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Abstract. We consider certain correspondences on disjoint unions Q of circles
which naturally give Hilbert C*-bimodules X over circle algebras 4. The bimodules X
generate C*-algebras Oy which are isomorphic to a continuous version of Cuntz-Krieger
algebras introduced by Deaconu using groupoid method. We study the simplicity and
the ideal structure of the algebras under some conditions using (I)-freeness and (II)-
freeness previously discussed by the authors. More precisely, we have a bijective
correspondence between the set of closed two sided ideals of (y and saturated hereditary
open subsets of 2. We also note that a formula of K-groups given by Deaconu is given
without any minimality condition by just applying Pimsner’s result.

1. Introduction.

Pimsner introduced C*-algebras Oy for Hilbert C*-bimodules X, which
are a generalization of both Cuntz-Krieger algebras and crossed products by the
integers. He showed a universality of the algebras and gave a 6-term exact
sequence of K-theory. Katayama also considered C*-algebras Uy for inclusions
of algebras in [Ka]. Kajiwara-Pinzari-Watatani [KPW1] studied the simplicity
and the ideal structure of the C*-algebras 'y for finitely generated bimodules
X. Kajiwara-Pinzari-Watatani constructed bimodules which provide
countably generated Cuntz-Krieger algebras to study their ideal structure and
compare with a groupoid approach by Kumjian, Pask, Raeburn and Renault
[KPR], [KPRR].

In Deaconu considered groupoids for self-coverings that generalize the
Cuntz groupoid in Renault and studied the groupoid C*-algebras. In
he introduced a continuous version of Cuntz-Krieger algebras using the groupoid
method for special embeddings of circle algebras 4. The corresponding space of
paths is a generalized solenoid and the resulting algebra is related to the paper
by Brenken. He showed a criterion of simplicity and a formula for K-theory
under some minimality condition. In Delaroche studied purely infinite
simple C*-algebras arising from general dynamical systems.
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In this paper we consider certain correspondences on disjoint unions 2 of
circles which naturally give rise to Hilbert C*-bimodules X over circle algebras A.
The bimodules X generate C*-algebras (y which are isomorphic to continuous
Cuntz-Krieger algebras considered by Deaconu. In fact we can regard the above
special embeddings of circle algebras as left module actions ¢: 4 — ZL4(Xy).
We study the simplicity and the ideal structure of the algebras (y under some
conditions using (I)-freeness and (II)-freeness defined in [KPWI1]. More pre-
cisely, we have a bijective correspondence between the set of closed two sided
ideals of Oy and saturated hereditary open subsets of 2. We also note that a
formula of K-groups in is given without any minimality condition by just
applying Pimsner’s result.

While completing our paper, Deaconu let us know his preprint [D3], where
he also shows that his continuous Cuntz-Krieger algebra of a continuous graph
could be thought as a C*-algebra considered by Pimsner.

2. Correspondences and bimodules.

Let 4 be a C*-algebra. Throughout the paper a Hilbert C*-bimodule is a
right Hilbert 4-module X endowed with a non-degenerate isometric *-homo-
morphism ¢ of A into Z4(X4), the algebra of adjointable right Hilbert A-
module maps. A finite set {;}; of X is called a finite basis if x = u;(u;]x),
for xe X. We denote by 0,, the “rank one” operators on X defined by
Oy y(z) = x(y|z),. The closed linear span of “rank one” operators is denoted by
H4(X,4) and called the algebra of “‘compact operators”. If the right A-module X
has a finite basis, then ¥4(X4) = #4(X4). We refer for other definitions and
basic facts to [KPW1].

We start to consider correspondences in general. Let £ be a compact
Hausdorff space. Most Hilbert C*-bimodules over a commutative C*-algebra
A = C(Q) naturally arise from correspondences (i.e. closed subsets € of Q x Q)
similar to the case of commutative von Neumann algebras as in [Co].

DerFINITION 1. We call a pair (%,4) a (multiplicity free) correspondence
on a compact Hausdorff space Q if % is a (closed) subset of @ x Q and u=
( )y <o 1s a family of finite regular Borel measure on £ satisfying the following
conditions:

(1) (faithfulness) the support suppu” of the measure p” is the y-section
¢ ={xeQ|(x,y) e %},

(2) (continuity) for any f e C(%), the map ye Q — [, f(x,y)du’(x) e C
1S continuous.

The vector space Xy = C(%) is an A-A bimodule by
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(a-f-b)(x,y) =a(x)f(x,y)b(y)
for a,be A, f e Xy and (x,y) €.
We define an A4-valued inner product on X; by

(fl9)a(y) = J 700 y)g(x, y) di ()

@
for f,g€ Xy. By the faithfulness and continuity of u, Xy is a right pre-Hilbert
A-module. We usually assume that for any x e Q (resp. y e Q), there exists
yeQ (resp. x € Q) with (x,y) € %.

We denote by X the completion X,. The left 4-action on X, can be
extended to an injective *-homomorphism ¢: 4 — %4(X4). Thus we obtain a
Hilbert C*-bimodule X over A (or Hilbert A-4 bimodule) from the corre-
spondence (%, u).

Let Q=)' ,Q; be a disjoint union of circles Q; ~ T. Let p and ¢ be
integers which are not equal to zero. We consider closed subsets %7! =
{(z,z")|ze T} < T x T and 4% ' ={(z9,2)|ze T} = T x T.

DErFINITION 2. We call (%, u) a circle correspondence if % is a closed subset
of 2xQ and u= (,uy)yeQ is a family of counting measures satisfying the
following condition:

For any i, j=1,...,n the set €;; = €N (£2; x £;) is of the form gr! gl
or ¢, and u” is the counting measure on the y-section .

We denote (%,u) briefly by .

We study only circle correspondences in this paper. Consider a circle
algebra A = C(Q) = P,_, 4;, where each 4; = C(Q;) =~ C(T). Let X = C(%)
and X;; = C(%;;). We regard X;; = {0} if ;; = . Then X =D, X;; is a
pre-Hilbert C*-bimodule over A obtained from the circle correspondence (%, u).
The inner product of X is given explicitly by

Nae) = > S o) o)
{0'e; (0, 0)e%}
for fi,LeX, w,0' € Q.
We note that X;; = C(%;;) is a right Hilbert A4;-module with a left A;-
module action. For f = (f;);, 9= 1(g5);€X = @i,j Xij and a=(a;),, b=
(bj); € A =D, 4;, we have

(flg), = (Z(ﬁjﬂzj%)
and

af = (a; ij)ija fb= (fi/'bf)ii'
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PROPOSITION 3. The above X has a finite right basis and becomes a full
Hilbert C*-bimodule over A.

