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On Meyer’s function of hyperelliptic mapping class groups
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Abstract. In this paper, we consider Meyer’s function of hyperelliptic mapping

class groups of orientable closed surfaces and give certain explicit formulae for it.

Moreover we study geometric aspects of Meyer’s function, and relate it to the h-

invariant of the signature operator and Morita’s homomorphism, which is the core of

the Casson invariant of integral homology 3-spheres.

0. Introduction.

Let Sg be an oriented closed surface of genus gb 1. The mapping class

group Gg is defined to be the group of all isotopy classes of orientation preserving

di¤eomorphisms of Sg. By [BH] there exists the subgroup Dg of Gg which is the

centralizer of the class of a hyperelliptic involution in Gg. This group fits in a

nonsplit extension

0 ! Z=2 ! Dg ! G 2gþ2 ! 1;

where G n denotes the mapping class group of S2 leaving n points invariant. As

is known, Dg ¼ Gg if g ¼ 1; 2 and Dg 0Gg for gb 3. The group Dg is called the

hyperelliptic mapping class group.

Our main object in the present paper is Meyer’s signature cocycle [Me],

which is a group 2-cocycle of the Siegel modular group Spð2g;ZÞ. Topologi-

cally, this presents the signature of total spaces of surface bundles over a surface.

Since the group Dg is acyclic over Q (cf. [C], [K]), the restriction of the pull-back

of the signature cocycle via the classical representation

r : Gg ! Spð2g;ZÞ

must be the coboundary of a unique rational 1-cochain of Dg. In this paper, we

call it Meyer’s function of genus g (see Remark 1.1 for precise definition).

In the case of genus one, Meyer gave an explicit formula of Meyer’s func-

tion and the signature cocycle by using the Rademacher function (see also [BG],

[KM] and [S]). It then seems to be natural problem that we try to generalize his

results for surface of genus two. However, it is not so easy to describe Meyer’s
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function explicitly for higher genera, because the representation r has non-trivial

and huge kernel Ig, which is called the Torelli group, in those cases.

On the one hand, geometric meanings of Meyer’s function were studied by

Atiyah in [A]. In fact, he related it to many invariants defined for each element

of D1 ¼ G1 GSLð2;ZÞ including Hirzebruch’s signature defect, the logarithmic

monodromy of Quillen’s determinant line bundle, the Atiyah-Patodi-Singer h-

invariant and its adiabatic limit.

The purpose of the present paper is twofold. First we give several formulae

of Meyer’s function on certain subgroups of Dg, which detect some information

of it on the Torelli group. Secondly we study geometric aspects of Meyer’s

function under certain conditions. In fact, if we restrict ourselves to periodic

automorphisms of Dg, we can regard Meyer’s function as the h-invariant of the

signature operator via mapping torus constructions. By this correspondence, we

see that the h-invariant always takes its value in ð1=ð2gþ 1ÞÞZ. On the other

hand, Meyer’s function can be interpreted as the Casson invariant of homology

3-spheres. From the theory of characteristic classes of surface bundles, due to

Morita (see [Mo2], [Mo3]), the Casson invariant can be regarded as the secondary

characteristic class associated to the first Morita-Mumford class e1 A H 2ðGg;QÞ

(cf. [Mo1], [Mu]) through the correspondence between elements of Gg and 3-

manifolds via the Heegaard splittings. In this point of view, the core of the

Casson invariant is essentially represented by the homomorphism

d0 : Kg ! Q;

which we call Morita’s homomorphism (see Section 5 for the definition). Here,

Kg is the subgroup of Gg generated by all the Dehn twists along separating simple

closed curves on Sg. Then Meyer’s function coincides with Morita’s homomor-

phism on Dg VKg (up to the factor 1=3). Therefore, in principle, we can say that

the Casson invariant of homology 3-spheres is determined by Meyer’s function.

