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Abstract. We give a general definition of the Radon-Penrose transform for a
Zuckerman-Vogan derived functor module of a reductive Lie group G, which maps
from the Dolbeault cohomology group over a pseudo-Kéhler homogeneous manifold
into the space of smooth sections of a vector bundle over a Riemannian symmetric
space. Furthermore, we formulate a functorial property between two Penrose trans-
forms in the context of the Kobayashi theory of discretely decomposable restrictions
of unitary representations.

Based on this general theory, we study the Penrose transform for a family of sin-
gular unitary representations of Sp(n,R) in details. We prove that the image of the
Penrose transform is exactly the space of global holomorphic solutions of the system of
partial differential equations of minor determinant type of odd degree over the bounded
symmetric domain of type CI, which is biholomorphic to the Siegel upper half space.
This system might be regarded as a generalization of the Gauss-Aomoto-Gelfand hy-
pergeometric differential equations to higher order. We also find a new phenomenon
that the kernel of the Penrose transform is non-zero, which we determine explicitly by
means of representation theory.
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0.1. In the summer seminar 1994, a general scheme interacting

A) a characterization of singular irreducible infinite dimensional represen-

tations by means of differential equations,
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B) a generalization of the Gauss-Aomoto-Gelfand hypergeometric differen-
tial equations to higher order,

C) integral geometry, arising from (non-minimal) parabolic subalgebras,

D) invariant theory (prehomogeneous vector spaces, b-functions, Capelli
identities)

was posed by T. Kobayashi, especially a suggestion of the usage of (D) for the
characterization of the image of integral transforms. In the dissertation 1995
[Se|), a special case of this program was carried out for some real forms of type
A,. It includes:

1) Construction of the Penrose transform £, from the irreducible repre-
sentations attached to degenerate elliptic orbits (singular unitary rep-
resentations A4(4) in the sense of Zuckerman-Vogan) with q a maximal
0-stable parabolic subalgebra.

2) A proof of the bijectivity of the Penrose transform # onto the space
of global solutions to differential equations of determinant type of order
k (1 <k <mn). The novelty is a surjectivity in higher dimensional cases,
and also a completely new approach in a proof of the injectivity.

From the view point of representation theory, the above result treats the
integral transform of the singular representations associated to open G-orbits on
a generalized flag variety of G¢ (namely, A4,(4)).

After [Se], another special case of the above program was carried out for
some real forms of type A4, by T. Oshima. Namely, parallel to our formulation
and using a similar idea in a different setting, he studied the integral transform
of the singular representations associated to closed G-orbits on a generalized flag
variety of G¢ (i.e. degenerate principal series representations), for G = GL(n, R).
The difference between and [O] is summarized as:

Sekiguchi Oshima [O]

Ay(2) = principal series representations ((A) representation theory),
Penrose transform =- Poisson transform ((C) integral geometry),
b-function = Capelli identity ((D) invariant theory).

One of the common parts of and [O] is (B), the differential equations that
arc satisfied by the image of the Penrose-Poisson transform. Here is a common
complexified setting:

0.1.1) /Gc/(PC NQOc)
Gc/Qc Ge/Pc

where G¢ = GL(n,C), Pc and Q¢ are maximal parabolic subgroups of Gc.
Recently, T. Tanisaki studied a ‘complex version’ of the Radon-Penrose trans-
form for sheaves on the above complex double fibration ([Ta]).
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All of [Se], [O] and gave some sufficient conditions for the injectivity of the
Radon-Penrose-Poisson transform £ for type A,, and then proved a character-
ization of the image of # by means of differential equations of determinant type.

0.2. On the other hand, very little has been known for the Radon-Penrose
transform for reductive groups other than type A4,. The present paper investi-
gates a new example where the Penrose transform is not injective for a real group
of type C,, G=Sp(n,R). The main aim of the current paper is to give:

1) Explicit description of Ker# by means of representation theory.

2) Explicit description of Image# by means of differential equations of

minor determinant type.

Let us explain our main results. Let

G = Sp(n,R), G¢c = Sp(n,C),
Q(k) = a maximal parabolic subgroup of G¢
with Levi part GL(k,C) x Sp(n—k,C), (1 <k <n).

We realize Q(k) so that the G-orbit at the origin of the generalized flag variety
Gc/Q(k) is open (see §2.2). Then we have a generalized Borel embedding:

G/L(k) — Gc/Q(k)
with
L(k) ~ U(k) x Sp(n —k,R).
Then, our setting will yield the diagram with Q¢ = Q(k) and Pc = Q(n).
In particular, open G-orbits in the diagram are given by

Sp(n, R)/(U(k) x U(n - k))

G/L(k) G/L(n),
where the fiber of the projection 7, is the Grassmannian manifold:
7y {o} = Q(n)/(Q(k) N Q(m)) = U(n)/(U(k) x U(n—k)) = Gre(C").

For m,k,ne Z and 1 < k < n, we define a G-equivariant holomorphic line bundle
over the non-compact complex manifold G/L(k):

nldz,k - G/L<k)7
associated to the character of the isotropy subgroup L(k) ~ U(k) x Sp(n — k, R):
Vit L(k) — C*,  (a,d) — (deta)™.

Then, we have a Fréchet representation of G on the Dolbeault cohomology group

of degree j (see [Wo])
(0.2.1) H!(G/L(k), %),
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which we shall also write as Héj (G é : C vm) in later sections. We note that if the
L

parameter m is in the weakly fair range (see [Vod]), namely, if

k-1 —
m—n+ —5— >0 (see |[Proposition 1.5),

then the Dolbeault cohomology group vanishes for j # k(n — k) (see [Vo2]).
By a careful computation of line bundle parameters, we can define a Penrose trans-

form (see [Theorem 2.4 and [Proposition 4.1)):
2 H"Y(G/L(k), 2!

nk

) = H(G/L(n), 4!,)-

The 0-th cohomology group HEO(G/L(n), Z,) is nothing but the space of global
holomorphic sections ((G/L(n), #/",) of the holomorphic line bundle %", over
the Hermitian symmetric space G/L(n) ~ Sp(n,R)/U(n). We trivialize the line
bundle %", by using the realization of G/L(n) as a bounded symmetric domain
of type CI in the sense of E. Cartan:

D:={ZeM0nC):'Z=2,1,—-7Z"Z > 0}.

Then, we identify O(G/L(n),%,) with O(D), on which G acts by multiplier
representations (see (4.5.7)). We take a coordinate z; (1<i<j<n) of D by
putting

Z11 o Zin
(0.2.2) 7 = Lo ]
Zln Tt Zpn
and use the notation
0 1 ¢ 1 ¢
62’11 2 5212 2 621,1
i 1 ¢ 0
5 -
0.2.3 — .= | 20z Ozp
(0.2.3) 77 | |
1 ¢ 0
2 0z, 0Zun

0.3. For a subset I,J < {1,2,...,n} with |I| = |J|, we introduce a partial
differential operator

0
(0.3.1) P(1,J) = det <T> )
0Z)ic1 jey

For instance,
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az 1 02

P({1,2},{1,2}) = — 17

P({l,2},{3,4})%(825' - a)

DerINITION 0.3. For /e N, we define the system of differential equations:
(A1) PU,J)F(Z)=0 for any I,J < {l,2,...,n} with |I| =|J| =1,

and the space of global solutions:

(0.3.2) Sol(A}) = {F € O(D) : F solves (A])}.
Note that

(0.3.3) Sol(A) ~ C,

(0.3.4) Sol(AN41) =~ O(D).

By the Laplace expansion formula of the determinant of matrices, we have

Sol(A1) = Sol(A3) = -+ = Sol(A},) = Sol(ANy1).

We shall prove in |Proposition 1.3 that the G-module
(n—k)
W(nak) H‘ (G/L( ) nk)

splits into the direct sum of two irreducible G-modules W(n, k), and W(n,k)_,
which are characterized by the following properties:

W(n,k), contains a one dimensional K-type det®,
W (n,k)_ contains a K-type /\Zk(C ") ® det.
Now, our main result asserts:

MAIN THEOREM. Let n,k € Z satisfy 1 <k <[n/2] and G = Sp(n,R).
1) The Penrose transform

2 HE N (Spln, R)/(U(K) x Spln — K, R)), 22) = O(Spln B/ Uln), 2,

is a non-zero G-intertwining operator.
2) Ker# = W(nk)_.
3) Image Z = Sol(A3411).

