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Remarks on Littlewood-Paley functions and singular integrals

By Dashan FAN and Shuichi Sato*

(Received Nov. 27, 2000)

Abstract. We consider the generalized Littlewood-Paley square functions arising
from rough kernels and prove the L”-boundedness for a certain range of p depending on
the kernel. We also study a class of singular integrals by similar methods.

1. Introduction.

Let R" be the n-dimensional Euclidean space. We take i € L' (R") satisfying

(1.1) J nlp(x)dx:O,

and define the Littlewood-Paley function on R" by

t

SU) = Sy(f) ) = (jj Wy 1) 2@)1/2,

where ,(x) = "y (7 1x).
The theory of the Littlewood-Paley functions has been an important part of
harmonic analysis. We are referred to [17], and for its history and sig-

nificance. Readers also can see [2], [3], [4], [5], [9], for recent developments
by the authors.

Among many well-known results for the L? boundedness of Sy, one is the
following (see Benedek, Calderén and Panzone [1]):

THEOREM A. Let Y satisfy, in addition to (1.1),
(1.2) WW(x)| <ec(1+|x))™"° for some &> 0,

(1.3) J n|t,b(x—y)—lﬁ(x)|dxgc|y|'S for some &> 0.

Then the operator Sy is bounded on L?(R") for all pe (1, ).
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Let Py(x) = cot/(|x]* + 2)"™/% be the Poisson kernel for the upper half
space R" x (0,00). If Q(x) = ((d/0t)P(x)),_,, then Sp(f) is the Littlewood-
Paley g function, while if H(x) =y ¢(x) = xp,1j(x) is the Haar function on
R, where y, denotes the characteristic function of a set E, then Sy(f) is the
Marcinkiewicz integral

0 N
ﬂUM@Z(L|F@+ﬂ+F@—O—2ﬂﬂ2g),
where F(x fo dy. Tt is easy to see that Q and H satisfy the conditions
(1.2) and (1 3), and hence Theorem A can be applied to the proof of the L”
boundedness of g and .

Recently, Ding-Fan-Pan considered the Littlewood-Paley functions with
rough kernels and proved the following:

THEOREM B. Let eLl(R”) and suppose (1.1) and the following:

(1) lsupssol Wil = f1ll, < Gl f1l, for some re(1,0);

(2)  there exist a, f > 0 such that |xp( )| < Cmin(|&]%, |¢] ﬁ)for all ¢ e R"\{0}.
Then

1Sy (N, < Gollfl,  for all pe(2r/(r+1),2r/(r - 1)).

In [2], they also studied singular integral operators of the form:

* dt
TN = | he s
and obtained the following result:

Tueorem C. Suppose that € L'(R") satisfies (1.1) and the conditions (1)
and (2) of Theorem B. Then Ty is bounded on LP(R") for all pe (2r/(r+1),

2r/(r—1)).

We have stated Theorems B and C in slightly different forms from what are
presented in [2]; however, one can easily see that their proofs imply the results as
claimed.

In this note we improve Theorems B and C by essentially relaxing the
conditions imposed on . The methods we use will apply to the generalized
Littlewood-Paley functions and singular integrals which we now define. Let b(x)
be a measurable function on R" and let y(¢) (r > 0) be a continuous curve. For
(x,z) e R" x R, we define the generalized Littlewood-Paley function on R™!
initially for f e .%(R"™") (the Schwartz space), by

o0 1/2
S0 = SutNiwa) = (| wareaPg)
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where

¢¢ﬂxazj‘bww4wfu—%z—wwmdy

n

Then it is easy to check

where

n

A&, 0) = J b(y)(y)e 2t talae) gy,

Here 7 (F), f denote the Fourier transforms and {-,-)» denotes the inner product:
3, E =&+ -+ v,&,. We also define a singular integral of the form:

* dt
o)) = | e o S
We present the theorems for S, ., in Section 2 and give their proofs in
Sections 3 and 4. In Section 2, we also give applications of the theorems, where
we see examples of curves y and functions yy which satisfy the requirements as-
sumed in the theorems. We give the results for Sy in Section 5 as immediate
corollaries to the results for Sy ,. In Section 5, we also give some remarks con-
cerning the conditions imposed on the functions . Finally, we study 7 , and
Ty in Section 6, where we see these operators are closely related to the classical
Calderon-Zygmund singular integrals arising from homogeneous kernels and tech-
niques similar to those used to prove the L” boundedness of the Littlewood-Paley
functions also apply to Ty, and T.

