On the global rigidity of split Anosov \mathbb{R}^n -actions

By Shigenori MATSUMOTO

(Received Jun. 11, 2001)

Abstract. We show that a so called split Anosov \mathbb{R}^n -action on a closed oriented (2n+1)-dimensional manifold is \mathbb{C}^{∞} conjugate to the suspension of a split hyperbolic affine representation of \mathbb{Z}^n on the (n+1)-dimensional torus.

1. Introduction.

Let M be a closed oriented 2n + 1 dimensional C^{∞} manifold, equipped with a C^{∞} Riemannian metric, and let

$$\psi: M \times \mathbf{R}^n \to M$$

be a locally free \mathbb{R}^n -action on M. We frequently use the notation

$$\psi^{\xi}(x) = \psi(x, \xi)$$

for $x \in M$ and $\xi \in \mathbb{R}^n$.

DEFINITION 1.1. The action ψ is called a *split Anosov* \mathbb{R}^n -action if there is a continuous splitting of the tangent bundle TM of M

$$TM = T\mathbf{R}^n \oplus E_1 \oplus \cdots \oplus E_{n+1},$$

with the following properties, where $T\mathbf{R}^n$ denotes the tangent bundle of the orbit foliation of the action ψ .

- 1. Each line bundle E_i is invariant by the derivative ψ_*^{ξ} for any $\xi \in \mathbf{R}^n$.
- 2. There are elements $\xi_i \in \mathbb{R}^n$ (i = 1, 2, ..., n + 1), and constants $\lambda > 0$ and C > 0 such that

$$\|\psi^{t\xi_{i}}(v)\| \ge Ce^{\lambda t}\|v\|, \quad \forall v \in E_{i}, \ \forall t > 0,$$

$$\|\psi^{t\xi_{i}}(v)\| \le C^{-1}e^{-\lambda t}\|v\|, \quad \forall v \in E_{i}, \ (j \ne i) \ \forall t > 0.$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 37D20; Secondary 57R30.

Key Words and Phrases. split Anosov \mathbb{R}^n -action, orbit foliation of a locally free Lie group action, codimension one Anosov diffeomorphism, hyperbolic toral automorphism, (un)stable foliation.

This research was partially supported by Grant-in-Aid for Scientific Research (A) (No. 13304005), Japan Society for the Promotion of Science.

The set of split Anosov actions forms an open subset in the space of \mathbb{R}^n -actions with the Whitney C^1 topology. Henceforth we assume n > 1. The purpose of this paper is to show a classification result of such actions up to C^∞ conjugacy (Theorem 3.1). Our method strongly depends on an argument of A. Katok and J. Lewis in [KL] for the local rigidity, and the topological classification of codimension one Anosov diffeomorphisms due to J. Franks and S. E. Newhouse.

2. Split Anosov Z^n -actions.

In this section we prepare a global rigidity of so called split Anosov \mathbb{Z}^n -actions, which is a slight generalization of Theorem 4.12 of [KL].

Let us begin with exposing a well known fact about maximal rank abelian subgroups of $SL(n+1, \mathbb{Z})$ consisting of hyperbolic matrices.

PROPOSITION 2.1. The following statements concerning a representation $\rho: \mathbb{Z}^n \to SL(n+1,\mathbb{Z})$ are equivalent.

- (1) The representation ρ is faithful and its image $\rho(\mathbf{Z}^n)$ is generated by hyperbolic matrices.
- (2) For any nonzero $b \in \mathbb{Z}^n$, $\rho(b)$ is hyperbolic.
- (3) There exist elements $a_1, a_2, \ldots, a_{n+1}$ of \mathbf{Z}^n and a direct sum decomposition

$$\mathbf{R}^{n+1} = V_1 \oplus \cdots \oplus V_{n+1}$$

such that each one dimensional subspace V_i is invariant by $\rho(\mathbf{Z}^n)$ and that $\rho(a_i)$ is expanding along V_i and contracting along V_j $(j \neq i)$.

The proof that (1) implies (3) can be found in [KL], while it is an easy exercise in linear algebra to show that (3) implies (2).

Let us denote by $Aff_+(T^{n+1})$ the group of the orientation preserving affine transformations of T^{n+1} . An affine representation

$$R: \mathbb{Z}^n \to \mathrm{Aff}_+(T^{n+1})$$

is called split hyperbolic if its linear part

$$R_*: \mathbf{Z}^n \to SL(n+1,\mathbf{Z})$$

satisfies the conditions of Proposition 2.1.