This paper is organized as follows: We shall give a general definition of the
Penrose transform in for a real reductive Lie group G. In order to
prove that # is non-zero, we shall employ a new idea based on the theory of
discrete decomposable restriction of Kobayashi by finding a larger group
G! containing G, and formulate the restriction map in the context of the Penrose
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transform (Theorem 2.6). Then we shall investigate the Penrose transform %
for G=Sp(n,R) as a “restriction” of the Penrose transform %' for a larger group
G' = U(n,n). A new feature in our setting is that the Penrose transform £ is
not injective. This is related to the fact that the Beilinson-Bernstein correspon-
dence fails for some generalized flag varieties of a reductive group of type C, (it
always holds for type 4,). The proof of the second statement (an explicit char-
acterization of Ker %) will be given in §3 and §4. The proof of the surjectivity
(an explicit characterization of Image #) parallels to the case of type 4, (see [Se]),
where we employed the h-function of prehomogeneous vector spaces for separa-
tion of variables. This will be done in §5 and §6.

The main results of this paper was presented at the International Conference
“Representation Theory and Homogeneous Spaces”, Okayama in 1997. The au-
thor is grateful to Professors R. Howe, M. Kashiwara, T. Kobayashi, T. Oshima,
W. Schmid, T. Tanisaki, A. Venkov and D. Vogan for their encouragement in
this work.

§1. Properties of the derived functor (g, K)-module W (n, k).

1.1. This section prepares a representation theoretic part of our main the-
orem, especially algebraic properties of singular infinite dimensional representa-
tions W(n,k), of Sp(n,R). Let G = Sp(n,R) be the real symplectic group of
rankn. We denote by g, the Lie algebra of G and g =g, ®g C. Analogous
notation will be used for other Lie groups denoted by Roman upper case letters.
Take a maximal compact subgroup K of G. Then K is isomorphic to the unitary
group U(n). Fix a Cartan subalgebra b, of fy, which is also that of g, because
rank g, = rankf;. We choose a basis {f;} of v—1b} and fix a positive system
A7 (1,h) such that

A(g,h) ={£(fi £ /) : 1 <i<j<nfU{£2f;: 1 <1 <nj,
ATED) ={fi—-fi: 1 <i<j<n}.

We shall identify v/ —1b, with R" via {f;}. Then the weight lattice is identified
with Z". If 2= (A1,...,4,) € Z" is dominant with respect to 4 (1, }), namely, if
M > > Ay, WE Wwrite

(1.1.1) F(U(n),/l)EF(U(n),i)uiﬁ)

for the finite dimensional irreducible representation of U(n) with highest weight
A=0fi+- F S

1.2. For each integer k (1 <k <n), we define a O-stable parabolic sub-
algebra
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q(k) = (k) +u(k)

of g such that h < I(k) and that I(k) and u(k) are ad(l))-stable subspaces of g,
corresponding to the black dots in the Dynkin diagram below:

N 7 N g
v NV

k-1 n—k

Then we have
AV D) ={x(fi—f): 1 <i<j<k}U{x(fitf): k+1<i<j<n}
U{+2fi:k+1<1!<n},
Aluwk),b) ={fi+fi:1<i<kji<j<n}
U{fi-fi:l1<i<kk+1<j<nfU{2fi:1<I<k}

We write Q(k) for the maximal parabolic subgroup of G¢ = Sp(n, C) with Lie
algebra g(k). Let

L(k) == GN O(K) = No(a(k)) ~ U(K) x Sp(n — k. R).
Then [(k) is a complexification of the Lie algebra of L(k). We put

1
pw) = pulk) =5 Y
aed(u(k),b)
= (= (=12 = (k= 1D/2,0...,0) €l
k n—k

By using the notation 1, = (1,1,...,1) € Z*, we shall write
plu(k)) =(n—(k—1)/2)1; ®01,_.

1.3. Let us explain the notation in §0.2 in details. We define a character
vy of L(k) ~ U(k) x Sp(n — k,R) parametrized by m e Z:

(1.3.1) v = v Uk) x Sp(n—k,R) — C*, (a,d) — (deta)™.
The one dimensional representation (vﬁ,lf),C ) of L(k) will be denoted by C,,.
1.4. The inclusion G = G¢ induces an open embedding:
G/L(k) = Ge/Q(k),

through which G/L(k) carries a G-invariant complex structure (see §2.2 for a gen-
eral setting). We define a G-equivariant holomorphic line bundle over G/L(k) by

pr = m = R () L(k).
mi =0 % C Sp(n, )U(k)xs;(n_kﬁm(vm ,C) — G/L(k)

Let H/(G/L(k),0(%,,)) be the j-th cohomology group with coefficients in
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O(Z,, 1), the sheaf of germs of holomorphic sections %), — G/L(k). By the
Dolbeault lemma, H/ (G/L( ), O(Z,, ) is isomorphic to the Dolbeault cohomo-
logy group H: ](G/L( ), <, 1) (see §2.3 for a general setting). The latter space is
equipped with the Fréchet topology, on which G acts continuously by left trans-
lations by a theorem of Schmld -Wong ([Schl], [Wo]; see a survey [Ko2]). We
denote by H; / - (G/L(k), ) the space of K-finite vectors for each j. Then, the
vector space H /(G/L(k ) )k (€ N) is the underlying (g, K)-module of the

Fréchet 1eplesentat10n H J (G/L( )s Lo k)

Let 2] be the j-th derwed functor in the sense of Zuckerman-Vogan, which

is a covar1ant functor from the category of metaplectic (I(k), (L(k) N K)~)-modules
to that of (g, K)-modules ([Vo3]).
For me Z, we define a character of [) by

M) — (m—n+ (k—1)/2)1; ® 01,4
=(m-n+(k-1)/2,....m—n+(k—1)/2,0,...,0).

~ s N——
k n—k

Then /L ) lifts to a metaplectic character, denoted by C ), of the metaplectic

——~——

cover L(k).

LemMa 1.4.  We have isomorphisms of (g, K)-modules for any j e N and any
keN such that 1 <k <n:

(14.0)  HI(G/L(K).O(L0 ) ~ HAGILK), L0 )k ~ B (Cpo).

ProOF. The statement is a special case of the main theorem of [Wo]. [

1.5. Here are basic properties of the (g, K)-modules ,%’dj(k)(CN)).

ProposITION 1.5. Let G = Sp(n,R) and retain the notation as above.
1) The 1(k)-module ) is in the weakly fair range with respect to q = q(k) in
the sense of Vogan ([Vod|) if and only if
k-1
—n+——>0.
n+ 3

2) If X% is in the weakly fair range, then Z’]( )(CN ) and Héj(G/L(k), S )
vanish for j # k(n — k). The remaining module J{ﬁ%_k)(q@) is unitar-
izable or zero.

3) g h (Cw) has a Z(g)-infinitesimal character

a(k)

k n
Z(;n—n+k—i)ﬁ+ Z (n+1-))f
i=1 j=k+1

=m-n+k—-1lm—-n+k-2,....m—nn—=~k,...,2,1)
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in the Harish-Chandra parametrization
HomC-algebra(Z(g), C) = b*/(en X (Z/zz)n)

Here, we use the normalization of the Harish-Chandra parametrization
such that the trivial one dimensional representation has the Z(g)-
infinitesimal character

(nym—1,...,2,1).

4) If m > n, then ,%f(gl)_k)(qm) is non-zero and has a unique K-type with
highest weight

vm

Wy = )f,f? +p(u) = 2p(unt) = (m—n+k)l; @ kl,_.

5) If m > n, then %f(%_k)(q(k)) is a non-zero irreducible (g, K)-module and

Hf("_k)(G/L(k) ') is a non-zero irreducible Fréchet G-module.

»“m,k

6) Ifcm =n > 2k, then
k(n—k n
W(n, k) = HS"(G/L(k), £1)

splits into two irreducible components W(n,k), ® W(n,k)_, where
W(n,k), are irreducible highest weight modules characterized by the
following K-type formulae:

(1.5.1) (W(n, k) ~ F(Un),(x1+k,...,xon +k,k,...k)),
+)K MZN.(;DX%ZO ( ( ) (\ 1 - o) J ))
XjE.?,N 2k n—2k

(1.5.2) (W(nk)_ )y ~ F(Un),(x1+k,....x00 +k,k,...k)).
K X12'-®-2xzk20 (U(n), (x1 oYtk )
x;€2N+1 2k n—2k

Proor. (1) is straightforward from the definition of the weakly fair range
(Vod)).

The statements (2) and (3) follow from Vogan ([Ve2]). The statement (4) is
a consequence of the generalized Blattner formula and its proof ([Vol]).

The statements (5) and (6) do not follow from general theory. In fact, the

character /l(,ﬁ) is in the good range in the sense of Zuckerman-Vogan ([Vo3]) if
and only if
(1.5.3) m—2n+k >0,

where a theorem of Vogan guarantees that .@(ﬁ%_k)(qm) is non-zero and
irreducible. However, the assumption m > n of (5) or (6) is weaker than [1.5.3).
Before proving (5) and (6), we prepare the following setting. Let

P(k) = m(k) +n(k)



224 H. SEKIGUCHI

be a 0-stable parabolic subalgebra of g such that h « m(k) < (k) and n(k) o u(k)
with
Amk),b) ={x(fi £ /) k+1<i<j<nfU{£2fi:k+1<1]<n},
Ank),h) ={fixfi:1<i<k,i<j<njU{2f;:1 <1<k}
Then, 2(k) < q(k), and m(k) is a complexified Lie algebra of the Lie group
M (k) := Ng(2(k)) ~ T* x Sp(n — k, R).