Now we describe the contents of this paper. In the next section, we review

the definition of Meyer’s signature cocycle and some results concerning genus one

case. In Section 2, we derive several formulae of Meyer’s function on certain

subgroups of Dg. A relation between the h-invariant and Meyer’s function will

be discussed in Section 3. In Section 4 we recall the intersection cocycle of the

mapping class group Gg, and relate the Casson invariant to Meyer’s function in

the last section.

This paper is a part of the author’s doctoral dissertation at the University of

Tokyo in 1998. The author would like to express his gratitude to Professors

Shigeyuki Morita and Nariya Kawazumi for helpful discussions and valuable

advices. This research is supported in part by JSPS Research Fellowships for

Young Scientists.
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1. Definition and review of genus one case.

First we briefly recall the definition of Meyer’s signature cocycle (see [Me]

for details). For a; b A Spð2g;ZÞHSpð2g;RÞ, let

Va;b ¼ fðu; vÞ A R
2g lR

2g j ða�1 � 1Þuþ ðb � 1Þv ¼ 0g;

where 1 denotes the identity matrix of size 2g� 2g. We define a pairing map

h ; i : Va;b � Va;b ! Z

by

hðu1; v1Þ; ðu2; v2Þi ¼ ðu1 þ v1Þ � ð1� bÞv2;

where � is the intersection number of H1ðSg;RÞGR
2g. It is easy to see that

h ; i is a symmetric bilinear form (possibly degenerate) on Va;b. We define a 2-

cocycle tgða; bÞ to be the signature of ðVa;b; h ; iÞ. Of course, we can consider

tg as a 2-cocycle of Gg in terms of the representation r. Then it is known that

the cohomology class represented by �3tg is equal to the first Morita-Mumford

class e1 A H 2ðGg;ZÞ when the genus of Sg is greater than one (see [Mo2]). This

cohomology class e1 is defined to be the Gysin image of the second power of the

Euler class of the central extension

0 ! Z ! Gg;1 ! Gg;� ! 1:

Here Gg;1 is the mapping class group of Sg;1, a compact oriented surface of

genus g with one boundary component, and Gg;� denotes the one relative to a

base point � A Sg. The center Z of Gg;1 is generated by the Dehn twist along

a simple closed curve which is parallel to the boundary of Sg;1. The Morita-

Mumford class plays an important role in the stable cohomology classes of the

mapping class group.

As is known, the rational cohomology of the group Dg vanishes in dimen-

sions 1 and 2 (see [C] and [K] for example), so that the cocycle r�tgjDg
must be

the coboundary of a unique rational 1-cochain of Dg (in the following, we often

omit r� for simplicity). We call it Meyer’s function of genus g and denote it

by fg.

Remark 1.1. More precisely, we can show ð2gþ 1ÞtgjDg
A B2ðDg;ZÞ.

Thereby, Meyer’s function is defined to be fg : Dg ! ð1=ð2gþ 1ÞÞZ such that

dfg ¼ tgjDg
.

The next properties follow easily from that of the signature cocycle:

Lemma 1.2. For two elements j;c A Dg, Meyer’s function satisfies

(1) fgðjcÞ ¼ fgðjÞ þ fgðcÞ � tgðj;cÞ;
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(2) fgðidÞ ¼ 0;

(3) fgðj
�1Þ ¼ �fgðjÞ;

(4) fgðjcj
�1Þ ¼ fgðcÞ.

Remark 1.3. From Lemma 1.2 (1), we notice that the restriction of fg to

the Torelli group Dg VIg is a homomorphism, where Ig ¼ Ker r.

The group presentation of Dg was given by Birman and Hilden (see [BH]).

By using its defining relations, we can determine the values of fg on generators

of Dg.

Proposition 1.4. For the generators z1; . . . ; z2gþ1 of Dg ðgb 2Þ, the values of

Meyer’s function fg are equal to ðgþ 1Þ=ð2gþ 1Þ.

