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Free relative entropy for measures

and a corresponding perturbation theory
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Abstract. Voiculescu’s single variable free entropy is generalized in two different
ways to the free relative entropy for compactly supported probability measures on the
real line. The one is introduced by the integral expression and the other is based on
matricial (or microstates) approximation; their equivalence is shown based on a large
deviation result for the empirical eigenvalue distribution of a relevant random ma-
trix. Next, the perturbation theory for compactly supported probability measures via
free relative entropy is developed on the analogy of the perturbation theory via relative
entropy. When the perturbed measure via relative entropy is suitably arranged on the
space of selfadjoint matrices and the matrix size goes to infinity, it is proven that the
perturbation via relative entropy on the matrix space approaches asymptotically to that
via free relative entropy. The whole theory can be adapted to probability measures on
the unit circle.

Introduction.

One of the key points in free probability theory is that the important (non-
commutative) distributions admit convenient matrix models. Let a be a non-
commutative random variable in a noncommutative probability space (.7, ¢), and
let an n x n random matrix X, be given for every n e N. Then X, is called an
(almost sure) random matrix model for a if

1 n
— E P(X,,X)),; — o(P(a,a”)) almost surely
n

i=1

as n — oo for any polynomial P of two noncommutative indeterminates. For
example, selfadjoint random matrices with independent Gaussian entries form a
model for the semicircular distribution when the variances of entries are suitably
arranged; non-selfadjoint random matrices with independent Gaussian entries form
a model for the circular distribution.

Matrix models play a crucial role in the definition of entropy which goes on
the following lines. Suppose that the entropy of a variable a should be defined
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with respect to another variable b which has a convenient random matrix model
T,. 1If 4, is the distribution measure of 7, (on the space M, of n x n matrices),
then the asymptotics of the quantity

L log An({X € My ¢ e(X*) — plat)| < 2.k <)) (0.1)

gives the entropy X(a||T,); one takes

lim lim limsup
e—=4+0 r—0 5,5

of the above expression. A general theory is not available for an arbitrary
random matrix model, but Voiculescu’s definition [19], for the free entropy
can be put in this setting and later in Hiai and Petz considered the case when
T, 1s a Haar distributed unitary. Restricting ourselves to the case when the dis-
tribution of @ is given by a compactly supported measure x on R, we have

(| H,) = ;” loglx — y] du(x) du(y) — %sz v +y,  (02)

where H, is the selfadjoint Gaussian random matrix model of the semicircular
distribution. For a measure u on the unit circle we also have

20| Un) = || 10ghe =1 duo) ), (03)

where U, is a Haar distributed random unitary. In fact, the above formulas
(0.2) and (0.3) are derived from the large deviation results for random matrices
due to Ben Arous and Guionnet [2] and also [12].

The first aim of the present paper is to make a definition of the free relative
entropy X'(u,v) of two measures. If we want to reach such a quantity in the
above manner, then a random matrix model Q, of the measure v should be find
in order to proceed with (0.1). We make a proposal for Q) and find that

S0 = — ” loglx — y|d(x — v)(x) d(st— V)().

This will be our definition of X' (y,v), the free relative entropy of u with respect to
v. In fact, X(u,v) is symmetric in the two variables and was investigated already
in [14]. Note that Biane and Speicher [3] introduced the notion of free relative
entropy (also free Fisher information) with respect to a function F while ours are
defined with respect to a measure v. After the discussion of the properties of the
free relative entropy X(u,v), we move to state perturbation.



Free relative entropy for measures and a corresponding perturbation theory 681

Let us recall that in the setting of operator algebras the relative entropy
S(p,w) is defined for states ¢ and w, and for a selfadjoint operator /i the
minimizer of the functional

S(p, @) + o(h)

is called the inner perturbation of the state w; the notation
Following this pattern the minimizer of

his used.

S(v) + jf(x) ()

will be called the perturbed measure. In Sections 2 and 3 of the paper, this
perturbation procedure is studied following the pattern of the state perturbation
procedure in operator algebras. Roughly speaking several results are analogous,
however in the perturbation theory via the free relative entropy there are slight
differences.

Voiculescu originally introduced the free entropy X(u) based on his spec-
ulation (so-called Voiculescu’s heuristics) that X(u) appears as a normalized limit
of the relative entropies of the distributions of certain random matrices with
respect to the Lebesgue measure on the matrix space. A more rigorous deri-
vation of Voiculescu’s heuristics was later given in [2]. In Sections 4 and 5, we
show a similar but different result asserting that the free relative entropy X (v",v)
for the perturbed measure v" via free relative entropy is a normalized limit of the
relative entropies of the distributions of random matrices perturbed according
to h.

As 1s briefly explained in the last section, free relative entropy and the
corresponding perturbation theory for probability measures on R can be fully
adapted to the case of probability measures on the unit circle.

Throughout the paper our main reference is concerning random matrix
models, related large deviations and entropy in free probability theory.

1. Free entropy and free relative entropy.

For a probability Borel measure 4 on R the fiee entropy X(u) was in-
troduced by Voiculescu as

S() = Hlog\x — ) du(x) d(y), (1.1)

and it is indeed the minus sign of the so-called logarithmic energy of u familiar in
potential theory ([18]). In this paper the support of y, denoted by suppu, is
that in the topological sense, i.e. the smallest closed subset K < R such that
u(K)=1. Note that the double integral (1.1) always exists with a value in
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[—o0,+00) whenever u is compactly supported. The free entropy functional
2 () is upper semi-continuous in weak topology when the support of u is re-
stricted in a compact set, and it is strictly concave (see [13, 5.3.2]).

The microstates (or matricial) approach for free entropy was developed in
[20]. For each ne N let M, denote the space of all n x n complex matrices and
tr, the normalized trace functional on M,. The set of all selfadjoint matrices
in M, is denoted by M;“. There is a natural linear bijection between M, and
R"™ which is an isometry for the Hilbert-Schmidt and Euclidean norms, so the
“Lebesgue” measure 4, on M;“ is induced by the Lebesgue measure on R"™ via
this isometry. Let x4 be a probability Borel measure supported in [—R, R],
R >0. For n,re N and ¢ > 0 define

Tr(pn,re) :={Ad e M*“: ||A|| <R, |tr,(4") —my(p)| < ek <7}, (1.2)

where ||4|| is the operator norm and my(u) := [x*du(x), the kth moment of
. Then the limit

1 1
xr(p;1,8) == lim | — log A, (IR(p;n,1,¢)) + = logn (1.3)
n—oo | n 2

exists for every re N and ¢ > 0, and

: 1 3
dim Cre(prse) = 2(p) +5 log(2m) + - (1.4)
(See [13, 5.6.2] for the existence of the limit in (1.3) while lim was originally
limsup in [20}.)
The Boltzmann-Gibbs entropy S(u) of a probability measure x on R is given
as
du . du
= —|— log—
S(w) de ogdxdx
if u is absolutely continuous with respect to the Lebesgue measure dx and du/dx
is the Radon-Nikodym derivative; otherwise S(u):= —oco. The relative entropy
(or the Kullback-Leibler divergence) S(u,v) of u with respect to another prob-
ability measure v is defined as

du . du du
S = |—log—dv=|log—d
if x is absolutely continuous with respect to v; otherwise S(u,v):=+o0. If u
and v are supported in [—R, R], then these entropies have the asymptotic ex-
pressions as follows:
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S(u) = lim limllogL"({(xl,...,xn)e[—R,R]":

r—o0,e—+0 n—oo n

—S(u,v) = lim lim ! log v”({(xl, .., Xn) €[-R,R]":

r—o0,6e—+0 n—oo n

where L” is the n-dimensional Lebesgue measure and v” is the n-fold product of
v. These expressions can be derived from Sanov’s large deviation theorem for
the empirical distribution of i.i.d. random variables (see [13, 5.1.1] for details).

The free entropy X(u) is the free analogue of the Boltzmann-Gibbs entropy
S(u), and the asymptotic expression given in (1.2)—(1.4) (with scale n=2) is the
“free” counterpart of the expression (1.5) (with scale n~!). Now, naturally arises
the following question: What is the free analogue of the relative entropy S(u,v)?
The problem was recently investigated in [14], and it turned out that the free
relative entropy X(u,v) of u with respect to v can be defined as

S(v) = —jjlog\x (g - ) () d(s— ) (), (1.7)

which is the logarithmic energy of a signed measure u —v. But the above (1.7)
may not be well-defined, and to be more precise we adopt the following definition:

£l = fim - [ toe(lx =31 + (-] (19

In fact, this is well-defined because &> 0— —[[log(|x —y|+¢&)d(u—v)(x) -
d(p—v)(y) is increasing as ¢ \,0 ([14, Lemma 3.6]). Of course, the integral
(1.7) exists and coincides with (1.8) as long as log|x — y| is integrable with re-
spect to d|u — v|(x)d|u— v|(y); in particular, this is the case if X (u) > —oo and
2(v) > —oo (see the proof of [13, 5.3.2]).