~

i

We set
k

C,(qf) = Z(m—n%—k—i)f,:
i=1
Then, from the cohomological parabolic induction by stages corresponding to
P(k) < q(k) = g ([Vol], Proposition 6.3.6; see also [Kol|, Lemma 3.2.1 for the
metaplectic normalization), we have the following sublemma:

SUBLEMMA 1.6. We have an isomorphism of (g, K)-modules:

Ak(n—k pk(2n—k—1
’%q(% )(Cﬂ““) = %9’21«) )(Cc,‘,,“)'

vm

We note that the moment map for the generalized flag variety of Sp(n, C)
is not always normal and birational. Then, a standard Z-module theory due
to Beilinson-Bernstein is not applicable. In fact, the Zuckerman-Vogan derived
functor module in the weakly fair range is not always irreducible for type C, (this
is a distinguished feature from type A,, where irreducibility always holds in the
weakly fair range unless it vanishes). A sufficient condition of irreducibility in the
weakly fair range for type C, is obtained by Kobayashi [Kel], Corollary 6.4.1,
which is a generalization of [Vo4], Theorem 5.11. Then, applying [Kol], Cor-
ollary 6.4.1 to our special setting, and using Sublemma 1.6, we conclude that
H;("_k)(G/L(k),ffn’z o) (m<m<2n—k) is irreducible as a G-module, proving
[Proposition 1.§ (5).

[Proposition 1.5 (6) follows from [Proposition 5.1 in and from the obser-
vation that W(n, k), (respectively, W(n,k)_) is obtained by the Howe correspon-
dence to the trivial (respectively, signature) representation of O(2k) in the reductive
dual pair O(2k) x fS‘?a(n,R) in :9;(2nk,R). We note that W(n,k), are originally
defined as the representation of the metaplectic group Mp(n, R) = :S‘};(n, R), and
then are well-defined as modules of Sp(n, R) ~ S;(n,R) /{+1} because 2k is even.

Thus, the proof of [Proposition 1.3 is completed. ]

1.7. The bounded symmetric domain G/K ~ G/L(n)= Sp(n,R)/U(n)
carries a complex structure induced from the generalized flag variety G¢/Q(n)
(see §1.4).



Penrose transform 225

Lemma 1.7.  With notation in (1.1.1), we have an isomorphism of K-modules:

0L Ve~ @  FU®),Qb,2bs,...,2b,) +kl,).
' by =>b,>0
bjGN

ProOF. We have isomorphisms as K-modules:
UL )k~ O(G/K)g ® Cy
~ Pol(ii(n)) ® Cy
~ S(u(n)) ® Ck
~ S(F(U(n),2/1)) ® Ci

~ F(U(n), (2b1,2b3,...,2by) + k1,).
b Zb >0

IV

Here, Pol(}') denotes the polynomial ring over V' and S(V) denotes the sym-
metric tensor algebra over V. The last isomorphism is a theorem of Kostant-

Schmid ([Sch2]). O

§2. The restriction theorem of the Penrose transform.

2.1. In this section, we give a definition of the Penrose transform (see
Theorem 2.4) as an intertwining operator from the Dolbeault cohomology con-
struction of the Zuckerman-Vogan derived functor modules of a real reductive Lie
group G to the space of smooth sections of G-equivariant vector bundles over the
Riemannian symmetric space G/K. Furthermore, we give a restriction theorem of
the Penrose transform (Theorem 2.6), from a larger group G' to its subgroup G.

2.2. First we recall a Dolbeault cohomology construction of Zuckerman-
Vogan derived functor modules ([Schl], [Wo]; see also a survey [Ko2], §3).
Throughout this section, G will be a connected real reductive linear Lie group.
We shall assume that G is a real form of a connected complex Lie group Gc.
Let 0 be a Cartan involution of G, and K the corresponding maximal compact
subgroup of G. We write g =t @® p for the complexification of the Cartan de-
composition of g, =fy @ p, defined by 0. Take a Cartan subalgebra ty of I
and extend it to a fundamental Cartan subalgebra

by =1t +aoctp+py=g,.

We write T for the analytic subgroup of K whose Lie algebra is t;. We fix
a positive system A*(f 1) once for all. We shall write F(K,u) for a finite di-
mensional irreducible representation of K with highest weight xet*. Given a
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A" (1, 1)-dominant element X of v/—1t, we define a O-stable parabolic subalgebra
qg=1I[+uof gas follows: [, uand i are ad(h)-stable subspaces of g such that the
set of weights are given by

A(LY) = {a e 4(g,b) : a(X) = 0},
A(w,bh) = {x e 4(g,b) : a(X) > 0},
AL h) = {a e 4(g,b) : 2(X) < 0}.
Then [ is a complexified Lic algebra of the reductive Lic group:
L=Z;X)={geG:Ad(g)X = X}.

Let Q be a parabolic subgroup of G¢ with Lie algebra q. In light of QNG =L,
we have an open embedding (a generalized Borel embedding)

G/L — G¢/Q,

from which a G-invariant complex structure on G/L is induced. Likewise, we
have a diffeomorphism

K/LNK = Kc/ONKCc.

Let S be the complex dimension of the generalized flag variety of K/LNK.
Let 2p(u) e [" be the differential of the character of L acting on Ampu, and
2p(uNt) e (INT)* that of LNK on AP(unt).

2.3. Suppose Xe€l” is a one dimensional representation of the Lie algebra
[. Then Al =0. We define p; € e (INT)" by

1= A+ p)|ins — 2p(uN).

We shall sometimes regard as 4 € b (respectively, i, € t*) by the restriction [ | b
(respectively, (INf) | t) without changing the notation. Assume that the charac-
ter 2+ p(u) of the Lie algebra [ lifts to L. We denote it by C;,,). We notice
that 1 + p(u) lifts to L if and only if g, lifts to LN K. We define a G-equivariant
holomorphic line bundle

associated to the character G, of L. Let §79(G/L) be the space of smooth

(p,q) forms on G/L, and o‘(G X Cipp(u )) the space of smooth sections of (2.3.1).
We set

gpa(I(G >L< C,Hp(u)) = £<G >L< C}L+p(u)) Re(G/L) &P4(G/L).
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We define the space of d-closed g-forms by
0, — (2. 0, 00, g+1
Z /‘/(G x C;,+p(u)) = Ker (a L& "(G x Cﬂp(u)) _ gt (G x CM(H))),
and the space of d-exact g-forms by

0, — 5. 20,9-1 20,
B q(G ;f (j),+p(u)) = Image(@ At (G >]f C/H—p(u)) — & q(G >z CA—I—p(u)))-

The Dolbeault cohomology group H;(G X C’;“er(u)) is defined as the quotient

space of Z O’q(G >1f C,H/,(u)) by B%¢ (G >L< CH/,(M)). We write the natural quotient
map as

Zo’q<G >L< C/l+p(u)) — H;(G >If C/I—I—p(u))a = [Cz)]

Likewise, we define the Dolbeault cohomology group Héq (K LéK CH/,(M)) (geN)

for the holomorphic line bundle K LéK Ciip) — K/LNK. Then it follows from
the Borel-Weil-Bott theorem for compact groups that

0 q#S

F(Knu/l) q= S

(23.2) 5‘1 (KLF?K C/H—p(u)) = {

provided w; is 4™ (f,t)-dominant. For the simplicity of notation, we shall write
U, for F(K,u;).

2.4. Assume that g, is dominant integral with respect to 4™ (f,t). Let us
define the Penrose transform in this generality. Let

i:K/LNK — G/L

be the natural embedding map which is K-equivariant and holomorphic. The
left action of G on G/L is denoted by

l,: G/L— G/L, xLw~— gxL, for geG.
Then the representation of G on W := HES<G X C;,+p(u)> is defined by

n(g): W =W, o] —=(g)o] =[]

The underlying (g, K)-module of (z, W) is isomorphic to ,%?(f (C;) in the sense of
Zuckerman-Vogan, where we follow the normalization of the p-shift in [Ve3].
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Ifwe ZO’S(G X CHP(H)), then i*ljw € ﬁo’S(KLéK CHP(u)) is also a d-closed

form on K/LNK, giving rise to a cohomology class

S N
i*l 0] € H; (KLKK CA+p(u)) = U,

Thus, we have defined a map

(2.4.1) R ZO’S(G x CM@) xG— U, (09)[I"l'o].
If we é’O’S(G X CH/,(H)) is a d-exact form on G/L, namely if w = 0y, then
i =i"I"0n = 3i*l'n € gO»S(KLéK CH,,(H))

is also a d-exact form on K/LNK. Therefore %(w,-) depends only on the co-
homology class [w] € H; (G X CHM)). Hence the map (2.4.1) is well-defined on

the level of cohomology:

(24.2) R H;(G x CM@)) x G— Uy, (g) [i"l'o)].