2. Results for the generalized Littlewood-Paley functions.

We define two maximal functions. Let

N 1)0:2) = sup [ 16000 (3= 3. = ) |

keZ

where p(x) = Lz I, (x)|dt/t and Z denotes the set of integers; and

My, (f)(x,2) = sup

>0

Lgmwﬂ%owﬂx—%z—ﬂwmd4

Note that Ny, (f) < My,(|f]).
Our results involve the maximal functions Ny , and My ,, and can be for-
mulated as follows:
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THEOREM 1. Suppose there exists ¢ > 0 such that

Dk+1
(2.1) J |4,(¢, )| dt/t < emin(|25¢)%, [25¢)7)

2k
for all £ € R"\{0}, w € R and k € Z, where c is independent of &, w and k. Then
Sy, is bounded on L>(R™™). If we further assume that there exists re (1, 0)
such that Ny, is bounded on L'(R"™), then Sy, is bounded on LP(R™") for all

pe(2,2r/(r—1)).
THEOREM 2. Suppose that (2.1) holds and there exists r e (1,00) such that

My, is bounded on L'(R™"). Then Sy, is bounded on LP(R"™) for all pe
(2r/(r+1),2).

Let b(y) be a radial function, b(y) = bo(|y|), and ¥(») =z (|¥)|y] "' (»")
(»' =y/|y]), where Q e L' (S"!) with [, , 2(y')da(y') =0. Here o denotes the
Lebesgue surface measure on the unit sphere S”~! in R”. Then we obtain the
Marcinkiewicz integral along a curve (see also Remark 4 in Section 5):

0

o0 1/2
SwUX%@=mUX%@=(J!ﬂA&@W*w),

where

axmm:j Q0 bolly1).f (x — 3,2 — 3(15D) dy.

[yl <t

To prove Theorems 1 and 2 we adapt the method of [7] for our case of
square functions. We show two vector valued inequalities (see Lemmas 1 and 2
below), which are needed to apply the Littlewood-Paley method. Since the duality
argument as in [7] does not work completely in our case, we need different as-
sumptions involving M, , or Ny, according as 1 <p <2 or 2<p < 0.

By Theorem 1 we have the following:

COROLLARY 1. For e L'(R") suppose
2.2) | =0
lyl<t
for all t > 0. We further assume that \y is compactly supported and
(2.3) J W (p)|“dy < oo for some ue(l,0).

Let p(t) = c1t™ + -+ 4 ¢pt®™, with 0 < o < op < -+ < Oy, o # 1, ¢; # 0 for all i,
and let b(y)=1. Then Sy , is bounded on L? for all p e [2, ).
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Proor. By [Theorem 1 it suffices to prove and the L” boundedness of
Ny, for all re(1,c0). First we prove [2.1]. Note that

2 k+1

ey | ol =] oo g ok d.

2k t
where

2 d
0 &ok) = | expl(=2mi24Cy = 0,8 + 024 ~ 7)) T

We have |I(y,v,¢ w,k)| <log2 and by the van der Corput estimate (see [20])

)1/(m+1)

o= 1ol™)

2.5 Uy ¢ k)| < C<I2k<y —0, O+ |w2"(ly
i=1

By (2.4) and (2.5)

2 k+1

[ Py <dram

for all sufficiently small ¢ > 0, where

J,(4) = sup ” WO KE, - 05| dyde.
El=1 JJR7 xR

In it is proved that J,(¥) < oo for a sufficiently small ¢. The rest of the
estimate follows from and the assumption that y is compactly sup-
ported.

