
J. Math. Soc. Japan
Vol. 55, No. 1, 2003

On the level by level equivalence between strong compactness

and strongness

By Arthur W. Apter

(Received Jan. 4, 2000)

(Revised Jun. 13, 2001)

Abstract. We construct a model in which the least strongly compact cardinal k

is also the least strong cardinal, k isn’t 2k supercompact, and for any d < k, if d
þa is

regular, d is d
þa strongly compact if and only if d is dþ aþ 1 strong.

1. Introduction and preliminaries.

In [4], Shelah and the author extended and generalized the work of Kimchi

and Magidor [13] by proving the following theorem.

Theorem 1. Let V y ‘‘ZFCþGCHþ K0q is the class of supercompact

cardinals’’. There is then a cardinal and cofinality preserving generic extension

V ½G� y ‘‘ZFC þGCHþ If ka l are cardinals, then k is l supercompact if and

only if k was l supercompact in V (hence K is the class of supercompact cardinals)

þ If ka l are regular cardinals, then k is l strongly compact if and only if k is l

supercompact, except possibly if k is a measurable limit of cardinals d which are l

supercompact’’.

In the special case that there is only one supercompact cardinal in V and no

cardinal is supercompact up to a measurable cardinal, Theorem 1 can be restated

as follows.

Theorem 2. Let V y ‘‘ZFCþGCHþ k0 is the unique supercompact cardi-

nal ’’. There is then a cardinal and cofinality preserving generic extension V ½G � y

‘‘ZFCþGCHþ k0 is the unique supercompact cardinalþ If ka l are regular

cardinals, then k is l strongly compact if and only if k is l supercompact’’.

We take this opportunity to make two remarks concerning Theorem 1 (and

its restatement as Theorem 2). The first is that the above statements are the

‘‘modern’’ statements of these theorems, taking into account Hamkins’ gap forcing
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work begun in [8] and extended in [9] and [10]. Also, the terminology we use in

models which witness the conclusions of Theorems 1 and 2 is that there is a level

by level equivalence or level by level correspondence between strong compactness

and supercompactness, except, in the case of Theorem 1, at measurable limits.

This exception occurs because of the result of Menas [16], which shows that

measurable limits of l supercompact or l strongly compact cardinals are l strongly

compact but need not be l supercompact.

In [3], Cummings and the author constructed a model containing a proper

class of strongly compact cardinals in which the classes of strongly compact

and strong cardinals coincide precisely. Specifically, the following theorem was

proven.

Theorem 3. ConðZFCþ There is a proper class of supercompact cardinalsÞ

) ConðZFC þGCHþ There is a proper class of strongly compact cardinalsþNo

strongly compact cardinal k is 2k supercompactþ Ek½k is strongly compact if and

only if k is strong�Þ.

The purpose of this paper is to combine Theorems 2 and 3 to produce a

model containing a non-supercompact cardinal k which is both the least strongly

compact and least strong cardinal so that, roughly speaking, at regular levels,

there is a precise correspondence between the notions of strong compactness and

strongness. Specifically, we prove the following theorem.

Theorem 4. Let V y ‘‘ZFC þ k is supercompactþNo cardinal l > k is

measurableþ There is no pair of cardinals d < l so that d is l supercompact and

l is measurable’’. There is then a partial ordering PJV so that VP
y ‘‘ZFCþ

GCHþNo cardinal l > k is measurableþ There is no pair of cardinals d < l so

that d is l supercompact and l is measurableþ k is both the least strongly compact

and least strong cardinalþ k isn’t 2k supercompactþ For d < k, if dþa is regular,

then d is dþa strongly compact if and only if d is dþ aþ 1 strong’’. If we assume

in addition that GCH and level by level equivalence between strong compactness

and supercompactness hold in V, then P can be defined so that P A V , jPj ¼ k, and

forcing with P preserves cardinals and cofinalities.