It follows from definition that the map # in satisfies:
R(n(go)lw], g) = A0, 9) = "1 0] = (] 45" 9).

R([e], gh) = [ o] = [ o] = ' %([w), g),

for any g,g0€ G, he K. These two relations imply that the map % ((2.4.2))
induces a G-intertwining operator between representations of G:

(243) R HE(Gx Gy = 6(G X U)o = H([e],)

Hence, we have proved:

THEOREM 2.4. Let q =1+ u be a O-stable parabolic subalgebra defined by a
At (L, t)-dominant element X € v/—11ty. Let Let*. We assume that

wli = (A4 p(u) = 2p(unt))

is a A" (f,t)-dominant weight, which lifts to the torus T. Let U, be an irreduci-
ble K-module with highest weight u,. Then, we have a G-intertwining map:

R HO:S(G x me)) - g(G x UM), 0] — A([w)], ).

We say that Z is the Penrose transform for the Dolbeault cohomology con-
struction of a Zuckerman-Vogan derived functor module.
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2.5. Next, we consider a restriction theorem of two Penrose transforms
corresponding to two reductive groups G = G!. Here is the setting that we need:

SETTING 2.5. 1) G' is a connected real reductive linear Lie group.

2) G is a closed subgroup of G! that is reductive in G'.

3) K!is a maximal compact subgroup of G!, and K := K' NG is that of G.
4) I)%, = t(l, + a) be a fundamental Cartan subalgebra of g}, and

bo := by N gy = to + ap

is that of go.

5) Let A*(fl ) be a positive system compatible with a positive system
AT(E,1). (Namely, if e 47 (t',t!) and |, € 4(%,1), then of, € 47 (% 1).)

6) Let ' =I' +u! be a f-stable parabolic subalgebra of g! = ul +1' +u!
defined by a A*(f',1!)-dominant element X e v/—1t.

7) Let g=tu+I14+u and q=1+u be a Levi decomposition of a O-stable
parabolic subalgebra of g such that q:= q' ﬂg, and [:=1'Ng.

8) Cy ) lifts to a character of L' and p; := A put) = 2p(ut NEY) s

Y +p(ul I
domlnant with respect to AT (f',t!).

2.6. Here 1s a restriction theorem of the Penrose transform.

THEOREM 2.6. Suppose we are in the Setting 2.5. Assume that T+ 1' = .
We set

(2.6.1) L=+ pu)], = p(u) e T*,

Let U, be an irreducible finite dimensional representation of K' with highest
weight . Then the following statements hold.
1) The restriction of Uy, to K is still irreducible as a K-module with highest
weight 1, == A+ p(u) — 2p(unft).
2) The following diagram commutes:

7l
HS(G' % Cr ) —— 6(G' x Uy)

| |

R
HO:S(G )If Q»—l—p(tl)) — 6)(G X (]ﬂ))

Here the vertical maps are defined by the restrictions, and the horizontal maps are

the Penrose transforms defined in Theorem 2.4.

Proor. First we note that f+I' >t implies that the embedding K/LNK —
K'/L'NK! is bijective.
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1) Let pr:g'" — g* be the natural projection with respect to g <— g'.
Likewise, pr : (I1 ﬂfl)* — (INT)" denotes the natural projection with respect to
INt—I1'Nf'". In light of the biholomorphic map K/LNK = K'/L'NK', we
have

pr(p(u' NEY) = p(unt) (e (INF)").
By the definition of 2 ((2.6.1)), we have pr(u;) = ;. Then g, is also 4™ (f,1)-

dominant. Thus we have a biholomorphic bundle map:

i ~ 1
KLF>§K C/H—p(u) K L1F>W<K1 Cl] +p(ul)

| |

K/LNK —— K'/L'nK'.
Passing to the cohomology groups, we have a K-module isomorphism

S ~ S 1
(263) Hg (KLéK Ck-}—p(u)) A Hg (K L1F>W<K1 C) Lp(ul ))

Thus, we have F(K,u;) < F(K',u;) by the Borel-Weil-Bott theorem, proving
the first statement.
2) First, we observe from Setting 2.5(7) the following commutative diagram
of complex manifolds and holomorphic maps:
G/K — G¢/Q
N N

G'/K' — G¢/0.
From the construction of # and %', the following diagram commutes:

R’ HS<G1 X Cy )> x G' —— H8.5<K1 x C;

LINK!
U /
HS(G1 x C,

2 +p(ul ) x G Restriction

+p(u1)>

Restriction J

A HS(Gx Cp) x G ——  HE(K x G-

Then, passing from [2.4.2) to [2.4.3) for both G' and G, we have the following
commutative diagram.
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S %' 1 S{rl
Hg (G X C/J—I—p(u )) - §<G ]?1 Hg (K L1r>W<K‘ Cll-l—/?(ul)))
J Restriction
Restriction (00<G >]§Hés (Kl L1F>T<K1 C) +p(u ))>

S & 0 S
H (G P C“”(”)) - 6((; P (KLéK C”p(”)»'

Then, (2) follows from the above vertical isomorphism, which is
induced from (2.6.3). ]

2.7. 1In §4.4, we shall apply to study the Penrose transform of
G = Sp(n,R) by putting G' = U(n,n). Here is a sketch of the setting:

ExaMPLE 2.7 (see §4.3 for details). Let (G',G) = (U(n,n),Sp(n,R)), q' > q
be f-stable parabolic subalgebras, and

(L', L) = (U(k) x U(n — k,n), U(k) x Sp(n —k,R)),

k 2n—k k
1 N _ Kk 1y *
A= 212117 P(u ) - 3 lk @ ( 2) 12n—k € (b ) 5
A= k- 5 lk @ 01,_y, p(u) = <n — %) 1, ®01,_; b,

Then, the Penrose transform for Sp(n, R) is obtained as a restriction of the Penrose

transform for U(n,n) (see (2.6.2)).

§3. Kernel of the Penrose transform.

3.1. From this section, we return to our setting G = Sp(n, R). Letl <k <n.
We apply with L ~ U(k) x Sp(n — k,R), /.= ((k —1)/2)1; + 01,
and U, ~ C;. This section studies the kernel of the Penrose transform Z :
W(n,k)— éa(G X Ck>. We recall from §1.5 that

Wn k)= Wnk), ® Wnk)_

is an irreducible decomposition as G-modules. We shall prove that the kernel of
% is roughly half, namely W(n,k)_. In this section, we shall prove:

ProposiTiION 3.1. W (n,k)_ < Ker Z.

Then the equality Ker # = W (n,k)_ follows immediately from the fact that
Rl wn, K, is injective (see [Proposition 4.1).
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3.2. We recall that g, =y + p, is a Cartan decomposition of g, = sp(n, R).
We take a maximal abelian subspace ay in p, and write 4 for the analytic
subgroup with Lie algebra ap. Then the centralizer of ay in G = Sp(n, R) is the
direct product group M x A, where M ~ {diag(\il,il,...,il))}. Given &=

(e1,...,&n) € (Z)2Z)" ~{0,1}", we define a character of M by
e: M — {1}, (a1,...,a,) — Hajj.
j=1
We set [(g) = 2,7:1 ¢ €{0,1,...,n}, where we take representatives of ¢j,...,&, €

Z/2Z in {0,1}.

LemMma 3.3. Let keZ, and 0 <j<mn. Then j=0, if

N J/
~

J n—j

Proor. Let fe£<G X Ck) be a non-zero image of F(K,(k+1,....,k+1,

HomK(F(K,(k+1,...,k+1,k,...,k)),g((;1x<ck)) £0.

k,...,k)). In view of the Cartan decomposition, f is determined by its re-
striction to A. As M centralizes A, we have

(m-f)(@) = f (™ amm™") = f (am™) =" (m) f ()
where v,(cn) : K — C* is given by a — (deta)k. This implies that
(3.3.1) Homy (F(K, (k+1,....k+1,k,....k),w"[,)) #0.
We set e M ~ (Z/2Z)" by

" (1,...,1) if k=1 mod?2,
ezzv()] =
ke 1M (0,...,0) if k=0 mod2.

In view of the branching law K | M

FK,(1,...,1,0,...,0)],, = N(CY,, = D 4,
5e(Z)2Z)"

10)=j
leads us to
@  Homy (0 +¢¢) #0.
se(Z)22)"
o)~

Homy, (5 + ¢,¢) #0 only if 0 =0 in (Z/2Z)". Then j = [(d) = 0. Thus we have
proved the lemma. ]
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3.4. Now we are ready to prove |Proposition 3.1.