Define a non-negative measure u; by

(& ) = J par(p)e 2 OHxNe) gy,

n

Then

N‘Pv"/(f)(x7 Z) = Zug |:uk *f(xa Z)'

Let Ny(f) = supgcz|pox * f|. Then Ny, is bounded on L?(R") for all p e (1, 0)
(see in Section 5). Therefore by Theorem C of [7] the L" bounded-
ness, for all re (1, 0), of Ny, follows from the estimates:

(2.6) |y (&, 0)| < clagw|™ for some & > 0,

(2.7) iy (&, @) — 4 (&,0)| < clarw|®  for some &> 0,
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where a; = 2** for k >0 and a; = 2%* for k <0. Since Y is compactly sup-

ported, we easily get (2.7).
To prove (2.6), put

BEo ) = || WO E o 0 s

We note that

28) o) =|[ [ et oo it/

1
5 1/2
< <J dz)

1

< ¢|B(&,w, k)|

—2mi(2k k
J w,t( )’ 2mi(2% p, E>4+y (2% y|)w dy

Now by (2.5) we have

(2.9) |B(&, w, k)| < ¢ min \Zk“’a)| ei(Y)

1<i<m

for sufficiently small ¢, where

L) = || WO | dvs

For simplicity we assume that \ is supported in {|x| < 1}. Then by Hoélder’s in-
equality and (2.3) we have

1/u
ustwigj y*—v%8“@m>.
{Iyl<1}x{[v|<1}

where u’ is the conjugate exponent to u. It is easy to see that the last integral is
finite if u’e < min(1,1/0;). Thus by [2.8) and [2.9) we get (2.6), which completes
the proof of the corollary. O

REMARK 1. Let L:R" — R™ n > m, be a linear transformation. Then the
condition in Theorems 1 and 2 can be replaced by

2k+1

(2.10) J |4,(¢,w)|*dt/t < emin(|25LE|*, |2KLE)TF) for some & > 0,
2k

for all £e R"\{0}, we R and ke Z. Also the bounds in Theorems are inde-
pendent of the linear transform L. This can be seen as follows. Let I7,, be the
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projection I1,,x = (x1,...,X,) for xe R". Then by checking the proofs of
Theorems 1 and 2, we can easily see that (2.1) can be replaced by

2k+l

J 14,(&, w)|*dt/t < emin(|2F1T,,E|%, |2K11,,¢| %) for some & > 0.
2k

Thus the rest of the proof follows that in Corollary in [2].

As an application of Remark 1, we now state a result on the Marcinkiewicz
integral along a curve. We define the two dimensional maximal function

2k+1

g (1,0) = sup z—kj 9 — t,0— (1))] .
keZ 2k

Clearly g;(u, v) X sup,. s fg lg(u—t,v—(1))|dt.

COROLLARY 2. Let n > 2, and let y,(f) be the Marcinkiewicz integral along
y. If b is bounded and Q € H'(S"™") satisfies [y, Qdo =0, then we have

e, () oty < Coll SN o
for all pe(2r/(r+1),2r/(r—1)) provided
(2.11) [

This corollary shows that the requirement of y being convex and increasing
in Theorem 4 of [§] is superfluous.

w2y < Gllgllpr ey for some re(1,00).

ProoF. By the atomic decomposition of H!(S"1) (see [3]) one can assume
Q(y') =a(y') is an L*-atom centered at 1 = (1,0,...,0), and it suffices to show

e, (O, < €A

with C independent of a(y’).
Recall an L*-atom a(y’) centered at 1 is an L* function a(y’) on S
satisfying
supp(a) < B(1,p)NS"',  pe(0,2],

J a(y')da(y") =0,
Snfl

lall,, < p="

(where B(1,p) denotes the ball in R" with center 1 and radius p). For this p,
let L,¢& = (p*E1,p&y,...,p&,). Then by checking the proof in [3], one easily sees
that

2k+l

(2.12) Lk [4,(&, w)|*dt/t < cmin(|2FL, &[5, [2FL,¢77)
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for some ¢ > 0. Thus by Remark 1 it remains to show

1My (), < ClAL-

It is easy to see that

Q !
L1 ey = ()] dy
<2t |y

My ,(f)(x,z) <csup 2kJ
keZ

By using the polar coordinates, the right hand side of the above inequality is

2k
¢ sup z—kj j Q0N [f (x = 1, 2 = 9(0))| do(y") di,
keZ 0 Jsr-1

which is bounded, up to a constant, by

anl Q)5 ()(x,2) da(y),

where

zk
M) o2) = sup 2 j e 1y, 2 = (1)) .