Proor. We construct a basis for each X;; = C(%,;). If €;;is of —1 type,
{l(p '} is a natural basis. If %;; is of 1 type, we may take {gj}]l’ |o where
g(z, zP (1/ VIp)z/ as in [Kul. We denote by {ukj }« the above basis of X; ;
and by U’ the corresponding element embedded in X, that is, (U’ )rs =

5,~J5j,suli’j . Then their union {U,ﬁ’j :1, j,k} form a finite basis for X. In fact,

> U= v (Z((S” A MS)A“')

ivjvk l,jk r
=2 U i)a)s = (Zu ut’1fi). )—(ﬁy-)i,-—f.
ij,k i

Therefore X is already complete, see [KW1; Lemma 1.11] for example. It is
clear that X is full. ]

DEerFINITION 4. Consider a circle algebra 4 = C(2). We say that X is a
circle bimodule if X = C(%) for some circle correspondence %.

IProposition 3 shows that X is a Hilbert C*-bimodule over 4 without com-
pletion.

We recall the C*-algebra (y generated by a bimodule X introduced by
Pimsner [Pim]. Assume that the Hilbert C*-bimodule X over A4 is full and has
a finite right A-basis {u;}, and 4 is unital. Then Oy is the universal C*-algebra
generated by {Sy;x € X'} satisfying the relations S:S), = (x|y),, Sxa = Sxa, aSy =
Spay> and »; S, Sy =1 for ae 4 and xe X. The gauge action f of T on Oy
is given by f.(Sy) = ZS for ze T. The fixed point algebra under the gauge
action is denoted by Z ) and is identified with the 1nduct1ve limit lim % (X®n).
In particular if X is a 01rcle bimodule, then we call Z® the “AT- part” of Oy.
Actually we see that foo( ) is an AT-algebra. We denote by (90 the *-subalgebra
of Oy generated algebraically by {S,;xe X}.

Let uy,...,u, be a finite basis of X,. We define a completely positive map
g on Oy by o(T)=>",u;Tu for T € Oy.

We recall the following facts:

Lemma 5 ((KPW1]). (i) The restriction of o to A' N Ox is a *-homomorphism
and does not depend on the choice of the basis.
(i) For Te A'NOx and xy,...,x, € X, we have

a"(T)xy Xy =X1+ X T

and o™ (T) commutes with elements in Hy(X>™).
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Following Deaconu [D2], it is useful to regard a disjoint union @ of
circles as the set of vertices and a circle correspondence % considered in section
1 as the set of edges so that we can draw pictures of the diagram as in [D2].
The resulting graph % is called a continuous graph. We call an element
(wo, w1, ..., ;) e QU+ a4 continuous path if (w;_1,w;) €% for 1 <i<r and r
is called the length of the path. A continuous path (wg,wi,...,®,) is called a
continuous loop if w, = wy.

As in we also shrink each circle to a point and collapse the corre-
sponding edges to get a discrete graph %¢. Thus we consider the set X =
{1,2,...,n} of discrete vertices and the set E = {(i,j) €2 x X;%,;; # ¢} of
discrete edges. Discrete paths and loops are defined as paths and loops in the
discrete graph 4. We regard the set E of edges as the discrete correspondence
%7 < X x X of the original correspondence %.

A discrete path (iy,i,..., i) e 20+ is a discrete loop if i, =iy and it is
called a simple discrete loop if furthermore the vertices i (0 <k <r—1) are all
different. A discrete vertex j is called an exit of a simple discrete loop L if j
is not contained in the loop L and there exists a vertex i in the loop L so that
(i,j) is an edge.

We denote by %, the set of continuous paths with length r, that is,

Co={(wg,...,0,) e Q™ (g, 1) €%,...,(0_1,0,)€F).

The set %, has the relative topology from Q""'. The set C(%,) of continuous
functions on %, has a pre-Hilbert C*-bimodule structure similar to X = C(%):
For a,be 4, f e C(%,),

(a-f-b)(wo,...,o)=alwy)f(wo,...,w)blw,)
and for f,ge C(%,), w, € Q,

(f19)4(c0or) = > (@0, 00)g(w0, ..., o).

{(C‘)O ~~~~~ 1) €Gr1; (@050, ) G(gr}

LEMMA 6. Let X be a circle correspondence. Then the relative tensor
product X A®r is isomorphic to C(%,) as Hilbert C*-bimodules over A.

Proor. We see that there exists a linear map ¢ : X A®r — C(%,) such that

(ﬂ(fl ®f2 ® o ®fi’)(a)07w17 cee 7wi’) = fl(wovwl) 2(601,602) o 'f;’(wr—17w")

for f1,/5,....fr€X. It is easy to show that ¢ is bi-linear and preserves A-
valued inner product. Thus ¢ 1s also injective. The only non-trivial part is to
show that ¢ is onto. Let {u;}, be a finite basis of X4. Then for f e C(%)
we have
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Ms

S (o, 1) = ( wi(uil ) 4 )(wo,wl)

1

I

Il
—

(wo,wl)(ll;’f) ( )

ui(wo, m) > ui(@o, 1) f (o, 1)
{0 € Q; (a9, 1) e}

= Z (i ui(wo, w1 )u; 600,601)>f(67)07601)-

{@o € Q; (g, w) €€} \ i=1

I

Il
—

If weQ is fixed, the number of @;e Q2 such that (@, w;) e is finite.
Separating points by functions f € C(%), we have

m
Z” (w0, 01)ui (@0, ®1) = Oy, -
i=1

Now for any f € C(%,), we have

(w0, 01,02,... )

Y o @uy ® - @ui)(p(ui, @ui, ® - @)

= Z o(uy, Quiy, ® -+ uy)(wo, 01,2, ... ,0,)

X (¢(ui1 ®uiz @ .- ®ul'r) |f)A(a)V)

= > i (w0, 00 )up (01, 02) i (01 03)
11,00,y Iy

X > i, (@0, D1 )y, (@1, D2) - -~ i, (D1, )
{((Z)o,d)l ..... d)r,l) G(g,-,l; (cbo,cbl,...,cbr,l,w,) E(gr}

X f(d)076)17"'765r—1awr)

_ Z Z (Z u;, (@r—1, 0 )t (D1, wr)>

{(Cbo,cbl ..... 65,471)6(5}71;(LZ)(),CZ)],...,d),;],(!)r)é(gr} i],...,l'r,1 ir

X uil (CU(), w1 )uil (Cb(), C?)1) e uir,] (wr—27 Wy )ui,,,] (@1‘—27 CZ)r—l )f(d)07 cee 762);’—1 3 CO,»)
= f(col,a)z, ce ,a)r).

Thus {p(u;, Qu;, ® --- ®u;,);i1,...,i} constitutes a basis of the Hilbert right
module C(%,). This implies that ¢ is surjective. O
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Consider the commutative C*-algebra D% ! = C*(4,0(A4),0%(4),...,
c"1(4)) generated by ¢*(4), k=0,...,r— 1.
LemMMmA 7. Let X be a circle bimodule. Then there exists an isomorphism
Y, : Dyl — C(%,_1) as C*-algebras such that

Wrr(@ro(az) - 0" (@) (@0, ..., 0r1) = ar(wo)az(o1) -+~ ar(er-1).