In [14] the asymptotic expression of the free relative entropy X(u,v) was
obtained in the microstates approach. Before stating it we here give a brief
exposition on some large deviation result related to random matrices, which is a
basis of deriving the asymptotic expression of X'(x,v). This large deviation will
indeed play a crucial role in Section 4 as well.

Let R > 0 and Q be a real continuous function on [—-R, R]. For each ne N
define the probability distribution 4,(Q; R) on R" by
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WOR) = p(z Q(x,->> ICEE

i<j

X | | x=r r (i) dxidxy - - - dxy, (1.9)

n
i=1

where Z,(Q; R) is the normalizing constant:

Z,(O;R) ::J R---J Rexp(—nzn: Q(xi)) H |x; — xj\zdxl - dy. (1.10)
- - i—1

i<j

Moreover, let 4,(Q; R) be the probability distribution on M which is invariant
under unitary conjugation and whose joint eigenvalue distribution on R" is
2,(Q; R); more explicitly,

in(Q; R) = (dU @ Js(Q; R)) 0 &, ", (L.11)

where dU is the Haar probability measure on the #-dimensional unitary group %,
and @, : U, x R" — M* is defined as

D,(U,(x1,...,x,)) := Udiag(xy,...,x,)U".

One can consider 4,(Q; R) as the distribution of an n X n random selfadjoint
matrix, or more explicitly 4,(Q; R) itself as a random matrix. The support of

Jn(Q; R) is
(M) := {A e M : ||A] < R}, (1.12)

n

The empirical eigenvalue distribution of this random matrix is the random discrete
measure
O(x1) +0(x2) 4+ -+ - +0(xp)
n Y

where J(x) is the point measure at x and the R"-vector (xi,xp,...,X,) is dis-
tributed subject to the distribution (1.9). Let .#([—R, R]) denote the set of all
probability measures supported in [—R, R] equipped with the weak topology.
Then we have the following large deviation theorem.

THEOREM 1.1. Let Q and Q, (n€ N) be real continuous functions on [—R, R]
such that Q,(x) — Q(x) uniformly on [—R,R]. For each ne€ N define the prob-
ability distribution J,(Qyu; R) supported on [—R,R]" by (1.9) and the normalizing
constant Z,(Qu; R) by (1.10) with Q, in place of Q. Then the finite limit

B(O: R) = lim — log Z,(Q,: R) (1.13)
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exists, and if (X1,-..,x,) €[—R,R]" is distributed with the joint distribution
4n(On; R), then the empirical distribution (1/n)(d(x1) +---+9d(x,)) satisfies the
large deviation principle in the scale n=* with the good rate function:

I(u) == =2(n) + 1(Q) + B(Q;R)  for pe 4([-R,R]).

There exists a unique minimizer pgy of I with 1(ug) =0 and B(Q; R) is determined
by only Q (independently of the choice of {Q,}). Furthermore, the above em-
pirical distribution converges almost surely to gy as n— oo in weak topology.

The above large deviation is a matricial counterpart of the famous Sanov
large deviation theorem ([5], [6]). The probability distribution P, on .#(|—R, R])
of the random measure (1/n)(d(x;)+---+d(x,)) is given by

Py(T) := 2,(Ou; R) <{(x1, x) e[RRI Ol F})

n

for Borel sets I" < .#([—R, R]). Since .#(|—R, R]) is weakly compact (hence the
exponential tightness of (P,) is automatic), it suffices (see [5, 4.1.11]) to prove that

—I(u) = ir(1;f llizrisololp% log Pn(G)l = iréf lli’rlriiogf% log P,,(G)}

for every e .4 ([-R, R]), where G runs over the neighborhoods of . The proof
is more or less similar to that of [13, 5.4.3 and 5.5.1], so we omit the details.
The assertion on the minimizer is a consequence of the fundamental result on
weighted potentials (see [18, 1.1.3 and 1.3.1] or below). The proof of
the last statement is found in [13, p. 211].

Now let us return to the free relative entropy. Let v be a compactly
supported probability measure on R, and assume that the function

0,(x) = 2jlog|x —Jdv(y) (1.14)

is finite and continuous (as a function on R) at every x € suppv. Then Q, is a
continuous function on the whole R, because Q,(x) is always continuous on
R\suppv. For instance, this is the case when v is absolutely continuous with
respect to dx and dv/dx is bounded. For R > 0 define the probability distri-
bution 4,(v;R) on M * by putting Q= 0, in (1.9) and (1.11): 4,(»;R) :=
/n(Qy; R).  Then the next theorem was proved in [14, Theorem 3.8] by appealing
to the above large deviation theorem in the case Q, = Q0 = Q,.

THEOREM 1.2. Let u,v be compactly supported probability measures, and as-
sume that Q,(x) in (1.14) is continuous on R. Then for any R > 0 with supp u,
suppv < [—R, R],
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—2(u,v) = lim limilogin(V;R)(FR(u;n,r,S)), (1.15)

r—00,6—+0 n—oo n?
where ITr(u;n,r,e) is given in (1.2).

The above expression is the free analogue of (1.6). The reference
measure 4,(v; R) on M;* is a bit more complicated than the product v" on R" in
(1.6), but it is the right one in free (or matricial) probability. In fact,
1.1 (together with [Lemma 2.1) says that the empirical eigenvalue distribution of
the n x n selfadjoint random matrix having the distribution 4,(v; R) converges
almost surely to v, the minimizer of the rate function, as n — oo in weak topology
(hence in the distribution sense). In this way, gives a justification
for our free relative entropy 2'(u,v). Another (more decisive) justification will be
presented in Section 4.

We end the section by listing basic properties of X'(u,v) given in [14]. The
properties except the first one are analogous to those of the relative entropy
S(u,v). Let u,v,u,v; be compactly supported probability measures on R.

(i) Symmetry: X(u,v) =2(v,n).
(ii) Strict positivity: X (p,v) >0, and X(u,v) =0 if and only if u=v.
(iii) Joint convexity:

(A + (1= A, Avi + (1= AJva) < A2 (ay,v1) + (1 = 4) 2 (1, 2)
for 0<i<1.
(iv) Single strict convexity:
Z‘(/Ilul + (1 - j‘)ﬂZ? V) < /12(#17 V) + (1 - /1)2(1“27 V)

if 0 <A<, uy #1y, 2(py,v) <+oo and X(u,,v) < +o0.

(v) Joint lower semi-continuity: X (u,v) is jointly lower semi-continuous in
weak topology when the supports of u,v are restricted in a compact
set.

2. Perturbation via free relative entropy.

Let K be a fixed compact subset of R, and let .#(K) denote the set of all
probability Borel measures supported in K. Also, let Cg(K) denote the space of
all real continuous functions on K. For pe .#(K) and h e Cr(K) we write u(h)
for [, hdpu.

The (logarithmic) capacity of a compact set C < R is defined as

cap(C) = exp(sup{2(p) : we #(C)})

with convention cap(C) = 0if 2 (u) = —oo forall u € #(C). Then the capacity of
a general Borel set 4 — R is defined as cap(A4) := sup{cap(C) : C = A compact}.
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A property is said to hold for quasi-every x € A if it holds for all x € 4 except in
a set of capacity zero.

Throughout this section, let ve .#(K) be such that the function Q = Q,
given in (1.14) is finite and continuous on K; hence Qe Cgr(K) and K has
positive capacity. For given /& € Cg(K) define the weighted energy integral

Ep(u) = ” log du(x) du(y) + Jhdu = —2(p) + pu(h)

X — |

for ue #(K). For later use, we state the fundamental result in the theory of
weighted potentials ([18, I.1.3 and 1.3.1]) in a reduced form of the next lemma.

LemMa 2.1.  For every he Cr(K) the following assertions hold:
(1) There exists a unique w, € M(K) such that

En(py,) = inf{Ey(p) : pe M (K)}.

(i) Ep(w,) and X(w,) are finite.
(ii1) The minimizer w, is characterized as w, € #(K) such that for some

BeR

> h(x)+ B for all x € supp p,

2|1 —y|d
J oglx — I ,uh(y){ < h(x)+ B for quasi-every x € K.
In this case, B= —2E;(w,) + w,(h).