We digress briefly to mention that if a < b are ordinals, then ½a; b�, ½a; bÞ,

ða; b� and ða; bÞ are as in standard interval notation. Also, we are assuming

familiarity with the large cardinal notions of measurability, strongness, super-

strongness, strong compactness, and supercompactness. Interested readers may

consult [12], [15], or [17] for further details. We mention only that unlike [12],

we will say that the cardinal k is l strong for l > k if there is j : V ! M an

elementary embedding having critical point k so that jðkÞ > jVlj and VlJM.

If jVlj is regular, then we may assume that M k
JM as well. As always, k is

strong if k is l strong for every l > k. We will also say the cardinal k is
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superstrong with target l if there is j : V ! M an elementary embedding having

critical point k so that jðkÞ ¼ l, M k
JM, and VlJM.

We note that we are also assuming some familiarity with the basics

of extender technology and the transference of generic objects via elementary

embeddings. The section on background material of [7] is extremely useful in

this regard. Readers may also consult [15] for additional details concerning

extenders.

Returning from our digression, let us observe that assuming GCH, if d is dþa

supercompact for any ordinal ab 0, then d is dþ aþ 1 strong. The converse

is not true, since by Lemma 2.1 of [3] and Proposition 26.11 of [12], if d is 2d

supercompact, then d has a normal measure concentrating on cardinals g which

are superstrong with target d. Hence, we have the following easy lemma as an

immediate corollary.

Lemma 1.1. If d < s are so that d is 2d supercompact and s is the least

2s supercompact cardinal above d, then there are unboundedly in s many cardinals

h A ðd; sÞ so that h isn’t hþ supercompact yet h is h 0 strong for every h 0
A ðh; sÞ.

Thus, given the above discussion, it makes sense to use the equivalence found

in the statement of Theorem 4 as our definition of what it means for there to be

a level by level correspondence at regular levels between the notions of strong

compactness and strongness.

We note that for reasons similar to those given in [4], if there is a super-

compact cardinal k in the universe, or even if there is a cardinal k in the universe

which is only both strongly compact and strong, there cannot be a precise level

by level equivalence in the above sense between the notions of strong compact-

ness and strongness. Specifically, if dþa is singular, it won’t necessarily be the

case that d is dþa strongly compact if and only if d is dþ aþ 1 strong. The fol-

lowing lemma, an analogue to a result of Magidor which is found as Lemma 7 of

[4], makes this precise. For simplicity in presentation, we assume GCH, and we

leave it to readers to recast this lemma suitably in the context of the negation of

GCH.

Lemma 1.2. Suppose k is strongly compact and strong. Then B ¼ fd < k : d

is dþd strongly compact and d isn’t dþ d strongg is unbounded in k.

Proof. The proof of Lemma 1.2 is essentially a modification of the proof

of Lemma 7 of [4] in the context of strongness. Since k is a strong cardinal, by

choosing jðkÞ to be minimal, let j : V ! M be an elementary embedding wit-

nessing the kþ k strongness of k so that M y ‘‘k isn’t kþ k strong’’. By GCH

and the fact that VkþkJM, M y ‘‘k is kþg strongly compact for all g < k’’.

Let m A V be a k-additive measure over k, and let g < k. Since VkþkJM,
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we know m A M and kþg has the same meaning in both V and M. Since M y ‘‘k

is kþg strongly compact for all g < k’’, we can find a sequence hmg : g < ki A M

so that M y ‘‘mg is a k-additive, fine ultrafilter over Pkðk
þgÞ’’. Thus, we can

define in M the collection m� of subsets of Pkðk
þkÞ by A A m� if and only if

fg < k : AVPkðk
þgÞ A mgg A m. It is easily checked that m� defines in M a k-

additive, fine ultrafilter over Pkðk
þkÞ. Hence, M y ‘‘k is kþk strongly compact yet

k isn’t kþ k strong’’, so by reflection, the set B is unbounded in k. This proves

Lemma 1.2. r

We remark that in the context of GCH, dþd is the least singular strong limit

cardinal of cofinality d above d. Also, the proof of Lemma 1.2 has been written

to show we may infer, e.g., that fd < k : d is dþdþ strongly compact and d isn’t

dþ dþ ¼ dþ strongg is unbounded in k. This is done by letting m be a uniform

k-additive measure over kþ (which is possible since k is kþ strongly compact) and

then following the appropriate modification of the proof just given. This is in

analogy to the proof of Lemma 7 of [4].