Now we have

1My, (Pl < CJ ARGy, (NN doly')-

By the Calderon-Zygmund rotation method, one easily sees that (2.11) implies

Hﬂyﬁy(f)

with C independent of ', and hence the corollary is proved. ]

i < A e

3. Proof of Theorem 1.

Let # denote the Hilbert space L?((0,0),dt/t). For each k € Z we con-
sider an operator T} mapping functions on R""! to #-valued functions on R"*!,
which is defined by

(Te()(x,2))(1) = Te(f)(x,z30) = b f (x, 2)x71,2) (2750).
Note that

2k+l

1/2
|Tk(f)(xv Z)‘jf = (J |¢t|jf(xa Z) 2?) ‘

2k
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LemMA 1. Let 2<s< oo, r=(s/2) =s/(s—2). If Ny, is bounded on

L' (R™™), then
1/2 12
(o) (e
I , I

Proor. Take a non-negative g € L" satisfying ||g||, <1 and

<c

N

2

= J(Z Tkm)@)gdxdz.
k

/2

I = H (; |Tk<fk>§f)l

Then since

Tl < 1wl JRn D) p2r (D) ficx =y 2 = (1 9D) P dy,

we have

1

IA

S “|fk<x,z>|2(j |b<y>|2p2k<y>g<x+y,z+y<|y|>>dy) dxd
) R"

IA

> il Ny 5 (g) ddsz,
k oJ
where

B ) = sup | 100D pas G 324 (05D) |

By Holder’s inequality we have

k k

1/2
ZJ|fk|zNw,y(q) dxdz < ¢ (Z fk|2> 1Ny, @),

1/2
<c (Z fk|2> ,
k

where the L"-boundedness of Ny, follows from that of Ny ,. This completes the
proof. L]

To prove Theorem 1 we use [Lemma 1 and the ordinary Littlewood-Paley
decomposition. Take ¥ e C*(R") supported in {1/2 < |£| <2} and satisfying
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Y w2/ =1 for all &£+#0.

jeZ
Define

4(f)(E w) = PQRIEf(E w) forall jeZ.
Then we note that 4;(y,ff) = y,84;(f). Decompose

Ui f(x,z) = Zszt

jeZ
where
F x zZ; Z ZAH'k lﬁzﬂf (x Z) A2k, 2k+1)(l‘)
keZ
Set
0 S d\'? /2
s = (| o] - 3 Tl
Then

Sy, (f ZU

jeZ
We prove the estimate:
(3.1) 1Tl < 272 11,

where ¢ is the same as that in [2.1). Put E; = {2717 < |¢| <217/}, Then by the
Plancherel theorem and we have

2k+1

d
I U](f)”% B ];JRM Lk |4k (i) (3, Z)|27ldxdz
N 2k+1 Zdt :
} Z(J A4(&e) )f( ) dédo

<) ¢ min(|25¢]%, 12 7)| £ (¢, )| déde

kez YExR

J f(& o)) dédo < 27 115,
kez ) EpkxR

where the last inequality holds since the sets E; are finitely overlapping.
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The L? boundedness of Sy , is an immediate consequence of [3.1]. Suppose
that 1 <r < oo, pe(2,2r/(r—1)) and Ny, is bounded on L". Note that if s is
related to r as in [Lemma 1, then p <s=2r/(r—1). By the Littlewood-Paley
inequality and we see that

1/2
(3:2) 1Ty = (Z Tk(A;+k(f))§f>

keZ
S

12
<c (Z Aj+k(f)2)

keZ
s

< |l f1ls-
Interpolating between the two estimates (3.1) and |3.2), we get

1GHN, < 22| 111,
for some 6 € (0,1). Thus

1S, < D NGO, < ellf 1.

jeZ

This completes the proof.

