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Abstract. We consider certain correspondences on disjoint unions W of circles

which naturally give Hilbert C �-bimodules X over circle algebras A. The bimodules X

generate C �-algebras OX which are isomorphic to a continuous version of Cuntz-Krieger

algebras introduced by Deaconu using groupoid method. We study the simplicity and

the ideal structure of the algebras under some conditions using (I)-freeness and (II)-

freeness previously discussed by the authors. More precisely, we have a bijective

correspondence between the set of closed two sided ideals of OX and saturated hereditary

open subsets of W. We also note that a formula of K-groups given by Deaconu is given

without any minimality condition by just applying Pimsner’s result.

1. Introduction.

Pimsner [Pim] introduced C �-algebras OX for Hilbert C �-bimodules X , which

are a generalization of both Cuntz-Krieger algebras and crossed products by the

integers. He showed a universality of the algebras and gave a 6-term exact

sequence of K-theory. Katayama also considered C �-algebras OX for inclusions

of algebras in [Ka]. Kajiwara-Pinzari-Watatani [KPW1] studied the simplicity

and the ideal structure of the C �-algebras OX for finitely generated bimodules

X . Kajiwara-Pinzari-Watatani [KPW2] constructed bimodules which provide

countably generated Cuntz-Krieger algebras to study their ideal structure and

compare with a groupoid approach by Kumjian, Pask, Raeburn and Renault

[KPR], [KPRR].

In [D1] Deaconu considered groupoids for self-coverings that generalize the

Cuntz groupoid in Renault [Re] and studied the groupoid C �-algebras. In [D2]

he introduced a continuous version of Cuntz-Krieger algebras using the groupoid

method for special embeddings of circle algebras A. The corresponding space of

paths is a generalized solenoid and the resulting algebra is related to the paper

[B ] by Brenken. He showed a criterion of simplicity and a formula for K-theory

under some minimality condition. In [De] Delaroche studied purely infinite

simple C �-algebras arising from general dynamical systems.
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In this paper we consider certain correspondences on disjoint unions W of

circles which naturally give rise to Hilbert C �-bimodules X over circle algebras A.

The bimodules X generate C �-algebras OX which are isomorphic to continuous

Cuntz-Krieger algebras considered by Deaconu. In fact we can regard the above

special embeddings of circle algebras as left module actions f : A ! LAðXAÞ.

We study the simplicity and the ideal structure of the algebras OX under some

conditions using (I)-freeness and (II)-freeness defined in [KPW1]. More pre-

cisely, we have a bijective correspondence between the set of closed two sided

ideals of OX and saturated hereditary open subsets of W. We also note that a

formula of K-groups in [D2] is given without any minimality condition by just

applying Pimsner’s result.

While completing our paper, Deaconu let us know his preprint [D3], where

he also shows that his continuous Cuntz-Krieger algebra of a continuous graph

could be thought as a C �-algebra considered by Pimsner.

2. Correspondences and bimodules.

Let A be a C �-algebra. Throughout the paper a Hilbert C �-bimodule is a

right Hilbert A-module X endowed with a non-degenerate isometric *-homo-

morphism f of A into LAðXAÞ, the algebra of adjointable right Hilbert A-

module maps. A finite set fuigi of X is called a finite basis if x ¼
P

i uiðuijxÞA
for x A X . We denote by yx;y the ‘‘rank one’’ operators on X defined by

yx;yðzÞ ¼ xðyjzÞA. The closed linear span of ‘‘rank one’’ operators is denoted by

KAðXAÞ and called the algebra of ‘‘compact operators’’. If the right A-module X

has a finite basis, then LAðXAÞ ¼ KAðXAÞ. We refer for other definitions and

basic facts to [KPW1].

We start to consider correspondences in general. Let W be a compact

Hausdor¤ space. Most Hilbert C �-bimodules over a commutative C �-algebra

A ¼ CðWÞ naturally arise from correspondences (i.e. closed subsets C of W�W)

similar to the case of commutative von Neumann algebras as in [Co].

Definition 1. We call a pair ðC; mÞ a (multiplicity free) correspondence

on a compact Hausdor¤ space W if C is a (closed) subset of W�W and m ¼

ðmyÞy AW is a family of finite regular Borel measure on W satisfying the following

conditions:

(1) (faithfulness) the support supp my of the measure my is the y-section

C
y ¼ fx A W j ðx; yÞ A Cg,

(2) (continuity) for any f A CðCÞ, the map y A W !
Ð
C

y f ðx; yÞ dmyðxÞ A C

is continuous.

The vector space X0 ¼ CðCÞ is an A-A bimodule by
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ða � f � bÞðx; yÞ ¼ aðxÞ f ðx; yÞbðyÞ

for a; b A A, f A X0 and ðx; yÞ A C.

We define an A-valued inner product on X0 by

ð f jgÞAðyÞ ¼

ð

C
y

f ðx; yÞgðx; yÞ dmyðxÞ

for f ; g A X0. By the faithfulness and continuity of m, X0 is a right pre-Hilbert

A-module. We usually assume that for any x A W (resp. y A W), there exists

y A W (resp. x A W) with ðx; yÞ A C.

We denote by X the completion X0. The left A-action on X0 can be

extended to an injective *-homomorphism f : A ! LAðXAÞ. Thus we obtain a

Hilbert C �-bimodule X over A (or Hilbert A-A bimodule) from the corre-

spondence ðC; mÞ.

Let W ¼ 6n

i¼1
Wi be a disjoint union of circles Wi FT. Let p and q be

integers which are not equal to zero. We consider closed subsets C
p;1 ¼

fðz; zpÞ j z A TgHT � T and C
q;�1 ¼ fðzq; zÞ j z A TgHT � T.

Definition 2. We call ðC; mÞ a circle correspondence if C is a closed subset

of W�W and m ¼ ðmyÞy AW is a family of counting measures satisfying the

following condition:

For any i; j ¼ 1; . . . ; n the set Ci; j ¼ CV ðWi �WjÞ is of the form C
p;1, Cq;�1

or q, and my is the counting measure on the y-section C
y.

We denote ðC; mÞ briefly by C.

We study only circle correspondences in this paper. Consider a circle

algebra A ¼ CðWÞ ¼ 0n

i¼1
Ai, where each Ai ¼ CðWiÞGCðTÞ. Let X ¼ CðCÞ

and Xi; j ¼ CðCi; jÞ. We regard Xi; j ¼ f0g if Ci; j ¼ q. Then X ¼ 0
i; j
Xi; j is a

pre-Hilbert C �-bimodule over A obtained from the circle correspondence ðC; mÞ.

The inner product of X is given explicitly by

ð f1j f2ÞAðoÞ ¼
X

fo 0 AW; ðo 0
;oÞ ACg

f1ðo 0
;oÞ f2ðo

0
;oÞ

for f1; f2 A X , o;o 0 A W.

We note that Xi; j ¼ CðCi; jÞ is a right Hilbert Aj-module with a left Ai-

module action. For f ¼ ð fijÞij, g ¼ ðgijÞij A X ¼ 0
i; j
Xi; j and a ¼ ðaiÞi, b ¼

ðbjÞj A A ¼ 0
i
Ai, we have

ð f jgÞA ¼
X

i

ð fijjgijÞAj

 !

j

and

af ¼ ðai fijÞij; f b ¼ ð fijbjÞij :
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Proposition 3. The above X has a finite right basis and becomes a full

Hilbert C �-bimodule over A.

Proof. We construct a basis for each Xi; j ¼ CðCi; jÞ. If Ci; j is of �1 type,

f1Ci; j
g is a natural basis. If Ci; j is of 1 type, we may take fgjg

jpj�1
j¼0 where

gðz; zpÞ ¼ ð1=
ffiffiffiffiffiffi

jpj
p

Þz j as in [Ku]. We denote by fu i; j
k gk the above basis of Xi; j

and by U
i; j
k the corresponding element embedded in X , that is, ðU i; j

k Þr; s ¼

di; r dj; su
i; j
k . Then their union fU i; j

k ; i; j; kg form a finite basis for X . In fact,

X

i; j;k

U
i; j
k ðU i; j

k j f ÞA ¼
X

i; j;k

U
i; j
k

X

r

ðdi; r dj; su
i; j
k j frsÞAs

 !

s

¼
X

i; j;k

U
i; j
k ððdj; su

i; j
k j fisÞAs

Þs ¼
X

k

u
i; j
k ðu i; j

k j fijÞAj

 !

ij

¼ ð fijÞij ¼ f :

Therefore X is already complete, see [KW1; Lemma 1.11] for example. It is

clear that X is full. r

Definition 4. Consider a circle algebra A ¼ CðWÞ. We say that X is a

circle bimodule if X ¼ CðCÞ for some circle correspondence C.

