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Abstract. It is well-known that the classification of flat surfaces in Euclidean 3-
space is one of the most basic results in differential geometry. For surfaces in the
complex Euclidean plane C? endowed with almost complex structure J, flat surfaces are
the simplest ones from intrinsic point of views. On the other hand, from J-action point
of views, the most natural surfaces in C* are slant surfaces, i.e., surfaces with constant
Wintinger angle. In this paper the author completely classifies flat slant surfaces in
C?. The main result states that, beside the totally geodesic ones, there are five large
classes of flat slant surfaces in C>. Conversely, every non-totally geodesic flat slant
surfaces in C? is locally a surface given by these five classes.

1. Introduction.

Let M be an n-dimensional Riemannian manifold isometrically immersed
in a Kéhlerian manifold (M,g,J) endowed with Kédhler metric ¢ and almost
complex structure J. For each vector X tangent to M, we put

(1.1) JX = PX + FX,

where PX and FX are the tangential and normal components of JX. Then P is
an endomorphism of the tangent bundle 7M. For any nonzero vector X tangent
to M at a point p, the angle 0(X), 0 < 0(X) < /2, between JX and the tangent
space T, M is called the Wirtinger angle of X. The submanifold M is called slant
if its Wirtinger angle @ is constant, ie., 6(X) is independent of the choice of the
X in the tangent bundle 7M. The Wirtinger angle 6 of a slant immersion is
called the slant angle. A slant submanifold with slant angle 0 is simply called
O-slant. Slant submanifolds of a Kadhlerian manifold are characterized by the
condition P? = ¢I for some real number c € [~1,0]. Complex and totally real
immersions are slant immersions with slant angle 0 and /2, respectively. A
slant immersion is called proper slant if it is neither complex nor totally real. A
totally real immersion f: M — M is called Lagrangian if dimg M = dim¢ M.
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There exist ample examples of proper slant submanifolds in complex-space-forms
(see, for examples, (1], [4]-[6], [9]).

When M is an oriented surface in a Kéihlerian manifold M, one also
has the notion of Kdhler angle o defined by o = cos™!({JX, Y)) € [0,7n], where
{X,Y} is a local positive orthonormal frame field on M. The Kéhler angle
o and the Wirtinger angle 6 of an oriented surface M are related by 0(p) =
min{o(p),7 — «(a)}. In this sense, an oriented surface in a Kdhlerian manifold
is slant if and only if it has constant Kéhler angle.

From J-action point of views, slant submanifolds are the simplest and the
most natural submanifolds of a Kéhlerian manifold. Slant submanifolds arise
naturally and play some important roles in the studies of submanifolds of
Kéhlerian manifolds. For example, K. Kenmotsu and D. Zhou proved in
that every surface in a complex space form M?(4c) is proper slant if it has
constant curvature and nonzero parallel mean curvature vector.

Flat surfaces in Euclidean 3-space E* are the simplest surfaces from intrinsic
point of views. The classification theorem of flat surfaces in E> is one of most
basic results in differential geometry (see, for instance [8]). For surfaces in the
complex Euclidean plane C?, flat surfaces are also the simplest ones from in-
trinsic point of views. On the other hand, from J-action point of views, the most
simplest surfaces in C? are slant surfaces.

The purpose of this paper is thus to classify flat slant surfaces in the
complex Euclidean plane. In section 2 we recall some basic facts, lemmas, and
the existence and uniqueness theorems of slant submanifolds. In section 3, we
prove the main theorem which states that, beside the totally geodesic ones, there
are five large classes of flat slant surfaces in C2. Conversely, every non-totally
geodesic flat slant surfaces in C? is locally a surface given by these five classes.
Class V of flat slant surfaces is related with the solutions of certain wave equation
and of certain second order ordinary differential equation with two prescribed
conditions. In section 4, we prove that the second order differential equation
with the prescribed conditions alway has solutions. This existence result implies
that class V of flat slant surfaces is indeed very large. In this section we also
prove that, for any nonzero function 4 of one variable, there exists a f-Legendre
curve in S whose curvature in S° is given by Acscl. In the last section we
provide explicit examples of flat slant surfaces of class V.