Let N be a closed oriented n+1 dimensional C^{∞} manifold and let us denote by $\mathrm{Diff}_+^{\infty}(N)$ the group of the orientation preserving C^{∞} diffeomorphisms of N.

DEFINITION 2.2. A homomorphism

$$S: \mathbf{Z}^n \to \mathrm{Diff}^\infty_+(N)$$

is called a split Anosov Z^n -action if there are a continuous splitting

$$TN = E_1 \oplus \cdots \oplus E_{n+1}$$

invariant by the derivative $S(\mathbf{Z}^n)_*$, and elements a_1, \ldots, a_{n+1} of \mathbf{Z}^n such that, for any i $(1 \le i \le n+1)$, $S(a_i)$ is an Anosov diffeomorphism, expanding along E_i and contracting along E_i $(j \ne i)$.

Theorem 2.3. Let S be a split Anosov \mathbb{Z}^n -action on an n+1 dimensional closed oriented manifold N. Then there exist a C^{∞} diffeomorphism $h: N \to T^{n+1}$ and a split hyperbolic affine representation

$$R: \mathbb{Z}^n \to \mathrm{Aff}_+(T^{n+1})$$

such that $h \circ S(b) = R(b) \circ h$ for any $b \in \mathbb{Z}^n$.

The rest of this section is devoted to the proof of this theorem. First of all extending the result of J. Franks [F], S. Newhouse [N] obtained the following topological classification of codimension one Anosov diffeomorphisms.

THEOREM 2.4. Any codimension one Anosov diffeomorphism is topologically conjugate to a hyperbolic toral automorphism.

We also need the following lemma.

LEMMA 2.5. Let g be a homeomorphism of T^{n+1} , homotopic to the identity, which commutes with a hyperbolic toral automorphism A. Then g is a rational translation.

PROOF. The point 0, as well as g(0), is a fixed point of A. An easy computation shows that the translation by g(0) commutes with A. Thus one needs only to show that g is the identity assuming g(0) = 0. Let \mathscr{F}^s (resp. \mathscr{F}^u) denotes the stable (resp. unstable) foliation of f. The homomorphism g leaves these foliations invariant. As is well known, all the leaves of \mathscr{F}^s and \mathscr{F}^u are dense in the torus. Let \mathscr{F}^s (resp. \mathscr{F}^u) be the lift of \mathscr{F}^s (resp. \mathscr{F}^u) to the universal covering space R^{n+1} . Then the action of $\pi_1(T^{n+1})$ on the quotient space R^{n+1}/\mathscr{F}^s (resp. R^{n+1}/\mathscr{F}^u) has the property that all the orbits are dense. Now since g is homotopic to the identity, a lift \tilde{g} of g satisfying $\tilde{g}(0) = 0$ commutes with all the deck transformations. Therefore the transformations on the quotient spaces R^{n+1}/\mathscr{F}^s and R^{n+1}/\mathscr{F}^u induced from \tilde{g} leaves the points of the $\pi_1(T^{n+1})$ -orbit of 0 fixed, and hence is the identity. This shows that \tilde{g} is the identity.

PROOF OF THEOREM 2.3. Let S be a split Anosov \mathbb{Z}^n -action on N, with $a_1, \ldots, a_{n+1} \in \mathbb{Z}^n$ chosen as in the definition. Then by Theorem 2.4, there are a homeomorphism $h: N \to T^{n+1}$ and a hyperbolic toral automorphism A_1 such that $h \circ S(a_1) = A_1 \circ h$.

For any element $b \in \mathbb{Z}^n$, define $B \in SL(n+1,\mathbb{Z})$ by

$$B = (h \circ S(b) \circ h^{-1})_* : H_1(T^{n+1}; \mathbf{Z}) \to H_1(T^{n+1}; \mathbf{Z}).$$

Then $B^{-1} \circ h \circ S(b) \circ h^{-1}$ is a homeomorphism, homotopic to the identity, which commutes with A_1 . By virtue of Lemma 2.5, $h \circ S(b) \circ h^{-1}$ is an affine transformation. That is, we obtain a homomorphism

$$R: \mathbf{Z}^n \to \mathrm{Aff}_+(T^{n+1})$$

by $R(b) = h \circ S(b) \circ h^{-1}$ $(b \in \mathbb{Z}^n)$. Clearly R is a split hyperbolic affine representation. Now an argument in the proof of Theorem 4.2 of [KL] shows that h is a C^{∞} diffeomorphism. The proof of Theorem 2.3 is complete.