Proposition 3 shows that X is a Hilbert C �-bimodule over A without com-

pletion.

We recall the C �-algebra OX generated by a bimodule X introduced by

Pimsner [Pim]. Assume that the Hilbert C �-bimodule X over A is full and has

a finite right A-basis fuigi and A is unital. Then OX is the universal C �-algebra

generated by fSx; x A Xg satisfying the relations S �
xSy ¼ ðxjyÞA, Sxa ¼ Sxa, aSx ¼

SfðaÞx, and
P

i SuiS
�
ui
¼ I for a A A and x A X . The gauge action b of T on OX

is given by bzðSxÞ ¼ zSx for z A T. The fixed point algebra under the gauge

action is denoted by F
ð0Þ

y and is identified with the inductive limit lim
!

KðXnnÞ.

In particular if X is a circle bimodule, then we call Fð0Þ
y the ‘‘AT-part’’ of OX .

Actually we see that Fð0Þ
y is an AT-algebra. We denote by O

0
X the *-subalgebra

of OX generated algebraically by fSx; x A Xg.

Let u1; . . . ; un be a finite basis of XA. We define a completely positive map

s on OX by sðTÞ ¼
Pn

i¼1 uiTu
�
i for T A OX .

We recall the following facts:

Lemma 5 ([KPW1]). (i) The restriction of s to A 0 VOX is a *-homomorphism

and does not depend on the choice of the basis.

(ii) For T A A 0 VOX and x1; . . . ; xm A X, we have

smðTÞx1 � � � xm ¼ x1 � � � xmT

and smðTÞ commutes with elements in KAðX
nm
A Þ.
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Following Deaconu [D2], it is useful to regard a disjoint union W of

circles as the set of vertices and a circle correspondence C considered in section

1 as the set of edges so that we can draw pictures of the diagram as in [D2].

The resulting graph G is called a continuous graph. We call an element

ðo0;o1; . . . ;orÞ A Wðrþ1Þ a continuous path if ðoi�1;oiÞ A C for 1a ia r, and r

is called the length of the path. A continuous path ðo0;o1; . . . ;orÞ is called a

continuous loop if or ¼ o0.

As in [D2] we also shrink each circle to a point and collapse the corre-

sponding edges to get a discrete graph G
d . Thus we consider the set S ¼

f1; 2; . . . ; ng of discrete vertices and the set E ¼ fði; jÞ A S � S;Ci; j 0 fg of

discrete edges. Discrete paths and loops are defined as paths and loops in the

discrete graph G
d . We regard the set E of edges as the discrete correspondence

C
d
HS � S of the original correspondence C.

A discrete path ði0; i1; . . . ; irÞ A Sðrþ1Þ is a discrete loop if ir ¼ i0 and it is

called a simple discrete loop if furthermore the vertices ik ð0a ka r� 1Þ are all

di¤erent. A discrete vertex j is called an exit of a simple discrete loop L if j

is not contained in the loop L and there exists a vertex i in the loop L so that

ði; jÞ is an edge.

We denote by Cr the set of continuous paths with length r, that is,

Cr ¼ fðo0; . . . ;orÞ A Wrþ1
; ðo0;o1Þ A C; . . . ; ðor�1;orÞ A Cg:

The set Cr has the relative topology from Wrþ1. The set CðCrÞ of continuous

functions on Cr has a pre-Hilbert C �-bimodule structure similar to X ¼ CðCÞ:

For a; b A A, f A CðCrÞ,

ða � f � bÞðo0; . . . ;orÞ ¼ aðo0Þ f ðo0; . . . ;orÞbðorÞ

and for f ; g A CðCrÞ, or A W,

ð f jgÞAðorÞ ¼
X

fðo0;...;or�1Þ ACr�1; ðo0;...;orÞ ACrg

f ðo0; . . . ;orÞgðo0; . . . ;orÞ:

Lemma 6. Let X be a circle correspondence. Then the relative tensor

product X
nr
A is isomorphic to CðCrÞ as Hilbert C �-bimodules over A.

Proof. We see that there exists a linear map j : X
nr
A ! CðCrÞ such that

jð f1 n f2 n � � � n frÞðo0;o1; . . . ;orÞ ¼ f1ðo0;o1Þf2ðo1;o2Þ � � � frðor�1;orÞ

for f1; f2; . . . ; fr A X . It is easy to show that j is bi-linear and preserves A-

valued inner product. Thus j is also injective. The only non-trivial part is to

show that j is onto. Let fuigi be a finite basis of XA. Then for f A CðCÞ

we have
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f ðo0;o1Þ ¼
X

m

i¼1

uiðuij f ÞA

 !

ðo0;o1Þ

¼
X

m

i¼1

uiðo0;o1Þðuij f ÞAðo1Þ

¼
X

m

i¼1

uiðo0;o1Þ
X

f ~oo0 AW; ð ~oo0;o1Þ ACg

uið ~oo0;o1Þ f ð ~oo0;o1Þ

¼
X

f ~oo0 AW; ð ~oo0;o1Þ ACg

X

m

i¼1

uiðo0;o1Þuið ~oo0;o1Þ

 !

f ð ~oo0;o1Þ:

If o1 A W is fixed, the number of ~oo0 A W such that ð ~oo0;o1Þ A C is finite.

Separating points by functions f A CðCÞ, we have

X

m

i¼1

uiðo0;o1Þuið ~oo0;o1Þ ¼ do0; ~oo0
:

Now for any f A CðCrÞ, we have

X

i1; i2;...; ir

jðui1 n ui2 n � � � n uirÞðjðui1 n ui2 n � � � n uirÞ j f ÞAðo0;o1;o2; . . . ;orÞ

¼
X

i1; i2;...; ir

jðui1 n ui2 n � � � n uirÞðo0;o1;o2; . . . ;orÞ

� ðjðui1 n ui2 n � � � n uirÞ j f ÞAðorÞ

¼
X

i1; i2;...; ir

ui1ðo0;o1Þui2ðo1;o2Þ � � � uirðor�1orÞ

�
X

fð ~oo0; ~oo1;...; ~oor�1Þ ACr�1; ð ~oo0; ~oo1;...; ~oor�1;orÞ ACrg

ui1ð ~oo0; ~oo1Þui2ð ~oo1; ~oo2Þ � � � uirð ~oor�1;orÞ

� f ð ~oo0; ~oo1; . . . ; ~oor�1;orÞ

¼
X

fð ~oo0; ~oo1;...; ~oor�1Þ ACr�1; ð ~oo0; ~oo1;...; ~oor�1;orÞ ACrg

X

i1;...; ir�1

X

ir

uirðor�1;orÞuirð ~oor�1;orÞ

 !

� ui1ðo0;o1Þui1ð ~oo0; ~oo1Þ � � � uir�1
ðor�2;or�1Þuir�1

ð ~oor�2; ~oor�1Þ f ð ~oo0; . . . ; ~oor�1;orÞ

¼ f ðo1;o2; . . . ;orÞ:

Thus fjðui1 n ui2 n � � � n uirÞ; i1; . . . ; irg constitutes a basis of the Hilbert right

module CðCrÞ. This implies that j is surjective. r
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Consider the commutative C �-algebra Dr�1
X ¼ C �ðA; sðAÞ; s2ðAÞ; . . . ;

s r�1ðAÞÞ generated by skðAÞ, k ¼ 0; . . . ; r� 1.

Lemma 7. Let X be a circle bimodule. Then there exists an isomorphism

cr�1 : D
r�1
X ! CðCr�1Þ as C �-algebras such that

ðcr�1ða1sða2Þ � � � s
r�1ðarÞÞÞðo0; . . . ;or�1Þ ¼ a1ðo0Þa2ðo1Þ � � � arðor�1Þ:

Proof. For a1; a2; . . . ; ar A A and f1 n f2 n � � � n fr A X nA X nA � � � nA

X , we have

a1sða2Þ � � � s
r�1ðarÞð f1 n � � � n frÞ ¼ a1 f1 n a2 f2 n � � � n ar fr:

Consider a bimodule isometry j : X
nr
A ! CðCrÞ constructed in Lemma 6. For

T A Dr�1
X , we put pðTÞ ¼ jTj�1. Then p : Dr�1

X ! LAðCðCrÞAÞ is an injective

*-homomorphism. For f A CðCrÞ we have

ðpða1sða2Þ � � � s
r�1ðarÞÞ f Þðo0; . . . ;orÞ ¼ a1ðo0Þa2ðo1Þ � � � arðor�1Þ f ðo0; . . . ;orÞ:

Thus pðDr�1
X Þ can be identified with a *-subalgebra of the C �-algebra CðCr�1Þ

acting on the Hilbert C �-module CðCrÞ by left multiplication. Since pðDr�1
X Þ

separates the points of Cr�1, we have a desired isomorphism cr�1 : D
r�1
X !