ProoF. For aj,ap,...,a,€A and f1®L P - RfLEXRQUX QR -+ ®y
X, we have

ao(ar) o N a,)(i® - @f)) =afi @ fr® -+ ®af;

Consider a bimodule isometry ¢ : X&" — C(%,) constructed in Lemma 6. For
T e D!, we put n(T) =9Te~!. Then n: Dy — #4(C(%,),) is an injective
*-homomorphism. For f e C(%,) we have

(n(ayo(az) ---a" (@) f) (w0, . .., @) = ay(wy)ar (@) - - - ar(wr_1) f (0, . . ., ;).

Thus 7(D%!) can be identified with a *-subalgebra of the C*-algebra C(%, ;)
acting on the Hilbert C*-module C(%,) by left multiplication. Since (D} !)
separates the points of %,_;, we have a desired isomorphism ¥, :D;;l —
C(%,-1) by the Stone Weierstrass Theorem. O

For each me N, we define an inclusion of C*-algebras b, : C(%,) —
C((gm+1) by
bm(f)(w07w17 s ,COm_H) = f(wo,C()l, . ,C()m)

for feC(6n). Let d,:D¥ — D¥™ be the canonical inclusion. We also
note that o(D%) < D,

LeMMA 8. In the above setting, the isomorphisms ,, : DY — C(%,,) satisfy
that . o dy = by oW, and

(lpm 000 lp,;ll(f))(wmwlw . 7a)m+l) = f(a)lv s ,COm_H)
for feC(€n).
Proor. Use the above [Lemma 7 and recall that ¢ is actually a shift on the
tensor components by [KPW1; Lemma 3.3]. ]

3. Uniqueness.

In [CK], Cuntz and Krieger studied the condition (I) which implies that the
relation between generators determines the algebra uniquely. In this section, we
consider this uniqueness property for continuous Cuntz-Krieger algebras.
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We say that the type of a discrete edge (i, ) in 4% is (p,t) if €, = AN
and will denote it by (p(i, j),t(i,j)). For a discrete loop L = (iy,i1,...,i—1,00)
in 49 a rational number p(L) of the loop L is given by

p(L) = (plio, )" ™™ (p(iy, )2 - (pliry, i) ).

DrerFINITION 9. Let L be a discrete loop. We call L periodic if p(L) is
equal to 1 or —1 and there exists some k such that p(ix_1,i;) is not equal to 1
nor —1. A discrete loop L is expansive if |p(L)] > 1 and is contractive if
|p(L)] < 1. We say L is trivial if |p(ix_1,ix)| =1 for any k.

It is useful to investigate the iterated images of subsets of T under the
transformation given by the correspondences.

We denote Z' = Z\{0}, Z ' ={peR;p=q',qeZY and Z=Z'UZ".
Let peZ. Weput t(p)=1if peZ' and t(p)=—-1if peZ'. For UcT
we put

®,(U)={zeT;(z,z) e4"'?) for some z'eU}.

For V < R, we put

®,(V+Z)=pV+pZ+Z.

We define a quotient map = from R to T by n(x) = exp(2nix), and we identify

T with [0,1) or (0,1] if necessary. Then we have n(®@,(V)) = @,(n(V)).
Let p= (p1,p2,-..,pr) Where all p;e Z. We put

@p — @p, o ®pr—1 O0---0 @pl’

@p:éproépr—lo'..odip

1

We may assume p; # 1. If pyps---p, <0, then we have @, = @, and cip = QBI,/

for p'=(|p1|,|p2|,-.-,|pr|,—1)- _
We investigate the images of @,’s using @,’s. Let V' < R be a subset.

Then we have
S, (V +Z)=pV +pZ+Z=pV+,(Z).
This shows that @,(V 4 Z) is determined essentially by @,(Z).

LEMMA 10. We have the following:

(1)  Suppose all py,...,pn are contained in Z"' or all Pl,---,Pm are contained
in Z7'. Then we have
djpl[h"'pm = cppm 0 © dij o ¢[)l .



Continuous Cuntz-Krieger algebras 43

(2) Let o« and f§ be two different prime numbers. If p=o*' and q = p*'
then we have

¢po@q:éqoép.
(3) Let o be a positive integer. Then we have ®,0 D, (V+Z)=V + Z.

Proor. (1) We have &, 0®,(Z)=piprZ+pZ+Z, and ®,,(Z) =
pipZ+Z. If pi,preZ', they are equal to Z. If py,p» e Z7!, they are equal

to pip2Z.
(2) For example, let p = o and ¢ =pL

b, 0 By(Z) = (2/B)Z +9Z +Z = (1/B)Z.
On the other hand,
D, 0®,(Z) = (o/R)Z+(1/B)Z+Z = (1/PZ.

Other cases are similar.
B) D,0P, (VHZ) = ala Vo 'Z+Z)+Z = V+Z+0Z+Z =
V+ Z. ]

By the above lemma, for every p, there exists p’ such that cﬁp = d~5p/ with
a form

I Iy

m A my e,
B o S —1 — -1 -1
P = (o, a0y 0 Oy O, 0 0 ).

(o)™ (071)*") for short. Put

—1\x!
H ,

In this case we write p’ = ((o)™™, (o e
g =TI ()", ny=max(l,—m,;,0) and ¢' =[] ()"

ProrosITION 11.  Consider a subset V < R and p = (p1,...,p:;) with p; € Z
fori=1,...,r. Let q and q' be the integers determined by p as above. Take a
positive integer u> 1. Then

1
GV +Z) = PPVt 2

Z.

GV +Z)=(p1-p)"V +—
(@) q

Proor. It is sufficient to prove @,(Z)=(1/¢9)Z and qSI’j(Z) =
(1/((¢)" 'q))Z. Put p* = (o)™, (2;1)*"). Let T be an integer which does
not contain ¢ as a prime factor. Then for 1 <s <t we have ®,((1/T)Z) =
(1/((2)"T))Z, and by @, = d~5p.yo~--oc5p1, we have the first equation. We

write g = (oe,)lsS, where S does not contain «; as a prime factor. Then
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cﬁps((l/((as)lfS))Z) = (1/((oc5)"5(ocs)lsS))Z. Then we have the second equation.
]

We remark that if |p;---p,| <1 then we have ¢’ > 2.

COROLLARY 12. Consider the same situation as above. Let u>1 be an
integer. Then we have the following:
(1) If pi1---pr=1, then we have

- 1
Q,(V+2Z)= V+5Z.
(2) If p1---pr=—1, then we have
- " 1
Q,(V+Z)=(-1) V—I—;Z.
Let (i,j) be a discrete edge. For an open subset U of Q;, we put

®; ;(U) = {w' € Q| there exists w € U such that (w,»’) € €;;}.
For a closed subset V' of Q;, we put
¥, ;(V) ={we Q;|there exists ' € V such that (w,w’) € €}

Let X = (ig,i1,...,01,lp) be a discrete loop. For an open subset U € Q;
and a closed subset V e Q;, we put

Ox(U) =i jyo @ o0 (V)

Iy—1,10 Ig2, 051

lPE(V) = y/l'(),il o SUihiz 0:-0 isfhi()(V)'
For a discrete loop L = (iy,iy,...,i-1,0), we put

p = (plio,1n)"™", p(in, i)™, ., pli-1,i0) ).