3. Main theorem.

Let $R: \mathbb{Z}^n \to \mathrm{Aff}_+(T^{n+1})$ be a split hyperbolic affine representation. There is defined a suspension manifold

$$M_R = T^{n+1} \times \mathbf{R}^n/(x,\xi) \sim (R(a)x,\xi-a),$$

where $a \in \mathbb{Z}^n$. An \mathbb{R}^n -action $(x, \xi) \cdot \xi' = (x, \xi + \xi')$ on $T^{n+1} \times \mathbb{R}^n$ induces an \mathbb{R}^n -action ψ_R on M_R .

Now let us state the main theorem of this paper.

THEOREM 3.1. Any split Anosov \mathbf{R}^n -action ψ on a closed oriented 2n+1 dimensional manifold M is C^{∞} conjugate to the action ψ_R on M_R for some split hyperbolic affine representation R, i.e. there are a C^{∞} diffeomorphism $h: M \to M_R$ and an automorphism Φ of \mathbf{R}^n such that $h \circ \psi^{\xi} = \psi_R^{\Phi(\xi)} \circ h$ for any $\xi \in \mathbf{R}^n$.

We will use the notations in Definition 1.1. Let us define four foliations associated with the flow $\psi^{\xi_i t}$.

- : The strong unstable foliation \mathcal{V}_i^u , tangent to E_i .
- : The weak unstable foliation W_i^u , tangent to $T\mathbf{R}^n \oplus E^i$.
- : The strong stable foliation \mathscr{V}_i^s , tangent to $E_1 \oplus \cdots \oplus E_{i-1} \oplus E_{i+1} \oplus \cdots \oplus E_{n+1}$.
- : The weak stable foliation \mathcal{W}_i^s , tangent to $T\mathbf{R}^n \oplus E_1 \oplus \cdots \oplus E_{i-1} \oplus E_{i+1} \oplus \cdots \oplus E_{n+1}$.

Remark 3.2. All the above foliations are continuous foliations by C^{∞} leaves and the C^{∞} structures of leaves vary continuously along the transverse direction. The tangential distributions of these foliations are Hölder continuous.

For the first statement, see [HPS]. The last statement can be shown using an argument in Section 19.1 of [KH]. Notice also the action ψ^{ξ} preserves all the above foliations.

LEMMA 3.3. There is a C^{∞} foliation \mathscr{F} tangent to $E_1 \oplus \cdots \oplus E_{n+1}$ and invariant by ψ^{ξ} $(\forall \xi \in \mathbf{R}^n)$.

PROOF. First of all by an argument analogous to that for Anosov flows one can verify that two points x and y lie on the same leaf of \mathcal{V}_i^s if and only if $d(\psi^{\xi_i t}(x), \psi^{\xi_i t}(y))$ tends to 0 as t tends to ∞ . This shows that \mathcal{V}_i^s is the unique foliation tangent to $E_1 \oplus \cdots \oplus E_{i-1} \oplus E_{i+1} \oplus \cdots \oplus E_{n+1}$, and therefore that \mathcal{V}_j^u is a subfoliation of \mathcal{V}_i^s if $i \neq j$.

Consider the two dimensional foliation $\mathscr{G}_{1,2}$ obtained as the transverse intersection of $\mathscr{V}_3^s, \mathscr{V}_4^s, \ldots, \mathscr{V}_{n+1}^s$. Then the two one dimensional foliations \mathscr{V}_1^u and \mathscr{V}_2^u are subfoliations of $\mathscr{G}_{1,2}$. Let φ_i^t be a nonsingular flow tangent to \mathscr{V}_i^u such that $\|(d/dt)\varphi^t(x)\| = 1$ for any $t \in \mathbf{R}$ and $x \in M$. Then for any $x \in M$ and any small $s, t \in \mathbf{R}$, there are s' = s'(x, s, t) and t' = t'(x, s, t) such that

$$\varphi_1^t \varphi_2^s(x) = \varphi_2^{s'} \varphi_1^{t'}(x).$$

Of course the same thing holds for any other pair of indices.