CðCr�1Þ by the Stone Weierstrass Theorem. r

For each m A N , we define an inclusion of C �-algebras bm : CðCmÞ !

CðCmþ1Þ by

bmð f Þðo0;o1; . . . ;omþ1Þ ¼ f ðo0;o1; . . . ;omÞ

for f A CðCmÞ. Let dm : Dm
X ! Dmþ1

X be the canonical inclusion. We also

note that sðDm
X ÞHDmþ1

X .

Lemma 8. In the above setting, the isomorphisms cm : Dm
X ! CðCmÞ satisfy

that cmþ1 � dm ¼ bm � cm and

ðcm � s � c�1
m ð f ÞÞðo0;o1; . . . ;omþ1Þ ¼ f ðo1; . . . ;omþ1Þ

for f A CðCmÞ.

Proof. Use the above Lemma 7 and recall that s is actually a shift on the

tensor components by [KPW1; Lemma 3.3]. r

3. Uniqueness.

In [CK], Cuntz and Krieger studied the condition (I) which implies that the

relation between generators determines the algebra uniquely. In this section, we

consider this uniqueness property for continuous Cuntz-Krieger algebras.
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We say that the type of a discrete edge ði; jÞ in G
d is ðp; tÞ if Ci; j ¼ C

ð p; tÞ,

and will denote it by ðpði; jÞ; tði; jÞÞ. For a discrete loop L ¼ ði0; i1; . . . ; ir�1; i0Þ

in G
d , a rational number pðLÞ of the loop L is given by

pðLÞ ¼ ðpði0; i1ÞÞ
tði0; i1Þðpði1; i2ÞÞ

tði1; i2Þ � � � ðpðir�1; i0ÞÞ
tðir�1; i0Þ

:

Definition 9. Let L be a discrete loop. We call L periodic if pðLÞ is

equal to 1 or �1 and there exists some k such that pðik�1; ikÞ is not equal to 1

nor �1. A discrete loop L is expansive if jpðLÞj > 1 and is contractive if

jpðLÞj < 1. We say L is trivial if jpðik�1; ikÞj ¼ 1 for any k.

It is useful to investigate the iterated images of subsets of T under the

transformation given by the correspondences.

We denote ~ZZ 1 ¼ Znf0g, ~ZZ�1 ¼ fp A R; p ¼ q�1; q A ~ZZ 1g and ~ZZ ¼ ~ZZ 1
U ~ZZ�1.

Let p A ~ZZ. We put tðpÞ ¼ 1 if p A ~ZZ 1 and tðpÞ ¼ �1 if p A ~ZZ�1. For U HT

we put

FpðUÞ ¼ fz A T; ðz 0; zÞ A C
jpj; tðpÞ for some z 0 A Ug:

For V HR, we put

~FFpðV þ ZÞ ¼ pV þ pZ þ Z:

We define a quotient map p from R to T by pðxÞ ¼ expð2pixÞ, and we identify

T with ½0; 1Þ or ð0; 1� if necessary. Then we have pð ~FFpðVÞÞ ¼ FpðpðVÞÞ.

Let p ¼ ðp1; p2; . . . ; prÞ where all pi A ~ZZ. We put

Fp ¼ Fpr �Fpr�1
� � � � �Fp1 ;

~FFp ¼ ~FFpr � ~FFpr�1
� � � � � ~FFp1 :

We may assume pi 0 1. If p1 p2 � � � pr < 0, then we have Fp ¼ Fp 0 and ~FFp ¼ ~FFp 0

for p 0 ¼ ðjp1j; jp2j; . . . ; jprj;�1Þ.

We investigate the images of Fp’s using ~FFp’s. Let V HR be a subset.

Then we have

~FFpðV þ ZÞ ¼ pV þ pZ þ Z ¼ pV þ ~FFpðZÞ:

This shows that ~FFpðV þ ZÞ is determined essentially by ~FFpðZÞ.

Lemma 10. We have the following:

(1) Suppose all p1; . . . ; pm are contained in ~ZZ 1 or all p1; . . . ; pm are contained

in ~ZZ�1. Then we have

~FFp1p2���pm ¼ ~FFpm � � � � � ~FFp2 � ~FFp1 :
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(2) Let a and b be two di¤erent prime numbers. If p ¼ aG1 and q ¼ bG1

then we have

~FFp � ~FFq ¼ ~FFq � ~FFp:

(3) Let a be a positive integer. Then we have ~FFa � ~FFa�1ðV þ ZÞ ¼ V þ Z.

Proof. (1) We have ~FFp1 � ~FFp2ðZÞ ¼ p1p2Z þ p1Z þ Z, and ~FFp1p2ðZÞ ¼

p1p2Z þ Z. If p1; p2 A ~ZZ 1, they are equal to Z. If p1; p2 A ~ZZ�1, they are equal

to p1p2Z.

(2) For example, let p ¼ a and q ¼ b�1.

~FFp � ~FFqðZÞ ¼ ða=bÞZ þ aZ þ Z ¼ ð1=bÞZ.

On the other hand,

~FFq � ~FFpðZÞ ¼ ða=bÞZ þ ð1=bÞZ þ Z ¼ ð1=bÞZ:

Other cases are similar.

(3) ~FFa � ~FFa�1ðV þ ZÞ ¼ aða�1V þ a�1Z þ ZÞ þ Z ¼ V þ Z þ aZ þ Z ¼

V þ Z. r

By the above lemma, for every p, there exists p 0 such that ~FFp ¼ ~FFp 0 with

a form

p 0 ¼ ða1; . . . ; a1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{

m1

; a�1
1 ; . . . ; a�1

1

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{
l1

; . . . ; at; . . . ; at
zfflfflfflfflffl}|fflfflfflfflffl{

mt

; a�1
t ; . . . ; a�1

t

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{
lt

Þ:

In this case we write p 0 ¼ ðða1Þ
�m1 ; ða�1

1 Þ�l1 ; . . . ; ðatÞ
�mt ; ða�1

t Þ�ltÞ for short. Put

q ¼
Q t

s¼1ðasÞ
ls , ns ¼ maxðls �ms; 0Þ and q 0 ¼

Q t
s¼1ðasÞ

ns .

Proposition 11. Consider a subset V HR and p ¼ ðp1; . . . ; prÞ with pi A ~ZZ

for i ¼ 1; . . . ; r. Let q and q 0 be the integers determined by p as above. Take a

positive integer u > 1. Then

~FFpðV þ ZÞ ¼ ðp1 � � � prÞV þ
1

q
Z

~FFu
p ðV þ ZÞ ¼ ðp1 � � � prÞ

u
V þ

1

ðq 0Þu�1
q
Z:

Proof. It is su‰cient to prove ~FFpðZÞ ¼ ð1=qÞZ and ~FFu
p ðZÞ ¼

ð1=ððq 0Þu�1
qÞÞZ. Put ps ¼ ððasÞ

�ms ; ða�1
s Þ�lsÞ. Let T be an integer which does

not contain as as a prime factor. Then for 1a sa t we have ~FFp sðð1=TÞZÞ ¼

ð1=ððasÞ
lsTÞÞZ, and by ~FFp ¼ ~FFp s � � � � � ~FFp1 , we have the first equation. We

write q ¼ ðatÞ
lsS, where S does not contain as as a prime factor. Then
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~FFp sðð1=ððasÞ
lsSÞÞZÞ ¼ ð1=ððasÞ

nsðasÞ
lsSÞÞZ. Then we have the second equation.

r

We remark that if jp1 � � � prj < 1 then we have q 0
b 2.

Corollary 12. Consider the same situation as above. Let u > 1 be an

integer. Then we have the following:

(1) If p1 � � � pr ¼ 1, then we have

~FF
u
p ðV þ ZÞ ¼ V þ

1

q
Z:

(2) If p1 � � � pr ¼ �1, then we have

~FF
u
p ðV þ ZÞ ¼ ð�1ÞuV þ

1

q
Z:

Let ði; jÞ be a discrete edge. For an open subset U of Wi, we put

Fi; jðUÞ ¼ fo 0
A Wj j there exists o A U such that ðo;o 0Þ A Ci; jg:

For a closed subset V of Wj, we put

Ci; jðVÞ ¼ fo A Wi j there exists o
0
A V such that ðo;o 0Þ A Ci; jg:

Let S ¼ ði0; i1; . . . ; is�1; i0Þ be a discrete loop. For an open subset U A Wi0

and a closed subset V A Wi0 , we put

FSðUÞ ¼ Fis�1; i0 �Fis�2; is�1
� � � � �Fi0; i1ðUÞ

CSðVÞ ¼ Ci0; i1 �Ci1; i2 � � � � �Cis�1; i0ðVÞ:

For a discrete loop L ¼ ði0; i1; . . . ; is�1; i0Þ, we put

p ¼ ðpði0; i1Þ
tði0; i1Þ; pði1; i2Þ

tði1; i2Þ; . . . ; pðis�1; i0Þ
tðis�1; isÞÞ:

We denote by qðLÞ the integer q determined by p appeared in the preceding

discussion. We shall identify the group Zq ¼ Z=qZ with the finite cyclic sub-

group of T.