We denote by ¢(L) the integer ¢ determined by p appeared in the preceding
discussion. We shall identify the group Z, = Z/gZ with the finite cyclic sub-
group of T.

LemMma 13.  Let L be a periodic path and x be an element of T. If p(L) =1,
then ®p(x)=x-Zypy. If p(L)=—1, then ®1(x) =x""-Z,).

Proor. This follows from |Corollary 12, ]
Lemma 14. Let L = (iy,i1,...,i5_1,1ip) be a contractive discrete loop. For
any w e Qy and any p € N, there exists a continuous path (wy,o,...,w,s) with

length ps such that wy= w, all w;’s are different for 1 <i < p and the corre-
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sponding discrete path rotates over L, that is, if k = j (mods), then wy € Q; for
k=0,1,... ps.

Proor. Since L is contractive, ¢’ > 2 in [Proposition 11]. Therefore we can
choose a desired continuous path. ]

Recall that a discrete graph % satisfies the condition (I) in [CK] if and
only if %¢ satisfies the condition (L) in [KPR], that is, there exists no simple
loop without exit, since we assume that for each i (resp. j) there exists a j (resp.
i) such that %;; # (. We shall modify the condition (I) in our particular circle
situation as follows:

DEerINITION 15. A circle correspondence % is called to satisfy the condition
circle-(I) if each simple discrete loop without exit is not trivial.

DeriNiTION 16, Consider the circle correspondence % and its contin-
uous graph ¥%. Let m and r be positive integers with » > m. A continuous
path (wp,w,...,®,) with length r is m-aperiodic if the shifted m paths
(@, 01, ..., 0r—mi1), (01,02, O i2)y s (Om—1, Oms1, - .., @) with length
r—m+1 are all different.

DEerINITION 17.  An element w in Q is called an m-aperiodic point if there
exists an m-aperiodic path starting at w.

In the following [Cemma 18, we investigate typical examples first to
understand the general situation. In these examples, for every positive integer
m, the set of m-aperiodic points are dense in Q.

LemmA 18. Fix an integer p with p>2. Assume that a circle corre-
spondence € has the form € = €7V or €7~V Then for every m € N, the set of
m-aperiodic points is dense in Q. The same conclusion is also true for a circle
correspondence € = @ijzl €i; with €1, = ‘6(1”*1), €)1 = &PV and €11 =
€1 = .

PROOF. (1) The case that ¥ =®"!: We define a dense subset K =
ﬂ;il{a)e T|w” #1} of T. Then for we K, w is an m-aperiodic point for
every m. In fact (w,w?,...,®") is an m-aperiodic path starting at o.

(2) The case that ¥ = ¥'»~D: We may identify Q = T with (0,1] by the
exponential map. Every point w =exp(27nif) e Q=T, (0<0< 1), is an m-
aperiodic point. In fact, (exp(27if), exp(27if/ p), exp(2nif/p?), . .., exp(2ni0/p™))
is an m-aperiodic path starting at w.

(3) The case that %:@ijzl %;; with €1, =%""Y €, =" and
€11 =%2,=: Every point of Q=0Q,UQ, is an m-aperiodic point. In
fact, first let w = exp(27if) € ;. Consider two different loops o = (exp(2zif),
exp(2nif/p),exp(2zif)) and f = (exp(2nif), exp(2nif/ p + 2ni/ p), exp(2nil)). We
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may construct an m-aperiodic path starting at o = exp(276) by concatenating
the two loops o and f aperiodically. Secondly let w € Q,. We have also two
different loops starting at @ similarly. By the same argument the proof is
complete. O

Lemma 19.  Consider a circle correspondence €. Let L be a simple discrete
loop in 9% which is not trivial. Then for every discrete vertex i in L and for any
positive integer m, the set of m-aperiodic points in Q; is dense in ;.

ProOOF. Since the discrete loop L is not trivial, L is expansive, contractive or
periodic. Each correspondence in provides a typical example of
expansive, contractive and periodic loops respectively. But we need to combine
and arrange the argument in [Lemma 8.

Assume that the length of L is 5. Since L = (ip, i, ...,1I) is a simple loop,
io,...,is_1 are all different and iy = i;. It is enough to show that the set of m-
aperiodic points in €;, 1s dense in ;. If m <s, then any point wg € £, 1s an m-
aperiodic point. In fact we may take any continuous path P = (wy,...,w®,)
such that the corresponding discrete path is L, that is, w; e, for k=
0,...,m. Since L is simple, the sources of the shifted m paths with length one
are all different and P i1s m-aperiodic. Thus we may assume that s <m. We
put M = U}il{we T|w/ =1} and we also identify M with a corresponding
subset in some Q;

(1) The case that L is expansive: Any point wg € 2;,\M is an m-aperiodic
point. In fact we may take any continuous path P = (wy,...,®,) such that
the corresponding discrete path rotates over L, that is, for k=0,...,m, we
have w; € Q; if k=j (mods) with 0 <j<s—1. Consider the shifted m
paths (wg, @), ..., (@Wyu-1,w®,) with length one. If k#r (mods), then (wk, k1)
and (w,,w,41) are different because the source of these paths are in different
Q/’s.  Suppose that k =r (mods) and k # r. Say r =k + ts for some non-zero
integer . Then we have w, = cofz(L) z for some ze M if we identify € with
T. Suppose that w, = w;. Then a)i(” “le M. Since L is expansive, we have
|p(L)] > 1 and p(L)'—1#0. Thus we have that w; € M. This implies that
w, € M. This 1s a contradiction. Hence w, # wy;. Therefore the shifted m
paths are all different and P is m-aperiodic.

(2) The case that L is contractive: Let wy e ;. Take an integer p with
ps>m+s. By [Lemma 14 there exists a continuous path (wg,wi,...,o;,...,

Wi, . . ., W2, - . ., Wp) such that the corresponding discrete path rotates over L and
all w;’s are different for 1 <i < p. Consider a shorted continuous path P =
(@o, w1, ...,0nss). We take the shifted m paths (wo,...,®;), (©1,...,0u1),
(@2, .., @0512)y vy (O .-, Ws1m).  Then the shifted m paths are all different and

P is m-aperiodic.
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(3) The case that L is periodic: Let wy e ;. Suppose that p(L) = 1.
Then there exist two different continuous loops o and f such that correspond-
ing discrete paths rotate over L. We construct an m-aperiodic path by con-
catenating « and f aperiodically. Suppose that p(L) = —1. Then there exit
two different continuous paths « and f from wy to @y such that corresponding
discrete path rotates over L. There also exists a continuous path y from @, to
o such that corresponding discrete path rotates over L. We construct an m-
aperiodic path by concatenating a0y and f oy aperiodically. ]

PROPOSITION 20. Let € be a circle correspondence. Suppose that € satisfies
the condition circle-(1). Then for every me N, the set of m-aperiodic points is
dense in Q.