We return now to a discussion of preliminary material. When forcing,

qb p will mean that q is stronger than p. If P is our partial ordering, VP and

V ½G� will be used interchangeably to denote the generic extension when forcing

with P.

The partial ordering P is k-strategically closed if in the two person game in

which the players construct an increasing sequence hpa : aa ki, where player I

plays odd stages and player II plays even and limit stages (choosing the trivial

condition at stage 0), then player II has a strategy which ensures the game can

always be continued. Note that if P is k-strategically closed and f : k ! V is

a function in VP, then f A V . P is �k-strategically closed if in the two person

game in which the players construct an increasing sequence hpa : a < ki, where

player I plays odd stages and player II plays even and limit stages, then player II

has a strategy which ensures the game can always be continued.

Suppose that k < l are regular cardinals. A partial ordering Pðk; lÞ that

will be used in forcing iterations throughout the course of this paper is the par-

tial ordering for adding a non-reflecting stationary set of ordinals of cofinality k

to l. Specifically, Pðk; lÞ is defined as fp : For some a < l, p : a ! f0; 1g is a

characteristic function of Sp, a subset of a not stationary at its supremum nor

having any initial segment which is stationary at its supremum, so that b A Sp

implies b > k and cofðbÞ ¼ kg, ordered by qb p if and only if qK p and

Sp ¼ Sq V supðSpÞ, i.e., Sq is an end extension of Sp. It is well-known that for G

V -generic over Pðk; lÞ (see [6] or [13]), in V ½G �, if we assume GCH holds in V , a

non-reflecting stationary set S ¼ S½G � ¼ UfSp : p A GgJ l of ordinals of cofin-

ality k has been introduced, the bounded subsets of l are the same as those in V ,

and cardinals, cofinalities, and GCH have been preserved. It can be shown (see
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the proof of Lemma 4.15 given on page 436 of [6] or the proofs of Lemmas 1.1

and 1.3 of [1] and the remark immediately following the proof of Lemma 1.3 of

[1]) that Pðk; lÞ is �l-strategically closed. And, whenever a forcing iteration P

has as one of its components a partial ordering of the form Pðk; lÞ for some

regular k and l, we will say that l is in the domain of P.

2. The Proof of Theorem 4.

We turn now to the proof of Theorem 4.

Proof. Let V y ‘‘ZFC þ k is supercompactþNo cardinal l > k is

measurableþ There is no pair of cardinals d < l so that d is l supercompact and

l is measurable’’. Without loss of generality, by first doing a preliminary class

forcing if necessary, we may also assume that V yGCH and that V is as in [4],

i.e., for d < l < k, d and l both regular, V y ‘‘d is l strongly compact if and only

if d is l supercompact’’.

Let hda : a < ki enumerate the set A of measurable cardinals below k having

the properties that for every d A A, there is some b so that dþb is regular, d is

dþ b þ 1 strong, and d isn’t dþb supercompact. By Lemma 1.1, A is unbounded

in k. Since these are the cardinals at which the desired level by level equivalence

between strong compactness and strongness will fail in the generic extension, our

goal will be to destroy every element of A. The partial ordering P that will

do this is the Easton support iteration hhPa; _QQai : a < ki of length k so that P0

is the partial ordering for adding a Cohen subset to o and Paþ1 ¼ Pa � _QQa, where
_QQa is a term for Pðo; daÞ. It is easily shown by an induction similar to the one

given in Lemma 8 of [4] that VP
yGCH and forcing with P preserves cardinals

and cofinalities.

Lemma 2.1. VP
y ‘‘k is strongly compact’’.

Proof. The proof of Lemma 2.1 uses ideas of Magidor which, although

unpublished by him, are contained in proofs found in [2], [3] and [1]. However,

for comprehensibility, we give a complete proof of Lemma 2.1 below.