Lemma 13. Let L be a periodic path and x be an element of T. If pðLÞ ¼ 1,

then FLðxÞ ¼ x � ZqðLÞ. If pðLÞ ¼ �1, then FLðxÞ ¼ x�1 � ZqðLÞ.

Proof. This follows from Corollary 12. r

Lemma 14. Let L ¼ ði0; i1; . . . ; is�1; i0Þ be a contractive discrete loop. For

any o A W0 and any p A N , there exists a continuous path ðo0;o1; . . . ;opsÞ with

length ps such that o0 ¼ o, all ois’s are di¤erent for 1a ia p and the corre-
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sponding discrete path rotates over L, that is, if k1 j ðmod sÞ, then ok A Wij for

k ¼ 0; 1; . . . ; ps.

Proof. Since L is contractive, q 0
b 2 in Proposition 11. Therefore we can

choose a desired continuous path. r

Recall that a discrete graph G
d satisfies the condition (I) in [CK] if and

only if G
d satisfies the condition (L) in [KPR], that is, there exists no simple

loop without exit, since we assume that for each i (resp. j) there exists a j (resp.

i) such that Ci; j 0q. We shall modify the condition (I) in our particular circle

situation as follows:

Definition 15. A circle correspondence C is called to satisfy the condition

circle-(I) if each simple discrete loop without exit is not trivial.

Definition 16. Consider the circle correspondence C and its contin-

uous graph G. Let m and r be positive integers with rbm. A continuous

path ðo0;o1; . . . ;orÞ with length r is m-aperiodic if the shifted m paths

ðo0;o1; . . . ;or�mþ1Þ, ðo1;o2; . . . ;or�mþ2Þ; . . . ; ðom�1;omþ1; . . . ;orÞ with length

r�mþ 1 are all di¤erent.

Definition 17. An element o in W is called an m-aperiodic point if there

exists an m-aperiodic path starting at o.

In the following Lemma 18, we investigate typical examples first to

understand the general situation. In these examples, for every positive integer

m, the set of m-aperiodic points are dense in W.

Lemma 18. Fix an integer p with pb 2. Assume that a circle corre-

spondence C has the form C ¼ C
ð p;1Þ or Cð p;�1Þ. Then for every m A N , the set of

m-aperiodic points is dense in W. The same conclusion is also true for a circle

correspondence C ¼ 02

i; j¼1
Ci; j with C1;2 ¼ C

ð p;�1Þ, C2;1 ¼ C
ð p;1Þ and C1;1 ¼

C2;2 ¼ q.

Proof. (1) The case that C ¼ C
ð p;1Þ: We define a dense subset K ¼

7y

j¼1
fo A T jopj 0 1g of T. Then for o A K , o is an m-aperiodic point for

every m. In fact ðo;op; . . . ;ompÞ is an m-aperiodic path starting at o.

(2) The case that C ¼ C
ð p;�1Þ: We may identify W ¼ T with ð0; 1� by the

exponential map. Every point o ¼ expð2piyÞ A W ¼ T, ð0 < ya 1Þ, is an m-

aperiodic point. In fact, ðexpð2piyÞ; expð2piy=pÞ; expð2piy=p2Þ; . . . ; expð2piy=pmÞÞ

is an m-aperiodic path starting at o.

(3) The case that C ¼ 02

i; j¼1
Ci; j with C1;2 ¼ C

ð p;�1Þ, C2;1 ¼ C
ð p;1Þ and

C1;1 ¼ C2;2 ¼ q: Every point of W ¼ W1 UW2 is an m-aperiodic point. In

fact, first let o ¼ expð2piyÞ A W1. Consider two di¤erent loops a ¼ ðexpð2piyÞ;

expð2piy=pÞ; expð2piyÞÞ and b ¼ ðexpð2piyÞ; expð2piy=pþ 2pi=pÞ; expð2piyÞÞ. We
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may construct an m-aperiodic path starting at o ¼ expð2pyÞ by concatenating

the two loops a and b aperiodically. Secondly let o A W2. We have also two

di¤erent loops starting at o similarly. By the same argument the proof is

complete. r

Lemma 19. Consider a circle correspondence C. Let L be a simple discrete

loop in G
d which is not trivial. Then for every discrete vertex i in L and for any

positive integer m, the set of m-aperiodic points in Wi is dense in Wi.

Proof. Since the discrete loop L is not trivial, L is expansive, contractive or

periodic. Each correspondence in Lemma 18 provides a typical example of

expansive, contractive and periodic loops respectively. But we need to combine

and arrange the argument in Lemma 18.

Assume that the length of L is s. Since L ¼ ði0; i1; . . . ; isÞ is a simple loop,

i0; . . . ; is�1 are all di¤erent and i0 ¼ is. It is enough to show that the set of m-

aperiodic points in Wi0 is dense in Wi0 . If ma s, then any point o0 A Wi0 is an m-

aperiodic point. In fact we may take any continuous path P ¼ ðo0; . . . ;omÞ

such that the corresponding discrete path is L, that is, ok A Wik for k ¼

0; . . . ;m. Since L is simple, the sources of the shifted m paths with length one

are all di¤erent and P is m-aperiodic. Thus we may assume that s < m. We

put M ¼6y

j¼1
fo A T jo j ¼ 1g and we also identify M with a corresponding

subset in some Wi

(1) The case that L is expansive: Any point o0 A Wi0nM is an m-aperiodic

point. In fact we may take any continuous path P ¼ ðo0; . . . ;omÞ such that

the corresponding discrete path rotates over L, that is, for k ¼ 0; . . . ;m, we

have ok A Wij if k1 j ðmod sÞ with 0a ja s� 1. Consider the shifted m

paths ðo0;o1Þ; . . . ; ðom�1;omÞ with length one. If k2r ðmod sÞ, then ðok;okþ1Þ

and ðor;orþ1Þ are di¤erent because the source of these paths are in di¤erent

Wi’s. Suppose that k1 r ðmod sÞ and k0 r. Say r ¼ k þ ts for some non-zero

integer t. Then we have or ¼ o
pðLÞ t

k z for some z A M if we identify Wk with

T. Suppose that or ¼ ok. Then o
pðLÞ t�1
k A M. Since L is expansive, we have

jpðLÞj > 1 and pðLÞ t � 10 0. Thus we have that ok A M. This implies that

oo A M. This is a contradiction. Hence or 0ok. Therefore the shifted m

paths are all di¤erent and P is m-aperiodic.

(2) The case that L is contractive: Let o0 A Wi0 . Take an integer p with

ps > mþ s. By Lemma 14, there exists a continuous path ðo0;o1; . . . ;os; . . . ;

ois; . . . ;o2s; . . . ;opsÞ such that the corresponding discrete path rotates over L and

all ois’s are di¤erent for 1a ia p. Consider a shorted continuous path P ¼

ðo0;o1; . . . ;omþsÞ. We take the shifted m paths ðo0; . . . ;osÞ, ðo1; . . . ;osþ1Þ,

ðo2; . . . ;osþ2Þ; . . . ; ðom; . . . ;osþmÞ. Then the shifted m paths are all di¤erent and

P is m-aperiodic.

T. Kajiwara and Y. Watatani46



(3) The case that L is periodic: Let o0 A Wi0 . Suppose that pðLÞ ¼ 1.

Then there exist two di¤erent continuous loops a and b such that correspond-

ing discrete paths rotate over L. We construct an m-aperiodic path by con-

catenating a and b aperiodically. Suppose that pðLÞ ¼ �1. Then there exit

two di¤erent continuous paths a and b from o0 to o0 such that corresponding

discrete path rotates over L. There also exists a continuous path g from o0 to

o0 such that corresponding discrete path rotates over L. We construct an m-

aperiodic path by concatenating a � g and b � g aperiodically. r

Proposition 20. Let C be a circle correspondence. Suppose that C satisfies

the condition circle-(I). Then for every m A N , the set of m-aperiodic points is

dense in W.