ProOF oOF ProposiTiON 3.1. The Penrose transform % : W(n,k) —
é (G X Ck) is a G-intertwining operator. As W (n,k)_ contains a K-type

F(K,(k+1,...,k+ 1,k,...,k)), this K-type must be contained in the kernel of
Rlw(nry byLemma33. Since W(n, k)_is irreducible, # must be the zero map
on W(n,k) O

§4. Application of restriction theorem.
4.1. The purpose of §4 is to prove the following:

PROPOSITION 4.1. Ay, 1+ Win k), — éa(G X Ck) is injective.  Further-
more,

Image Z < 0<G X Ck>.

The main idea is to use the restriction theorem (see of two
Penrose transforms associated to a pair of reductive groups G < G'.

4.2. In order to apply Theorem 2.6 to our special setting (G!,G) =
(U(n,n), Sp(n, R)), first let us give an explicit matrix realization of the embedding
Sp(n,R) < U(n,n) and the corresponding complexification Sp(n, C) < GL(2n,C).
The point here is that GL(2n, R) is realized in GL(2n, C) in a different way from
a standard one. Let G- = GL(2n,C) and we put elements of G{ by

(I V-1 I (In 0 >
n - In . \/_—1 I” b n,n - 0 _ In 9

0O 1 0O -1
Y= GG = <1 0) Ini= Fulun = <1 0n>'
n n

We define two involutions ¢ and 7 of GL(2n,C) by
a(g) = Yug ¥y,
©(9) = Inn(9") " un = Lun'g™ T
Then ¢ commutes with 7, and we have another involution ot given by

ot(g) = J,'g 7L

n

LEmMMA 4.2. 1) The Lie algebras of the fixed point groups (G-)™, (GL)°,
(GE)', and (GE)"" = (GL)"N(GE)" are given by
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(
B A= -4
gl(2n,C)" = { ) D> e gl(2n,C) : e —D’} ~ u(n,n),

A B A*=—-4
Pt = - - : Tl .R).
gl(2n, C) { (B A) e gl(2n, C) ‘B_ B } sp(n, R)

. A B A,B,Ce M(n,C),

gl(2n, C) :{<C _,A>egl(2n,C): B—B.IC—C }zsp(n,C),
o B

gl(2n, C) :{< A)egI(Zn,C):A,BeM(n,C)}:gI(Zn,R),

o oa A

2) We have the following isomorphisms of Lie groups:

GL(2n,C)*" ~ Sp(n, C),

2nC

> e GL(2n,C) : a,b e M(n, C)} < GL(2n,R),

||
—
SR
Q

GL(2n,C)" ~ U(n,n)

{( 5) c-caaa—cc-} Sp(n, R).

The isomorphism GL(2n,R) — GL(2n,C)° in (2) is given by x — C,xC; ',

2nC

4.3. Suppose that we are in the setting of [Lemma 4.2 We shall explain
the details of Example 2.7 in order to apply Theorem 2.6

We fix ke {l,2,...,n}. We define a maximal parabolic subgroup Q' =
Q'(k) of G¢ by

43.1) Q'(k):={9=1(g95) € GL(2n,C) : g; =0 (k+1<i<2n1<j<k)}.

The Lie algebra q' = q'(k) of the Lie group Q' = Q!(k) is given by

(432) q'(k)={X=(x) e M2n,C):x; =0 (k+1<i<2n1<j<k)}

Then q'(k) =1'(k) +u'(k) is a Levi decomposition, where
P=t'k):={X=(x) e M2n,C):x;=0 (j<k<iori<k<}))}
' =ul(k) = {X =(x;) e M(2n,C) : x; =0 (k<i or j<k)}.

Next, we define a subalgebra of g by
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In view of the matrix realization g = gl(2n, C)°", we have

(

Are M(k,C), Ay e M(k,n—k,C), )

Ay A B
O A4 A4 C4eM(n—k,C),
q= :
O O -4, O 'Cy = Cy,
O G | -4 -44) ‘B=BeM(@nC) )

\

We define a Levi decomposition q =1+ u by

([ A 0) O 0] )
: A1 e M(k,C),
| O | 44 0] By
[=1Ng={ :A4eM(n—k,C), ’ s
O| O] -4, O
‘B =B4,'C4=CoeMn—k,C
\o| | o | —u 4= By,'C4y = Cs€ M(n—k, )}
(/O | 4, B, B> )
olo]| B | o| 4.BeMkn—kC),
u =< : .
O O O O tB] :Bl EM(k, C)
\o|o|-4]|o0 J

Then 1=1'Ng. We note that u ¢ u'. Note that (I',1) are complexified Lie
algebras of (L',L) = (U(k) x U(n —k,n), U(k) x Sp(n — k,R)).

Take a fundamental Cartan subalgebra h' = Z,zjl CE; of ¢! where Ej is the
matrix unit. We put h:=h'Ng.

Take maximal compact subgroups K ~ U(n) and K! ~ U(n) x U(n) in the
natural matrix realization. The corresponding embedding K = K' is given by

(4.3.3) Un) — Um) x Umn), g~ (g9,%97").
We take a standard base {e|,...,es} for (h")* and {fi,...,f,} for h* such that
A(gh b)) = {t(ei—¢) : 1 <i<j<2n},
A, D) ={£(fi+f): 1 <i<j<nfU{X2fi:1<I<n}
Here is a list of explicit computations of p(u!), p(u' NT"), etc.:

e () o 2te Y

i=k+1

Y5 (B g -

i=k+1

pu! Nt = ( lk &) < l;) L, @ 01,
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kL k 2n k k
1y _ LAy % T , _r _r
pu) = 2p(u' NEY 72 e,+< 2> izn;e, 21@( 2>1n,
k _
pu) = <n - Tl> fi = 2nfk—kllk ® 01—,
i=1
n—k\ & K\ < -k k
p(uﬂf>:< B )Zﬁ—'_(_E)Z i—= 2 lk(‘B( )nka
i=1 i=k+1

p(u) = 2p(uNt) = (k“>2f ka :"‘gllk@mn_k.

i=k+1
The projection (h')* — b* dual to the embedding b =h' Ng— b' is given by
2n n
=Y dieie > (A= )
i1 =1

4.4. We define a character of I' such that its restriction to h' is given by

k 2n
:Elz_;e[.

Then we have

n

Wy = A put) = 2p(ul NE = kZel-.
i—1 i—1

M>

—|—pu

In particular, ' + p(u') lifts to a character of L'. Next, let us define a character
of [ by

| k
i=1

then we have

n

k
Itp)=nY " fi =i+ p) =2puNt) =k f

i=1 i=1

In particular, the condition (2.6.1) of [Theorem 2.6 is satisfied:

(2 + p(u" )l = 2+ p(w)
il = -
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Furthermore, we have a biholomorphic map:
K/(L(k)NK) = U(n)/(U(k) x U(n = k))

= K'J(L'(k)NK") = (U(n) x U(n))/(U(k) x U(n—k) x U(n))
between flag varieties of complex dimension k(n — k). Since u; =k e, Uy,
is the one dimensional representation of K'! = U(n) x U(n) given by

w5 Um) x Un) — €%, (a,d) — (deta)*,

and its restriction to K ~ U(n) is an irreducible (one dimensional) representation
of K with highest weight u, = kY. | f; by (1), which is isomorphic
to v,(fn) (see notation (1.3.1)). We define a character of L'(k) = U(k) x U(n—k,n)
by

w0 Uk x Un —k,n) — C*,  (a,d) — (deta)".
By (2), we have:

LemMmA 4.4. The following diagram commutes:

apl
V(I’l, k) = H—k(n_k) Gl X C (k) ];) 5 Gl X C 1(n)
0 Ll(k) Vn K1 Vi

Restriction J J Restriction

W(n,k) :H_k(n_k)<G X C(k)> i) éa(GXC(n)).
0 L(k) n K %

4.5. We recall a realization of a Hermitian symmetric space
G'/K' = U(n,n)/(U(n) x U(n))
as a classical bounded symmetric domain in C"* ~ M (n,C). Let
Symm(n,C) :={Ze M(n,C):'Z="7}.

We define unipotent subgroups of G¢ = G by

U= {(lz f) :ZeSymm(n,C)} c Ul = {(lz IO> :ZeM(n,C)}.

We consider open Bruhat cells induced from G& > U'Q'(n) and Ge o UQ(n):

j}! J

G'/K' < G¢/Q'(n) & Ul~M(nC)
open open dense
U U U
G/K L Ge/Q(n) LA /N Symm(n, C).

open open dense
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Here ji; and j| are Borel embeddings. The key point in the above diagram is
j1(G/K) = j»(U) and ji(G'/K') = jL(U), so that (j,)"'ji (respectively, (j1)~'/1)
gives a global coordinate of G/K (respectively, G'/K'). We put

D= (j»)"1(G/K) = D" == (j)"j}(G'/K") = M(n, C).
Then D and D! are precisely given by classical bounded symmetric domains
D ={Z eSymm(n,C):1,—Z"Z >0}
cD'={ZeMnC):I,-Z*Z > 0}.
We note that if n =1, then (G!,G) = (U(1,1),Sp(1,R)) and
D=D'~{zeC:|z| <1} (the Poincaré disk).