2. Basic formulas and existence theorem.

Let x: M — M™ be an isometric immersion of a Riemannian n-manifold
into a Kihlerian m-manifold. Denote by R and R the Riemann curvature
tensors of M and M"™, respectively. Denote by /4 and A the second fundamental
form and the shape operator of the immersion x; and by V and V the Levi-Civita
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connections of M and M™, respectively. The second fundamental form % and
the shape operator A are related by {(A:X,Y) = {h(X,Y),E.
The well-known equation of Gauss is given by

(2.1) ROX,Y:Z, W) = R(X, Y: Z, W) + (X, Z), (Y, W)
— (X, W), h(Y,Z)),

for X,Y,Z W tangent to M and &, normal to M.
For the second fundamental form 4, we define its covariant derivative Vh
with respect to the connection on TM @ T+M by

(2.2) (Vxh)(Y,Z) = Dx(h(Y,Z)) — h(VxY,Z) — h(Y,VxZ).
The equation of Codazzi 1s
(23) (R(X, Y)Z)" = (Vyh)(Y, Z) - (Vyh)(X, 2),

where (R(X,Y)Z)" denotes the normal component of R(X,Y)Z.
For an endomorphism Q on the tangent bundle of the submanifold, we
define its covariant derivative VQ by

(2.4) VxQ)Y =Vx(QY) - Q(VxY).

For a f-slant submanifold M in a Kihlerian n-manifold M", we have

(2.5) P> = —(cos’0)I, (PX,Y)+<(X,PY)=0,
(26) (VXp) Y = Zh(X, Y) + Apy X,
(2.7) Dx(FY)—F(VxY) = fh(X,Y) - h(X,PY),

where I denotes the identity map and (X, Y) and fh(X,Y) are the tangential
and normal components of Ji(X,Y).
If we define a symmetric bilinear 7M-valued form o« on M by

(2.8) a(X,Y) =th(X,Y),
then we obtain
(2.9) hX,Y)=csc’ O(Pa(X, Y) — Ju(X, Y)).

For an n-dimensional #-slant submanifold in C" with 6 # 0, the equations of
Gauss and Codazzi become

(2.10) R(X,Y;Z, W) =csc’ 0{<a(X, W),a(Y,Z)> — {a(X,Z),a(Y, W)>}
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(2.11)  (Vxa)(Y,Z) +csc?> 0{ Pu(X, (Y, Z)) + (X, Pa(Y, Z))}
= (Vya)(X,Z) + csc? O{Pu(Y,a(X, Z)) + a(Y,Pu(X,Z))}.
We recall the following Existence Theorem from [6] for later use.

EXISTENCE THEOREM. Let 0 € (0,7/2].  Suppose there exist an endomorphism
P on the tangent bundle TM and a symmetric bilinear TM-valued form o on M
such that

(2.12) P? = —(cos’ O)I,

(2.13) (PX,Y)+{(X,PY) =0,

(2.14) (VxP)Y,Z>=<a(X,Y),Z) —a(X,Z), Y,

(2.15) R(X,Y;Z, W) =csc? 0{<a(X, W), a(Y,Z)> — a(X,Z),a(Y, W))},

for X, Y, Z, WeTM, and
(2.16) (Vxa)(Y,Z) + csc? 0{Pa(X,a(Y, Z)) + a(X, Pu(Y,Z))}

is totally symmetric. Then there exists a 0-slant isometric immersion from M into
C" whose second fundamental form is given by

(2.17) hX,Y)=csc? 0(Pa(X,Y) — Ja(X,Y)).

Let M be a proper -slant surface in a Kihlerian surface M>. For a given
unit tangent vector field e; of M, we choose a canonical orthonormal frame
{61 , 62,863, 84} defined by

(2.18) ey = (secO)Pe;, e3 = (cscl)Fey, es = (cscO)Fe.

We call such an orthonormal frame an adapted frame.
We need the following lemmas

LEMMA 2.1. Let M be a slant surface in a Kdihler surface with slant angle
0 € (0,7/2]. Then, with respect to an adapted frame, we have

(2.19) w3 — o7 = —cot O{ (trace A3)w' + (trace A4)w?},

where Az, Ay are the shape operators with respect to es,eq and {a)l,a)z} is the dual

frame of {ey,es}.
This lemma can be found in [1, p. 29].

LEMMA 2.2. A proper slant surface in C* is flat if and only if its normal
connection is flat.
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Proor. Follows from the fact that every proper slant surface in C? satisfies
AFXY:ApyX (Cf [1, o 24]) ]

LemMA 2.3. If M is a flat slant surface in C* with slant angle 0 € (0,7/2],
then there exists an adapted slant frame ey,e;,e3,eq such that the second fun-
damental form of M in C* takes the form:

(2.20) h(ei,er) = ues, her,er) =0, h(er,er) = peu,
for some functions i, .