Proof. Consider the discrete graph G
d . Let S0 be the set of discrete

vertices j A S such that there exist at least two di¤erent discrete loops based at

j. Let S1 be the set of discrete vertices j A S such that there exists only one

simple loop based at j. Recall an argument of the equivalence between the

condition ðIÞ 0 and the condition (L) in [KPW2]. Since we assume that for each

discrete vertex u (resp. v) there exists a vertex v (resp. u) such that ðu; vÞ is a

discrete edge, for every i A S there exists a discrete path from i to some j A

S0 US1. If there exists a discrete path from i to some j A S0, then any point

o A Wi is an m-aperiodic points. In fact we have an m-aperiodic path starting

at o by concatenating corresponding continuous paths for two discrete loops

aperiodically. If otherwise, there exists a discrete path from i to some j A S1.

Since C satisfies the condition circle-(I), there exists only one simple discrete loop

based at j which is not trivial. Then by Lemma 19, there exists a dense subset

K of Wj such that there exists an m-aperiodic path starting at o 0 A K . By

concatenating finite continuous paths from Wi to Wj , we get a desired dense subset

K 0 of m-aperiodic points in Wi. r

Lemma 21. Let C be a circle correspondence. Suppose that C satisfies the

condition circle-(I). For any n A N , any a ¼ ðaijÞij A AnMnðCÞ, any e > 0 and

any m A N , there exist an r A N and an operator Q A Dr
X satisfying the following:

(1) 0aQa I .

(2) Qs jðQÞ ¼ 0 for 1a jam� 1.

(3) kðaijÞij diagðQ
2Þkb kðaijÞijk � e, in Dr

X nMnðCÞ, where diagðTÞ is the

diagonal matrix whose diagonal elements are all equal to T.

Proof. Since CðWÞnMnðCÞ is isomorphic to CðW;MnðCÞÞ as C �-algebras,

we may identify a with a continuous MnðCÞ-valued function on W.

Therefore for any e > 0 and any m A N there exists an m-aperiodic point

o0 A W such that
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kðaijÞijðo0Þkb kðaijÞijk � e;

since the set of m-aperiodic points is dense in W by Proposition 20.

Let P ¼ ðo0;o1; . . . ;orÞ be an m-aperiodic path with length r ðbmÞ

starting from o0. Since the shifted m paths R0 ¼ ðo0;o1; . . . ;or�mþ1Þ, R1 ¼

ðo1;o2; . . . ;or�mþ2Þ; . . . ;Rm�1 ¼ ðom�1;omþ1; . . . ;orÞ with length r�mþ 1 are

all di¤erent point in Cr�mþ1, there exist disjoint open neighborhoods Ui of

Ri, ði ¼ 0; . . . ;m� 1Þ in Cr�mþ1. For each i ¼ 0; . . . ;m� 1, define an open

neighborhood Vi of P ¼ ðo0;o1; . . . ;orÞ in Cr by

Vi ¼ fðm0; m1; . . . ; mrÞ A Cr; ðmi; miþ1; . . . ; mr�mþiþ1Þ A Uig:

Consider an open neighborhood V ¼ 7m�1

i¼0
Vi of P. Choose a continuous func-

tion f A CðCrÞ such that 0a f a 1, f ðPÞ ¼ 1 and f ðWÞ ¼ 0 for W A V c. Recall

the isomorphism cr : D
r
X ! CðCrÞ in Lemma 7. Let Q ¼ c�1

m ð f Þ. Then the

operator Q satisfies (1) and (2) by Lemma 8 and the construction of f . We iden-

tify an element ðaijÞij diagðQ
2Þ A Dr

X nMnðCÞ with an element ðaijÞij diagð f
2Þ A

CðCr;MnðCÞÞ. Then we have

kððaijÞij diagð f
2ÞÞðPÞk ¼ kðaijÞijðo0Þ diagð f ðPÞ

2Þkb kðaijÞijðo0Þkb kðaijÞijk � e:

This implies (3). r

Lemma 22. Let C be a circle correspondence. Suppose that C satisfies the

condition circle-(I). For any p A N , any B0 A KAðX
np
A Þ, any e > 0 and any m A N ,

there exist an r A N and an operator Q A Dr
X satisfying (1), (2) of Lemma 21 and

the following condition:

kspðQ2ÞB0kb kB0k � e:

Proof. Choose r A N and an operator Q in Dr
X as in Lemma 21. Recall a

fact in [KPW1] that, for A-A bimodule Z and Y , T A KAðYAÞ and xi; yi A Z,

X

n

i¼1

yxi ;yi nT

�

�

�

�

�

�

�

�

�

�

¼ kððxijxjÞAÞ
1=2
i; j ððyijyjÞAÞ

1=2
i; j diagððT �TÞ1=2Þk:

Apply the fact putting Z ¼ Xnp, B ¼
Pn

i¼1 yxi ;yi , Y ¼ Xnr and T ¼ Q2. r

Definition 23. A Hilbert A-A bimodule X is called to be (I)-free if there

exists a dense subset DHO
0
X such that for each B A D with B ¼

Pm
j¼�m Bj ,

ðBj A KðXnpþj;XnpÞÞ, for every e > 0, there exists a contraction P A OX in a

spectral subspace under the gauge action of T on OX satisfying the following:

1. For j0 0, kPBjP
�ka e.

2. kPB0P
�kb kB0k � e.
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Proposition 24. Let C be a circle correspondence and X the circle bimodule

obtained from C. If C satisfies the condition circle-(I), then the bimodule X is (I)-

free.

Proof. Let D ¼ O
0
X . Take any B ¼

Pm
j¼�m Bj A D, with Bj A KðXnpþj ;

XnpÞ. For B0 and any e we choose a positive contraction Q in Lemma 22. Put

P ¼ spðQÞ. Since Q A O
T

X , P is also contained in O
T

X which is a spectral subspace

of the gauge action. It is clear that P is also a positive contraction.

By Lemma 21(2) and the commutation relation of s as in [KPW1; Lemma

3.2], we have, for 1a jam,

PBjP
� ¼ spðQÞBjs

pðQÞ ¼ spðs jðQÞQÞBj ¼ 0:

The case that j < 0 is similar. Lemma 22 shows that

kPB0P
�k ¼ kspðQ2ÞB0kb kB0k � e: r

The following theorem implies that if a circle bimodule C satisfies the con-

dition circle-(I), then the C �-algebra OX generated by the circle bimodule X is

uniquely determined by the commutation relations of the generators fSx; x A Xg

such that S �
xSy ¼ ðxjyÞA, Sxa ¼ Sxa, aSx ¼ SfðaÞx, and

P

i SuiS
�
ui
¼ I for a A A and

x A X .

Proposition 25. Let X be a Hilbert C �-bimodule over A which has a finite

right basis. Suppose that X is (I)-free. Let j be a unital *-homomorphism of OX

to a C �-algebra R. If j is faithful on A, then j is faithful on OX .

Proof. Let D be as in Definition 23, and B ¼
Pm

j¼�m Bj A D with Bj A

KAðX
nrþj
A ;X

nr
A Þ. For any e and, for B0 A KAðX

nr
A Þ, choose a contraction P as

in Definition 23. Since j is faithful on A, j is faithful on O
T

X ¼ F
ð0Þ

y as in

[KPW1; Lemma 2.2]. Therefore we have kjðPB0P
�Þkb kjðB0Þk � e. Then

kjðB0Þka kjðPB0P
�Þk þ e ¼ jðPBP�Þ �

X

m

j¼�m; j00

jðPBjP
�Þ

�

�

�

�

�

�

�

�

�

�

þ e

a kjðPÞjðBÞjðP�Þk þ 2meþ ea kjðBÞk þ ð2mþ 1Þe:

Since e > 0 is arbitrary, we have

kjðB0Þka kjðBÞk:

Because D is dense in OX , we have for all B A OX ,

kjðB0Þka kjðBÞk:
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Hence there exists a conditional expectation E j from jðOX Þ onto jðFð0Þ
y Þ such

that the following diagram commutes.

OX ���!
j

jðOX Þ

E X

?
?
?
y

?
?
?
y
E j

F
ð0Þ
y ���!

j
jðFð0Þ

y Þ

Since j is faithful on F
ð0Þ

y , j is faithful on OX . r

By Proposition 24 and Proposition 25, we have the following theorem.

Theorem 26. Let C be a circle correspondence and X the circle bimodule

obtained from C. Assume that C satisfies the condition circle-(I). Let j be a

unital *-homomorphism of OX to a C �-algebra R. If j is faithful on A, then j is

faithful on OX .

Remark 3.1. Without the assumption of the condition circle-(I), if j is

faithful on A and we know that there exists a conditional expectation E j from

jðOX Þ to jðFð0Þ
y Þ such that the above diagram commutes, we may conclude that

j is also faithful.

4. Groupoids and bimodules.

We shall compare the construction of Deaconu [D2] using groupoid theory

and our construction using bimodule theory. We recall his construction in [D2].

For o ¼ ðt0; t1Þ A C, we put rðoÞ ¼ t1 and sðoÞ ¼ t0. Let X be the set of right

infinite paths of C with product topology, which is a compact Hausdor¤ space.