Hereafter, we shall identify G'/K'! with D' and trivialize vector bundles over
G'/K' by using a global coordinate on D' = M(n,C). With the identification
G'/K' ~ D!, the action of G' on D! is defined by

a b B 1 a b !
<c d)-Z_(c—|—dZ)(a—|—bZ) for <c d)eU(n,n), ZeD,

because we have

(4.5.1) (‘c’ 2)(12 IO)
N ((chdZ)(IZ+bZ)_1 2)<a+0bz d—(c+dZ§?(a+bZ)_1b)’

corresponding to the Bruhat cell mQ(n) < G¢.
Let x,,7, and y be characters of U(n). In view of the embedding K = K!
(see (4.3.3)), the following diagram commutes:

(x1,0) : K'=U(n) x U(n) —— C*
’ |
K = U(n) — C*
if x=7x(x)"". We extend (x;,%,) to a holomorphic character
(t102) = Q' (n) — C*,

by letting the unipotent radical act trivially. Likewise, y to a holomorphic char-
acter Q(n) — C*. Thus, if y =y, - (}(2)_1, we have G-equivariant line bundles:
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GXCX — GIXC(
K K1

|

G/K — G'/K

X1:22)

Let us trivialize the above bundles by using global coordinates of U < U!. In
view of the bundle maps:

UxC < Gec x C, —— G x C > U'xC
Q(n) Q' (n)

| | J

U < Gc/Qmn) — G&/Q'(n) = UL,

X1:%2)

we have homeomorphisms of Fréchet spaces:

(4.5.3) 5((}1 x C(Xm)) ~ C*(D"), £<G x Cz) ~ C*(D).

Through the isomorphism, one can define the representation 7! of G' = U(n, n)
on C*(D'). By using (4.5.1), this representation is of the form:

(4.54) (n'(9)F)(Z)

= 77 (a+b2)3; " (d — (¢ +dZ)(a+ bZ) 'B)F((c + dZ)(a+bZ)™")

b
if g_1:<i d)eGle(n,n) and ZeD'

Likewise, the representation = of G = Sp(n,R) on C*(D) is defined to be:
(4.5.5) (n()F)(Z2) =y "a+eZ)F((c+aZ)(a+¢cZ)™)
e ] a ¢
if g7 = eG=Sp(m,R) and ZeD.
¢
LEMMA 4.5. If y =y, - (o), then the restriction map C*(D') — C*(D) is
a G-intertwining operator.

PrOOF. Lemma follows immediately from the G-equivariance of the bundle
map and from our definition of # and n'. Lemma also follows from a
direct computation by using the formulae (4.5.4), and

(4.5.6) ai—(c+aZ)a+eZ) 'e= () Na+ez) e

for any a,c e M(n, C) satisfying ‘ac = ‘ca, and a*a — c*c = I,. O
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( ), then

In particular, we fix ke {I,...,n} and let y = v,(cn), and (y1,2) = v,
the corresponding representation 7 of G on C*(D) (z! of G' on C*(D'), re-

spectively) is denoted by

(4.5.7) (Tn,k(9)F)(Z) = (det(a +
if g_1:< E) and ZeD,

cZ) *F((c+az)a+ez)™)

(Fak(9)F)(Z) = (det(a +bZ) ™" F((e + dZ)(a +bZ)™)

b
(a )eGl, and ZeD'

if 7' = g

Then, in this special case means that the restriction map (7, ,, C*(D'))
(7w k, C* (D)) is G-equivariant.
Similarly, we have isomorphisms:
@(Gl X CW)) ~ O(D") and @(G X Cm)) ~ O(D),
K' V& K Y

through which @(D) is a subrepresentation of (G, 7, x, C*(D)), and ¢(D") is that
of (G',7 ~n 4+ C*(DY)). Then the restriction ¢(D') — @(D) also intertwines be-

tween the restriction 7, ,|; and 7.
4.6. Now, we are ready to prove [Proposition 4.1

We recall V(n, k) =

L1 (k)
see [Se], Fact 2.1 (1)).
9 of L (k) (see §4.4).

PROOF OF PROPOSITION 4.1. kn=k) (Gl X Cino) ) is an

irreducible infinite dimensional representation of U (n n

Here C (1,0) denotes the one dimensional representation vn
(c V(n,k)) for the 1epresentdtlon space the minimal K-type of

We write V(n k)
- Fact 2.1 (2)). Then

V(n, k), which is given by det’ ®1 = vk
A (V(n,k),) = C1

n
O(D')y = C*(D') ~ @@(Gl x CM)
o
In view of the commutative diagram:

by [Se], Lemma 5.1.
_ prk(n—k) 1 el ~

- -

(n,k) = HA" “(G é)c) — g(%ck) ~ C*(D),

(4.6.1) % o Rest(V (n,k),) = Resto 2 (V(n,k),).
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Because the restriction of the constant function 1 on D' to a submanifold D
does not vanish, the right side of (4.6.1) contains a non-zero holomorphic func-
tion. This implies that Image # is non-zero. Since # vanishes on W (n, k)_ (by
[Proposition 3.1) and since W(n,k)_ is irreducible (by |Proposition 1.5)), % must be
injective on W(n,k) . Also, because ((D) ~ (O(G X Ck) is a subrepresentation

of C*(D) ~ 5(6 x Ck), and because Z(W(n,k),) is irreducible, we conclude

R(W(nk),) < @(G X Ck). This completes the proof of [Proposition 4.1. [

§5. Differential equations (A%, 1).

5.1. The purpose of this section is to prove that the image of the Penrose
transform satisfies the differential equations (A1) (Proposition 5.1). The sur-
jectivity (difficult part of Main Theorem) will be proved in [Proposition 6.1l.

ProrosiTION 5.1.  With notation of Main Theorem in §0, we have

%W(n,k)+ c SOI(,/VQ/H_l) (1 <2k < n)

If 2k = n, we note that Sol(A}4) = (§<Sp(n,R) X Ck), namely, there is no
differential equation (see [0.3.4)). v

5.2. For 4 =(ay),<;;<, € M(n,C) and for 1 </ <n, the /th principal
minor of 4 is denoted by

det;(A4) := det(ay)

1<i,j<l

Let Pol” (V) be the complex vector space of polynomials on a vector space V'
of homogeneous degree m. Then, the direct product group GL(n, C) x GL(n,C)
acts on Pol”(M(n,C)) by

f(X) = f('91Xg2) (91,92 € GL(n, C), f € Pol™ (M (n, C))).

For I,J < {1,2,...,n} such that |/| =|J| =/, we define a polynomial on
M(n,C) of homogeneous degree / by

detyy(4) := det(aii)iel,jeJ7 A= (aii)lsi,an'

In particular, we have
det;(A) = detyy > . 1341,2,...13(A).

The polynomial det;; is also a polynomial on Symm(n,C) by the restriction,
denoted by the same det;;. We note that det;; = det;; as polynomials on
Symm(n, C).
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5.3. We define two subspaces of Pol”(M(n,C)) by

f/; = C-spand{det,,(91Xg2) : 91,92 € GL(n,C)),

———

W, = C-spanddet;(X) : |[I| = |J| = m).

Lemma 5.3. For 1 <m <n, we have

Vin = Wm;
on which GL(n,C) x GL(n,C) acts irreducibly as

F(GL(n,C),(1,...,1,0,...,0) R F(GL(n,C),(1,...,1,0,...,0)).
—— Y—— —— ——

m n—m m n—m

PrOOF. By the elementary transformation of matrices, we have fV\; c f/;
Let g1,9> € GL(n, C) be upper triangular matrices with 1 in the diagonal entries.
Then det(g; Xg>) = det(X). This means that det,,(X) is annihilated by n x n,
where n is the nilpotent Lie algebra consisting of strictly upper triangular matrices.
Since ¥}, is a GL(n, C) x GL(n, C)-span of a highest weight vector det,,(X), V,,
is irreducible and isomorphic to

F(GL(n,C),(1,...,1,0,...,0)) R F(GL(n,C),(1,...,1,0,...,0))
S—— —— S— —

m n—m m n—m

as a GL(n,C) x GL(n,C)-module. Therefore,
2
. o . m 2 n
dim ¥, = (dim \" (C"))"= (m) :

On the other hand, {det;;(X)} are linearly independent. Thus

2
mmﬁ§:<”>.
m

Now, we have proved dimﬁ/; =dim ﬁ As fV; c f/;, we have W,,=V,,. [
5.4. We define two subspaces of Pol™(Symm(n, C)) by
V,, = C-span{det,,(‘gXg) : g € GL(n, C)),
W,, = C-span{det;(X) : |I| = |J| = m),
where X € Symm(n, C) stands for a variable of polynomials.
Lemma 5.4. For 1 <m <n, we have

V;n - WI’Ha
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on which GL(n,C) acts as an irreducible representation
F(GL(n,C),(2,...,2,0,...,0)).
—— ——
Here, GL(n,C) acts on Pol”(Symm(n,C)) by
F(X) = f(}gXg) for g GL(n,C), f & Pol”(Symm(n, C)).