Proor. Consider the discrete graph ¥¢. Let X, be the set of discrete
vertices j € 2 such that there exist at least two different discrete loops based at
j. Let 2y be the set of discrete vertices j € 2 such that there exists only one
simple loop based at j. Recall an argument of the equivalence between the
condition (I)" and the condition (L) in [KPW2]. Since we assume that for each
discrete vertex u (resp. v) there exists a vertex v (resp. u) such that (u,v) is a
discrete edge, for every ie 2 there exists a discrete path from i to some je
2oUZ,. If there exists a discrete path from i to some je 2, then any point
w € ©; 1s an m-aperiodic points. In fact we have an m-aperiodic path starting
at w by concatenating corresponding continuous paths for two discrete loops
aperiodically. If otherwise, there exists a discrete path from 7 to some je .
Since ¥ satisfies the condition circle-(I), there exists only one simple discrete loop
based at j which is not trivial. Then by [Lemma [9, there exists a dense subset
K of Q; such that there exists an m-aperiodic path starting at w’e K. By
concatenating finite continuous paths from €; to ;, we get a desired dense subset
K' of m-aperiodic points in ;. O

LEMMA 21. Let € be a circle correspondence. Suppose that € satisfies the
condition circle<(1).  For any ne N, any a = (a;); € A® M,(C), any ¢> 0 and
any m € N, there exist an r € N and an operator Q € DY satisfying the following:

(1) 0<Q0<I.

2) Qd/(Q)=0 for 1 <j<m-—1.

() lay), diag(@)] = l(ay)y || ~¢. in Dy ® M,(C), where diag(T) is the
diagonal matrix whose diagonal elements are all equal to T.

Proor. Since C(Q) ® M,(C) is isomorphic to C(2, M,(C)) as C*-algebras,
we may identify « with a continuous M,(C)-valued function on Q.
Therefore for any ¢ >0 and any me N there exists an m-aperiodic point
o € £ such that
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(i) (@o) | = [I(ai)yll =&,

since the set of m-aperiodic points is dense in £ by [Proposition 20).

Let P = (wp,w1,...,w,) be an m-aperiodic path with length r (> m)
starting from wy. Since the shifted m paths Ry = (wo,®1,...,0p 1), R =
(01,02, ..., Or—s2)s -y Ru—1 = (Om—1, Om+1, . .. ,,) with length r —m+1 are
all different point in %,_,.;, there exist disjoint open neighborhoods U; of
R, (i=0,....m—1) in %, ,,.1. For each i=0,...,m—1, define an open
neighborhood V; of P = (wy,w1,...,w,) in €, by

Vi = {(:uOnula cee nur) € (gr; (luinuier te 7lur—m+i+1) € Ul}

Consider an open neighborhood V' = ﬂ:igl V; of P. Choose a continuous func-
tion f € C(%,) suchthat 0 < f <1, f(P)=1and f(W)=0for We V¢ Recall
the isomorphism i, : D}, — C(%,) in Lemma 7. Let Q =, '(f). Then the
operator Q satisfies (1) and (2) by and the construction of . We iden-
tify an element (al-,-)l.jdiag(Qz) € Dy ® M,(C) with an element (ay); diag(f?) e
C(6,,M,(C)). Then we have

1((ay),; diag(f*)(P)] = II(ay); (o) diag(f (P)*)| = [|(ay); (o)l = [|(ay)yll —&.
This implies (3). [

LEMMA 22. Let € be a circle correspondence. Suppose that € satisfies the
condition circle-(1). For any pe N, any By € %(Xfp), any ¢ > 0 and any me N,
there exist an r € N and an operator Q € D, satisfying (1), (2) of Lemma 21 and
the following condition:

l6”(0*)By|| = ||Bo|| — e.

Proor. Choose r € NV and an operator Q in D} as in [Lemma 2]. Recall a
fact in [KPWI1] that, for 4-4 bimodule Z and Y, T € #4(Y,) and x;,y;, € Z,

i Hxi»yi ® r
i=1

Apply the fact putting Z=X® B=>",0,,, Y=X% and T=0> [

= [1((xilx),0) 2 ((vilwy), )7 diag((T7T) ).

DeriNiTION 23, A Hilbert 4-4 bimodule X is called to be (I)-free if there
exists a dense subset & — Oy such that for each Be ¥ with B=Y" B,
(B; e A" (X®PH X®P)), for every &> 0, there exists a contraction Pe (y in a
spectral subspace under the gauge action of T on (yx satisfying the following:

1. For j#0, ||PBiP*| <e.

2. ||PBoP*| = [|Bo]| —e.
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PROPOSITION 24. Let € be a circle correspondence and X the circle bimodule
obtained from €. If € satisfies the condition circle-(1), then the bimodule X is (1)-

free.

PrROOF. Let & =(Oy. Take any B=Y"_ Bje %, with Bje A (X®,
X®P). For By and any ¢ we choose a positive contraction Q in [Lemma 22. Put
P=0d?(Q). Since Q€ @;, P is also contained in (9; which is a spectral subspace
of the gauge action. It is clear that P is also a positive contraction.

By [Lemma 21/(2) and the commutation relation of ¢ as in [KPW1; Lemma
3.2], we have, for 1 < j<m,

PB;P* = d"(0)B;0"(Q) = ¢’(¢'(Q)0) B; = 0.
The case that j < 0 is similar. shows that
IPBoP*|| = [la”(Q*)Bol| = ||Bol| —e. -

The following theorem implies that if a circle bimodule % satisfies the con-
dition circle-(I), then the C*-algebra 'y generated by the circle bimodule X is
uniquely determined by the commutation relations of the generators {S,;x e X}
such that S¢S, = (x]y),, Swa = Sxa, aSy = Sy x, and ), S, S; = I for a e A and
xelX.

PROPOSITION 25. Let X be a Hilbert C*-bimodule over A which has a finite

right basis. Suppose that X is (1)-free. Let ¢ be a unital *-homomorphism of Ox
to a C*-algebra R. If ¢ is faithful on A, then ¢ is faithful on Oy.

PrOOF. Let & be as in Definition 23, and B=3"  Bje % with B;e
Hp(XE™ X®). For any ¢ and, for By e #;(X"), choose a contraction P as
in Definition 23. Since ¢ is faithful on A, ¢ is faithful on ¢ = 9750(0) as in

[KPW1; Lemma 2.2]. Therefore we have ||p(PBoP*)|| > ||¢(Bo)| —e. Then

m

o(PBP*)— > ¢(PBP")
j=—m,j#0

< lp(P)p(B)p(P*)|| +2me + & < |[p(B)|| + (2m + 1)e.

le(Bo)ll < llo(PBoP")[| + & = +e

Since ¢ > 0 1s arbitrary, we have

lo(Bo)ll < llo(B)I

Because & i1s dense in (y, we have for all Be Oy,

lo(Bo)ll < lle(B)]l-
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Hence there exists a conditional expectation E? from ¢(Cyx) onto ¢(#.”) such
that the following diagram commutes.