For v e .4 (K) fixed as above, the Legendre transform of ue M (K) — X (u,v)
is defined as

c(h,v) = sup{—u(h) — 2(u,v) : e M(K)} (2.1)
for each he Cgr(K).

THEOREM 2.2. With the above definitions, the following assertions hold.
(i) ¢(-,v) is a convex function on Cgr(K) satisfying

—v(h) < c(h,v) < ||h] (2.2)

(in particular, c¢(0,v) =0) where |h| is the sup-norm, and it is de-
creasing, i.e. c¢(hy,v) > c(hy,v) if hy < hy.  Moreover,

|c(h,v) = (b, )| < [l = hall (2.3)

for all hy,hy, e Cr(K).
(i) For every ue M (K),

2 (u,v) =sup{—u(h) —c(h,v): he Cr(K)}. (2.4)

(ili) For every he Cr(K) there exists a unique v" e 4 (K) such that
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—vI(h) = 2", v) = c(h, V). (2.5)
Moreover, X(v") is finite and
c(h,v) = Z(W") + Z(v) = v"(Q + h). (2.6)

(iv) For every he Cgr(K) and pe #(K), p=v" if and only if
c(h+k,v) > c(hyv)—ulk) for all ke Cr(K).

Proor. (i) The convexity and the decreasingness of ¢(-,v) are obvious by
definition. follows immediately from the positivity of X(u,v). For every
hi,hy € Cr(K) and ue #(K),

—u(h) = 2(p,v) = —ulha) — 2(p,v) + plhy — ) < c(ha,v) + | = ha ],
and hence
c(hi,v) < c(hy,v) + || — |-

This implies by symmetry.

(ii) Let Cr(K)" denote the space of all signed Borel measures on K, which
is a Banach space with respect to the total variation norm and is identified with
the dual Banach space of Cgr(K) with the sup-norm. Note also that the weak
topology on .#(K) coincides with the w*-topology. The definition (2.1) means
that ¢(-,v) : Cr(K) — R is the conjugate function (or the Legendre transform) of
the function ¢ : Cr(K)* — [0, +c0] given by

_ [ 2(wv) if pe d(K),
olw) = {+oo if e Cr(K) \M(K).

By the properties of X'(x,v) listed at the end of Section 1, it follows that ¢ is a
w*-lower semi-continuous and convex function. Hence (2.4) is a consequence of
the general duality theorem for conjugate functions.

(iii) We first show that

2(u,v) = =2(1) = 2(v) + u(Q) (2.7)

for all ue #(K) permitting both sides being +oo. Indeed, for ¢ > 0 we write

— || log(]x — y| + &) d(p —v)(x)d(u—v)(y)
I
— J J log(|x — y| + &) du(x) du(y) — “ log(|x — y| + &) dv(x) dv(y)

" zj(jlogux yl+e) dv<y>) du(x),
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and the first two terms in the right-hand side converge as ¢ \, 0 to —X(u) and
—2(v), respectively. When ¢ <1 and R := max{|x — y|: x, y € K}, the diameter
of K, since

Jlog(|x 4 &) dvly) < log(R + 1)

and 2 [log(|x — y| +¢&)dv(y) \, O(x) as ¢ \, 0, the last term in the above equality
converges to u(Q) by the monotone convergence theorem. Hence is ob-
tained.

By we have
—u(h) = Z(pu,v) = Z(1) — (@ + h) + 2(v) = —Egun(p) + 2(v).  (238)

Hence implies that there exists a unique " (or py,,) in .#(K) for
which is satisfied, and X(v") > —co. The formula is obvious from
(2.8).

(iv) Rewrite

c(h+k,v) > c(h,v)—v(k) for all ke Cgr(K)
as
cth+k,v)+uh+ k) = c(h,v)+v(h) for all ke Cg(K).
By (2.4) this condition is equivalent to
=2(u,v) = c(h,v) + u(h),
which means u = v". ]

We call v in [Theorem 2.2 the perturbed probability measure of v by h (via
free relative entropy). Note that the variational expression (2.4) of X(u,v) is
valid for any choice of a compact K = R such that K > supp u, suppv. Clearly,
vit* =y and ¢(h+a,v) = c¢(h,v) — a for o €R.

It is instructive to consider the perturbed measure v" in comparison with the
similar perturbation via relative entropy. For any ve .#(K) and h € Cg(K), it is
well-known that

h

logv(e™) = sup{—p(h) — S(u,v) : p e M(K)}

and the probability measure u, := (e™"/v(e™))v (i.e. duy/dv=e""/v(e™")) is a
unique maximizer of —u(h) — S(u,v) for pe #(K). In fact, this can be easily
verified by using the strict positivity of S(u, ;). Moreover, for every u e .#(K),

S(u,v) = sup{—u(h) —logv(e ™) : he Cr(K)}.
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The probability measure 4, perturbed from v via the relative entropy S(u,v)
is the so-called Gibbs ensemble. The above c(h,v) is considered as the “free”
counterpart of logv(e™"), and the characterization of v/ in the above (iv) is the
“free” analogue of the so-called variational principle for Gibbs ensembles ([17]).
It is worth noting, as mentioned in Introduction, that this type of perturbation
theory via relative entropy was developed even in the quantum probabilistic set-
ting on operator algebras ([16], [7], [15, Section 12]).

We shall write v** for v in and v"S for the above y,, when
both perturbed measures via X'(x,v) and S(u,v) are simultaneously treated. A
simple expression of c¢(h,v) such as logv(e™) is not available; nevertheless in
Section 4 we shall give an asymptotic expression of c(h,v).

PrOPOSITION 2.3.  For every ue M (K),
(uv") < E(uv) + uh) + c(h, ). (2.9)
Moreover, if supp u < supp V", then

Z(u,v") = Z(u,v) + u(h) + c(h,v). (2.10)

PrOOF. Since v"

Lemma 2.1

is the minimizer of Ep.;(u) due to (2.8), we have by

(x) + h(x) + B for all x € supp i,

2.11
(x) + h(x) + B for quasi-every x € K, 211)

2J10g|x — dvh(y){ g

A IV

where
B=—2Eg.;(v") +v'(Q + )
— 22(") = V(Q + h)
= Z(") = Z(4) + c(h )

from [2.6]. For there is nothing to prove when X(u,v) = +00, so assume
that 2 (u,v) < 400 and hence 2'(u) > —oo by [2.7). For ¢ >0 we write

_”10g<|x_y| ey d(u— ) (x) (i — V()
- —” log(|x — y| + &) du(x) du(y) — ” log(|x — y| + &) dv"(x) dv'(y)

—|—2JJ10g(|x—y| +&)dv"(y) du(x). (2.12)
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The first two terms of (2.12) have the finite limits X(x) and X(v*) as &\, 0, and
the monotone convergence theorem can be applied to the last term of (2.12) as in

the proof (iii) of [Theorem 2.2. Hence we get

S(urh) = =20 = 20" + 2 ([toghe = 1v" (1)) o),

Since X'(x) > —oo implies that u(A4) = 0 for any Borel set 4 of capacity zero (see
[18, 1.1.7]), we can use the second inequality of (2.11) to obtain [2.9):

S v") < —5 () — ZOM) + w(Q +h) + B
= =2(u) = 2(v) + (@ + h) + c(h,v)
= 2(u,v) + u(h) +c(h,v).

Next, assume that suppu = suppv”. Then the first inequality of (2.11)
implies that

2J<Jlog\x -y dvh(y)> du(x) > u(Q+h) + B > —co.

Hence we can take the limit & \, 0 of (2.12) (regardless of X(u) > —oo or not) so
that

(") = =Z(n) = Z(0") + u(Q+h) + B
= 2(p,v) + p(h) + c(h,v).
This together with gives (2.10). O
COROLLARY 2.4. For every he Cr(K),

v(h) — v*(h)

(v < B <y,
h
c(h,v) = —v(h) + (", v) > — vh) -;v ()
Furthermore, if suppv c supp V", then
v(h) — v (h)

c(h,v) = —v(h) + Z(",v) = —

PrOOF. Putting x4 =v in gives
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(M) = Z(,v") < v(h) + c(h,v)
= v(h) —v"(h) = Z(v",v)

from [2.5), and this implies the first assertion. If suppv = suppv”, then equality
occurs in the above thanks to (2.10). N

The next proposition is the chain rule for the perturbation v — v".

PROPOSITION 2.5. Let h,ke Cr(K). If Q,(x):=2[log|lx —y|dv"(y) as
well as Q = Q, is continuous on K and supp(vh)k c suppv”, then
(Vh)k _ vh-l—k

c(h+k,v) = c(h,v) + c(k,v").
In particular, these hold if suppv" = K and Q,s = Q+h on K.

