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Abstract. In this note, we corrected the coe‰cients of formula (2.12) in Propo-

sition 1 and the third formula in Proposition 2 in our paper [1]. We should remark that

our theorems in [1] are not harmed.

In this note, we must mention that the coe‰cients of formula (2.12)

in Proposition 1 and the third formula in Proposition 2 in our paper [1] should be

corrected as follows:
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We should remark that their proofs do not need to be corrected except the

statements of results of formulas.

For the proofs of Theorem 1 and Theorem 2 in the section 3 of our paper

[1], except the coe‰cient of formula (3.7), we do not need to correct any thing.

Hence, the assertions of Theorem 1 and Theorem 2 in [1] are true. Thus, Main

Theorem 1 in [1] is also true. Although the proof of Theorem 3 in [1] needs to

be corrected as follows (in fact, we use the same idea as before), we know that

the assertion is true. Hence, the assertion in Main Theorem 2 in [1] holds.
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Proof of Theorem 3. For the proof of Theorem 3 in [1], by the corrected

formula (2.21), the formula (3.39) becomes
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Since formula (3.42) and Lemma 3 in [1] hold, we obtain
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and
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Next we make necessary corrections of Lemma 4 as follows:
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First of all, we assert B < 4r2=27. In fact, since B and r are constant by the

assumption and B < r2=6 as noted in Lemma 2, there exists a constant a > 0

such that ð1þ aÞB< r2=6. If ab1=8, then B< 4r2=27. In this case our asser-

tion holds. If a < 1=8, then we have
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where G is defined by
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If 6ab 1=8, then our assertion is true. If 6a < 1=8, then by applying the above

procedure k times as in [1] so that 6kab 1=8, then we have

ð1þ 6kaÞB <
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6
.

Thus we obtain B < 4r2=27, that is, our assertion holds.

Next, by taking account of B < 4r2=27, we will show B < ð32=121Þðr2=3Þ.
In fact, from (3.43), rB�
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Thus the proof of Lemma 4 is completed. r
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Therefore, we have, from (3.43) and the above inequality,
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Hence, by substituting the above inequality into (3.44), we infer, from B > 0,

r < 0 and 0 < m
�
2
2 < B=6,
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But this is impossible. Thus the proof of Theorem 3 is completed. r
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