For x ¼ ðo1o2o3 � � �Þ, put sðxÞ ¼ ðo2o3o4 � � �Þ. Then s is a continuous sur-

jective map on X and it is also a local homeomorphism. We put sðxÞ ¼ sðo1Þ.

Let

G ¼ fðx; k; hÞ A X � Z� X j snþkðxÞ ¼ snðhÞ bN EnbNg:

The range map r and the source map s of G are given by

rðx; k; hÞ ¼ h; sðx; k; hÞ ¼ x:

Two elements g ¼ ðx; k; hÞ and g 0 ¼ ðh 0
; l; zÞ in G are composable if and only if

sðgÞ ¼ rðg 0Þ and the product is given by

ðx; k; hÞðh; l; zÞ ¼ ðx; k þ l; zÞ

and the inverse of ðx; k; hÞ is given by ðh;�k; xÞ. Then G becomes a locally

compact topological groupoid whose Haar system is given by the counting
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measures. We denote by CcðGÞ the set of all continuous functions on G with

compact supports, and we denote by C �ðGÞ the full groupoid C �-algebra of G

and denote by C �
r ðGÞ the reduced groupoid C �-algebra of G .

Proposition 27. Let C be a circle correspondence, X the circle bimodule

obtained from C and G the groupoid defined by Deaconu. Then the C �-algebra

OX is isomorphic to C �ðGÞ and C �
r ðGÞ.

Proof. We shall construct a *-homomorphism r of A ¼ CðWÞ to CcðGÞ

and a linear map V of X ¼ CðCÞ to CcðGÞ as follows:

For o in C and x in X, we denote by o � x the concatenation of them

if rðoÞ ¼ sðxÞ. For f A X we define Vð f Þðo � x; 1; xÞ ¼ f ðoÞ and zero for other

elements in G . For k A A we define rðkÞðh; 0; hÞ ¼ aðsðhÞÞ and zero for other

elements in G .

Then V and r satisfy the following relations:

Vð f Þ� � VðgÞ ¼ rðð f jgÞAÞ

Vð f Þ � rðkÞ ¼ Vð f � kÞ

rðkÞ � Vð f Þ ¼ VðfðkÞ f Þ

for every f , g in X and k in A.

Let fuig
m
i¼1 be a finite basis of XA constructed in Proposition 3. Then we

have

Xm

i¼1

uiðoÞuið ~ooÞ ¼ do; ~oo:

By the calculation in CcðGÞ, for F A CcðGÞ, we have

ðF � F �ÞðgÞ ¼
X

g1g2¼g

Fðg1ÞF
�ðg2Þ ¼

X

g1g
�1
2
¼g

F ðg1ÞFðg2Þ:

If F ¼ Vð f Þ for f A X , ðF � F �ÞðgÞ ¼ 0 if g0 ðo1 � h; 0;o2 � hÞ for o1, o2 in C,

and

ðVð f Þ � Vð f Þ�Þððo1 � h; 0;o2 � hÞÞ ¼ f ðo1Þ f ðo2Þ:

Therefore we have

Xm

i¼1

VðuiÞ � VðuiÞ
�ðo1 � h; 0;o2 � hÞ ¼ do1;o2

:

This shows that
Pm

i¼1 VðuiÞ � VðuiÞ
� ¼ I .

By the universality of OX [Pim], there exists a *-homomorphisms j (resp. jr)
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of OX to C �ðGÞ (resp. C �
r ðGÞ) such that jðSf Þ ¼ Vð f Þ and jðkÞ ¼ rðkÞ for f A X

and k A A. Let f1; f2; . . . ; fr and g1; g2; . . . ; gs be elements in X .

For non negative integers r, s, the set

fVð f1ÞVð f2Þ � � �Vð frÞVðgsÞ
� � � �Vðg2Þ

�
Vðg2Þ

� j f1; f2; . . . ; fr; g1; g2; . . . ; gs A Xg

is in the set of the functions whose support are contained in

G r; s ¼ fðx; s� r; hÞ A X � Z� X j s rðxÞ ¼ ssðhÞg

and which depends only on the first r edges of x and on the first s edges of

h. When r; s varies, these elements generate dense *-subalgebra of CcðGÞ, which

is dense in C �ðGÞ.

By [Re; Proposition 5.1], there exists an action b 0 of T on C �ðGÞ such

that jðbtðTÞÞ ¼ b 0
tðjðTÞÞ, for T A OX , where b is the gauge action of T on OX .

The restriction of j to F
ð0Þ

y is an isomorphism of F
ð0Þ

y onto the fixed point

subalgebra under b 0. There exists a conditional expectation E b 0

from C �ðGÞ to

the fixed point subalgebra under b 0 such that jðEX ðTÞÞ ¼ E b 0

ðjðTÞÞ for T A OX .

By the usual argument as in the Remark 3.1, j is an onto isomorphism.

Similarly jr is also an onto isomorphism of OX to C �
r ðGÞ. r

5. Ideal theory.

We recall that there is a bijective lattice correspondence between the set of

closed two sided ideals in A and the set of open subsets of W as follows: Let

JHA be a closed two sided ideal of A. Then UJ ¼ Wn7
f A J

ker f is an open

subset of A. Conversely, for an open subset U in W, JU ¼ f f A A j f ðoÞ ¼ 0 for

o A WnUg is a closed two sided ideal of A.

Definition 28 ([KPW2]). Let X be a Hilbert bimodule over a C �-algebra

A. A closed two sided ideal J of A is called X -invariant if ðx j fðaÞyÞA A J

for any x, y A X and a A J. And J is called X -saturated if ðx j fðaÞyÞA A J for

all x; y A X implies a A J.

Definition 29. Let C be a circle correspondence. A subset U of W is

called hereditary if ðo;o 0Þ A C and o A U implies o 0 A U . A subset U of W is

called saturated if the condition that all o 0 with ðo;o 0Þ A C are contained in

U implies that o is also contained in U .

Lemma 30. Let C be a circle correspondence and X its circle bimodule. Let

J be a closed ideal of A and U the open subset of W corresponding to J. Then J

is X-invariant and X-saturated if and only if U is hereditary and saturated.

Proof. Put Ui ¼ U VWi. Assume that J is X -invariant and X -saturated.

Take any edge ðo1;o2Þ A C with o1 A Ui. Choose j A CðWiÞ satisfying that
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jðo1Þ0 0 and the support supp j of j is contained in Ui. Then j A J. Choose

x in CðCi; jÞ such that xðo1;o2Þ ¼ 1 and

fo A W; ðo;o2Þ A supp xVCg ¼ fo1g:

Since J is X -invariant, we have ðx j jxÞA A J. Then we have

ðx j jxÞAðo2Þ ¼
X

ðo;o2Þ

xðo;o2ÞjðoÞxðo;o2Þ

¼ xðo1;o2Þjðo1Þxðo1;o2Þ

0 0:

This implies that o2 A Uj. Therefore U is hereditary.

Let o0 A Wj0 and o1; . . . ;op be the all the continuous vertices such that

ðo0;oiÞ is a continuous edge. Assume that each oi A U . We may put oi A Uji

for 1a ia p. For each i, there exists an open neighborhood Wi of o0 such that

fm A Wji ; there exists o A Wi with ðo; mÞ A CgHUji

and

fm A W; there exists o A Wi with ðo; mÞ A CgH 6
p

k¼1

Ujk :

Consider an open neighborhood W ¼ 7p

i¼1
Wi of o0. Choose j A CðWj0Þ such

that supp jHW , jb 0 and jðo0Þ ¼ 1. For any x and h in X ,

ðx j jhÞAðmÞ ¼
X

fo AW; ðo;mÞ ACg

xðo; mÞjðoÞhðo; mÞ:

If m A W satisfies that ðx j jhÞAðmÞ0 0, then there exists o A W such that ðo; mÞ A C

and jðoÞ0 0. Since o A supp jHW HWi, we have m A 6p

k¼1
Ujk . If m A Wji ,

then m A Uji . This implies that ðx j jhÞA A J. Since J is saturated, we have j A J.

Because jðo0Þ0 0, o0 A U . Thus U is saturated.

Conversely assume that U is saturated and hereditary. For any j A

J; x; h A X and m A W, we have

ðx j jhÞAðmÞ ¼
X

fo AW; ðo;mÞ ACg

xðo; mÞjðoÞhðo; mÞ:

Suppose that ðx j jhÞAðmÞ0 0. Then there exists o A W such that ðo; mÞ A C and

jðoÞ0 0. Since j A J, o is in U . Then m is also in U , because U is hereditary.