PrOOF. Since Q. is continuous on K by assumption, the perturbation (vh)k

of v" is well-defined and it is characterized as follows: for some B’ € R,

3 > Qi (x) +k(x) + B for all x e supp(v")*,
2 [l -yl 2 00T et
< Q,n(x)+k(x)+ B' for quasi-every x € K.

Since supp(vh)k < suppv”, combining this with (2.11) gives

> Q(x) + h(x) + k(x) + B+ B for all x e supp(v")*,

2 | log|x — y|d(v")* {
Joglx y[d(v")"(») < O(x) + h(x) + k(x) + B+ B’ for quasi-every x € K,

which characterizes v** so that (v!)* = yt*,

By we get
c(h+k,v) = =" (4 k) — 2" ),
ek, ") = — (") (k) — (M) = MR (k) — Do h.
Since suppv"*¥ < suppv”, we also get by
(IR Y = DR ) R () 4 e(hy v).
Combining the above three equalities yields
c(h+k,v) = c(h,v) + c(k,v"),
as desired. [

COROLLARY 2.6. Assume one of the following conditions:
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(@) we M(K) is such that Q, as well as Q, is continuous on K, and
h:=Q0,— 0,
(b) he Cr(K) and p:=v" satisfies suppv < supp u.
Then for each 0 < 1 <1,
v = (1= D)y + u,
T ) = P22 (),
c(Ah,v) = =Av(h) + 222 (u, v).
Proor. We just prove the case (b); the proof of the case (a) is similar. For

0 <A< 1puty :=(1—-21)v+ Au, so we have supp u, = supp u thanks to suppv
suppu. From the characterization of =" we have for some Be R

> Q,(x) + Ah(x) + AB  for all x € supp u;,

O, (x) = (1 = 2)Oy(x) + ’IQ/‘(X){ < Q,(x) + 2h(x) + AB for quasi-every x € K,

which implies that u, = v*. By [Corollary 2.4,

V() — (1= A)v + ) (2h)
2

— )2 v(h) ;ﬂ(h) = 225 (u,v),

Z(VM, V)

c(2h,v) = —v(Ah) + 2" v) = —Jv(h) + 222 (u, V),

and the latter holds also for A =0, 1. OJ

h,S

As for the perturbation v — v%S via relative entropy, suppv”S = suppv is

obvious and the formulas

S(u, V%) = S(u, v) + u(h) +logv(e™), (2.13)

(Vh’S) k.S _ vh-l—k, S

logv(e~ "Ry = logv(e™") + logv™S(e7)

hold in general.

The relation between v and v = v»% is more complicated than that between
v and vS. However, the formulas in (though they do not generally
hold) are quite simple compared with those for v**5; in fact, v/»S (0 <1< 1) is
not a line segment, and (d2/di*)S(v/"S v) and (d?/d}*)S(v,v*"S) are non-
constant functions of A. The simple formulas for v in [Corollary 2.§ cor-
respond to the flatness of the Riemannian metric induced by the free entropy (see
[14, Section 4]).

hx
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The following example shows that the support assumptions in Corollaries
2.4, 2.6 and Proposition 2.5 cannot be removed.

ExampLE 2.7. Let K :=[—R,R] and v be the arcsine law on [-R,R], i.e
1

Vi= ————y_g g (¥) dx. 2.14

N Rz—xzx( R,R)( ) ( )

We notice Q,

(x) =2lo (R/2) and X(v) =log(R/2). For each r>0 set h, €
Cr([=R, R]) by h(x):=

x2/r?. For 0 <r <R let w, be the semicircle law of

radius 7, i.e.
wr(x) = \/;2———; X-r.n(x) dx
Since O, (x) =2 [" w,(y)log|x — y|dy satisfies (see [18, Section IV.5])
Oy, (x) :2r—);2—|—210g%—1 if x| <7
and
O, (x) =2—2+21 X V;‘Z - Jl;dm_ I

x? r :
<—2+210g§—1 if |x| >r,

we see that w, = v when 0 < r < R. Furthermore, note that O, 1s continuous
n [-R,R]. On the other hand, for r > R let x, be a convex combination of wg

and v given by
R? R?
M, = (1 ——2>V+—2WR
r r

Recall ([10, Proposition 3.3]) that g, is a unique maximizer of the free entropy
2(u) under the constraint that u is supported in [—R,R] and [x*du(x) <
R?/2 — R*/4r*. Since

0,0 = (1-5) 20+ % 01t

2x2 B
2

R2
———|—21 —— for |x[ <R,
r

we have p. = v» when r > R.
One can explicitly compute

log(R/r)+1/4 if 0<r<R,

R
S )y = — (v — 3 2log~ =
(v, v) (v™) (v) + ng {R4/4r4 if r>R,
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v(hy) = v (h,) {R2/2r2 —1/4 if0<r<R,
> R4 J4r if >R,

() = log(r/R) —3/4 if0<r<R,
"\ RY 4t - R ifr> R

Hence all equalities in Corollaries 2.4 and 2.6 are confirmed when r > R (hence
supp v"" = suppv = [~ R, R]). Since log(R/r) +1/4 < R*/2r* —1/4 if 0 < r < R,
the assumption supp v = supp v" in [Corollary 2.4 (also [Corollary 2.6) is essential.
For r > R one has v = ()" = (v/)™" because Q,(x) = Q, (x) — h.(x) + R*/r?
for |x] < R. However, for 0 < r < R one cannot choose a constant B € R such
that Q,(x) = Oy, (x) — h(x) + B for |x| < R; hence v # (w,)”"" = (v")™. This
says that the assumption supp(v*)* = suppv" in [Proposition 2.3 is essential.
But, of course, v = (wr)h for h:=—Q,,. So, both suppv < suppv" and suppv o
supp v" can occur in general.

The next proposition gives a simple sufficient condition for € .#(K) to be a
perturbed probability measure of v.

ProPOSITION 2.8. If ue 4 (K) satisfies u < ov for some constant o > 1, then
Qu(x) := 2 [log|x — y|du(y) is continuous on K and there exists an he Cr(K)
such that u=v".

Proor. It is enough to prove the first assertion. Indeed, we then have
h:=0,— 0,e Cg(K) and

2 toglhx = 31 du() = Q) = 0,(x) + h(x) for all xe K.

showing u = v".

Let xo € K and ¢ > 0. Since y — log|y — x| is integrable with respect to v,
one can choose 0 <J < 1 such that

(0>) J log|y — xo|dv(y) > —e. (2.15)
K| y—xo| <0}
Furthermore, one can choose dy > 0 such that if x € K and |x — x| <y, then
1
710:(x) = Qx| <, (2.16)
log|y — x| dv(y) - logly = xoldv(y)| <&, (2.17)
KN{|y—x|>6} KN{|y—xo|>d}
' log|y — x| du(y) - logly — xoldu(y)| <& (2.18)
JKN{|y=x>0} JKN{y=|>0}




696 F. Hia, M. Mizuno and D. PerZ

In the above, the estimate (2.17) follows because the Lebesgue bounded con-
vergence theorem yields

lim

j b@y—ﬂdWﬁ=i[ log]y — xol dv()
X—=X0 KN{|y—xo|>0}

K0{|y—xo|>0}

and

lim J — J log|y — x| dv(y) = 0.
XX\ JKN{|y—x|>6} KN{|y—xo|>0}

The estimate (2.18) is similar. Assume x € K and |x — xg| < do; then by
and (2.17)

| logl x| av(y) - | logly — xo| dv()
KN{|y—x| <6} KN{| y—x0| <0}

< [Qv(x) = Ov(x0)]

+f logl x| av(y) - | log|y — ol dv()
KN{|y—x|>d} K0{| y—xo[>0}

< 2e,
and hence
J log|ly — x| dv(y) > J log|y — xo|dv(y) —2e > =3¢ (2.19)

Kn{|y—x|<d} KN{|y—xo| <0}

thanks to (2.15). From 6 <1 and the assumption u < ov we have

310409~ ()

sj mgy—ﬂmmm—j log|y — xo| du()
KN{|y—x|>3} KN{]y—xo[>0}
—J I%W—xwmw—j log|y — xo| diu()
KN{]y—x| <0} KN{Jy—x0| <0}
<o logl x| dv(y) - | logly — x| dv()
KN{|y—x|<d} KN{|y—xo| <6}

<ée+3oe+oe=(1+4n)e

by (2.18), (2.19) and (2.15). Hence Q,(x) is continuous at each xoe K. [
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Under the assumption u < v in the above proposition, Q, and Q, can be
compared as follows.
LemMa 2.9. If ue 4 (K) satisfies u < ov for some o> 1, then
0.(x) = 2Q,(x) +2(1 - n)logR (xeK).
where R is the diameter of K.