Let l > k be regular, and by Proposition 2.7 of [16], let k1 : V ! M be an

elementary embedding witnessing the l supercompactness of k generated by an

ultrafilter over PkðlÞ so that M y ‘‘k isn’t l supercompact’’. Since GCH implies

M y ‘‘k is measurable’’, we may choose a normal ultrafilter of Mitchell order 0

over k so that k2 : M ! N is an elementary embedding witnessing the mea-

surability of k definable in M with N y ‘‘k isn’t measurable’’. It is the case

that if k : V ! N is an elementary embedding with critical point k and there is

some y A N so that k 00lJ y and N y ‘‘jyj < kðkÞ’’, then k witnesses the l strong

compactness of k. Since k2ðk
00
1 lÞ works as such a y, j ¼ k2 � k1 is an elementary
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embedding witnessing the l strong compactness of k. We show that j extends in

VP to j : VP ! N jðPÞ. Since this extended embedding witnesses the l strong

compactness of k in VP, this proves Lemma 2.1.

To do this, write jðPÞ as P � _QQ � _RR, where _QQ is a term for the portion of

jðPÞ between k and k2ðkÞ and _RR is a term for the rest of jðPÞ, i.e., the part

above k2ðkÞ. Note that since N y ‘‘k isn’t measurable’’, k B domð _QQÞ. Thus, the

domain of _QQ is composed of N-measurable cardinals in the interval ðk; k2ðkÞ�

(that we can infer k2ðkÞ A domð _QQÞ will be shown immediately after the con-

struction of the generic object G1), and the domain of _RR is composed of N-

measurable cardinals in the interval ðk2ðkÞ; k2ðk1ðkÞÞÞ.

Let G0 be V -generic over P. We construct in V ½G0� an N½G0�-generic object

G1 over Q and an N½G0�½G1�-generic object G2 over R. Since P is an Easton

support iteration of length k, a direct limit is taken at stage k, and no forcing is

done at k, the construction of G1 and G2 automatically guarantees that j 00G0 J

G0 � G1 � G2. This means that j : V ! N extends in V ½G0� to j : V ½G0� !

N½G0�½G1�½G2�.

To build G1, note that since k2 is generated by an ultrafilter U over k

and since in both V and M, 2k ¼ kþ, jk2ðk
þÞj ¼ jk2ð2

kÞj ¼ jf f : f : k ! kþ is

a functiongj ¼ j½kþ�kj ¼ kþ. Thus, as N½G0� y ‘‘j}ðQÞj ¼ k2ð2
kÞ’’, we can let

hDa : a < kþi enumerate in V ½G0� the dense open subsets of Q present in N½G0�.

Since the k closure of N with respect to either M or V implies the least element

of the domain of Q is >kþ, the definition of Q as the Easton support iteration

which adds a non-reflecting stationary set of ordinals of cofinality o to certain

N½G0�-measurable cardinals in the interval ðk; k2ðkÞ� implies, by arguments found

on page 115 of the proof of Lemma 8 of [4] (to handle successor stages) in

tandem with arguments found in the proof of Theorem 2.5 of [5] (to handle

limit stages), that N½G0� y ‘‘Q is �kþ-strategically closed’’. By the fact the stan-

dard arguments show that forcing with the k-c.c. partial ordering P preserves

that N½G0� remains k-closed with respect to either M½G0� or V ½G0�, Q is �kþ-

strategically closed in both M½G0� and V ½G0�.

We can now construct G1 in either M½G0� or V ½G0� as follows. Player

I picks pa A Da extending supðhqb : b < aiÞ and player II responds by picking

qab pa (so qa A Da). By the �kþ-strategic closure of Q in both M½G0� and

V ½G0�, player II has a winning strategy for this game, so hqa : a < kþi can be

taken as an increasing sequence of conditions with qa A Da for a < kþ. Clearly,

G1 ¼ fp A Q : ba < kþ½qab p�g is our N½G0�-generic object over Q.