EX lE«’
9
7O —— (7
Since ¢ is faithful on %0), ¢ 1s faithful on Oy. O

By [Proposition 24 and [Proposition 25, we have the following theorem.

THEOREM 26. Let € be a circle correspondence and X the circle bimodule
obtained from €. Assume that € satisfies the condition circle-(1). Let ¢ be a
unital *-homomorphism of Oy to a C*-algebra R. If ¢ is faithful on A, then ¢ is
faithful on Oy.

RemMARK 3.1. Without the assumption of the condition circle-(I), if ¢ is
faithful on 4 and we know that there exists a conditional expectation E? from
p(Oyx) to p(Z%) such that the above diagram commutes, we may conclude that
¢ 1s also faithful.

4. Groupoids and bimodules.

We shall compare the construction of Deaconu using groupoid theory
and our construction using bimodule theory. We recall his construction in [D2].
For w = (19,71) € ¢, we put r(w) = 7; and s(w) = 79. Let = be the set of right
infinite paths of % with product topology, which is a compact Hausdorff space.
For &= (wiww;--+), put a(&) = (ww3ws---). Then ¢ is a continuous sur-
jective map on & and it is also a local homeomorphism. We put (&) = s(w).
Let

I'={(kn)eExLxZ|c"* &) =0¢"(y) IN VYn> N}.
The range map r and the source map s of I' are given by

r(&k,n)=n, s(&kn) =<

Two elements y = (&,k,n) and y' = (¥',1,{) in I'" are composable if and only if
s(y) =r(y") and the product is given by

(& km)(n,1,0) = (& k+1,0)

and the inverse of (&, k,n) is given by (y,—k,&). Then I’ becomes a locally
compact topological groupoid whose Haar system is given by the counting
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measures. We denote by C.(I") the set of all continuous functions on I” with
compact supports, and we denote by C*(I") the full groupoid C*-algebra of I’
and denote by C;(I") the reduced groupoid C*-algebra of I'.

PROPOSITION 27. Let % be a circle correspondence, X the circle bimodule
obtained from € and I' the groupoid defined by Deaconu. Then the C*-algebra
Oy is isomorphic to C*(I') and C(I).

Proor. We shall construct a *-homomorphism p of 4 = C(Q2) to C.(I)
and a linear map V of X = C(%) to C.(I") as follows:

—

For w in ¥ and & in =, we denote by w-¢ the concatenation of them
if r(w) =s(&). For fe X we define V(f)(w-¢,1,¢) = f(w) and zero for other
elements in I". For ke A we define p(k)(n,0,7) = a(s(y)) and zero for other
elements in I

Then V' and p satisfy the following relations:

V() Vig)=p((fl9)4)
V(f)xplk) =V(f-k)
p(k) « V(1) = V(p(k)f)

for every f, g in X and k in A.
Let {u;};", be a finite basis of X, constructed in [Proposition 3. Then we
have

> i(0)ui(@) = d.6-
i1
By the calculation in Cp), for F e Cc(I), we have

(FxF) ()= Y FG)F'(n)= Y, FO)F().

V172=Y MYy =y

If F=V(f) for feX, (F«F*)(y)=0ify+# (0 -1,0,wy-7n) for w1, w, in €,
and

V() + V() ) (@1 1,0, - 1)) = f(wr)f ().
Therefore we have

m

> V() * V() (@1 7,0,02 1) = G-
i=1

This shows that Y7, V() * V(w)" = 1.
By the universality of ¢y [Pim], there exists a *-homomorphisms ¢ (resp. ¢,)
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of Oy to C*(I') (resp. C;(I')) such that ¢(Sr) = V(f) and ¢(k) = p(k) for fe X
and ke A. Let fi,f5,...,f, and ¢1,¢>,...,¢s be elements in X.
For non negative integers r, s, the set

{(VVR) - VIV g - V(g2 V(g2) | fisfas s Sr: 91,92, s € X}

is in the set of the functions whose support are contained in
I'*={¢s—rneZxZx&|d" (& =d"(n)}

and which depends only on the first » edges of & and on the first s edges of
n. When r, s varies, these elements generate dense *-subalgebra of C.(I"), which
is dense in C*(I).

By [Re; Proposition 5.1], there exists an action g’ of T on C*(I') such
that ¢(B,(T)) = B;(p(T)), for T € Oy, where B is the gauge action of T on Cy.
The restriction of ¢ to 975(50) is an isomorphism of fgo(o) onto the fixed point
subalgebra under /. There exists a conditional expectation Ef* from C*(I') to
the fixed point subalgebra under §’ such that p(EX(T)) = E¥ (¢p(T)) for T € 0y.
By the usual argument as in the Remark 3.1, ¢ is an onto isomorphism.
Similarly ¢, is also an onto isomorphism of Oy to C;(I). O

5. Ideal theory.

We recall that there is a bijective lattice correspondence between the set of
closed two sided ideals in 4 and the set of open subsets of 2 as follows: Let
J = A be a closed two sided ideal of A. Then U; = Q\() e ,ker fis an open
subset of 4. Conversely, for an open subset U in Q, Jy = {f € 4| f(w) =0 for
weQ\U} is a closed two sided ideal of A.

DerINITION 28 ([KPW2]). Let X be a Hilbert bimodule over a C*-algebra
A. A closed two sided ideal J of A is called X-invariant if (x|¢(a)y), €J
for any x, ye X and aeJ. And J is called X-saturated if (x|¢(a)y), e J for
all x, ye X mmplies a € J.

DerINITION 29. Let % be a circle correspondence. A subset U of Q is
called hereditary if (w,w’) € ¢ and w e U implies w’ € U. A subset U of Q is
called saturated if the condition that all @’ with (w,w') €% are contained in
U mmplies that o is also contained in U.

LemmA 30. Let % be a circle correspondence and X its circle bimodule. Let
J be a closed ideal of A and U the open subset of Q2 corresponding to J. Then J
is X-invariant and X-saturated if and only if U is hereditary and saturated.

Proor. Put U, = UNEQ;. Assume that J is X-invariant and X-saturated.
Take any edge (w;,w,) e ® with w; e U. Choose ¢e C(Q;) satisfying that
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@(w1) # 0 and the support supp ¢ of ¢ is contained in U;. Then ¢ € J. Choose
¢ in C(%;;) such that {(w;,wy) =1 and

{w e Q; (0, ) esuppl NG} = {1 }.

Since J is X-invariant, we have (¢|¢&), € J. Then we have

(Elpd)4(@) = > &, w)p(w)é(w, m))
(@, )

w, Wy

= (w1, m)p(w1)E(wr, w1)
# 0.

This implies that w, € U;. Therefore U is hereditary.