4. Proof of Theorem 2.

LEMMA 2. Let 1 <s<2 r=(s'/2) =s5/(2—5). If My, is bounded on L,
then

1/2

1/2
‘ (ZMfk)if) <c¢ (Z fﬁ)
k k

For a function 7 on R""!' x (0, o0), define an #-valued function Py(h) by

(Pe(h)(x,2))(1) = Pic(h)(x, 23 8) = h(x, 2 1)z.5 (27"1).

We also let 7). act on such & by (Ty(h)(x,2))(t) = Ti(h)(x,z;t) = T (h(-,- ;1))
(x,z;1). To prove we need the following.

N

LemMa 3. Under the assumptions of Lemma 2, for a sequence {h(x,z;t)} we
have

1/2
<c (;m(hk)@») .

s

'l (; |Tk<hk>|§f>l/2

S/
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PrOOF. As in the proof of [Lemma 1, take a non-negative g € L" with
lgll, <1 and

1/2
= ' (Z |Tk(hk)|§ff>
k

2

- J(Z Tk<hk>|§f>gdxdz.
k

SI

Note that

[ 00 B g ez < 1, 3 ) Pty i

where

My, (f)(x,z) = sup

>0

Therefore, as in the proof of we have

[ BOIPWFr+ 3z 500 o]

2

1/2
I<c (Z Pk<hk>§f) |y,5(9),
k

S/

2

1/2
<c (; Pk<hk>§f)

This completes the proof. L]

Now we give the proof of [Lemma 2. Let {-,->, denote the inner product
in #. Then

J<Tk(ﬁ€)(xa Z '),hk(X,Z; )>/f dxdz = J<Pk(fk)(x7 Z ')a Tk(hk)(xa Z )>%ﬁ dXdZ,

where

Tie(h) (x, 23 1) = yp1.2)(27%1) J b(y),(»)h(x + y,z 4+ (| ¥]); 1) dy,

and Pr(fi)(x,z;t) = fi(x, z))([l’z)(fkt). Therefore by Holder’s inequality and
we see that

‘JZ <Tk(fk)(x7 Z, ')7hk(x, Z; )>7f dxdz

()’

<c

1/2
(Z Pk<hk>§f)
k

s s’
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Taking the supremum over {/(x,z;¢)} with ||(D_, \Pk(hk)]})l/zﬂs, <1, we get
the conclusion.

We turn to the proof of Theorem 2. Let p,r, with p e (2r/(r+1),2), be as
in [Theorem 2, and r = s/(2 —s). Then note that 2r/(r + 1) =s <p. By
2 and the Littlewood-Paley inequality we have | U;(f)]|, < c||f|l,, where U; is as
in the proof of [Theorem 1. Since we also have the L>-estimate [3.1), arguing as
in the proof of we can reach the conclusion.

5. Results for the Littlewood-Paley functions.

Let
Ny (f)(x) = sup |par * f(x)] (xeR"),
My(f)(x) = sup W] = f(x)],

where we recall p(x) = f12|npt(x)|dt/t. Note that Ny(f) < My(|f]). My(f) is
the maximal function in the statement of Theorem B and Ny (f) is in the proof of
Corollary 1. If  satisfies the conditions:

(5.1) le F (|p])(£) dt' < c|¢|™* for some &> 0,

2
(52) j F (e di— [l

< c|é]* for some ¢ >0,

then N, is bounded on L” for all pe(1,00) by [7, Theorem A].
Choosing b(y) =1, y(1) =0 and f(x,z) = fi(x)/f2(z), as immediate con-
sequences of Theorems 1 and 2 we have the following.

THEOREM 3. Suppose there exists ¢ > 0 such that

2
(5.3) Jl (&) dt < emin(EF, |E9) for all &e R™{0}.

Then Sy is bounded on L*(R"). If we further assume that there exists r € (1, )
such that Ny is bounded on L'(R"), then S, is bounded on LP(R") for all

pe2,2r/(r—1)).