Proor. Choose ¢ € R such that K < [c— R/2,c+ R/2], and transform K
and u,v to K' (< [-1/2,1/2]) and u/',v' € 4(K') via the affine transformation
x— (x—¢)/R, so u<ov implies 4’ <ov’. Then for every x € K’ we estimate

0,(c + Rx) = zjK log|(c + Rx) — y| du(y)

_ zJ Jog|(c+ Rx) = (¢ + Ry)| i (7)

2 <J log|x — y|du'(y) +log R)

> 2<ocJ log|x — y|dv'(y) + 10gR>
K/

2<oc (L log|(c + Rx) — y|dv(y) — log R) +log R)

=0Q,(c+ Rx) +2(1 —a)logR,
showing the desired conclusion. O]

CoroLLARY 2.10. [If pwe /M (K) satisfies fv <u<ov for some constants
0 < p<1<a, then there exists an he Cr(K) such that u=v" and

(1—a)2logR—Q,) <h<(1-p)(2logR - 0,),
where R is the diameter of K. (Note Q, <2logR.)
Proor. By [Proposition 2.8 and [Lemma 2.9, Q, € Cg(K) and
Ou(x) = a0y(x) +2(1 —a)logR (x€K).

Since v < 'y, the roles of u,v can be interchanged so that

Oy(x) = ﬂ_lQﬂ(x) +2(1 - ﬂ_l) log R,
that 1is,
OQu(x) < Oy(x) +2(1 — p)logR  (x € K).
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Hence the required estimates are satisfied for 4 := Q, — Q,, and we have u = v"

for this . L]

CoROLLARY 2.11. If ue M (K) satisfies fv < pu < av for some 0 < f <1 < a,
then

2(v) < (e = 1) + (1 = f))(log R — Z(v)).
Proor. |Corollary 2.10 gives
W(h) < (1= B)(2log R~ v(Q,)) = 2(1 - B)(log R — Z(v)).
pu(h) = (1 —a)u(2log R — Qy)
> ol —a)v(2logR — 0,) = 20(1 — a)(log R — Z'(v)).

IA

Hence by [Corollary 2.4 we have

s = O < o1 4 (1 ) tog R - £0)).

(Note X(v) <log(R/4), see Example 2.7). O

3. Convergence of perturbed measures.

As in the previous section, let K be a compact subset of R and ve .#(K) be
such that Q = Q, € Cg(K). The aim of this section is to show the continuity
properties (with respect to /) of the perturbation v" introduced in the previous
section.

Set

Mx(K) :={pe dK): Z(u) > -0},
and for u;,u, € #s(K) define

d(:ulnuZ) = E(:ulnuZ)l/z € [07 +OO)

The next lemma is an application of the series expansions of the function
x — [log|x — y|du(y) and of the free entropy 2 (u) due to Haagerup [8], and it
will play a key role in the proof of the following theorem.

LemMa 3.1. The above defined d(u,,1,) is a metric on Ms(K) and the
d-topology is stronger than the weak topology (restricted on Ms(K)).

Proor. The free relative entropy X(u,,u,) is symmetric and strictly posi-
tive as stated at the end of Section 1. To prove the triangular inequality of
Z(uy, 112)"%, we may assume K = [—R, R] without loss of generality. First, as-
sume K =[-2,2] and set
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oG

n=1

for 0 <r <1 and x, y € [-2,2], where T,’s are the Chebyshev polynomials of the
first kind. In [8] Haagerup estimated

1
2l0g2 > Li(x, y) = 5 log(1 = )" + 2 (x? + %) = r(1 + 1))

1
> log|x — y| + 2log%,

and showed the series expansion

2

sw=-32([ 5 (3) aum) 31

for every pe #([-2,2]). When puy, u, € Mx([-2,2]), since log|x — y| is integrable
with respect to d|u; — i,|(x) d|u; — wo|(y) and L,(x, y) — log|x — y| as r 1, the
Lebesgue convergence theorem yields

Sty tr) = —jjlogpc My — m)(x) (i — ) ()

iy~ ] 2,05 e = ) 0t = 1))

r/'1

2

([, 7 (5) dom i)

n—=

For u,u, € Ms([-R,R]) let [ :=w,((R/2):) € Ms(]—2,2]). Then, since
2(uy, ) = (i, fiiy), the above formula is transformed to

2

(o) =32 ([ 5(3) o ). 32

n=1 —-R

Now the triangular inequality of X( /11,/12)1/ 2 is obvious. If u,u, € Ms([—R, R))
and X(u;, 1) — 0, then one can see from (3.2) that w (p) — u(p) for any poly-
nomial p, which says that g, — x in w*-topology. So the d-topology is stronger
than the w*-topology (or the weak topology). ]

REemMARK 3.2. Concerning the above metric d(u,u,) on .#x(K) it is worth
noting that the d-topology is strictly stronger than the w*-topology and (.#x(K),d)
is a non-compact Polish space. Indeed, we may assume K =[-2,2], and let v
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be the arcsine law (2.14) with R=2. For 0 <d,e< 1 let v; be the uniform
distribution on [2—0,2] and p := (1 —¢)v+ev;. Then yu, € #x([-2,2]) and
iy —v|| <2e. But, since Lzz T,(x/2)dv(x) =0 for all ne N, we get

2 =232 ([ 1 (3) dn )

n=1

-3 6L

which can be arbitrarily large as 6 — +0 (for any ¢ fixed). Therefore, one can
choose a sequence {x} in .#x(|—2,2]) such that ||z —v|| — 0 (hence w;, — v in
w*-topology) but X (z,v) — 4. (Incidentally, one can get a sequence {z } in
Mx([-2,2]) such that X (g, v) — 0 and ||g; — || # 0, unlike the relative entropy

case, see [4], [9])

Next, let {4, } be a d-Cauchy sequence in .#x(]—2,2]). By (3.2) this means

that
(j 7, (5) du, <x>)0:_1 (ke N)

form a Cauchy sequence in /*(1/n), the />-space with respect to the sequence
(1/n). Hence the above sequence converges as k — oo to some (a,) € /*(1/n) in
the norm of /%(1/n), so the limit u(p) := limy_ u(p) exists for every poly-
nomial p. Since |u(p)| <||pll.,, # extends to a bounded linear functional on
Cr(]-2,2]) and g — p in w*-topology. We get

0, = lim j 7, (;) i () = j 7, (g) du(x) (neN)

so that by (3.1)

2 ([ m () i) =32z

n=1

This implies that u € .#x([—2,2]) and d(p;, 1) — 0. Since (Mx([-2,2]),d) is iso-
metrically imbedded in /%(1/n), it is separable. Furthermore, since .#x([—2,2])
is a w*-dense proper subset of .#([—2,2]) as easily seen, there is a sequence in
M3 ([-2,2]) converging to an element in .#([—2,2])\.#x([-2,2]) in w*-topology.
Then this cannot have a subsequence converging in d-topology, so (#x([-2,2]),d)
1s not compact.
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Tueorem 3.3. If h,h, € Cr(K), ne N, satisfy ||h, —h|| — 0, then the fol-
lowing convergences hold:
1) c(hy,v) — c(h,v).
(i) (v u) — ZO" ) for every ue Ms(K); in particular, (v v") — 0.

i) v — " weakly.

(iv) v (h,) — vi(h).
(v) Z(M) — Z(h).

Proor. (i) is obvious from [2.3).
(ii) By we have

0 < X" vy < (" v) + v (hy) + c(hp,v),
and this right-hand side tends to
2O ) v h) 4 e(h,v) =0

thanks to (i) and [2.5). Hence X(v",v") — 0. For every ue./#x(K), since
implies that

20 W) 2= 2 ) P < s (v v 2,

we get S(v p) — SO0 p).
(iii) is a consequence of (ii) and [Lemma 3.1.
(iv) follows from

Vi (hy) — V()| < [V () = Vi ()| + v () = v"()|
< ||y = | + [V () = v"(R)| — 0
thanks to (iii).
(v) We apply to have
(") = el v) = Z(v) +V"(Q + hy)
= c(h,v) = Z(v) +V"(Q+h) = Z(v")

due to (i), (iii) and (iv). ]

Concerning the perturbation v/

h— ™S can be straightforwardly seen from the explicit formula v
(7" /v(e™))v. In fact, when h, h, € Cg(K) and h, — h boundedly pointwise, i.e.
sup, ||| < +oo and h,(x) — h(x) for every x € K, one gets the w*-convergence
yiS — yhS by the Lebesgue bounded convergence theorem.

via relative entropy, the continuity of
hS
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The next proposition says that the weak convergence and the d-convergence
are equivalent for a sequence {u,} in .#(K) such that u,’s are uniformly
dominated by v.