Proof. Since each generator is mutually conjugate (in fact, ziþ1 ¼ xzix
�1

holds for x ¼ z1 � � � z2gþ1), fg has the same values on generators, and we simply

denote it by fgðzÞ. Direct computations using the relation (15.4) in [BH] show

that

0 ¼ fgðz1 � � � z
2
2gþ1 � � � z1Þ ¼ fgðxÞ þ fgðxÞ � tgðx; xÞ

¼ 2fð2gþ 1ÞfgðzÞ � 1g � 2g

¼ 2ð2gþ 1ÞfgðzÞ � 2ðgþ 1Þ;

where we put x ¼ z2gþ1 � � � z1. As a result, we obtain fgðzÞ ¼ ðgþ 1Þ=ð2gþ 1Þ

and the proof is completed. r

By virtue of Lemma 1.2 and Proposition 1.4, if we present any element

j A Dg in terms of the product of generators, we can evaluate fgðjÞ explicitly.

Now let us consider the genus one case. Then the mapping class group G1

is identified with SLð2;ZÞ. Hereafter we fix the following group presentation of

SLð2;ZÞ:

hz1; z2 j z1z2z1 ¼ z2z1z2; ðz1z2z1Þ
4 ¼ 1i;

where

z1 ¼
1 0

�1 1

� �

and z2 ¼
1 1

0 1

� �

:

Each generator corresponds to the Dehn twist along a simple closed curve on S1

which presents a symplectic basis of H1ðS1;ZÞ respectively.

In this case, there are some interesting formulae for f1. Here we recall the

initiative result due to Meyer very briefly (see [Me]).
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For a ¼
a b

c d

� �

A SLð2;ZÞ, the Rademacher function C : SLð2;ZÞ ! Z is

defined by

CðaÞ ¼

aþ d

c
� 12 sgn c � sða; cÞ � 3 sgn cðaþ dÞ if c0 0

b

d
if c ¼ 0;

8

>

>

<

>

>

:

where sða; cÞ is the Dedekind sum (see [RG]) and sgnðnÞ ¼ n=jnj if n0 0 and 0 if

n ¼ 0. Further we define a class function s : SLð2;ZÞ ! Z by

sðaÞ ¼ Sign
�2c a� d

a� d 2b

� �

:

Under the above preparations, we can summarize Meyer’s theorem as follows.

Proposition 1.5 (Meyer). For a ¼
a b

c d

� �

A SLð2;ZÞ, Meyer’s function of

genus one is described via

f1ðaÞ ¼ �
1

3
CðaÞ þ sðaÞ �

1

2
ð1þ sgnðtr aÞÞ:

In particular, if a is hyperbolic (i.e. jtr aj > 2), then f1ðaÞ ¼ �ð1=3ÞCðaÞ holds.

Remark 1.6. We see from Proposition 1.5 that the values of f1 on

generators of SLð2;ZÞ are equal to 2=3. Accordingly, Proposition 1.4 holds for

gb 1.

Other formulae of f1 are investigated by several authors (see [BG], [KM],

[S]). In the next section, we try to extend these results to certain subgroups

of Dg.

2. Formulae of Meyer’s function.

In this section, we give some formulae of Meyer’s function on certain

subgroups of the hyperelliptic mapping class group Dg.

First we consider the following central Z-extension of G1;� ¼ SLð2;ZÞ:

0 �! Z �! G1;1 �!
r1; 1

SLð2;ZÞ �! 1;

where the center Z of G1;1 is generated by the Dehn twist along a simple closed

curve on S1;1 which is parallel to the boundary (namely, c1 ¼ ðz1z2z1Þ
4 generates

the kernel Z). Hence as a subgroup of G2, the group G1;1 has the presentation

G1;1 ¼ hz1; z2 j z1z2z1 ¼ z2z1z2i;

where we have used the same letters for generators by abuse of notation.
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The above central extension also can be described explicitly via Maslov index

m : SLð2;RÞ � SLð2;RÞ ! Z (see [LV]). If we consider the universal covering
fSLSLð2;RÞ ! SLð2;RÞ, we can take the preimage fSLSLð2;ZÞ of SLð2;ZÞ in fSLSLð2;RÞ,
because p1ðSLð2;RÞÞGZ is a central subgroup in fSLSLð2;RÞ. Then the group
fSLSLð2;ZÞ is isomorphic to SLð2;ZÞ � Z with the group structure given by