Let wo € Qj, and wi,...,w, be the all the continuous vertices such that
(o, w;) is a continuous edge. Assume that each w; € U. We may put w; € U;,
for 1 <i < p. For each i, there exists an open neighborhood W; of wg such that

{ne Qj,; there exists w e W; with (w,u) € ¢} < U
and
P
{u e Q; there exists w e W; with (w,u) e 6} < | Uj,.
k=1
Consider an open neighborhood W = ﬂle W; of wy. Choose g e C(Q),) such
that suppp < W, ¢ >0 and ¢(wy) =1. For any ¢ and # in X,

Cloms(w =Y &owplon(opw.

{we;(w,n)et}

If u € Q satisfies that (& |gn),(u) # 0, then there exists w € Q such that (w,u) €
and ¢(w) #0. Since wesuppp =« W < W;, we have ue Uizl U, If ueg,
then p e U;. This implies that (¢ |gn), € J. Since J is saturated, we have ¢ € J.
Because ¢(wg) #0, wyoe U. Thus U is saturated.

Conversely assume that U is saturated and hereditary. For any ¢e
J, &,pe X and pue Q, we have

Cloms(w =Y owplon(opw.

{weQ;(w,n) €€}

Suppose that (&|en),(1) #0. Then there exists w € 2 such that (w,u) € ¢ and
p(w) #0. Since pe J, wisin U. Then uis also in U, because U is hereditary.
This shows that for any e Q\U we have (¢|on),(1) =0. Thus (¢|gn), is in
J. We have shown that J is X-invariant.
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Assume that ¢ € A satisfies that (¢|gn), € J for all £, ne X. For any we
Q\U there exists ue Q\U with (w,u) € €, because U is saturated. Let w; =
w,m,,...,w, be all the continuous vertices such that (w;, #) is a continuous edge.
Then there exists &e C(%) such that &(w,u) =1 and E(w;,u) =0 for i=
2,...,p. Since (¢|@é), €J, we have (¢|pé), (1) =0. Then

p(0) = (o, wp(@)(w,u) = (o 1) = plw;)E(on 1) (E] pE), (1) = 0.

i=1
This shows that ¢ is in J. Thus J is X-saturated. ]

By and the above lemma, we have the following criterion of
simplicity of Oy.

CorOLLARY 31. Let € be a circle bimodule and X its circle bimodule.
Assume that € satisfies the condition circle-(1). Then Oy is simple if and only if
any saturated and hereditary open subset of Q is Q or the empty set (.

PrOOF. Assume that any saturated and hereditary open subset of Q is Q
or . Then any X-saturated and X-invariant ideals of 4 is 4 or 0 by the
above Lemma. Let # be an ideal of Oy with ¢ # (0y. Consider a quotient
map ¢: Oy — Ox/¢. Then ANkery is an X-invariant and X-saturated ideal
of A. Since ¢(I)=1, I is not in ANkerp. Thus ANkerp ={0}. Therefore
the restriction of ¢ to A4 is faithful map. By Theorem 26, ¢ is faithful. Thus
# ={0}. This shows that Oy is simple. On the contrary, we may assume that
there exists an X-invariant and X-saturated ideal J of 4 which is not equal to
A nor 0 by the above Lemma. Then by the proof of (ii) (1) of Theorem 4.3 in
[KPW1], or Proposition 17 in [KPW2], the ideal in Oy generated by J is not
equal to Oy or {0}. Thus Oy is not simple. ]

For i, je X2, we write i > j if there exists a finite discrete path from i to ;.

If ie 2 satisfies i < i, then i is called a class discrete vertex. We denote
i]={jeX|i<j<i}asin|[C] IfieX is not a class discrete vertex, then i
is called a transit discrete vertex.

We need the following lemmas to prove Theorem 40.

LemMa 32. Let (i, ) be a discrete edge.

(i) Let U be a saturated hereditary open set in Q. Put U =UNQ; for
any i. Then ®;;(U;) < U,.

(i) Let V be the complement of a saturated hereditary open subset in
Q. Put Vi=VNQ,. Then ¥ ;(V;)c V.

Proor. Obvious. L]
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Lemma 33. Let L= (i, i1,...,In—1,l0) be a periodic or trivial discrete loop.
Then for a saturated hereditary open subset U, we have ®p(U;) = U; and
P (Q\U;) = Q\U..

Proor. If L is trivial, the lemma is clear. Suppose that p(L) = 1. Since
U is hereditary, @;(U;) = U;. On the other hand since @ (U;) = U;- Z,) by
Lemma 13, U; = @, (U;). Thus we have @, (U;)=U;. Suppose that p(L)=—1.
Then by Lemma 13, we have &, (U;) = U;' - Z, = U; and @ (U;) = Ui Zy1) <
U.. Thus U; is Z,, invariant. Then U;' < U,. This shows that U ' = U’
and @7 (U;) = U;. Therefore U; is Z, ) X Z, invariant, where Z,) X Z; is a
dihedral group. O

LEMMA 34. Let L be an expansive discrete loop and U a saturated hereditary
open subset of Q. Then U; = Q; or U; = ¢ for any i in the equivalence class of
a discrete vertex in L.

PrROOF. Suppose that U is non empty open saturated hereditary subset
of Q;. Since U is open, U contains an interval V. We identify V' with an
interval in R contained in [0,1). Since L is expansive, the length of ®!(V)
becomes greater than 1 for a sufficiently large n by |Proposition 11. Therefore
o1 (U) = Q. ]

As in [KPW1], for an X-invariant and X-saturated ideal J in 4, we put
X;={xeX|(x|x),eJ}. Then X/X; is a Hilbert 4/J-A/J bimodule. Let n
be a quotient map from X to X/X;. Let {u;}; be a right A basis of X. Then
the family {7m(u;)}, constitutes a right A/J basis of X/X;. The completely
positive map g, for X/X; is given by a;(x) = >, n(u;)xn(u;)" as before
5. Let Dy, be the C*-subalgebra of (U, generated by (4/J),a,(4/J),
a3 (A)),...,a5(A)]).

Let U be an open saturated hereditary subset of 2 and J an X-invariant
and X-saturated ideal of A corresponding to U. Let V' be the complement of
U in Q. Then V is a compact subset. We denote by %\ U the correspondence
on V obtained from % removing all edges whose ranges are contained in U.
Since the range map r is continuous, ¥\ U is closed and a compact Hausdorff
space with respect to the topology relative to Q x Q.

It is direct to show that X /X, is the bimodule obtained from the corre-
spondence 4\U. As in Lemma 7, the C*-algebra D ,; is isomorphic to the
commutative C*-algebra of continuous functions on the set of paths in ¢\U
with length r.

DeriNITION 35. Let % be a circle correspondence. We say that & satisfies
the condition circle-(II) if for every saturated hereditary open subset U in €,
there exists no open subset in Q\ U such that there exists an integer m such that
there exist no m aperiodic paths starting from any point in this subset.