It remains to construct in V ½G0� the desired N½G0�½G1�-generic object G2

over R. To do this, we first note that by GCH, the fact l > k, Lemma 2.1 of

[3], and Proposition 26.11 of [12], M y ‘‘k is superstrong with target k1ðkÞ > l’’,

so M y ‘‘k is d strong for all cardinals d A ½k; k1ðkÞÞ’’. Thus, since by the choice
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of k1, M y ‘‘k isn’t l supercompact’’, we can write k1ðPÞ as P � _SS � _TT, where wP
‘‘ _SS ¼ _PPðo; kÞ’’, and _TT is a term for the rest of k1ðPÞ. Also, since k A domðP � _SSÞ,

k2ðkÞ A domðk2ðP � _SSÞÞ, i.e., k2ðkÞ A domðP � _QQÞ, i.e., k2ðkÞ A domð _QQÞ.

Note now that M y ‘‘No cardinal g A ðk; l� is measurable’’. This is since

M lJM and V y ‘‘No cardinal above k is measurable’’. Thus, the domain of _TT

is composed of M-measurable cardinals in the interval ðl; k1ðkÞÞ, which implies

that in M, wP� _SS ‘‘ _TT is �lþ-strategically closed’’. Further, since V yGCH and l

is regular, j½l�<kj ¼ l and 2l ¼ lþ. Therefore, as k1 is generated by an ultrafilter

U over PkðlÞ, jk1ðk
þÞj ¼ jk1ð2

kÞj ¼ j2k1ðkÞj ¼ jf f : f : PkðlÞ ! kþ is a functiongj

¼ j½kþ�
l
j ¼ lþ.

Work until otherwise specified in M. Consider the ‘‘term forcing’’ partial

ordering T � (see [7], Section 1.2.5, page 8) associated with _TT, i.e., t A T � if and

only if t is a term in the forcing language with respect to P � _SS and wP� _SS ‘‘t A _TT’’,

ordered by tb s if and only if wP� _SS ‘‘tb s’’. Although T � as defined is

technically a proper class, it is possible to restrict the terms appearing in it to a

su‰ciently large set-sized collection, with the additional crucial property that any

term t forced to be in _TT is also forced to be equal to an element of T �. As we

will show below, this can be done in such a way that M y ‘‘jT �j ¼ k1ðkÞ’’.

Clearly, T � A M. Also, since wP� _SS ‘‘ _TT is �lþ-strategically closed’’, it can

easily be verified that T � itself is �lþ-strategically closed in M (if wP� _SS ‘‘ _SS is

a strategy for player II’’ and hta : a < bi is a play of the game with player II

making a move at stage b, then player II chooses a term tb so that wP� _SS ‘‘tbb ta
for every a < b, tb A _TT, and tb was chosen according to _SS’’) and, since M lJM,

in V as well.

Observe that M y ‘‘k1ðkÞ is measurable and jP � _SSj < k1ðkÞ’’ and wP� _SS ‘‘ _TT

is an Easton support iteration of length k1ðkÞ and j _TTj ¼ k1ðkÞ’’. We can thus

let _ff be a term so that wP� _SS ‘‘ _ff : k1ðkÞ ! _TT is a bijection’’. Since M y ‘‘jP � _SSj <

k1ðkÞ’’, for each a < k1ðkÞ, let Sa ¼ frab : b < ha < k1ðkÞg be a maximal incom-

patible set of elements of P � _SS so that for some term tab , rab w ‘‘tab ¼ _ff ðaÞ’’.

Define Ta ¼ ftab : b < hag and T ¼6
a<k1ðkÞ

Ta. Clearly, jT j ¼ k1ðkÞ, so we can

let hta : a < k1ðkÞi enumerate the members of T . hta : a < k1ðkÞi is so that if

wP� _SS ‘‘t A _TT’’, then for some a < k1ðkÞ, wP� _SS ‘‘t ¼ ta’’. Therefore, we can restrict

the set of terms we choose so that we can assume that in M, jT �j ¼ k1ðkÞ. Since

M y ‘‘2k1ðkÞ ¼ ðk1ðkÞÞ
þ ¼ k1ðk

þÞ’’, this means we can let hDa : a < lþi enumerate

in V the dense open subsets of T � found in M and argue as we did earlier to

construct in V an M-generic object H2 over T �.