PrOPOSITION 3.4.  Let pu,p, € M (K), n € N, and assume that there is an o > 1
such that u, < ov for all ne N. Then u, — u weakly if and only if X(u,,u) — 0.
In this case, X(u,) — X(u) and X(w,, 1) — Z(pu, 1) for every u' € Ms(K).

Proor. First, assume that X(u,,u) — 0. [Proposition 2.§ implies that Q, €
Cr(K) for ne N. Hence, by with g, in place of v, we get

2 py) = =2(1) — (1) + 1(Qy,)- (33)

This implies y € .#s(K) as well as u, € #x(K). Hence the weak convergence

u, — u follows from [Lemma 3.1.

Conversely, assume that g, — u weakly. Then u < av holds as well, so
Q. € Cr(K) by [Proposition 2.8. Since as (3.3) we have

2y ) = =2 (1) — 2 (1) + 14,(Q),

it suffices for X'(u,,u) — 0 to prove X(u,) — 2(u). Indeed, we then obtain

2y, ) = =22 () + w(Qy) =

Now let us prove that X(u,) — 2(x). For any ¢ >0 choose 0 <J < 1 such
that

” loglx — y| | dv(x) dv(y) < &.
{|x—y|<d}

We estimate

() — Z(4)] < U loglx — ]y — 1) dunm\

o stautey s, )

< j|jlog|x W, — ()
|

| roebe 1t = 0| o

du,(y)

dv(x)

24

Jloglx yd(u, — w)(y)
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and

[1ogt =1, 00| < |[oetx =31 v, - )
+ [ gt = 51 v9) ~ toghe ~ »1) (s, + ()
< |[toglx 1 v oyt~ )

= )
{|x—y|<o}
Therefore,

dv(x)

Jlog(|x — ¥ V&) d(p, — w)(y)

Z(um) ~ 2] < 22 |

+ do? JJ llog|x — y| | dv(x) dv(y).
{lx—y|<d}
Since u, — u weakly, we have
tim [tog(x ~ 1 v 0) (s, ~ (1) =0 (xe &)
and

sup
xekK

< 40,

J log(|x — y| v 0) d(s, — ) (»)

so the Lebesgue bounded convergence theorem yields

tin | [1og(be =31 0) (= () o) =0

Hence

limsup [2(g,) — Z(u)| < 4a’e,

n— o0

implying 2(u,) — 2(4).
It remains to show that X(u,,u') — X(u,u') for every y' € Ms(K) whenever
Uy 1€ Mx(K) and X (p,, 1) — 0. But this is immediate from as in

the proof (ii) of [Theorem 3.3. ]

As for relative entropy, it is known that if u,, v, are probability measures on
R such that ||x, — u|| — 0, ||y, — v|| — 0 and there is an « > 0 such that g, < av,
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for all ne N, then S(y,,v») — S(i,v). (This is true in the operator algebra set-
ting, see [1, Theorem 3.7].) However, this fails to hold for free relative entropy;
one can easily provide an example of y,,v, € #x(K) such that ||g, —v| — 0,
|va = v|]| — 0 and u, < av, for all ne N, but X(u,,v,) + 0.

4. From relative entropy to free relative entropy.

In this section, given v and /4 as before, for each n we consider an n X n
selfadjoint random matrix naturally perturbed via relative entropy, and show that
the perturbed measure v" via free relative entropy is the limit distribution of the
empirical eigenvalue distributions of perturbed random matrices as the size n goes
to oo. In so doing, we can also express the free relative entropy X(v”,v) as the
limit (with normalization) of the relative entropy defined on the matrix space
M.

Throughout this section, we assume for simplicity that K is a finite interval
[—R,R]. Let ve .#([-R,R]) be fixed so that Q = Q, in (1.14) is a continuous
function on [—R,R|. For each ne N we simply write /,(v) for the probability
measure 4,(v; R) = 4,(Q; R) on (M}*), given in (1.9)—(1.12). Here note that
(M}*)r 1s a compact subset of M being identified with a Euclidean space
R". For a given he Cr([-R,R]) and n e N, let ¢,(h) denote a real continuous
function on (M%), defined by

8,(0)(A) := n*try(h(4)) for Ae (M), (4.1)

n

where /1(A) is defined via functional calculus and tr, is the normalized trace on
M,. Then one can get the probability measure 4,(v) "5 on (M%) r which is
the perturbed measure of 4,(v) by ¢,(h) via relative entropy; namely, 1,(v) #n(h), S
is a unique maximizer of the functional

—1(Pu(h)) = S(n; 4n(v))  for ne 4 ((M,")p),

where #((M;*),) is the set of all probability Borel measures on (M *),. In
fact, as mentioned after [Theorem 2.2, it is given by

e_¢n (h)

$u(h), S _
ln(V) - in(V)(e_%(h))

n(V) (4.2)

and
)5 (3,(h)) = S ()P PS ,(0)) = log Zu(v)(e B P).  (4.3)

In the sequel we use the following notations for short:

A(x) := H(xl- —x;)?,  dx = dxydx;---dx,.

i<j
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LemMA 4.1. With the above notations,
In() P8 = 3,(0+ B R),

that is, 2,(v )¢" WS is invariant under unitary conjugation and its joint eigenvalue
distribution is

~ 1
In(Q+ h; R) = Z{0+h R eXP( Z Q(xi) + h(xi) ) (x) HX[—R,R}(xi) dx,
(4.4)
where Z,(Q + h; R) is defined by (1.10) with Q + h in place of Q. Furthermore,

R

Proor. Since it is obvious from the definition (4.1) that ¢,(4) is invariant
under unitary conjugation, so is the measure in(v)¢"(h)’s due to the expression

(4.2). Since 4,(v) = 4,(Q; R) has the joint eigenvalue distribution (1.9) and by
(4.1)

(4.5)

A)=n zn: h(x;)
i=1

for the eigenvalues xi,xz,...,x, of A€ (M), we get
in(v)(€_¢"(h)):;JR ...JR exp<_nz Q(x;) + h(x;) ) (x) dx
Z,(O;R) ) r )
_ Zu(Q+ 1 R)
Zy(Q; R)
This and (4.2) imply that the joint eigenvalue distribution of 4,(v) h).S g
(4.4). ]

The measure 4,(v)*"S on (M?**) may be considered as an n x n selfadjoint
random matrix which is a perturbation of /,(v) via relative entropy. The next
theorem says that this perturbation of 4,(v) via relative entropy on the matrix
space approaches asymptotically as n — oo to v" (=v"?%), the perturbation of v
via free relative entropy. In particular, it justifies our formulation of free
relative entropy. In the theorem we actually treat a sequence of perturbed
measures /ln(v)’/’”(h”)’s determined by separate %, € Cr([—R, R]) for each n sat-

istying ||, — k|| — 0. The proof is based on the large deviation result presented

in Theorem L.1.
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THeEOREM 4.2. Let ve M (|—R,R]) be as above. If h h, e Cr([-R,R]),
ne N, satisfy ||h, — h|| — 0, then the following hold:
(i) The empirical eigenvalue distribution of /ln(v)%(hn),s converges almost

surely to V' as n — oo in weak topology.
(i1)
.1
V() = lim — 2, (1) "5 (g, (). (4.6)
(iii)
1
h I P ¢n(hn)»S
2" v) = ’}LnolO;S(/ln(v) (V). (4.7)
(iv)  With B(Q; R) defined by (1.13) and B(Q + h; R) similarly with Q + h in
place of Q,
c(h,v) = lim % log Z,(v)(e ")) = B(Q + h; R) — B(Q; R).  (4.8)
v)

v(h) = v!(h) = Z(",v) = lim isun(v),zn(v) Onlln). S

n—oo 12

Hence, if suppv c suppVv", then

S(" v) = lim %S(in(v),in(v)¢"(h”)’s).
n—owon

Proor. First, note that v is the minimizer of the rate function in [Theorem

1.1, and the definition of v" in Section 2 means that v is the minimizer of the

rate function when Q is replaced by Q + / in [Theorem [.1. (With the notation

in Cemma 2.1, v/ = lg,; as well as v=pu,.) Hence implies the

following:

—2(v) +v(Q) + B(Q; R) =0, (4.9)
B(O:R) = lim L log Z,(0: R) (4.10)
—S(W") +v"(Q+h) + B(Q+h;R) =0, (4.11)
B(Q + I R) :JL%%loan(Q+hn;R). (4.12)

(i) By Lemma 4.1 the measure (or a selfadjoint random matrix) Z,(v) In(hn). S
has the joint eigenvalue distribution 4,(Q + h,; R) given in (4.4) with &, in place
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of h. [Theorem 1.1 (applied to Q +/, instead of Q,) says that the empirical
distribution of 4,(Q + h,; R) converges almost surely to v as n — oo in weak
topology. This implies the assertion.