THEOREM 4.  Suppose that (5.3) holds and there exists r € (1, c0) such that My,
is bounded on L"(R"). Then Sy is bounded on L?(R") for all p e (2r/(r+1),2).

There exists i which satisfies flz W (£6))* dr < ¢|¢|™ for some &> 0 but does
not satisfy the pointwise estimate |y/(&)| < ¢|¢|™ for any § > 0 (see Remark 3), and
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for any r € (1,2) there exists ¥ such that |f/(&)| < emin(|¢]°, €] ™) for some 6 > 0,

which implies (5.3), and Ny is bounded on L" but M is not (see Remark 2).

From these facts we see that Theorems 3 and 4 essentially improve Theorem B.
Let

&W%=LPJWMHW¢xﬁne>m

1/u
D,(Y) = (J » lp(x)”dx> for u>1.

Then by Theorems 3, 4 and the results of [15] we have the following:

COROLLARY 3. Let € L'(R") satisfy (1.1).
(i) Suppose the following conditions hold for :
(1) B.(¥) < o for some ¢ > 0;
(2) Du(y) < o for some u> 1,
(3) |W(x)| <h(r)Q(0) (r=|x|,0 =x/|x|) for all x e R"\{0}, for some
non-negative functions h and Q such that
(@) Ah(r) is non-increasing for re (0, ),
(b) A(lx|) e L'(R"),
(c) QeLi(S" ) for some ¢q, 1 < q < .
Then Sy is bounded on L? for all pe (1,00).
(ii) If we assume that \ satisfies the conditions (1), (2) of (1) and
@) W)l < h(r)(0) for |x[ =1,
where h and Q are as in (3) of (i), then S, is bounded on L? for all
pe2,0). In particular, if \ is supported in {|x| < 1}, the condition (2)
of (i) only is sufficient for the LP-boundedness, 2 <p < oo, of Sy.

Proor. The conditions (1), (2) and (4) imply (5.3), (5.1) and (5.2) (see
[15, Lemmas 1-3]). As we have noted above, the L? boundedness of Ny, for all
p e (1,00), follows from (5.1) and (5.2). Thus, we have the second assertion by
Theorem 3.

If the condition (3) holds, My(f) is bounded, up to a constant, by the
maximal function

wpzﬂhqvu—ymxwwnw,

>0

which is bounded on L? for all p € (1, 00) (see [15] for this argument). Thus we
get the first assertion by Theorems 3 and 4. This completes the proof. ]

REMARK 2. If 1 < p <2, then there exists  on R! such that although v
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is supported in {|x| < 1} and satisfies the condition (2) of [Corollary 3, S, is not
bounded on L?. Let (x)=a|l —[x]|" "%, 1(x)sgn(x) (x>0). Then if
2/(2u+1) > p, S, is not bounded on L”. To see this we consider the square
function g;. It is known that if A > 1 and 1 < p < 2/4, then g; is not bounded
on L7 (see [10]). By this and the pointwise relation between S, and g3, (see
[21] and also [16]) we see the unboundedness of S -

We also note that v satisfies (5.3) and N y 13 bounded on L? (see the
proof of [Corollary 3 (ii); in fact, it is easy to see that [y*(&)| < emin(|¢]°, [¢]™)
for some o > 0), but M (2/(2«+ 1) > p) is not bounded on L’ since if it is
bounded on L”, by S, 1s bounded on L? (note that 2p/(p + 1) < p),
which contradicts the observation made in the previous paragraph.

ReMARK 3. For simplicity we consider on R'. Tt is known that there exists
a bounded y supported in {|x| < 1} such that [ =0 and ¥ does not satisfy the
pointwise estimate (&) < ¢|¢| ™ for any d > 0 (see, e.g., Theorem 2.5.2 in [12,
p. 57]). For this y, by Lemmas 2 and 3 in [15] we have Lz (66 dt < ¢,|&] ™ for
all e€(0,1).