Note now that since N is given by an ultrapower of M via a normal

ultrafilter U A M over k, Fact 2 of Section 1.2.2 of [7] tells us that k 00
2H2 gen-

erates an N-generic object G �
2 over k2ðT

�Þ. By elementariness, k2ðT
�Þ is the

term forcing in N defined with respect to k2ðk1ðPÞ 0 ðkþ 1ÞÞ ¼ k2ðP � _SSÞ ¼ P � _QQ.
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Therefore, since jðPÞ ¼ k2ðk1ðPÞÞ ¼ P � _QQ � _RR, G �
2 is N-generic over k2ðT

�Þ, and

G0 � G1 is k2ðP � _SSÞ-generic over N, Fact 1 of Section 1.2.5 of [7] tells us that

for G2 ¼ fiG0�G1
ðtÞ : t A G �

2 g, G2 is N½G0�½G1�-generic over R. Thus, in V ½G0�,

j : V ! N extends to j : V ½G0� ! N½G0�½G1�½G2�. As VP
y ‘‘k is l strongly com-

pact’’, this completes the proof of Lemma 2.1. r

Lemma 2.2. VP
y ‘‘k is strong’’.

Proof. The proof of Lemma 2.2 is similar to the proof of Lemma 2.5 of

[3]. We use for the proof of this lemma notation and terminology from the

introductory section of [7]. Fix l0b 0 so that kþl0 is regular. Let l ¼ l0 þ 1.

Let j : V ! M be an elementary embedding witnessing the l strongness of k

generated by a ðk; kþlÞ-extender of width k with jðkÞ minimal so that M y ‘‘k

isn’t kþ l strong’’, and let i : V ! N be the elementary embedding witnessing

the measurability of k generated by the normal ultrafilter U ¼ fxJ k : k A jðxÞg.

We then have the commutative diagram

where j ¼ k � i and the critical point of k is above k.

Observe that M y ‘‘No cardinal r A ðk; kþl� is measurable’’. This is since

VkþlJM and V y ‘‘There are no measurable cardinals above k’’. This means

in M, the least measurable cardinal k0 > k in the domain of jðPÞ is so that

k0 > kþl. In addition, it is the case that k B domð jðPÞÞ. This is since, by

choice of l, M y ‘‘For every d < l0 so that kþd is regular, k is kþd supercompact

and kþ dþ 1 strong’’. As M y ‘‘k isn’t kþ l strong’’, there are no other degrees

of either supercompactness or strongness that could a¤ect whether k is an element

of domð jðPÞÞ.

Define now f : k ! k by f ðaÞ ¼ The least measurable cardinal above a.

We then have k < kþl < jð f ÞðkÞ < k0. This last inequality is since the least

measurable cardinal d above any a isn’t dþ 2 strong, and by GCH in both V and

M, d isn’t 2d ¼ dþ supercompact either. Thus, d is both dþ0 ¼ d supercompact

and dþ 0þ 1 ¼ dþ 1 strong and shows no further degrees of either supercom-

pactness or strongness.
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Note that M ¼ f jðgÞðaÞ : a A ½kþl�<o, domðgÞ ¼ ½k�jaj, g : ½k�jaj ! Vg ¼

fkðiðgÞÞðaÞ : a A ½kþl�<o, domðgÞ ¼ ½k�jaj, g : ½k�jaj ! Vg. By defining g ¼ ið f ÞðkÞ,

we have kðgÞ ¼ kðið f ÞðkÞÞ ¼ jð f ÞðkÞ > kþl. This means jðgÞðaÞ ¼ kðiðgÞÞðaÞ ¼

kðiðgÞ0 ½g�jajÞðaÞ, i.e., M ¼ fkðhÞðaÞ : a A ½kþl�<o, h A N, domðhÞ ¼ ½g�jaj, h : ½g�jaj !

Ng. By elementariness, we must have N y ‘‘k B domðiðPÞÞ and k < g ¼ ið f ÞðkÞ <

d0 ¼ The least element of the domain of iðPÞ � k’’, since M y ‘‘kðkÞ ¼ k isn’t

in the domain of jðPÞ and kðkÞ ¼ k < kðgÞ ¼ kðið f ÞðkÞÞ ¼ jð f ÞðkÞ < kðd0Þ ¼ k0’’.