ða;mÞ � ðb; nÞ ¼ ðab;mþ nþ mða; bÞÞ:

The identification of G1;1 with fSLSLð2;ZÞ is explicitly obtained via

z1 7!
1 0

�1 1

� �
; 1

� �
and z2 7!

1 1

0 1

� �
; 0

� �
:

Further we easily see that KerðfSLSLð2;ZÞ! SLð2;ZÞÞ ¼
1 0

0 1

� �
; 4k

� �
j k A Z

� �
.

Thereby we can extend Proposition 1.5 as follows.

Proposition 2.1. For an element j A G1;1 HG2, Meyer’s function of genus

two is given by

f2jG1; 1ðjÞ ¼ �
1

15
pabðjÞ þ r�

1;1f1ðjÞ;

where pab
: G1;1 ! Z is the abelianization homomorphism (namely, zi corresponds

to 1) and f1 is Meyer’s function of genus one.

Remark 2.2. Here we would like to emphasize that we can catch the

information on the core (that is, the normal generator c1) of the Torelli group

I2 in the above formula, which cannot recover from the Sp-representation.

Proof. The restriction of t2 to the subgroup G1;1 coincides with the pull-

back r�
1;1t1, so that we have df2jG1; 1 ¼ r�

1;1ðdf1Þ ¼ dðr�
1;1f1Þ. Accordingly there

exists a homomorphism f : G1;1 ! Z uniquely such that

f2jG1; 1ðjÞ ¼ f ðjÞ þ r�
1;1f1ðjÞ for j A G1;1:

By the fact that H1ðG1;1;ZÞGZ, we easily see that f is a rational multiple of the

abelianization homomorphism pab
: G1;1 ! Z. Hence it is su‰cient to evaluate

the above equation on a generator of G1;1 in order to determine the coe‰cient of

pab. If we put j ¼ z1, then we have f2jG1; 1ðjÞ ¼ 3=5, r�
1;1f1ðjÞ ¼ 2=3 by means

of Proposition 1.4 and clearly pabðjÞ ¼ 1. Consequently we can conclude f ¼

�ð1=15Þpab and obtain the desired formula. r

The next example is an extension of Sczech’s formula on SLð2;ZÞ to the

group G1;1 (see [S], Theorem 2).
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Example 2.3. Put gn ¼
0 �1

1 p0

� �
; q0

� �
� � �

0 �1

1 pn

� �
; qn

� �
A G1;1 G

fSLSLð2;ZÞ, where pi A Z and qi 1�1 ðmod 4Þ for each i. Then by virtue of

Proposition 2.1, we obtain

f2ðgnÞ ¼ �
1

5

Xn

k¼0

ð2pk þ qkÞ � SignPn;

where SignPn denotes the signature of the matrix Pn whose ði; jÞ-entry is �pi if

i ¼ j, 1 if ji � jj ¼ 1 or n, and 0 otherwise.

Now we consider the commutative diagram below:

0 ���! Z ���! G1�1 ���!r1�1
SLð2;ZÞ � SLð2;ZÞ ���! 1???y

???y
???y

1 ���! I2 ���! G2 ���!r Spð4;ZÞ ���! 1;

where the upper sequence is a central Z-extension of SLð2;ZÞ � SLð2;ZÞ and

Ker r1�1 is generated by c1 ¼ ðz1z2z1Þ
4 ¼ ðz5z4z5Þ

4 as before. The group G1�1 is

conceptually the mapping class group of the surface S1;1 US1;1 which is pasted

along the boundary curves of each S1;1.