REMARK 4. Let

V() = xRz (X)) (p > 0,x" = x/|x]),

where Q e L'(S"!) and [, Q(0)do(0) =0. Put u,(f) = Sy(f). Then, when
p =1, u,(f) is the Marcinkiewicz integral defined by Stein [17]. Weak (1,1) and
L? estimates (1 < p < o) were studied by [17] and [11] by assuming certain
smoothness conditions on Q. For the recent developments, see the works of the
authors cited in Section 1 and also [6], [14].

REMARK 5. It is easy to see that the conditions |x| > 1 and |x| <1 in the
definitions of B,, D, and Corollary 3 (4) can be replaced by |x| > a and |x| < q,
respectively, for any a > 0.

6. Singular integrals and Littlewood Paley theory.

Let € L' satisfy (1.1). Define a function Q,, of homogeneous of degree 0
by

0

2,0 = " [ W (20

Note that the integral exists for almost every x and Qe L'(S"™ 1),
Jgn1 Qy(0) da(0) = 0.

LeEmMA 4. Suppose that the condition (2.2) holds and that there exists ¢ € (0, 1)
such that
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(6.1) [y(¢) — 9(0)| < ct®  for all te0,1].

We further assume that b(y) is a bounded radial function: b(y) = bo(]y|).
for feS(R"™) we have

im [ f 0,95 = £ =z D) T

N—o0,e—0 ),

Then

Proor. To prove the lemma, without loss of generality, we may assume

p(0) =0. Let

N N
Ly =] (fle=nz =) = 1wamb) | w o

Jyl<1

N
o= | f=pz= et | () L ay.

Jly|>1 € 4

Then by we have

N N
[P wer@ S = [re—rz =000 | w0 Fr =L+ 11,

Using the polar coordinates, we have

=) [ (U020 sty [Cwin ™

0 g

By the mean value theorem we see that

N dt

‘(f(x — 10,z —y(r)) — f(x,2))bo(r) J W, (r0) 7rn—l

N
< ¢t J (7 r0)

&

|@
t

<crt! J f”]lp(flﬁ)]@.
0 t

Thus by the dominated convergence theorem

N—ow,e—0

W, (r0) 7}’"—1> da(0) dr.
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Similarly we have

Qy(y)
Iyl

lim I,y = j G S
>

N—o0,e—0

On the other hand, as usual, we see that

: o Qy(y)
llmj|y>5f(x .z = oy)e() S

0—0
Q
= U=l - s ) ey
[7]<1 |y
Q
[ s s e,
|71 [y
Combining these observations, we get the conclusion. ]

Under the assumption of [Lemma 4 we can define

dt
t

(6.2) Ty, (f)(x.2) == lim jwf(x,z)

N—oc0,e—0 ),

= p.v. Jf(x =y, z=y(ly))b(y) Q|‘;(|ny) dy

for fe %(R"™). On the other hand, if the condition holds, the limit
in exists in L? (see Remark 6 below). So, in this case, we define Ty ,(f)
by the L? limit. This causes no ambiguity; if both the condition and the
assumptions of [Lemma 4 hold, these definitions are the same.

Let Qe L'(S™!) satisfy [, Q(0)do(0) =0. Put

Vo (x) = (log2) ™ x| 7" Q(x")zp1 5 (|x])-

Then y, € L'(R") and is satisfied. We also note that Q,, = Q. So, if y
satisfies (6.1) and b(y) is bounded and radial, by we see that

(6.3) Ty (f)(x,2) = p.v. Jf(x =,z =(1yD))b(n)Q(Y) ¥ dy.

The Littlewood-Paley theory used to study Sy , also can be applied to prove
the L? boundedness of Ty ,.

THEOREM 5. Suppose that Ny, is bounded on L*(R"™), 1 < s < oo, and the
condition (2.1) holds. Then Ty, is bounded on LP(R™") for 2s/(s+1)<p <
2s/(s —1).
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Proor. By the inequalities of Littlewood-Paley, Schwarz and Minkowski we
have, for 1 < p < oo,
)1/2
p

dt (
—l| <c
Hlp
N1/2
sc (Z (Z Tk+j(Aj(f))}f) )
j k

12
=c Z(Z T (4 %)
k

J

d
J ZTIH—] ’ 7);