Therefore, k is generated by an N-extender of width g A ðk; d0Þ.

Write iðPÞ ¼ P � _QQ0, where _QQ0 is a term for the portion of iðPÞ whose

domain is composed of ordinals in the interval ½k; iðkÞÞ. By our previous work,

the domain of _QQ0 is actually composed of ordinals in the interval ðk; iðkÞÞ, or

more precisely, of ordinals in the interval ½d0; iðkÞÞ. This means that if G0 is

once again V -generic over P, the argument from Lemma 2.1 for the construction

of the generic object G1 can be applied here as well to construct in V ½G0� an

N½G0�-generic object G �
1 over Q0. Since i 00G0 JG0 � G

�
1 , i extends in V ½G0� to

i : V ½G0� ! N½G0�½G
�
1 �, and since k 00G0 ¼ G0 and kðkÞ ¼ k, k extends in V ½G0� to

k : N½G0� ! M½G0�. By Fact 3 of Section 1.2.2 of [7], k : N½G0� ! M½G0� is also

generated by an extender of width g A ðk; d0Þ.

In analogy to the preceding paragraph, write jðPÞ ¼ P � _QQ1. By the last

sentence of the preceding paragraph and the fact d0 is the least ordinal in the

domain of _QQ0, we can use Fact 2 of Section 1.2.2 of [7] to infer that H ¼

fp A Q1
: bq A k 00G �

1 ½qb p�g is M½G0�-generic over kðQ1Þ. Thus, k extends in

V ½G0� to k : N½G0�½G
�
1 � ! M½G0�½H �, and we get the new commutative diagram.

As in the proofs of Theorems 1.6 and 3.6 of [11], since Vkþl JM and

G0 A M½G0�½H �, we can deduce that ðV ½G0�Þkþl JM½G0�½H �, i.e., that j remains a

kþ l strong embedding. Since l was arbitrary, this proves Lemma 2.2. r

We note that the proof of Lemma 2.2 can be simplified by choosing l to be

so that l ¼ @l. This is what was done in the proof of Lemma 2.5 of [3]. The

proof of Lemma 2.2 was given in the above form, however, with an eye towards

the proof of Lemma 2.3. Also, in Lemma 2.2, if l0 ¼ 0, then M y ‘‘k isn’t mea-

surable’’, and the proof reduces to showing that measurability is preserved.
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Lemma 2.3. VP
y ‘‘For d < k, if dþa is regular, then d is dþa strongly compact

if and only if d is dþ aþ 1 strong’’.

Proof. The proof of Lemma 2.3 has as its key ingredient Hamkins’ gap

forcing work begun in [8] and extended in [9] and [10]. Let d < k and a be so

that dþa is regular in VP and d is measurable in VP. Fix l for the rest of this

proof as the least V -measurable cardinal above d. Write P ¼ P0 � _PP1, where

the domain of P0 consists of ordinals below d, and the domain of P1 consists of

ordinals at and above d.

We first show that d B domðPÞ. To see this, assume otherwise, and write

P ¼ Pbþ1 � _QQ, where b is so that d ¼ db. By the definition of P, wPbþ1
‘‘d isn’t

measurable’’. And, since l is the least V -measurable above d, the nature of the

definition of P implies that wPbþ1
‘‘ _QQ is l-strategically closed’’. Hence, VPbþ1� _QQ ¼

VP
y ‘‘d isn’t measurable’’, a contradiction.

Assume now VP
y ‘‘d is dþa strongly compact’’. Recall that P is cardinal

preserving, and note that P is defined in a manner so that for every V -cardinal g,

any subset of g in VP of size below g has a name of size below g. Also, we can

write P ¼ P0 � _QQ 0, where jP0j ¼ o and wP0
‘‘ _QQ 0 is @1-strategically closed’’. Thus,

P is a ‘‘mild gap forcing with respect to d in the sense of [9] and [10] with a

gap at @1’’, so by the results of [9] and [10], V y ‘‘d is dþa strongly compact’’.