ProOF. Since M is a flat slant surface in C* with slant angle 0 € (0,7/2],
implies that M has flat normal connection. Thus the shape op-
erators of M are simultaneous diagonalizable. Hence there exists an ortho-
normal basis ej,e; such that Ap, ,Ar, are diagonalized with respect to e,e;.
Therefore, by applying AryY = Fpy X, we conclude that the second fundamental
form takes the form of (2.20). O

We also need the following.

DErFINITION 2.1, Let S3 denote the unit hypersphere in C? centered at the
origin. Then S3 admits a canonical Sasakian structure with structure vector field
=iz, ze S A unit speed curve z : I — S = C? defined over an open interval
I is called a 0-Legendre curve if

(2.21) iz(s),z'(s)) = cos 0

for some constant angle 6. A 6-Legendre curve with § = 7/2 is known as a

Legendre curve. 0-Legendre curves in S* are also known as generalized helices
in S3 (cf. [4]).

LEMMA 2.4. A unit speed curve z: I — S = C? is a O-Legendre curve with
nonzero curvature in S° if and only if z satisfies the second order differential
equation:

(2.22) z"(s) — (csc 0)A(s)iz'(s) + (1 — (cot O)A(s))z(s) =0
for some nonzero function A over I.

Proor. If z is a (unit speed) 0-Legendre curve in S°, we have (z,z) =
(z',z/y =1 and {iz,z') = cos0. By taking differentiation of these equations we
find

(2.23) (z,2/Y =X, 2"y =Kiz,z"y =0, (", z)=-1.

If we put z"” = ayz + ayiz + a3z’ + a4iz’, then by taking the scalar product of z”
with iz and z/, we obtain a; +azcos) =0 and a3 + a;cos =0 respectively.
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Therefore we obtain a; = a3 =0. Thus, z” = ajz + a4iz’. Also, by taking the
inner product of z” with z and by applying [2.23], we obtain a; = ascos6 — 1.

If a4 =0, then a; = —1. Hence z” +z=0. In this case, z is an open part
of a great circle of S* which is impossible by our assumption. Therefore, if we
put as = Acscl, we obtain a; = Acotf — 1 which implies [2.22).

Conversely, if z = z(s) is a unit speed curve in S° satisfying [2.22], then by
taking the inner product of with z and by applying {z”,z) = —1, we obtain
(iz,z"y =cosf. Thus, z is a O-Legendre curve. Moreover, from we see
that the curvature of z in S° is nonzero. ]

ExampLEs 2.1. For any e (0,7/2], there exist many 6-Legendre curves
with nonzero curvature in S (see [Theorem 4.2). For examples, for any constant
A # 0, the map

(2.24) z(s) = eli#esc0)s/2 (cos (% \//12 + (2 — Acot 0)2>

(2cos ) — AcscO)
VA + (2= cot)?

2sin0 sin(§\//12+(2—/1cot9)2>)
VA + 2= Jcot0)’

. S 2 2
sm(i\/i + (2 — Zcot6) >,

defines a unit speed O-Legendre curve with nonzero curvature in S°.

3. The main theorem.

The main result of this paper is the following classification theorem for flat
slant surfaces in C.

THEOREM 3.1. We have the following.
(1) Let 0 € (0,n/2]. Then, for any 0-Legendre curve z : I — S* < C?* defined
on an open interval I and any function f of one variable defined on I, the map

y

(3.1) x(x,y) = 2(p)x + J Bu)z () du

0

defines a flat O-slant surface in C>.
(IT) Let 0 € (0,7/2]. Then, for any given nonzero function ¢ = ¢(y) of one
variable defined on an open interval I containing 0, the map

(32) (x.7) ( ij dr HJy ei(cscﬁ)zd>
. x(x,y)=|(x+icos ——,sin t
g 000 )y 0l)

defines a flat O-slant surface in C>.
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(III) If u(x) #0 and k(y) are two functions of one variable defined on
some open intervals containing 0 such that = k(y) + cot0 [; dx/u # 0 for some
0 € (0,7/2], then the map

y

(33)  x(x,y) = <1J

) ) x . X ,ixcscl
k(y)ezyCSCH dy + elycscﬁcos(gj —x,SIHQJ € dx)
0

0 u(x) 0 H(x)
defines a flat O-slant surface in C>.

(IV) If 0 € (0,7/2) and u(x),v(y) are two functions of one variable defined on
some open intervals containing 0 with v(0) #0 and v'(y) #0, then the map

(3.4) x(x,y) = (J u(x)e™? dx — iv(y)e™*? sin O + iv(0) sin 0,
0

sin @ tan 0 Jy

0

defines a flat O-slant surface in C>.