Proor. V,, is a GL(n,C)-span of a highest weight vector det,(X) e
Pol” (Symm(n, C)), and therefore we have an isomorphism of GL(n, C)-modules:

Viy ~ F(GL(n,C),(2,...,2,0,...,0)).
—— ——

Let /V;g := C-span{det,,(‘gXg) : g€ GL(n,C)) = Pol”"(M(n,C)). We write
q: Pol™(M(n,C)) — Pol”(Symm(n, C))

for the restriction map. If we consider the diagonal action of GL(n,C)
(c GL(n,C)x GL(n,C)) on Pol™ (M (n, C)), then ¢q respects the action of GL(n, C).
Clearly,

Wn=qWy) and V, =q(V;).

By Lemma 5.3, we have W, =V, > V!

m>

and therefore we have proved
W, o V,.

Let us prove the opposite inclusion W, = V,,.  We shall prove det;;(X) € V;, for
any I,J by using the differential action of GL(n,C) on V,,.
Let E,; € M(n,C) be the matrix unit (1 <a,b <n). Then we have

NI, + SEp) X (I, + sE;) = X + 5(A + 4) + O(s?),

where 4 =31 x,;Ey and X = (x;),.; ;, € Symm(n, C).
Suppose 1 <b<m and m+1<a<n We set

I:={l,...,m} and J:= (I\{b})U{a}.

Then we have

detl[(t<1n + SEab)X(In + SEab))
s=0

yr det;;(X + s(A + 4) + O(s?))

s=0

= 2detU(X)
= 2dCtJ[<X).
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This implies that dety € V,, because dety; € V;, and because V,, is a representa-
tion space of GL(n,C). The iteration of this procedure shows that W,, < V.
Hence we have proved V,, = W,,. L]

5.5. We recall on matrix realization of Sp(n, R) (Lemma 4.2):

Sp(n,R) = {(CCZ ;) clac =ea,ata — cfec = In}.

If g= (a f), then ¢! = ( cf tc) e Sp(n,R). Thus we have
c a a

namely, a'c = ¢a.
Here is a fine structure of the U(n)-module Pol(Symm(n, C))=
@P,-, Pol"(Symm(n, C)) (cf. Cemma 1.7).

LemMA 5.5. For rpeZ (1<j<n), rp=--- =r, we set

o= F(U®),(r1,....r)) € Un).
Let re N. Then the following three conditions on r,ry,...,r, are equivalent:
i) Homyq, (g,Pol’(Symm(n, C))) # 0.
ii) Homyy,)(a,Pol"(Symm(n, C))) ~ C.
i) r;e2Z (1<j<n), r,>20and ry+---+r,=2r.
We write 1, as the g-isotopic subspace of Pol"(Symm(n, C)).
We set

(5.5.1) B.(s) ::ﬁﬁ@—iﬂ’;l).

h=1 i=1

5.6. Then it follows from [Sh], Theorem 4.3 that:
LemMa 5.6. If s e C satisfies f(s) =0 then

f(%) det(cZ+d)' =0 for any (€
0

for any Z € Symm(n,C), and ¢,d € M(n,C) such that ¢'d = d'c, rank(c,d) = n.
Here, for & € Pol"(Symm(n, C)), we write £(3/0Z) for the differential operator of
degree r on Symm(n, C) defined by using the notation (0.2.2), (0.2.3).

5.7. Let us consider a special case of by putting

= F(U(n),(2,...,2,0,...,0)).
o :=F(U(n),( a ] )
n—i
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As rp =---=r; =2, the formula (5.5.1) is given by

Bs(s) =S<S+%> <S+Z_Tl>.

Thus, f.(s) =0 if and only if —2se N and —2s </—1. On the other hand,
V,~V, =W,
by [Lemma 5.4. Since det;;(0/0Z) = P(I,J) (see Definition (0.3.1)) we have:

PROPOSITION 5.7.  Suppose 2k,l € N satisfy 2k <1 —1. Then for any I,J <
{1,2,...,n} such that |I| =|J| =1, we have

P(I,J)det(cZ+d)™" =0
for any ¢,d € M(n,C) such that ¢'d = d'c, rank(c,d) =n and Z € Symm(n, C).

5.8. Now we complete the proof of [Proposition 5.1. We have shown in §4
that

R(W (n,k)_) contains 1€ (D) ~ @(G X Ck>.
Since #: W(n, k), — CO(G X Ck> is a G-homomorphism, and since W(n,k)_ is
an irreducible G-module, we conclude:
LemMA 5.8. (W (n,k),) contains a subspace

C-span{7,k(9)1 : g € Sp(n, R))

as a dense set in the Fréchet topology on O(D).

9]

a
c

Q

On the other hand, if g~ = ( ) e Sp(n,R), and if Z € D < Symm(n, C),
we have from the definition (4.5.7)
(Fuk(9)1)(2Z) = (det(a + cZ))7".

Since ¢'a = a’c and rank(¢,a) =n, we have

P ) (i (9)) =0 if 1] = |J] = 2k + 1

by [Proposition 5.7. Here P(I,J) annihilates C-span{z, x(g)1: g e Sp(n,R)).
Combining with Lemma 5.8, we have proved:

ROW (n,k).) = Sol(Nsjs1).

Hence [Proposition 5.1 is proved. ]
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§6. Surjectivity of the Penrose transform %.

6.1. We have already proved that

1) #(W(n,k),) < Sol(A%1) (see [Proposition 5.1),

2) Rlwn, K, W(n, k), — Sol(A%41) is injective (see [Proposition 4.1).
The aim of this section is to prove the surjectivity:

ProPOSITION 6.1. Z(W(n, k), ) = Sol(AN241).

Then the proof of the Main Theorem (see §0) will be finished. In view of
(1) and (2), the proof of [Proposition 6.1 will be completed if we show that both
W(n, k), and Sol(.4%11) have the same K-types, because W (n, k), is a maximal
globalization.

6.2. We recall from that the representation 7, ; of G = Sp(n,R) on
(Q(GEC/O i1s given by

(7 (9)F)(Z) = (det(a +eZ))“F((c + aZ)(a+eZ)™)

a
for g7 = <
c

In particular, if g~! = (

9|

Q

)eG:Sp(n,R), and ZeD.

e

g ) € K ~ U(n), then

{

(Fini(9)F)(Z) = (deta) *F(aza™"), for ZeD.

If we consider the double covering Mp(n,R) of Sp(n,R), then k is allowed
to be a half integer. We shall obtain the K-type formula for Sol(.A%.) for
ke{l/2,1,3/2,2,...,(n—1)/2,n/2}. (But, we need only the case where k € Z.
Note that Sol(A%y1) = 6<G X Ck> if n is even and k =n/2.) In the light of

I, + SEp)Z(I, 4 SEu) = Z + 5(EpeZ + ZEy) + O(s?),

the differential action d7,; of sp(n,C) on O(D) ~ CG(G X Ck) is given by

n jn)

(6.2.1) (A (Ea)F)(Z) =Y (1 + 60z pLF(Z) 4 kS F(Z)

i—1 PZib
(‘r‘ ~ 0
for 1 <a,b<n, and F € O(D) (_ O(G X Ck)).
REMARK 6.2. Here, we have used the global coordinate of Symm(n, C) by

zj (1<i<j<n) for Z=(z5), ;< <, € Symm(n,C) (see [0.2.2)). It is conve-
nient to allow z; (resp. 0/0z;) to denote z; (resp. 0/0z;) (1 <i<j<n).
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6.3. We define a nilpotent Lie subalgebra n(f) of f~ gl(n,C) by
n(t) == {X = (xj),<; j<p € 08l(n, C) : x5 = 0 if i >/} < gl(n, C).
For any open set Q in Symm(n, C), we define

(6.3.1)
0 n(t) 0 . - . . i _
o)™ = {FeC(Q) : E (1 +(Slb)zla62~ F(Z)=0for 1<a<b <n}.

i~ ib
Then, it follow from (6.2.1) that
o(DY"Y = {F € O(D) : d#t, ;(X)F(Z) = 0 for any X e n(f)}.