56 T. KastwaRrRA and Y. WATATANI

DerFINITION 36 ((KPW1]). A Hilbert bimodule X over 4 is called (II)-free
if for any X-saturated and X-invariant ideal J, Hilbert bimodule X /X; over 4/J
is (I)-free.

PROPOSITION 37. Let € be a circle correspondence and X its circle bimodule.
Assume that each class in the discrete graph 9¢ has an expansive loop or has
neither contractive nor trivial loop. Then the correspondence € satisfies condition
circle (II).

ProOOF. Let U be a saturated hereditary open subset of Q, and V' be the
complement of U in Q. Let we V and w be contained in some .

Suppose that 7 is a class discrete vertex. At first we assume that there exists
an expansive loop L in [i]. Since V; is not empty, for each ;e [i], we have
V; = Q; by [Lemma 34. Then by the same method as in [Lemma 9, we can show
that for every positive integer m, the set of m-aperiodic points is dense in V;. We
next assume that all simple discrete loops in [j] are periodic. Then there exists
more than two loops based at w e VN, contained in 4’. Hence for every m,
we can construct an m-aperiodic path for every we V; in 4.

Suppose that i is a transit vertex. Let we V;. Then there exists a path
2 from o to some o’ such that @ is contained in Vj and j is a class discrete
vertex. If there exists a periodic discrete loop through j, we can construct an m-
aperiodic path X, starting at w’. Then X} o X, is an m-aperiodic path. If [/]
contains expansive discrete loop, then V; = €; and there exists a dense subset K;
of ©; such that we may construct an m-aperiodic path starting at each point in
K;. Then V; is also ©; and there exists a dense subset K; such that there exists a
finite path from w € K; to a point in K;. We can also construct an m-aperiodic
path starting at points in K. ]

LemmA 38. There exists a circle correspondence € such that its circle bi-
module X is not (1)-free but the corresponding discrete correspondence € is (I1)-
free in the sense of Cuntz |C].

Proor. We present an example. Let n =2 and %, and %5 be trivial,
€10 = %> ! and ¥ 1,1 = &. We take a hereditary saturated open subset U such
that Uy = U, = T\{l,—1}. Then the graph corresponding %\ U is a finite graph
containing a closed circuit without exit. But %¢ clearly satisfies the condition

(IT) in the sense of and [KPW2]. !

PROPOSITION 39. Let € be a circle correspondence and X its circle bimodule.
If € satisfies the condition circle-(11), then for every X-invariant, X-saturated ideal
Jin A, X/X; is (I)-free.

Proor. If € satisfies the condition circle-(II), for every hereditary saturated
open subset U, for every positive integer r, r-aperiodic points are dense in €\ U.
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Then for every ae A/J, ¢ > 0, we can construct an operator Q satisfying (1)—(3)
in Lemma 21. The rest is the same as and [Proposition 24, O

THEOREM 40. Let € be a circle correspondence and X its circle bimodule.
If € satisfies the condition circle-(11), then there exists a bijective correspondence
between the lattice of closed two sided ideal of Ox and the lattice of saturated
hereditary open subsets of €.

Proor. This follows from the previous proposition, [Proposition 25 and the
proof of Proposition 21 in [KPW2]. ]

6. K-theory.

Let € be a circle correspondence and X its circle bimodule. Recall that the
left bimodule action is given by a *-homomorphism ¢ : 4 — #°(X). We simply
apply the following 6-term exact sequence obtained by Pimsner for com-
puting the K-theory of Oy directly. We denote by [X] the Kasparov element
(¢, X,0] € KK(A,A4). As in [Pim], [X] gives the transformation from K.(4) to
K.(A), where x =0, 1.

PrOPOSITION 41 (Pimsner [Pim]). In the same situation, we have the following
O-term exact sequence.

Ko(4) Y Ko(4) —— Ko(Oy)

T |

i-[X]
Ki(Oy) «—— Ki(A) «—— K;(A)
We just apply the Pimsner formula as above and get the following 6-term
exact sequence:

zn D g Ko(Cx)

T l

Ki(Oy) —— zn 22 gn

where D, is the linear transformation on Z" ~ K.(A4) (x=0,1) induced by
[X]. Deaconu obtained this 6-term exact sequence under a minimality
assumption. But we do not need his minimality assumption by applying
Pimsner’s result directly.

ExampLE 6.1 ((DI]). Let X = C(%”') (p >2). Then there exists only one
discrete loop and it is expansive. Since % satisfies the condition circle-(I), O is
simple.
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9';50) is isomorphic to a Bunce-Deddense algebra. The C*-algebra Oy is
nuclear, purely infinite and simple. Moreover, there exists a unique KMS state
under the gauge action.

Dy is given by n+— pn, and D; is given by n+— n. The K-groups are

calculated as follows:
K()((Qx) =Ly @Z Kl((OX) ~ 7.

Exampie 6.2 (D2]). Let X = C(4”7") (p=2). There exists only one
discrete loop and it is contractive. % satisfies the condition circle-(I), but do not
satisfy the condition circle-(II)-free. There are many ideals in ¢y which do not
correspond to hereditary open subsets of €.

We recall that a solenoid S is a compact Hausdorff space defined by

S={z=(z)renlzk €T, zp,, =z, keN}.

Let S, ={z=(z0,21,...,2,) € T" |2}, =2,k =0,1,...,n}. Consider a con-
tinuous onto map 7, : S,.1 — S, such that 7,(z0,z1,...,2ne1) = (20,215 -+ - Zn)-
Then S is the projective limit of the system (S,,m,),. Since S, is isomorphic to
the set ((5”’_1)” of continuous paths with length n, the relative tensor product
X®" is isomorphic to C(S,) (~ 4) by Lemma 8. If we identify Z(X®") with
C(S,) (=~ A4), then the canonical inclusion i, : Z(X®") — (£®"*+)) can be
identified with 7" : C(S,) — C(S,;1). Therefore the “AT-part” Z© is a com-
mutative C*-algebra which is isomorphic to the algebra of continuous functions
on a solenoid. C*-algebra (y has not unique tracial states which are KMS
states under the gauge action.

Dy is given by n+— n and D is given by n+— pn. The K-group is calculated
as follows:

KO((QX) ~7 Kl((ﬁx) ad Zp—l (—BZ

We should note that the bimodules of Example 6.1 and Example 6.2
are conjugate to each other, but the structures of the corresponding bimodule
algebras are completely different.

ExampLE 6.3. Consider a circle correspondence 4 on TUTU T as follows:
Put %), = (62’_1, 611 = (6271, %53 1s trivial and %33 = %>, Let other % ;’s
be (J. Then the correspondence % satisfies the condition circle-(II) but it is
not minimal.

We write down all closed two sided ideals of Oy using open hereditary
saturated subsets of @ = TUTUT. Let U be an open hereditary saturated sub-
set of 2. Since €33 1s type 1, U3 1s 23 or . If Us 1s equal to F, U; and U,
are also . 1If Us is Q3, then U; i1s a Z,-invariant closed subset of T, and
Uz = {22|Z€ Ul}.
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