Let B(a) be a small open metric ball centered at $a \in M$. For any permutation σ of the indices $1, 2, \dots, n+1$, define a submanifold F(a) of B(a) consisting of those points x which can be represented as

$$x = \varphi_{\sigma(1)}^{t_1} \varphi_{\sigma(2)}^{t_2} \cdots \varphi_{\sigma(n+1)}^{t_{n+1}}(a), \quad |t_i| < k,$$

for some k > 0. Choosing the ball B(a) and the constant k appropriately, one gets that F(a) is a connected subset of B(a), which is independent of the choice of the permutation σ . This shows that F(a) is tangent to $E_1 \oplus \cdots \oplus E_{n+1}$. It is clear from the construction that the family $\{F(a) \mid a \in M\}$ defines a foliation, which is denoted by \mathscr{F} . Notice that for any $\xi \in \mathbb{R}^n$, the map ψ^{ξ} preserves the foliation \mathscr{F} . For small $\varepsilon > 0$, let

$$D(a;\varepsilon) = \{ y \in M \mid \psi^{-\xi}(y) \in F(a), |\xi| < \varepsilon \}.$$

Define a map $p: D(a; \varepsilon) \to \mathbb{R}^n$ by $p(y) = \xi$ if $\psi^{-\xi}(y) \in F(a)$.

Now according to [J], a continuous function on a C^{∞} manifold is C^{∞} if

it is C^{∞} along leaves of two transverse foliations of complementary dimension which satisfy the conditions of Remark 3.2.

Therefore on each leaf of \mathcal{W}_1^u , the function p is C^{∞} . On the other hand on each leaf of \mathcal{V}_1^s , the function p is constant. This shows that p is a C^{∞} function, proving that \mathscr{F} is a C^{∞} foliation.

Let X_1, \ldots, X_n be a linear basis of \mathbb{R}^n . Via the action ψ , they induce vector fields on M, which are denoted by the same letters by some abuse. Let Y be an arbitrary vector field tangent to the foliation \mathscr{F} . Then $[X_i, Y]$ is also tangent to \mathscr{F} , since \mathscr{F} is preserved by ψ^{ξ} . Define 1-forms $\omega_1, \ldots, \omega_n$ by

$$\omega_i|_{T\mathscr{F}}=0, \quad \omega_i(X_j)=\delta_{ij}, \quad i,j=1,2,\ldots,n,$$

where $T\mathscr{F}$ denotes the tangent bundle of \mathscr{F} . They are linearly independent closed 1-forms and the foliation \mathscr{F} is characterized by

$$T\mathscr{F} = \operatorname{Ker}(\omega_1 \wedge \cdots \wedge \omega_n).$$

Let ω_i' be a nonsingular closed 1-form near ω_i in the C^1 topology which represents a rational cohomology class. Then the foliation \mathcal{F}' defined by

$$T\mathscr{F}' = \operatorname{Ker}(\omega_1' \wedge \cdots \wedge \omega_n')$$

is a bundle foliation. In particular all the leaves of \mathcal{F}' are compact.

Define vector fields X'_1, \ldots, X'_n tangent to $T\mathbf{R}^n$ by

$$\omega'_i(X'_j) = \delta_{ij} \quad (i, j = 1, 2, \dots n).$$

They commute with each others and define an \mathbb{R}^n -action ψ' . The orbit foliation of ψ' is the same as that of ψ , and ${\psi'}^{\xi}$ preserves the bundle foliation \mathscr{F}' . Since we have chosen ω'_i sufficiently close to ω_i , the \mathbb{R}^n -action ψ' is also split Anosov. Now let N be a leaf of \mathscr{F}' and let

$$\Gamma = \{ \xi \in \mathbf{R}^n \, | \, {\psi'}^{\xi}(N) = N \}.$$

Then Γ is a discrete cocompact subgroup of \mathbb{R}^n , and is isomorphic to \mathbb{Z}^n . To show that Γ is cocompact, notice that ψ' induces a locally free \mathbb{R}^n action on the base space M/\mathscr{F} , which is an n dimensional manifold.