(V) Suppose f is a nonzero function of one variable defined on an open interval

containing 0 such that f # cot@ for some 0 € (0,7/2] and suppose p = p(x, y) with
dp/dy #0 is a solution of the wave equation:

v/(y)einSCH dy>

(3.5) P H’” F{(eot0)f(x — y) —f2(x—)}p =0

and K is a C*-valued solution of the ordinary differential equation:

(3.6) K"(u)+ (icsc@ - %)K’(u) + f(u)(f (u) — cotO)K(u) =0,

satisfying |K|* =1 and |K'|* = (f — cot0)?, then

g pyK’(x — y) ixcsc ) ixcsc
3.7) x(x,y) = Jo {me 0 _ Jo (pK(x—y)),e odx} dy

+ | oK petrar, = px-y)
0
defines a flat O-slant surface in C>.

(VI) Conversely, locally every flat slant surface in C 2 is either an open part of
a slant plane or, up to rigid motions of C?, a surface given by one of the five
classes of slant immersions defined by (3.1), (3.2), (3.3), (3.4) and (3.7).

Proor. (I) Let z:1 — S = C? be a (unit-speed) 6-Legendre curve and f3
a nonzero function of one variable defined on /. Consider the map defined by
(3.1). Then



726 B.-Y. CHEN

(3.8) xi(x,3) =2(p), x(x,¥) = (x+B(y))z".
Hence, x defines an isometric immersion from the surface M with metric
(39) g =dx* + (x+ (1)’ dy?

into C>. Then M is a flat surface. If we put e =z(y) and e, = z'(y), we
obtain {ie;,e;) =cosf due to the fact that z is a 6-Legendre curve. Thus
x: M — C? is an isometric f-slant immersion.

(IT) For any given nonzero function ¢ = ¢(y) of one variable defined on an
open interval I containing 0, consider the map x defined by [3.2). Then we have

1 .
(3.10) x.=(1,0), x,= ;(icos 0, e sin 9).
Let M denote the surface endowed with metric
1
3.11 g=dx*+ dy?.
G11) 9*(y)

Then M is a flat surface and x defines an isometric -slant immersion from M
into C*.

(IIT) Let u(x) # 0 and k(y) be two functions of one variable defined on open
intervals containing 0 such that y = k(y) + cot @ [; dx/u # 0. Consider the map
x defined by (3.3). Then we have

cosf sinf) . .

3.12 = — iyescl OV ixcscl — (; iycscl 0).
( ) X (,U(.X) ’IU(X)e )a xy (le lp? )
Let M denote the surface endowed with metric

dx?

3.13 g= + o dyt.

1 12 (x)

Then M is a flat surface and x is an isometric 0-slant immersion from M into C?.
(IV) Let 0 € (0,7/2) and u(x),v(y) be two functions of one variable defined
on open intervals containing 0 with v(0) # 0 and v’(y) # 0. Consider the map

x defined by [3.4). Then
xe = ((u(x) + v(p))e™’,0),

ixcscl ./
,0'(

(3.14)

y) sin O tan fe” 7).

x, = (—iv'(y)sin e
Let M denote the surface endowed with metric
(3.15) g = (u(x) +v(y)* dx* + (v'(y) tan 0)* dy?,

Then M is a flat surface and x is an isometric f-slant immersion from M into C2.
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(V) Let f be a nonzero function of one variable defined on an open interval
containing 0 such that f # cot, p = p(x, y) be a solution of [3.5) n with p, 75 0,
and K is a C’-valued solution of the (3.6) satisfying |[K|*=1 and |K'|* =
(f —cot@)?. Consider the map x defined by (3.7). Then we have

. p, K’ .
3.16 = K(x — ixcsc 0 — Y ixcscd
(3.16) x (x = y)pe™ 7, x, Teoti—°¢
where f = f(x—y).

From |K|=1, we obtain (K,K') =0, where {,) is the standard inner
product of C?. Thus we have {xy,x,) =0. Therefore, the map (3.7) defines
an isometric immersion from the surface M endowed with metric

2
12
into C?. Since p is a solution of the wave equation [3.5), a straightforward
computation shows that M is a flat surface and x is a f-slant immersion.

Conversely, if M is a flat slant surface in C? with slant angle 6 = 0, then M
is a complex surface in C2. Thus it is a minimal surface. Since M is flat, M is
totally geodesic due to the equation of Gauss. Therefore, M is an open part of
a holomorphic line, i.e., an open part of a 0-slant plane.

Now, suppose M is a flat slant surface with slant angle 6 € (0,7/2]. Then,

by [Lemma 2.3, there exists an adapted frame ey, es,e3,e4 such that the second
fundamental form of M takes the form:

(3.18) h(ei,er) = ues, her,er) =0, h(er,er) = peu,

for some nonzero functions u,¢. If u= ¢ =0 identically, then M is totally
geodesic. In this case, M is an open portion of a 6-plane.