As a consequence of Proposition 2.1, we obtain the following formula of

Meyer’s function of genus two on G1�1.

Theorem 2.4. For an element j A G1�1 HG2, Meyer’s function of genus two is

described via

f2ðjÞ ¼ �
1

15
pabðjÞ þ r�

1�1ðf1 � f1ÞðjÞ;

where pab
: G1�1 ! Z is the abelianization homomorphism and f1 � f1 is the

composite function SLð2;ZÞ � SLð2;ZÞ ! ð1=3ÞZ � ð1=3ÞZ ! ð1=3ÞZ given by

ða; bÞ 7! f1ðaÞ þ f1ðbÞ.

Remark 2.5. For the subgroup Dh;1 of Gh;1, which consists of all the

inverse images of Dh HGh under the natural projection Gh;1 ! Gh, we can also

give a similar formula as in Proposition 2.1. To be more precise, the di¤er-

ence between Meyer’s function fh and the restriction of fg ðh < gÞ to the group

Dh;1 is described by a rational multiple of the abelianization homomorphism.

In fact, we see from easy calculation that the coe‰cient is equal to �ðg� hÞ=

ðð2hþ 1Þð2gþ 1ÞÞ. Further, we naturally notice that an analogue of Theorem

2.4 holds for the amalgam of Dh;1 and Dh 0;1 along Z (this infinite cyclic group is

generated by the Dehn twist along a simple closed curve on Shþh 0 which is the

common boundary of two subsurfaces Sh;1 and Sh 0;1).
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Example 2.6. Let ch A Dg ð1a ha g� 1Þ be a BSCC-map of

genus h (namely, a Dehn twist along a bounding simple closed curve on Sg

which is invariant under the action of a hyperelliptic involution and separates

Sg into two subsurfaces of genera h and g� h). Then ch is presented by

ch ¼ jðz1 � � � z2hÞ
4hþ2

j�1 for some element j A Dg. Thus it is easy to see from

Remark 2.5 and Lemma 1.2 (4) that the value of Meyer’s function on ch is

given by

fgðchÞ ¼ �
4

2gþ 1
hðg� hÞ;

because the element ðz1 � � � z2hÞ
4hþ2 is in the kernel of the natural map Dh;1 ! Dh.

3. Meyer’s function and the h-invariant.

The purpose of the following sections is to study geometric meanings of

Meyer’s function. The results obtained here can be regarded as a generalization

of Atiyah’s paper [A].

As for the definition of the h-invariant of the signature operator, see the

original paper [APS]. In short, it measures the extent to which the Hirzebruch

signature formula fails for a non-closed 4-dimensional Riemannian manifold

whose metric is a product near its boundary.

Let j A Gg be of finite order and Mj be the mapping torus corresponding

to j. Namely, it is the identification space Sg � ½0; 1�=ðp; 0Þ@ ðjðpÞ; 1Þ. We

endow Mj with the metric which is induced from the product of the standard

metric on S1 and a j-invariant metric of Sg.

If we restrict ourselves to the hyperelliptic mapping class group Dg, we obtain

the following theorem.

Theorem 3.1. Let Dg be the hyperelliptic mapping class group of genus g.

Then

hðMjÞ ¼ fgðjÞ

holds for any element j A Dg of finite order. In particular, hðMjÞ is a topological

invariant on Mj (that is, independent of the choice of a metric).

Proof. Let m be the order of j. Using the properties of Meyer’s func-

tion several times (see Lemma 1.2), it follows that

0 ¼ fgðj
mÞ ¼ mfgðjÞ �

Xm�1

k¼1

tgðj; j
kÞ:
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We therefore have

fgðjÞ ¼
1

m

Xm�1

k¼1

tgðj; j
kÞ;

and this coincides with the h-invariant of the mapping torus Mj by virtue of our

previous results (see [Mf]). The second assertion is clear from the first one and

this completes the proof of Theorem 3.1. r

The corollary stated below is an easy consequence of the definition of

Meyer’s function (see Remark 1.1).