Now the restriction of ψ' to Γ defines a homomorphism

$$S: \Gamma \to \mathrm{Diff}^\infty_+(N),$$

which is split Anosov. Using Theorem 2.3, one can show that S is conjugate to a split hyperbolic affine representation on T^{n+1} . In particular the manifold M is a T^{n+1} -bundle over T^n with hyperbolic monodromies. Now succesive computations of Wang sequences show

$$\operatorname{Hom}(\pi_1(M), \mathbf{R}) = H^1(M; \mathbf{R}) \cong \mathbf{R}^n.$$

With this in mind, let us return to the study of the original foliation \mathscr{F} . Since \mathscr{F} is defined by the closed 1-forms $\omega_1, \ldots, \omega_n$, \mathscr{F} is a Riemannian foliation, *i.e.* admits a holonomy invariant transverse Riemannian metric. Furthermore the foliation \mathscr{F} is without holonomy, *i.e.* the leafwise holonomy group of any leaf is trivial. As a consequence \mathscr{F} satisfies the following property. Let us denote by D^n the unit disc in \mathbb{R}^n . For any leaf L of \mathscr{F} , there is a C^∞ submersion.

$$H: L \times D^n \to M$$

such that

 $: \quad H(x,0) = x \ (\forall x \in L),$

: $H(L \times \{y\})$ $(\forall y \in D^n)$ is contained in a leaf of \mathscr{F} ,

: $H(\{x\} \times D^n)$ ($\forall x \in L$) is contained in an orbit of the action ψ and is a unit disc centered at x w.r.t. the holonomy invariant transverse metric.

Consider the lift $\tilde{\mathscr{F}}$ (resp. $\tilde{\omega}_i$) of \mathscr{F} (resp. ω_i) to the universal covering space \tilde{M} of M. Let $p_i : \tilde{M} \to R$ be a primitive of $\tilde{\omega}_i$. The foliation $\tilde{\mathscr{F}}$ is defined by the submersion

$$p = (p_1, \ldots, p_n) : \tilde{\boldsymbol{M}} \to \boldsymbol{R}^n.$$

The above property of the Riemannian foliation \mathscr{F} implies that p is a locally trivial bundle map onto \mathbb{R}^n . Consider the quotient space $\mathscr{M} = \tilde{M}/\tilde{\mathscr{F}}$ and the map $q: \mathscr{M} \to \mathbb{R}^n$ induced from p. Then q is a covering map and thus a homeomorphism. That is, the bundle $p: \tilde{M} \to \mathbb{R}^n$ has a connected fiber.

Since the deck transformation of $\pi_1(M)$ leaves the 1-forms $\tilde{\omega}_i$ invariant, there is defined a homomorphism

$$\theta:\pi_1(M)\to \mathbf{R}^n$$

such that

$$p(\gamma \cdot x) = p(x) + \theta(\gamma), \quad \gamma \in \pi_1(M), \ x \in \tilde{M}.$$

The image $\theta(\pi_1(M))$ must be cocompact, since otherwise the map p induces a continuous map from a compact set $M = \pi_1(M) \setminus \tilde{M}$ onto a noncompact set $\text{Cl}(\theta(\pi_1(M))) \setminus \mathbf{R}^n$.

But this shows that the image $\theta(\pi_1(M))$ is discrete in \mathbb{R}^n , since we have $\operatorname{Hom}(\pi_1(M); \mathbb{R}) \cong \mathbb{R}^n$. That is, for any leaf L of \mathscr{F} , the image $p(\pi^{-1}(L))$ is discrete, where π is the universal covering map. This implies that the leaves of the foliation \mathscr{F} are compact. Applying the previous argument once again to the action ψ , the proof of Theorem 3.1 is complete.

References

- [F] J. Franks, Thesis, University of California, Berkeley, 1968.
- [HPS] M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, 1977.
- [J] J.-L. Journé, On a regularity problem occuring in connection with Anosov diffeomorphisms, Comm. Math. Phys., **106** (1986), 345–351.
- [N] S. E. Newhouse, On codimension one Anosov diffeomorphisms, Amer. J. Math., **92** (1970), 761–770.
- [KH] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Cambridge Univ. Press, 1995.
- [KL] A. Katok and J. Lewis, Local rigidity for certain groups of toral automorphisms, Israel J. Math., 75 (1991), 203–241.

Shigenori Matsumoto

Department of Mathematics College of Science and Technology Nihon University 1-8 Kanda-Surugadai, Chiyoda-ku Tokyo 101-8308 Japan E-mail: matsumo@cst.nihon-u.ac.jp