JN wif

p

p

=¢||>_ Uk(/)
k

Let 2 <p<2s/(s—1). Then as in the proof of Theorem 1, we have

p

1T, < 28111,

for some 6 > 0. Combining these estimates, we see that

Nt
[ wer| <es,
¢ P
Letting ¢ — 0, N — oo, we get the conclusion for 2 < p < 2s/(s —1). The result
for 2s/(s+ 1) < p < 2 follows by duality. O

REMARK 6. Let fe % (R"™). Suppose that the condition (2.1) holds.
Then the limit

fim J baf (e

N—o0,e—0
exists in L2. To see this, put, for 0 < M < N,

TN () (6,23 0) = Wb f (3, 2)200.2 Q7 00000 (0)
and define
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Then as in the proof of we have

‘ 2

Note that UM (f) < Ui(f), limar, v—oo UMY (f) = 0 ae. and || 32, Ui(f)]l, < oo

Therefore by the dominated convergence theorem we see that

[ s

<c
2

S UM )

lim
M,N— oo

[ e

=0.
2
Similarly we see that

lim
&,0—0

[ur®

=0.
2

Thus the Cauchy criterion implies the conclusion.

CoROLLARY 4. Let \, b and y be as in Corollary 1. Then Ty , is bounded
on LP(R"™) for all pe (1, ).

Proor. In the proof of [Corollary 1, it is shown that Ny, , is bounded
on L?(R™™") for all pe(1,0) and the condition holds. Thus the result
follows from [Theorem 3. O

If (5.3) or is satisfied, we can also define
. N dt
= lim e

N—w,e—0 ),

Then as a corollary to [Theorem 3, we have the following.

xeR").

THEOREM 6. Suppose that Ny is bounded on L*(R"), 1 <s< o, and
satisfies (5.3). Then Ty is bounded on LP(R") for 2s/(s+1) <p <2s/(s—1).

essentially improves Theorem C in the same way that Theorems
3 and 4 improve Theorem B.

REMARK 7. Let n>2. Let @ be in the Hardy space H'(S"!) with
Jgn1 2do =0, and let I'(r) be a function on (0, 00) such that [J° |I(r)[r"~! dr <
0o. Put y(x)=I(|x])2(x"). Then by Lemma 4

wawwzpwwjﬂx—yfﬁ?dy

for some constant ¢. Thus by [8] T}, is bounded on L? for all p e (1,00). This



584 D. Fan and S. SaTo

improves in [2]; in [2] the result is proved under a stronger assumption
that |I"(r)| < cmin(r"*",r"7) for some p > 0.

REmMARK 8. It is not difficult to see that we can replace the condition
by (2.10) in all the results of this section which require (see Remark 1).

By Remark 8, Lemma 4 and we have the following singular
integral analog of [Corollary 2|

COROLLARY 5. Let n > 2, and let a curve y and a function b be as in Lemma
4. Let Qe H'(S"") satisfy [, Qdo=0. Define

T(f)(x,z) = p. jf<x —yz— (YD) Y™ dy,

imitially for f e S (R"™™). Suppose

Hg; L'(RY) = Cillg L'(R?)

for some re (1,0), where g, is as in Corollary 2. Then we have

1T Loty < Coll £l Lo
for all pe (2r/(r+1),2r/(r—1)).

ProOF. The proof is similar to that of [Corollary 2. So, our proof here is
brief. As in the proof of we may assume that Q is an L™-atom.
Let 2 be the L*-atom considered in the proof of [Corollary 2, and put

W(x) = (log2) ™" x| "2\ 11 3 (Ix])-

Then by T(f)=Ty,(f). Define 4,(¢ w) by this . Then we also have
the estimate [2.12). Thus by Remark 8 and [Theorem 3, to prove the corollary it
suffices to show the L"(R™"") boundedness of N, ,, but this also can be proved in
the same way as the L"(R"') boundedness of M, , in the proof of
by using the Lr(RZ) boundedness of g;. This completes the proof. O

is the main theorem in a recent paper by Lu, Pan and Yang [13],
in which they obtained the theorem by a different proof based on estimates of
certain oscillatory integrals.
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