;P2gð2Þ ! 0;

where P1, P2 are two points in P
2. Note that for a general line lHP

2, Ejl F

O
P

1ð1ÞlO
P

1ð2Þ.

Proposition 4.6. The model ðX ¼ PðEÞ;Y Þ constructed as above is a mini-

mal Zariski model, but it is not Fano.

Proof. The minimality follows from Lemma 4.4, since H 0ðP2
;Eð�2ÞÞ ¼ 0.

E is neither O
P

2ð1ÞlO
P

2ð2Þ nor T
P

2 , so PðEÞ is not Fano by Lemma 4.5. r

Our next purpose is to answer in the negative Questions 5.2 and 5.3 from

[1]. To this end we need the following simple lemma in order to compute the

cohomological dimension of XnY , for a certain model ðX ;YÞ.

Lemma 4.7. Let X be a projective scheme and Y1;Y2 HX two closed subsets.

Put Y ¼ Y1 VY2, U1 ¼ XnY1, U2 ¼ XnY2, X0 ¼ XnY . Assume that there is

some a > 0 such that:
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(i) cdðUiÞa a, for i ¼ 1; 2;

(ii) cdðU1 VU2Þa a� 1.

Then cdðX0Þa a.

Proof. Let Zj ¼ X0 VYj for j ¼ 1; 2. For any ib aþ 1 and any coherent

sheaf F on X0 we have by (ii) the exact sequence of local cohomology (see [8]):

0 ! H i
Z1UZ2

ðX0;FÞ ! H iðX0;FÞ ! H iðU1 VU2;FjU1VU2
Þ ¼ 0:

Since Z1 VZ2 ¼ q, we have by the Mayer-Vietoris exact sequence (see [8]):

H i
Z1UZ2

ðX0;F ÞFH i
Z1
ðX0;FÞlH i

Z2
ðX0;FÞ:

Moreover, by excision (see [8]) we get:

H i
Z1
ðX0;FÞFH i

Z1
ðU2;FjU2

Þ

and

H i
Z2
ðX0;FÞFH i

Z2
ðU1;FjU1

Þ:

By (ii) and the exact sequence of local cohomology we get the exact sequences:

0 ! H i
Z1
ðU2;FjU2

Þ ! H iðU2;FjU2
Þ ! H iðU1 VU2;FjU1VU2

Þ ¼ 0

and

0 ! H i
Z2
ðU1;FjU1

Þ ! H iðU1;FjU1
Þ ! H iðU1 VU2;FjU1VU2

Þ ¼ 0:

Combining these exact sequences and using also (i) we get the result. r

Proposition 4.8. Consider the model ðX ¼ PðT
P

2Þ;YÞ constructed above.

Then Y is G3 in X.

Proof. Regard X HP
2 � �PP

2 as the incidence variety. We may write Y ¼

Y1 VY2, with Y1 ¼ p�1
1 ðlÞ, Y2 ¼ p�1

2 ð�llÞ, lHP
2 and �llH �PP

2 being suitably chosen

lines and p1 : X ! P
2, p2 : X ! �PP

2 being the restricted projections. Let Ui ¼

XnYi for i ¼ 1; 2; we have Ui FA
2 � P

1 for i ¼ 1; 2. Moreover, U1 VU2 is

a‰ne, being the complement in X of a hyperplane section. We may apply

Lemma 4.7 with a ¼ 1 to get that cdðXnY Þa 1 (actually equality holds). The

result follows now from Proposition 1.10 (i). r

Corollary 4.9. The formal completions dPðT
P

2ÞPðT
P

2ÞjY and P̂P
3
jline are not iso-

morphic.

Proof. Since both Y in X ¼ PðT
P

2Þ and a line in P
3 are G3, if the formal

completions were isomorphic, it would follow from Proposition 1.8 that ðX ;YÞ@

ZðP
3
; lineÞ. But both are anticanonical minimal Zariski models. So, by Proposi-

tion 1.17, they would be isomorphic, which is clearly absurd. r
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Next we introduce another local numerical invariant of a model ðX ;YÞ

in case Y is a quasi-line. Recall from [1], Lemma 3.4 that there are only finitely

many deformations of Y passing through two general points of X.

Let

eðX ;Y Þ ¼: cardfY 0 jY 0 is a deformation of Y

passing through two general points of Xg:

We close up the paper by exhibiting a rather surprising example of two anti-

canonical models ðX ;YÞ and ðX 0
;Y 0Þ such that X̂XjY and X̂X 0

jY 0 are not isomorphic

although all their numerical invariants are the same. Indeed, let ðX ¼ PðT
P

2Þ;

Y Þ be the above constructed model; let X 0 be the blowing-up of P3 with center a

point P (so X 0 ¼ PðO
P

2ð1ÞlO
P

2ð2ÞÞÞ and let Y 0 be the inverse image of a line in

P
3 not passing through P.

Proposition 4.10. X̂XjY and X̂X 0
jY 0 are not isomorphic (in particular ðX ;YÞ

and ðX 0
;Y 0Þ are not Zariski equivalent); moreover, ðX ;YÞ and ðX 0

;Y 0Þ are not

deformation equivalent. However, all their numerical invariants considered in this

paper coincide:

aðX ;YÞ ¼ aðX 0
;Y 0Þ ¼ ð1; 1Þ;

bðX ;YÞ ¼ bðX 0
;Y 0Þ ¼ 1;

cðX ;YÞ ¼ cðX 0
;Y 0Þ ¼ 1;

dðX ;YÞ ¼ dðX 0
;Y 0Þ ¼ 2;

eðX ;YÞ ¼ eðX 0
;Y 0Þ ¼ 1

and

rðXÞ ¼ rðX 0Þ ¼ 2:

Proof. The fact that X̂XjY and X̂X 0
jY 0 are not isomorphic was already proved

in Corollary 4.9. We compute easily ðK 3
X Þ ¼ �48 and ðK 3

X 0Þ ¼ �56, so X and

X 0 are not deformation equivalent. The computation of the numerical invariants

is not di‰cult and is left to the reader. r

Remark 4.11. We can distinguish between the two models from Proposition

4.10 via another global invariant. Indeed, as we have already seen, we have

cdðXnYÞ ¼ 1, but one computes easily that cdðX 0nY 0Þ ¼ 2. Note that, if l is a

line in P
3, we have cdðP3nlÞ ¼ 1.
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