Corollary 3.2. Let j A Gg be of finite order. If j A Dg, namely j commutes

with a hyperelliptic involution, then

hðMjÞ A
1

2gþ 1
Z

holds, where ð1=ð2gþ 1ÞÞZ denotes the additive group fn=ð2gþ 1Þ A Q j n A Zg.

Example 3.3. Let j A G3 be of order 3 so that the quotient orbifold of S3

by its cyclic action is homeomorphic to S2ð3; 3; 3; 3; 3Þ. Then direct computation

shows that the h-invariant of corresponding mapping torus is given by

hðMjÞ ¼ �
2

3
B
1

7
Z:

Hence, Corollary 3.2 implies that j cannot be realized as an automorphism of

a hyperelliptic Riemann surface.

4. Intersection cocycle on the hyperelliptic mapping class group.

In this section, we quickly review the intersection cocycle which represents

the first Morita-Mumford class e1 A H 2ðGg;QÞ. See [Mo4], [Mo5] for details.

Let Ig denote the Torelli group of Sg (i.e. Ig ¼ Ker r). Then by virtue

of fundamental results of Johnson ([J1], [J2]), there exists the following exact

sequence:

1 ! Kg ! Ig !
t
L3H=H ! 1;

where Kg is the subgroup of Gg generated by all the Dehn twists along sepa-

rating simple closed curves on Sg and L3H is the third exterior power of H ¼

H1ðSg;ZÞ. The map t is now called Johnson’s homomorphism. After John-

son’s work, this homomorphism is extended to the whole mapping class group Gg
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as a crossed homomorphism by Morita [Mo4]. More precisely, there exists a

map ~kk : Gg ! ð1=2ÞL3H=H so that the following diagram commutes:

Ig ���!
t

L3H=H
?
?
?
y

?
?
?
y

Gg ���!
~kk 1

2
L3H=H

where ð1=2ÞL3H ¼ L3Hn ð1=2ÞZ. It should be noted that ~kk is defined as

an extension of Johnson’s homomorphism uniquely up to coboundaries. Namely

it is defined as an element of H 1ðGg; ð1=2ÞL
3H=HÞ and further serves a genera-

tor of the cohomology group (modulo possibly torsions). By using this crossed

homomorphism, Morita explicitly described a group 2-cocycle of Gg representing

e1 (see [Mo5]).

Proposition 4.1 (Morita). There exists a uniquely defined Spð2g;ZÞ-

equivariant homomorphism C : L3H=HnL3H=H ! Q such that the cohomology

class of the 2-cocycle cðj;cÞ ¼ Cð~kkðjÞ; j�
~kkðcÞÞ ðj;c A GgÞ represents the first

Morita-Mumford class e1 A H 2ðGg;QÞ.

We shall call the above cocycle c the intersection cocycle. It should be

remarked that c is defined once we fix a crossed homomorphism ~kk : Gg !

ð1=2ÞL3H=H, which represents a generator of H 1ðGg; ð1=2ÞL
3H=HÞ (modulo

possibly torsions). On the other hand, if we choose a suitable crossed homo-

morphism, that is, modify a given crossed homomorphism by a coboundary, we

can show the following.

Proposition 4.2. There exists a crossed homomorphism ~kk0 : Gg !

ð1=2ÞL3H=H so that the restriction of it to the hyperelliptic mapping class group

Dg is zero map.