This shows that for any m A WnU we have ðx j jhÞAðmÞ ¼ 0. Thus ðx j jhÞA is in

J. We have shown that J is X -invariant.

Continuous Cuntz-Krieger algebras 53



Assume that j A A satisfies that ðx j jhÞA A J for all x; h A X . For any o A

WnU there exists m A WnU with ðo; mÞ A C, because U is saturated. Let o1 ¼

o;o2; . . . ;op be all the continuous vertices such that ðoi; mÞ is a continuous edge.

Then there exists x A CðCÞ such that xðo; mÞ ¼ 1 and xðoi; mÞ ¼ 0 for i ¼

2; . . . ; p. Since ðx j jxÞA A J, we have ðx j jxÞAðmÞ ¼ 0. Then

jðoÞ ¼ xðo; mÞjðoÞxðo; mÞ ¼
Xp

i¼1

xðoi; mÞ ¼ jðoiÞxðoi; mÞðx j jxÞAðmÞ ¼ 0:

This shows that j is in J. Thus J is X -saturated. r

By Theorem 26 and the above lemma, we have the following criterion of

simplicity of OX .

Corollary 31. Let C be a circle bimodule and X its circle bimodule.

Assume that C satisfies the condition circle-(I). Then OX is simple if and only if

any saturated and hereditary open subset of W is W or the empty set q.

Proof. Assume that any saturated and hereditary open subset of W is W

or q. Then any X -saturated and X -invariant ideals of A is A or 0 by the

above Lemma. Let J be an ideal of OX with J0OX . Consider a quotient

map j : OX ! OX=J. Then AV ker j is an X -invariant and X -saturated ideal

of A. Since jðIÞ ¼ I , I is not in AV ker j. Thus AV ker j ¼ f0g. Therefore

the restriction of j to A is faithful map. By Theorem 26, j is faithful. Thus

J ¼ f0g. This shows that OX is simple. On the contrary, we may assume that

there exists an X -invariant and X -saturated ideal J of A which is not equal to

A nor 0 by the above Lemma. Then by the proof of (ii) (1) of Theorem 4.3 in

[KPW1], or Proposition 17 in [KPW2], the ideal in OX generated by J is not

equal to OX or f0g. Thus OX is not simple. r

For i; j A S, we write ib j if there exists a finite discrete path from i to j.

If i A S satisfies ia i, then i is called a class discrete vertex. We denote

½i � ¼ f j A S j ia ja ig as in [C ]. If i A S is not a class discrete vertex, then i

is called a transit discrete vertex.

We need the following lemmas to prove Theorem 40.

Lemma 32. Let ði; jÞ be a discrete edge.

(i) Let U be a saturated hereditary open set in W. Put Ui ¼ U VWi for

any i. Then Fi; jðUiÞHUj .

(ii) Let V be the complement of a saturated hereditary open subset in

W. Put Vi ¼ V VWi. Then Ci; jðVjÞHVi.

Proof. Obvious. r
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Lemma 33. Let L ¼ ði0; i1; . . . ; in�1; i0Þ be a periodic or trivial discrete loop.

Then for a saturated hereditary open subset U, we have FLðUiÞ ¼ Ui and

CLðWnUiÞ ¼ WnUi.

Proof. If L is trivial, the lemma is clear. Suppose that pðLÞ ¼ 1. Since

U is hereditary, FLðUiÞHUi. On the other hand since FLðUiÞ ¼ Ui � ZqðLÞ by

Lemma 13, UiHFLðUiÞ. Thus we have FLðUiÞ ¼Ui. Suppose that pðLÞ ¼�1.

Then by Lemma 13, we have FLðUiÞ ¼ U�1
i � Zq HUi and F2

LðUiÞ ¼ Ui � ZqðLÞ H

Ui. Thus Ui is ZqðLÞ invariant. Then U�1
i HUi. This shows that U�1

i ¼ U i

and FLðUiÞ ¼ Ui. Therefore Ui is ZqðLÞ cZ2 invariant, where ZqðLÞ cZ2 is a

dihedral group. r

Lemma 34. Let L be an expansive discrete loop and U a saturated hereditary

open subset of W. Then Ui ¼ Wi or Ui ¼ f for any i in the equivalence class of

a discrete vertex in L.

Proof. Suppose that U is non empty open saturated hereditary subset

of Wi. Since U is open, U contains an interval V . We identify V with an

interval in R contained in ½0; 1Þ. Since L is expansive, the length of ~FFn
LðVÞ

becomes greater than 1 for a su‰ciently large n by Proposition 11. Therefore

Fn
LðUÞ ¼ Wi. r

As in [KPW1], for an X -invariant and X -saturated ideal J in A, we put

XJ ¼ fx A X j ðxjxÞA A Jg. Then X=XJ is a Hilbert A=J-A=J bimodule. Let p

be a quotient map from X to X=XJ . Let fuigi be a right A basis of X . Then

the family fpðuiÞgi constitutes a right A=J basis of X=XJ . The completely

positive map sJ for X=XJ is given by sJðxÞ ¼
P

i pðuiÞxpðuiÞ
� as before Lemma

5. Let Dr
X=J be the C �-subalgebra of OX=J generated by ðA=JÞ; sJðA=JÞ;

s2
JðA=JÞ; . . . ; s

r
JðA=JÞ.

Let U be an open saturated hereditary subset of W and J an X -invariant

and X -saturated ideal of A corresponding to U . Let V be the complement of

U in W. Then V is a compact subset. We denote by CnU the correspondence

on V obtained from C removing all edges whose ranges are contained in U .

Since the range map r is continuous, CnU is closed and a compact Hausdor¤

space with respect to the topology relative to W�W.

It is direct to show that X=XJ is the bimodule obtained from the corre-

spondence CnU . As in Lemma 7, the C �-algebra Dr
X=J is isomorphic to the

commutative C �-algebra of continuous functions on the set of paths in CnU

with length r.

Definition 35. Let C be a circle correspondence. We say that C satisfies

the condition circle-(II) if for every saturated hereditary open subset U in W,

there exists no open subset in WnU such that there exists an integer m such that

there exist no m aperiodic paths starting from any point in this subset.
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Definition 36 ([KPW1]). A Hilbert bimodule X over A is called (II)-free

if for any X -saturated and X -invariant ideal J, Hilbert bimodule X=XJ over A=J

is (I)-free.

Proposition 37. Let C be a circle correspondence and X its circle bimodule.

Assume that each class in the discrete graph G
d has an expansive loop or has

neither contractive nor trivial loop. Then the correspondence C satisfies condition

circle (II).

Proof. Let U be a saturated hereditary open subset of W, and V be the

complement of U in W. Let o A V and o be contained in some Wi.

Suppose that i is a class discrete vertex. At first we assume that there exists

an expansive loop L in [i ]. Since Vi is not empty, for each j A ½i�, we have

Vj ¼ Wj by Lemma 34. Then by the same method as in Lemma 19, we can show

that for every positive integer m, the set of m-aperiodic points is dense in Vi. We

next assume that all simple discrete loops in [ j ] are periodic. Then there exists

more than two loops based at o A V VWj contained in C
0. Hence for every m,

we can construct an m-aperiodic path for every o A Vi in C
0.

Suppose that i is a transit vertex. Let o A Vi. Then there exists a path

S1 from o to some o
0 such that o

0 is contained in Vj and j is a class discrete

vertex. If there exists a periodic discrete loop through j, we can construct an m-

aperiodic path S2 starting at o
0. Then S1 � S2 is an m-aperiodic path. If [ j ]

contains expansive discrete loop, then Vj ¼ Wj and there exists a dense subset Kj

of Wj such that we may construct an m-aperiodic path starting at each point in

Kj. Then Vi is also Wi and there exists a dense subset Ki such that there exists a

finite path from o A Ki to a point in Kj . We can also construct an m-aperiodic

path starting at points in Ki. r

Lemma 38. There exists a circle correspondence C such that its circle bi-

module X is not (II)-free but the corresponding discrete correspondence C
d is (II)-

free in the sense of Cuntz [C].

Proof. We present an example. Let n ¼ 2 and C1;2 and C2;1 be trivial,

C2;2 ¼ C
2;�1 and C1;1 ¼ q. We take a hereditary saturated open subset U such

that U1 ¼ U2 ¼ Tnf1;�1g. Then the graph corresponding CnU is a finite graph

containing a closed circuit without exit. But C
d clearly satisfies the condition

(II) in the sense of [C ] and [KPW2]. r

Proposition 39. Let C be a circle correspondence and X its circle bimodule.

If C satisfies the condition circle-(II), then for every X-invariant, X-saturated ideal

J in A, X=XJ is (I)-free.

Proof. If C satisfies the condition circle-(II), for every hereditary saturated

open subset U , for every positive integer r, r-aperiodic points are dense in CnU .
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Then for every a A A=J, e > 0, we can construct an operator Q satisfying (1)–(3)

in Lemma 21. The rest is the same as Lemma 22 and Proposition 24. r

Theorem 40. Let C be a circle correspondence and X its circle bimodule.