(ii) By and (4.1),

S5m0 S ) = [ | (nZh Xz)“ 0+ I R

—R R

Mheorem 1.1 tells us that if (xi,...,x,) is distributed subject to A,(Q + hy; R),
then for every f € Cr([—R, R]) the random variable

T3 () = (2RO

converges almost surely to v"(f) as n— oo. Since ||h, —h|| — 0, this shows
that

ll’l
lim = " h,(x;) = v"(h) almost surel
nLngan (x;) =v"(h) almost surely

so that follows by the Lebesgue dominated convergence theorem.
(i) Since by (4.3) and

=2 (1) "3, () = S(a(r) 5 4 ()
=1og Z,(Q + hy; R) — log Z,(Q; R),
it follows from [4.6), and that limy_o (1/n2)S(Z(v) ™S 7,())

exists, and we have

V() — Tim = S(3, (1) # S 2,(0))

n—owo n?

= B(Q+h;R) — B(Q; R)

=" = V"(Q+h) —Z(v) +v(Q) (4.13)
thanks to and (4.11). Therefore,
1
lim — S( ()", 2, (0) = =20 + £0) +1(Q) = v(Q)

= =2(v") = Z(v) +v"(Q)
=" v)

due to [2.7). Hence (iii) follows.
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(iv) By [2.5), [4.13), [4.12] and we furthermore have

c(h,v) = —vh(h) — Z(Vh, V)
= B(Q+ M R) — B(Q; R)

1 Z,(Q+ hy; R)
_nlggnQ log Z,(0;R)

1
= lim — log 4,(v)(e ")),

n—own

as desired.

(v) By (2.13),

SUa(v), 2n(0) "5y = 2, (v) (B () + 1og 2 (v) (e~ M)

implies as that

fim — 20 (1) (s () = v(B).

n— oo ]’l2 "

These together with (4.14) give

lim iS(zn(v), () )SY = y(h)y = v (h) — 2" V).

n—o0 n2

If suppv < suppv”, then by [Corollary 2.4
v(h) —vI(h) = Z(v" vy = Z(v",v).

Hence (v) is obtained.

(4.14)

[J

Besides its conceptual importance, [Theorem 4.2 supplies the asymptotic
formulas of v*(h) and c(h,v) (when h,=h for all n); thus we obtain the
asymptotic formula of X(v" v) = —v"(h) — ¢(h,v). In particular, we state the

following:

COROLLARY 4.3. Let u,v be compactly supported probability measures on R
such that Q, and Q, are continuous. Then for any R > 0 with supp u, suppv <

[-R,R],
2(u,v)
o Lo L) SO (@) — () exp(—n Sy Qul(xi))A(x) dx
e [ [orexp(=n o0, Qulxi)4(x) dx
4 tim - log 5 pexp(=n 0, Q(x)A(x) dx

f}R "' J‘—RR exp(—n Y iy Qu(x;))4(x) dx .

n— o0 n2
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PrOOF. Set i, =h:= Q,— Q,. Then the assumption implies u# = v". The
first limit is an explicit expression of —v"(h) from [4.13), and the second limit is
a rewriting of —c(h,v) from (4.8). O

The free relative entropy X(u,v) is symmetric in its two variables unlike the
relative entropy, while the formula in does not seem symmetric in x
and v as it stands. On the other hand, the perturbation via relative entropy is
symmetric in the sense that if u is the perturbation of v by /A, then v is the
perturbation of u by —h. This type of symmetry does not hold in the per-
turbation via free relative entropy as was verified in Example 2.7, even though
the limiting procedure from the perturbation via relative entropy to that via free
relative entropy was established in [Theorem 4.2

5. Specialization to free entropy.

In this section let us work on a finite interval [—R, R] as in the previous
section. Let o be the arcsine law on [—R, R] given in (2.14). Then Q,(x) =
2log(R/2) and X(o) =log(R/2) as remarked in Example 2.7, and

>(u0) = —Z(,u)+log§ for ue 4(|~R,R). (5.1)

On the other hand, if m is the uniform distribution on [—-R, R] (i.e. m = dx/2R),
then

S(u,m) =—S(u) +log(2R) for ue .#(|—R,R)).

Thus, the arcsine law can be considered as the free probabilistic analogue of
the uniform distribution, and the minus free entropy is a special case (up to an
additive constant) of free relative entropy while the minus Boltzmann-Gibbs
entropy is a special case of relative entropy. The aim of this section is to find
the exact forms when the previous results for free relative entropy are specialized
via (5.1) to free entropy.

Define the Legendre transform of —X(u) for pe .#(|—R, R]) as

1(h) := sup{—pu(h) + 2(u) : pr € A (=R, R])}
for each h e Cr([-R,R]). The following formula is clear from (5.1):
R
I1(h) = c(h,0) + logz for he Cp([-R, R]). (5.2)

For every he Cr([~R,R]) let 6" denote the unique maximizer (guaranteed by
Cemma 2.1) of —u(h) + 2(u) for ue . #([-R,R]) so that
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—a"(h) + 2(a") = I (h).

In fact, it is obvious from (5.1) that this ¢’ is nothing but the perturbed prob-
ability measure of ¢ by % as defined in Section 2. Hence it is straightforward to
translate (or specialize) all the results in Sections 2 and 3 to the case of X'(x) and
II(h). For instance, we have the following:

(i) [II is a decreasing convex function on Cg([—R, R]) satisfying

R R
—a(h) + logi < II(h) < ||h|| + logj
and
(T (hy) — 1T (hy)| < ||y — ho|

for all h,hy,hy € Cp(|—R, R)).
(ii) For every pe #(|—R,R)]),

2(p) =1inf{u(h) + II(h) : he Cr(|-R,R])}.
(ili) For he Cr([~R,R]) and pue .#([-R,R]), u=c" if and only if
HH(h+k)>1I(h) — u(k) for all ke Cr([-R, R]).

We finally adapt the results in Section 4 to the free entropy case. Forne N
let 4, g denote the restriction of the Lebesgue measure A, (see Section 1) on
(M}*)p. Since Q,(x) is constant, the probability measure 4,(g) := 4,(g; R) on

(M}*) is nothing but the normalization of the restriction of 4, on (M¥):

1
= A )

and it induces the joint eigenvalue distribution on [—R, R]"

5 1 n

with

Note ([13, p. 240]) that

.1 R
lim — log Z,(g; R) = logE. (5.4)

n—own
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Let # be a probability measure on (M;“).. The Boltzmann-Gibbs entropy
of # can be defined as

S(n) == —=S(n, 4n), (5.5)

where S(#, 4,) is the relative entropy of # with respect to 4,. The measure 7 is
also considered as an n x n selfadjoint random matrix and it induces a distri-
bution on R" via the isometry M = R" mentioned in Section 1. Then the
entropy is indeed equal to the usual Boltzmann-Gibbs entropy of the in-

duced distribution on R”. From (5.3) one can rewrite as
S(n) = =S, 2n(0)) + log 4,((M, ") )- (5.6)
It is known ([13, p. 240]) that the measure on R" induced by 4, is

(27_[) n(n—1)/2

Cyd(x)dx with C, = —5——,
Hj:l J!

and

e 1 1 3
nll_{rolo <n_2 log C, + 3 log n) =3 log(2n) + 1 (5.7)

Under the above preparations we show the next theorem.

Tueorem 5.1. If h,h, € Cr([-R, R]), n€ N, satisfy ||h, —h|| — 0, then the
following hold-

()

1 3 1 1
o, L 3. (1 | 1
2(o )+2 log(27) +3 lim - S(n(hn; R)) +3 logn|.

(i)

O'h(/’l) — lim IFR o ur—RR((l/n) Z?:l hn(xz)) eXp(—n Zinzl hn(x,))A(x) dx.

e [ Jopexp(=n S hu(x:)) 4(x) dx
(iif)

—R

] R R n
(h) = nlinoloﬁ 10gJ J Rexp (—n;hn(xi)>d(x) dx.