Proof. By the fact that the cohomology groups H �ðDg;HQÞ vanish for the

coe‰cient HQ ¼ HnQ (see [K]), we easily see that

H 1ðDg;L
3HQÞ ! H 1ðDg;L

3HQ=HQÞ

is an isomorphism. Moreover we find H 1ðDg;H
n3
Q Þ ¼ 0 by means of the same

argument as in [K] using the Lyndon-Hochschild-Serre spectral sequence of the

extension in Introduction, so that we can conclude H 1ðDg;L
3HQÞ ¼ 0. Hence it

follows that the extended Johnson’s homomorphism ½~kk� A H 1ðGg; ð1=2ÞL
3H=HÞ

is at most torsion on Dg. Namely, n~kkjDg
¼ du holds for some positive integer

n and u A ð1=2ÞL3H=H. If we define a new crossed homomorphism by ~kk0 ¼

n~kk � du, then it becomes a desired one. The proof is over. r
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Remark 4.3. In the case of genus two, it follows directly that ~kk1 0,

because the inclusion H ! L3H defined by u 7! u5o0, where o0 is the sym-

plectic class, is an isomorphism in this case.

If we restrict the above crossed homomorphism ~kk0 to the group Dg VIg,

then we have ~kk0jDgVIg
¼ ntjDg

¼ 0. Since the Torelli group Ig is torsion free,

Johnson’s result (that is, the previous exact sequence) implies that

Corollary 4.4. Dg VIg ¼ Dg VKg.

We call this group the hyperelliptic Torelli group and denote it by Jg.

It would be interesting to study the structure of Jg more deeply. For instance,

it is conjectured that Jg is the normal closure of BSCC-maps ðz1 � � � z2hÞ
4hþ2

ð1a ha ½g=2�Þ and not finitely generated (cf. [P], [McM]).

5. Meyer’s function and the Casson invariant.

The Casson invariant is an integer valued invariant defined for ori-

ented integral homology 3-spheres (see [AM]). Roughly speaking, it counts the

number (with signs) of conjugacy classes of irreducible representations of the

fundamental group of an oriented homology 3-sphere into the Lie group SUð2Þ.

Now we have obtained two canonical cocycles, one is the signature cocycle

tg and the other is the intersection cocycle c, for the first Morita-Mumford class

e1 A H 2ðGg;QÞ. The di¤erence between these two cocycles is a coboundary of

the mapping class group Gg. Since Gg is perfect for gb 3 and H1ðG2;ZÞ ¼ Z=10,

we have a uniquely defined mapping d : Gg ! Q such that

dd ¼ cþ 3tg;

provided we fix a crossed homomorphism. If we restrict the mapping d to

the subgroup Kg, then it is a homomorphism there (further, independent of

the choice of a crossed homomorphism) and essentially represents the Casson

invariant under the correspondence between elements of the Torelli group and

homology 3-spheres via Heegaard splittings (see [Mo2], [Mo3]). We denote it by

d0 : Kg ! Q

and call it Morita’s homomorphism. Then we have

Theorem 5.1. Let Jg be the hyperelliptic Torelli group of genus g. Then

Meyer’s function essentially coincides with Morita’s homomorphism on Jg. To be

more precise,

fgðjÞ ¼
1

3
d0ðjÞ

holds for any element j A Jg.
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Proof. First of all, let us take a crossed homomorphism ~kk0 in Proposition

4.2 and consider the intersection cocycle c0 corresponding to ~kk0. If we restrict

ourselves to the group Dg, it follows that

ddjDg
¼ c0jDg

þ 3tgjDg
¼ 3dfg:

We therefore obtain djDg
¼ 3fg because H 1ðDg;ZÞ ¼ 0. Further if we restrict

this equation to the group Jg, it does not depend on the choice of the crossed

homomorphism ~kk0. Hence we have 3fg 1 d0 on Jg as desired. This completes

the proof. r

The corollary stated below is immediate from Example 2.6 and Theorem 5.1.

Corollary 5.2. Let ch A Jg be a BSCC-map of genus h. Then the value

of Morita’s homomorphism on ch is given by

d0ðchÞ ¼ �
12

2gþ 1
hðg� hÞ:

Remark 5.3. It has been shown by Morita that Corollary 5.2 actually

holds for the whole group Kg. Our method here gives a new proof of Morita’s

result by means of Meyer’s function.
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