If C satisfies the condition circle-(II), then there exists a bijective correspondence

between the lattice of closed two sided ideal of OX and the lattice of saturated

hereditary open subsets of W.

Proof. This follows from the previous proposition, Proposition 25 and the

proof of Proposition 21 in [KPW2]. r

6. K-theory.

Let C be a circle correspondence and X its circle bimodule. Recall that the

left bimodule action is given by a *-homomorphism f : A!KðX Þ. We simply

apply the following 6-term exact sequence obtained by Pimsner [Pim] for com-

puting the K-theory of OX directly. We denote by [X ] the Kasparov element

½f;X ; 0� A KKðA;AÞ. As in [Pim], [X ] gives the transformation from K�ðAÞ to

K�ðAÞ, where � ¼ 0; 1.

Proposition 41 (Pimsner [Pim]). In the same situation, we have the following

6-term exact sequence.

K0ðAÞ ���!
i�½X �

K0ðAÞ ���! K0ðOX Þ
x
?
?
?

?
?
?
y

K1ðOX Þ  ��� K1ðAÞ  ���

i�½X �
K1ðAÞ

We just apply the Pimsner formula as above and get the following 6-term

exact sequence:

Z
n

���!
I�D0

Z
n

���! K0ðOX Þ
x
?
?
?

?
?
?
y

K1ðOX Þ  ��� Z
n  ���

I�D1
Z

n

where D� is the linear transformation on Z
n
FK�ðAÞ ð� ¼ 0; 1Þ induced by

[X ]. Deaconu [D2] obtained this 6-term exact sequence under a minimality

assumption. But we do not need his minimality assumption by applying

Pimsner’s result directly.

Example 6.1 ([D1]). Let X ¼ CðCp;1Þ ðpb 2Þ. Then there exists only one

discrete loop and it is expansive. Since C satisfies the condition circle-(I), OX is

simple.
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F
ð0Þ

y is isomorphic to a Bunce-Deddense algebra. The C �-algebra OX is

nuclear, purely infinite and simple. Moreover, there exists a unique KMS state

under the gauge action.

D0 is given by n 7! pn, and D1 is given by n 7! n. The K-groups are

calculated as follows:

K0ðOX ÞFZp�1 lZ K1ðOX ÞFZ:

Example 6.2 ([D2]). Let X ¼ CðCp;�1Þ ðpb 2Þ. There exists only one

discrete loop and it is contractive. C satisfies the condition circle-(I), but do not

satisfy the condition circle-(II)-free. There are many ideals in OX which do not

correspond to hereditary open subsets of W.

We recall that a solenoid S is a compact Hausdor¤ space defined by

S ¼ fz ¼ ðzkÞk AN j zk A T; z
p
kþ1 ¼ zk; k A Ng:

Let Sn ¼ fz ¼ ðz0; z1; . . . ; znÞ A T
n j zpkþ1 ¼ zk; k ¼ 0; 1; . . . ; ng. Consider a con-

tinuous onto map pn : Snþ1 ! Sn such that pnðz0; z1; . . . ; znþ1Þ ¼ ðz0; z1; . . . ; znÞ.

Then S is the projective limit of the system ðSn; pnÞn. Since Sn is isomorphic to

the set ðCp;�1Þn of continuous paths with length n, the relative tensor product

X
nn
A is isomorphic to CðSnÞ (FA) by Lemma 6. If we identify LðXnn

A Þ with

CðSnÞ (FA), then the canonical inclusion in : LðXnnÞ ! ðLnðnþ1ÞÞ can be

identified with p
�
n : CðSnÞ ! CðSnþ1Þ. Therefore the ‘‘AT-part’’ Fð0Þ

y is a com-

mutative C �-algebra which is isomorphic to the algebra of continuous functions

on a solenoid. C �-algebra OX has not unique tracial states which are KMS

states under the gauge action.

D0 is given by n 7! n and D1 is given by n 7! pn. The K-group is calculated

as follows:

K0ðOX ÞFZ K1ðOX ÞFZp�1 lZ:

We should note that the bimodules of Example 6.1 and Example 6.2

are conjugate to each other, but the structures of the corresponding bimodule

algebras are completely di¤erent.

Example 6.3. Consider a circle correspondence C on T UT UT as follows:

Put C1;2 ¼ C
2;�1, C2;1 ¼ C

2;1, C2;3 is trivial and C3;3 ¼ C
2;1. Let other Ci; j’s

be q. Then the correspondence C satisfies the condition circle-(II) but it is

not minimal.

We write down all closed two sided ideals of OX using open hereditary

saturated subsets of W ¼ T UT UT. Let U be an open hereditary saturated sub-

set of W. Since C3;3 is type 1, U3 is W3 or q. If U3 is equal to q, U1 and U2

are also q. If U3 is W3, then U1 is a Z2-invariant closed subset of T, and

U2 ¼ fz2 j z A U1g.

T. Kajiwara and Y. Watatani58



References

[B] B. Brenken, The local product structure of expansive automorphisms of solenoids and

their associated C �-algebras, Cand. J. Math., 48 (1996), 692–709.

[CK] J. Cuntz and W. Krieger, A class of C �-algebras and topological Markov chains, Invent.

Math., 36 (1980), 251–268.

[C] J. Cuntz, A class of C �-algebras and topological Markov chains II: Reducible chains and

the Ext-functor for C �-algebras, Invent. Math., 63 (1981), 23–40.

[Co] A. Connes, Noncommutative di¤erential Geometry, Academic Press, 1994.

[D1] V. Deaconu, Groupoids associated with endomorphisms, Trans. Amer. Math. Soc., 347

(1995), 1779–1786.

[D2] V. Deaconu, Generalized Cuntz-Krieger algebras, Proc. Amer. Math. Soc., 124 (1996),

3427–3435.

[D3] V. Deaconu, Generalized solenoids and C �-algebras, to appear in Pacific J. Math., 190

(1999), 247–260.

[De] C. Anantharaman-Delaroche, Purely infinite C �-algebras arising from dynamical systems,

Bull. Soc. Math. France, 125 (1997), 199–225.

[KPW1] T. Kajiwara, C. Pinzari and Y. Watatani, Ideal structure and simplicity of the C �-algebras

generated by Hilbert bimodules, J. Funct. Anal., 159 (1998), 295–322.

[KPW2] T. Kajiwara, C. Pinzari and Y. Watatani, Hilbert C �-bimodules and countably generated

Cuntz-Krieger algebras, preprint (1998).

[KW1] T. Kajiwara and Y. Watatani, Jones index theory by Hilbert C �-bimodules and K-theory,

to appear in Trans. Amer. Math. Soc..

[KW2] T. Kajiwara and W. Watatani, Crossed product of Hilbert C �-bimodules by countable

discrete groups, Proc. Amer. Math. Soc., 126 (1998), 841–851.

[Ka] Y. Katayama, Generalized Cuntz algebra O
M
N , R.I.M.S. Kokyuroku, 858 (1994), 87–90.

[KPR] A. Kumjian, D. Pask and I. Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific

J. Math., 184 (1998), 161–174.

[KPRR] A. Kumjian, D. Pask, I. Raeburn and J. Renault, Graphs, groupoids and Cuntz-Krieger

algebras, J. Funct. Anal., 144 (1997), 505–541.

[Pim] M. V. Pimsner, A class of C �-algebras generating both Cuntz-Krieger algebras and crossed

products by Z in ‘‘Free Probability theory’’ edited by D. V. Voiculescu, Fields Institute

communications, 12 (1997), 189–212.

[Pin] C. Pinzari, The ideal structure of Cuntz-Krieger-Pimsner algebras and Cuntz-Krieger

algebras over infinite matrices, Proceedings of the Rome conference ‘‘Operator Algebras

and Quantum Field Theory’’, International Press 1997, 136–150.

[Re] J. Renault, A groupoid approach to C �-algebras, Lecture Notes in Mathematics, 793,

Springer-Verlag, 1980.

[W] Y. Watatani, Index for C �-subalgebras, Memoir Amer. Math. Soc., 424 (1990).

Tsuyoshi Kajiwara

Department of Environmental and Mathematical Sciences

Okayama University

Tsushima, 700, Japan

Yasuo Watatani

Graduate School of Mathematics

Kyushu University

Ropponmatsu, Fukuoka, 810, Japan

Continuous Cuntz-Krieger algebras 59


	1. Introduction.
	2. Correspondences and ...
	3. Uniqueness.
	THEOREM 26. ...

	4. Groupoids and bimodules.
	5. Ideal theory.
	THEOREM 40. ...

	6. $K$ -theory.
	References