Proor. (i) Since A,(0)?"S = 7,(h,;R) by [Cemma 4.1, it follows from
[4.7), (5.1) and that
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~X(0") + log = lim [~ (h(h: R)) +log A,((M;))].

n—oo N

Since by 5.4) and (5.7)

1 1 1 1 1
lim | — log 4,((M,")r) -|—§ logn] = lim l— log Z,(a; R) +ﬁ log Cn+§logn

n—o |1 n—oo | n2

R 1 3
= logz + 3 log(27) + 1

we have the desired formula.

(ii) By and (4.1) we get

o (k) = Tim — J (s R) (6, ()

n—ow n2
R R 1 n 5
= limJ J -y hy(x;) | dA,(hy; R)(x),
im | (ot ) diath R

which gives the desired formula.
(iii) By (4.8) and (5.2) we get

R R n ~
II(h) = lim 1 log| | exp|l-n Zh”(xi) dn(o; R)(x) + IOgB
R P 2

1 R R n
= lim — log exp| —n Y h,(x;) |4(x)dx
lim og | | ( > i )) (%)

thanks to [5.4). ]

In particular, when h, = h for all ne N, the above (i) says that the free
entropy X(c") is the renormalized limit of the Boltzmann-Gibbs entropy of the
distribution 4,(4; R) on the matrix space. The asymptotic formulas in (i) and
(ili) together provide that of X(¢") = o"(h) + I1(h).

The free entropy y(u) in the microstates approach is defined by (1.3)—(1.4)
so that

1) = Z(u) + % log(27) + %

for we #(|-R,R]). Since the limit in the formula of (iii) is re-
written as
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.1 ) 1 1 3
nhjg [nz log J(M;a)R exp(—n-tr,(h(A)))dA,(A4) + 3 log n] ) log(27) — 1’

the formula means that the Legendre transform 7z of —y(u) for pe .4 (|—R, R]) is
given by

n(h) = I1(h) —I—% log(2n) -I-%

n— oo

= lim iz logJ exp(—n*tr,(h(A4))) dA,(A4) + ! logn
n (M) 2

for h e Cp(|—R, R]). The form of this limit has some resemblance to the limit in
(1.3).

ExXaMPLE 5.2. For r > 0, when &, € Cr([—R, R]) is given by h,(x) := 2x?/r?,
we determined ¢’ (=v"") in Example 2.7 and

S(oh) = log(r/2) — 1/4 if 0 <r<R,
77 Vlog(R/2) — R*/4r* if r> R,

log(r/2) — 3/4 if 0 <r <R,
(k) = 4744 27,2
log(R/2) + R*/4r* — R*/r= if r > R,
When r = 2, by (iii) the latter estimate supplies the asymptotic limit

of integrals

—R

lim 1 lo JR JR ex nz”: Pla(x)d
Jim — log exp| =5 x| A(x)dx

:{—3/4 if R>2, 58)

log(R/2) + R*/64 — R?/4 if 0 < R < 2.

Next, for r > 0 set k, € Cr([—R, R]) by k.(x) :=2x/r. The free Poisson dis-
tribution p, (see [21, p. 34-35], [13, 3.3.5]) is given by

Vax — x?

Tx X(0,4] (x) dx.

H =

It is known ([13, 5.3.7]) that

0 (x){:x—2 if 0 <x <4,
# <x—2 ifx<O0orx>4.
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Let fi, be the transform of y; by the affine transformation x +— (r/2)(x —2) so
that

2 42X/ +2) = (2x/r) +2) o
=5 27((2x/r) +2) Aenr ar(x 1)

Then we have

2
03 (x) =2 [toglx £ (v = 2)| duy (1) = Qm( x+2) +2log2

7
so that

= (2x/r) +2log(r/2) if |x| <r,
Q,;,(x){ < (2x/r)+2log(r/2) if |x| >r.

Therefore, we notice that % = ji, when 0 < r < R. On the other hand, if r > R
and

(1R, R,
M = r g VluR,

then

2 R
Ou(x) = TX—I— 210g5 for |x| <R,

so we have % = ji,. Moreover, since [xdf,(x) = —r/2, the following can be
easily computed:

S(o) = log(r/2) = 1/2 if 0 <r<R,
7= Vlog(R/2) — RYj27 if r> R,

(k) = log(r/2) +1/2 if 0<r<R,
" | log(R/2) + R*/2r* if r > R.

When r =2, (iii) gives
1 R R n
lim — logJ J exp| —n Y x;|4(x)dx
n—aoo n2 _R —R ; ( )

(12 if R>2,
~ log(R/2) + R?/8 if0< R<2.
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It is worthwhile to note that a phase transition occurs at R = 2 in the asymptotics
of the integrals in (5.8) and (5.9).

In terms of statistical thermodynamics ((17])

J . .JRR exp (nlznl:h(x,-)>A(x) dx

—R

is the partition function of n logarithmically interacting particle in an outer field
h. So

1 R R n
I1(h) = lim — 1 — h(x;) 1 4(x)d
)= Jim s tog [ - Rexp( " (x)) (x) dx
is nothing else but the pressure in a one-dimensional Coulomb gas model.

6. The case of measures on the unit circle.

Let x4 be a probability measure on the unit circle T. The free entropy of u
is given as

200 = || toglc = 1l dut) duto)
For n,re N and & > 0 define
L(n,re) = {UelUn) : [tr,(U") —m(u)| <e —r <k <r},

where %(n) is the unitary group of order n and my(u) == [, Fdu(l). Then Z(p)
has the asymptotic expression ([11, Proposition 1.4]):

: .1
2(w)=lim lim —logy,(li(u;n,r,¢)), (6.1)
r—o00,6e—+0 n—oopn
where y, is the Haar probability measure on the group %(n).
Let v be another probability measure on T. The free relative entropy of u
with respect to v is defined as (1.8) by

() = fim <[] tou(c =l +2) =@ v

To obtain the asymptotic expression of X (u,v) via the matricial approximation,
we need to introduce a probability distribution on %(n) corresponding to v.
Now assume that
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0.(0) = zJT loglt — 1] dv()

is continuous on 7T, and define a probability distribution p,(v) on %(n) by

Pn(v) = exp(—n* tr,(Q,(U))) dy,(U),

Z,(v)

where Z,(v) is for normalization. This distribution is invariant under unitary
conjugation and its joint eigenvalue distribution on 7" has the density

: exp| —n y : =]
Z,() p( ;QV@,))H; g

i<j

with respect to d{; - - d(, where d(; = (1/2n)d0; ({; =¢"). Then the following
expression similar to [(1.15) is proven by use of the large deviation theorem ([12]):

—2(u,v) = lim lim iz logy, (V) (L, (1w n,r,¢)). (6.2)
r—00,6e—+0 n—oo N

The above (6.1) is a special case of where v 1s the uniform distribution vy on
T (having the maximal free entropy 0); notice X(u) = —2(u,vo) and y, = y,(vo).
One can see that the perturbation theory of measures in Section 2 is similarly
valid also for measures on 7. Furthermore, one can perform the whole discus-
sions in Sections 3 and 4 in the case of measures on T by replacing .#([—R, R]),
Cr([-R,R]) and (M*)p by 4(T), Cr(T) and %(n), respectively. The details
are left to the reader, and we here remark just a few points. First, for u;,u, €

Mx(T) ((={pe Ms(T): X(u) >—o0}) the variant of (3.2) is

2

j (- ) Q)]
T

0

2(#1,#2)22

n=1
which shows that remains valid for .#x(T). Thus, the convergence
properties in hold for perturbed measures on T too.
Next, the Legendre transform of —X(u) is given as
n(h) := sup{—u(h) + Z(u) : pe 4(T)}
for he Cp(T). Then we have

1 'd
n(h) = lim = log exp(—n’ tr,(h(U))) dy,(U)
=0 Jaun)

. 1 N n
= ;}Lnolcﬁ logu ; e JT exp <—ni§;h(5i)> H (i — Cj|2d§1 - dg,

i<j

1
n
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and
2(p) = 1inf{u(h) +n(h):he Cr(T)}

for we #(T). The “pressure” =m(h) was computed, for instance, in for
h(C) =log|l —a|* (e C,|u| < 1) and for h(e?) = —(2/4)cos@ (4> 0).

Finally, for every h e Cg(T) let v be the unique maximizer of —u(h) + X (u)
(i.e. the perturbed measure of vy by 4 via free relative entropy), and let y,(/) be
a distribution on %(n) (or a unitary random matrix) defined by

1
) =y xpn w (h(U)) d, (0).
Then we have
|
=Z(§) = 20§, v) = lim = S (7, (), 7,).
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