Therefore, by the nature of V , V y ‘‘d is dþa supercompact’’ as well, so by the

proof of Lemma 2.2, VP0

y ‘‘d is dþ aþ 1 strong’’. Again by the choice of V ,

V y ‘‘d isn’t l supercompact and therefore dþa
< l’’. Hence, the nature of the

definition of P, coupled with the fact d B domðPÞ, imply that wP0 ‘‘ _PP1 is l-

strategically closed’’ and VP0� _PP1

¼ VP
y ‘‘d is dþ aþ 1 strong’’.

For the other direction, assume VP
y ‘‘d is dþ aþ 1 strong’’. By the results

of [8], [9] and [10], V y ‘‘d is dþ aþ 1 strong’’ also. It must then be the case that

V y ‘‘d is dþa supercompact’’, for otherwise, we reach the contradiction that

d A domðPÞ. Hence, since V y ‘‘d is dþa supercompact and dþa
< l’’, the ar-

gument employed in the proof of Lemma 2.1 can be used here as well to allow

us to infer that VP0

y ‘‘d is dþa strongly compact’’. The analysis given in the

preceding paragraphs and the strategic closure properties of P1 then yield that

VP0� _PP1

¼ VP
y ‘‘d is dþa strongly compact’’. This completes the proof of Lemma

2.3. r

Lemma 2.4. VP
y ‘‘k is both the least strongly compact and least strong

cardinal ’’.

Proof. Let b < k be fixed but arbitrary. Write P ¼ Pbþ1 � _QQ. By the

definition of P, wPbþ1
‘‘db contains a non-reflecting stationary set of ordinals of

cofinality o’’, so by the fact wPbþ1
‘‘ _QQ is l 0

b-strategically closed for l 0
b the least

inaccessible cardinal above db’’, VPbþ1� _QQ ¼ VP
y ‘‘db contains a non-reflecting
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stationary set of ordinals of cofinality o’’. By Theorem 4.8 of [17], VP
y ‘‘There

are no strongly compact cardinals in the interval ½o; db�’’. Since b can be any

ordinal below k and the set A used in the definition of P is unbounded in k,

VP
y ‘‘No cardinal g < k is strongly compact’’, so by Lemma 2.1, VP

y ‘‘k is the

least strongly compact cardinal’’.

By Lemma 2.2, the proof of Lemma 2.4 will thus be complete once we have

shown that VP
y ‘‘No cardinal g < k is strong’’. To see that this is the case, let

g < k be a cardinal, and by the results of the preceding paragraph, let a > g be so

that in VP, gþa is regular and g isn’t gþa strongly compact. By Lemma 2.3, in

VP, g isn’t gþ aþ 1 strong, i.e., VP
y ‘‘g isn’t a strong cardinal’’. This completes

the proof of Lemma 2.4. r

As in Lemma 2.6 of [3], Lemma 2.1 of [3] implies that since VP
y ‘‘k is the

least strong cardinal’’, VP
y ‘‘k isn’t 2k supercompact’’. And, by the definition of

P, jPj ¼ k. Thus, since the results of [8], [9] and [10] and the Lévy-Solovay

results [14] tell us that VP
y ‘‘No cardinal l > k is measurableþ There is no pair

of cardinals d < l so that d is l supercompact and l is measurable’’, Lemmas

2.1–2.4 complete the proof of Theorem 4. r

3. Concluding remarks.

In conclusion to this paper, we ask if Theorem 4 can be extended to hold for

more than one strongly compact cardinal, or even, as is the case in [3], to hold

for a proper class of strongly compact cardinals. A di‰culty in doing this using

the methods of this paper lies in the fact that Magidor’s argument employed in

the proofs of Lemmas 2.1 and 2.3 for the preservation of strong compactness

requires a limit on the forcing to add non-reflecting stationary sets of ordinals of

the appropriate cofinality above the cardinal whose strong compactness, or degree

of strong compactness, is to be preserved. Since no such limit would be possible

if the proof methods given in this paper are followed to try to extend Theorem 4

to the situation where the first two strongly compact cardinals are the first two

strong cardinals and level by level equivalence between strong compactness and

strongness holds, it is unclear if there is any way of using the techniques of this

paper to prove the desired, most general result.
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