Here we note that the right side is in fact independent of k.
We define a Borel subgroup B(Kc¢), its unipotent radical N(K¢) and a
Cartan subgroup H(K¢) of K¢ = GL(n,C) by

B(Kc) ={(95) € GL(n,C) : g;; =0 (1 <j <i<mn)} = N(Kc)H(Kc),
N(Kc) = {(g7) € GLn.C) 1 g5 =0 (1<j<i<n) and gy =1 (1 <I<m)},
H(Kc) = {(g5) € GL(n, C) : g5 = 0 (i #J)}.
The Borel subgroup B(K¢) acts on Symm(n, C) by
Z g7 Zg7!,  ZeSymm(n,C), geB(Kc).

There is a unique open B(K¢)-orbit, denoted by Symm(n, C)"®, in Symm(n, C).
Thus, (B(K¢),Symm(n, C)) forms a prehomogeneous vector space.

6.4. We define

W= {diag(y1,-., ) : ¥1,- -, ya € C*}.
As we shall see in the following Lemma 6.4 W < Symm(n, C)™® and
Symm(n, C)*® = {Z e Symm(n, C) : det;(Z) #0 (1 <1< n)}.
LEMMA 6.4. We consider the following:

(6.4.1) 9:N(Kc) x W — Symm(n,C), (g,y)— ‘gvg.

reg

1) The image of ¢ is Symm(n, C)
2)  (inversion formula of ¢) If Z = (g, y), then

det; Z
Cdet;_1 Z (I<l<n),

deti(Zri-)
4. =
(64.3) 9= "4et, Z

(6.4.2) Vi

(1<i<j<n).
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Here, g=(9j)1<; ;1<n€N(Kc) and y =diag(y1,...,ya)e W. Wewritedet_; Z=1

J
and t; € GL(n,R) stands for the permutation matrix, so that

Z1n ot Z1,i-1 2l
det[(ZT[j) = det
Zit ottt Zii-1 Zj
Proor. (1) is deduced from (2). Letus prove (2). Fix 1 <i<j<n We

divide n x n-matrices into (i,n — i) block and put

Z, Z
A € M(n,C) with det; Z =detZ; #0,
Zy Zy

A O
A=("" e GL(n,C) (lower triangular matrix),
Ay Aa

B, B : : .
B= < 01 B2> € GL(n,C) (strictly upper triangular matrix).
4
If Z = AB, then we have
A1By =2y, A1By=2,, A3By =25, A3By+ A4By= Zy4.
In particular,

Z(B['By) = (4,B))(B['By) = Z,.

As By e GL(i,C) is a strictly upper triangular matrix with diagonal entry 1, we
have:

By = (B2); ;_; = (B{'By)

i, j—i i, j—i*

Thus, the Cramer’s formula leads to [6.4.3]. Other statements are easy. []
It follows from that the restriction map
Rest : O(Symm(n, C)*®) — O(W)
is injective when restricted to
O(Symm(n, C)*&)"Y = o(w).
6.5. We define a differential operator on W by
(6.5.1) Q::H<yj%+%(n+2—j)>%.

J

The following Lemma can be proved similarly as in [Se], §4.
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LemMMA 6.5. The following diagram commutes:

Rest

¢(Symm(n, C)"&)"V == g(w)
Jaats) e
¢(Symm(n, C)")"® 2L o).
6.6. Then, we have a simple Lemma:

LEMMA 6.6. Let Oy denote the germ of O(C") at 0 e C". Then,

{heOy: Qh=0 in VN (C*)" for some open set 0V < C"}

{he@o j—h_()}

Vn
Proor. We shall write y* =yp{"---p? for a multi-index o = («,...,a,).
Let
h(y) = by y*
aeN"

be the Taylor expansion of h(y) at 0. Then

1 n—72 n—n
Zb <a1+—)<o¢2+ 5 )"'(fxn—l— . >yc¢—(1,...,1)'

aeN"

Therefore, Qh = 0 if and only if b, =0 for all « = (ay,...,a,) such that o, # 0.

Namely, the Taylor expansion of A(y) is of the form:

Xp—1

h(y) = Z b(al,...,an,h())y P

A yeees Uy—1 € N

This condition is equivalent to (0h/0dy,)(y) = 0. O

6.7. Let Q be an open neighbourhood of O in Symm(n,C) such that

W N 1s connected.
LemMA 6.7. If f e 0(Q)"Y satisfies det(8/0Z)f =0, then Of /0zu| yyng = 0.
Furthermore, we assume N(K¢)-(WNQ) > Q and f(n-Z) = f(Z) for any
neN(Kc) and Z € Q such that n-Z e Q. Then d7, (En)f =kf in Q.

We recall that n-Z = ‘n~'zZn=L,

Proor. Weset h(yy,...,y,) = f(diag(yi,...,yn)) € O(WNQ). By Lemma
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6.5, det(0/0Z) f = 0 implies Qh = 0 and then 6//0y, = 0 on W NQ by [Lemma 6.6.
By using the coordinate map ¢ (see [6.4.1)), we have

o S 05 O | N~ ow Ok

OZun OZpn agij =1 OZun 6_)11

l1<i<j<n

As f is n(f)-invariant, df/dg; =0. By (6.4.2), dyi/0zm =0 except for [ =n.
Hence we have

o

0Zun

If
e

wne

In view of z; =0 (i #j) on W, we have for Ze W

>

n

G En) (2 = Y1+ 002/ (2) + Ko (2)

- Zj
i=l1 mn

_ (zz,m azi + k) 1(2) = kf(2).

Now, let Ze Q. We take ne N(K¢) such that n=!-Z = nZne WNQ. Then

— d _[Enn — d
_E t:()f(e Z) - dt

~ L e Z) = (i (Bl 2)
dt =0

f(e_[Ennne[Enne_fEnnn_l . Z)
t=0

(dﬁn,k (Enn)f> (Z)

— k(" 2)
=kf(Z).
Thus, dz,  (En)f =kf in Q. ]

LEMMA 6.8. Letke{1/2,1,....(n—=1)/2,n/2}. If feO(Q)"V N Sol(Ns1),
then
Aty 1(Ew)f =kf 2k+1<a<n).

Proor. First we prove Lemma in the case 2k+1=n. Let [,e Uc N(Kc¢)
and O € V < D be (small) connected open neighbourhoods, respectively. We put
an open set of Symm(n, C) by

Q=U-V={"nZn:neU,ZeV}.

If U and V are small enough, we may and do assume (Oe) Q < D. It follows
from

A, (X)f =0 for X en(f)
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that
f(n-Z)=f(Z) for any ne U (cN(K¢)) and ZeV (< D).
Then, by the previous Lemma 6.7, we have
Aty ik (Emn)f = kf -

Next, we consider the case 2k +1<n. We fix I = {ij,...,in41} = {1,2,...,n}
such that 7| =2k + 1. In place of Symm(n, C), we consider Z) := (Zij)ijer €
Symm(2k +1, C) and apply the above argument. Then we have d7t, i (Ei,., i, ) S
= kf. The possible values of iy, are 2k + 1,2k + 2,...,n under the condition
i < - <iyyr and I ={i,...,bx+1} = {1,2,...,n}. Therefore we have

dnty, i (Eq)f = kf for any a with 2k+1<a<n.
Hence we have proved the lemma. ]

6.9. Let U(n) be the double covering group of U(n). Here is a K-type
formula of Sol(A541):

PrOPOSITION 6.9. Let k=1/21,...,(n—1)/2,n/2.

(69.1)  Sol(Nms)y = B F(UM), (2 +k, ..., 2% +kk,....k)).

ay > >ay =0 ~
ajeN 2k n—2k

REMARK. (6.9.1) is an equality. This will be proved in the next subsection
for ke Z.

Proor. First, we recall a multiplicity free K-type formula (Lemma 1

@(chk) ~ @ F(UMm),Qa,2a,,...,2a,) +kl,).
K K  a>->a,>0
aeN

Let f € Sol(A%k4+1), be a K-highest weight vector with respect to n(f) < f.
Let > ! (2a; + k) f; e t* be its highest weight. It follows from that

dit, 1 (Ej)f =kf for any j 2k+1<j<n).
The left side equals (2a; +k)f. Therefore, we have
2aij+k =k for any j 2k+1<j<n),

that is ¢; =0 (2k+1 <j<mn). Thus, we have proved Proposition. ]

6.10. Now we complete the proof of Proposition 6.1. Letk=1,2,...,[n/2].
Combining [Proposition 6.9 with (1.5.1), any K-type occurring in (Sol{(A%x+1))x
appears in (W(n, k), ), with multiplicity one. As Z#: W(n,k), — Sol(A241) is
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an injective G-homomorphism, we have proved an isomorphism on the level of
(g, K)-modules:

AW (n,k),) ) = Sol(Nai) g

Then, the (g, K)-isomorphism % : (W (n,k),)x — Sol(A341)k induces the G-
isomorphism % : W (n, k), — Sol(A541), because Hgk(”gk) (G X Cn) is a maximal
globalization in the sense of Schmid ([Sch3]). / O
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