We divide our study of non-totally geodesic flat #-slant surfaces into four
cases: (a) u=0 and ¢ #0, (b) t,9 #0 and exu =0, (c) u,9 #0, epu # 0 and
etp=0,or (d) u#0, exrt #0 and e;p # 0, for the functions u, ¢ given in (3.18).

(3.17) g:pzdxz—l— dy?

CasE (a). u=0 and ¢ # 0.
In this case, equation | of Codazzi and (3.18) imply

(3.19) wi(e1) =0, e1p =g, (e)

which implies [e], ¢ les] = 0. Thus there exists a coordinate chart {x, y} on M
such that 0/0x =e; and 0/0y = ¢~ 'e;. Therefore the metric tensor of M is
given by

1
(3.20) g=dx*+ ?dyz.
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Using we obtain

(321) V@/ﬁx%:(), a Dy a . i Dy a ¢y 0

Applying 3.21) we get

o 0\ 0 202 — 0
(3.22) R(L 2N _ (20izera) O

0x dy) 0x 0> dy
where R is the curvature tensor of M. Since M is flat, implies (p~!) = 0.
Thus

(3.23) o' =B(y) +a(y)x
for some functions o,f. From and (3.23) we get
0 0 0
2“0 Y Y
Vasox Eial Vosox 3 O‘(J’)(/’ay,
(3.24) . . .
o__*9 "ol L
Vo/gyay— ¢ax+(ﬁ +OCX)(00J/.

From (1.1), (2.18), (3.18) and [3.20) we have

0 0 0 0
(iom) =HEvs) =

0 0 . 0 1 0
h(@’?y) = lCSCQa—y‘F;COt@a.

(3.25)

Combining (3.24), (3.25) and the formula of Gauss we know that the
immersion x of M in C? satisfies

Xxx = Oa

(326) xxy = (oa(y)xy,

1
Xyy = (; cot — %) xy + ((o'x + B')p + icsc0)x,.

Integrating the first equation in (3.26) yields
(3.27) x(x, y) = P(y)x + D(p),
for some CZ?-valued functions P(y),D(y). Hence we have

(328) xx:P(y)7 xy:P/(y)x+D/(y)a xxy:P,(y)'
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Applying the second equation in (3.26) and we obtain
(3.29) B(y)P'(y) = a(y)D'(y).

From and we get |P(y)| = 1.

Cast (a.l). a=0.

In this case implies that P’(y) =0, since = ¢! #0. Thus, P(y) is
a unit constant vector, say ¢, in C>. From we get ¢ = 1/f(y) which
implies that ¢ is a function of y. Hence, and the third equation in (3.26)
reduce to

(3.30) x(x,8) =cx+ D(yp).
" (”/ . / _wc
(3.31) D"(y)+ <E— cscH)D(y)_ ,

Solving yields

Yodt v ,i(csc )y
J ¢ dt+ E,

D(y) = iccos@l[oera o0

for some vectors a, E € C>.  Without loss of generality, we may choose E = 0 by
applying a suitable translation on C? if necessary. Thus we have

(3.32) (x,9) ( Hr a ) Jyei(csw)yd
. x(x,s) =c| x+icos — | +a .
0 ¢(1) o (1)

If we choose the initial conditions to be

1
x:(0,0) =(1,0), x,(0,0) =——(icos0,sinb),
then implies ¢ = (1,0), a = (0,sinf). Therefore, we obtain [3.2).

/l

CasE (a.2). a#0.
In this case [3.29) implies

(3.33) D(y) = beL?P’(t) dt+C

for some constant vector C. We may choose C =0 by applying a suitable
translation on C? if necessary. Hence yields

(3.34) x(x,y) = P(y)x + J:%P’(z) dr.

)
Substituting (3.34) into the third equation in (3.26) gives
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(3.35) P"(y) — (O;,((;})) +icsc 9) P'(p) + (e*(p) — a(y) cot O)P(y) = 0.

On the other hand, from we find x, = (1/(ap))P'(y). Comparing this
with we get |[P'(y)|* = «2(y). Hence, if z(s) = P(y(s)) is the arc-length
reparametrization of P(y), then we find ds/dy = +a. Without loss of generality,
we may assume ds/dy =, by reversing the orientation of z(s) if necessary.
Thus, by applying the chain rule, we have

(3.36) P'(y)=0z'(s), P"(y)=0o'(y)2'(s) +£’2"(s).
Substituting into we obtain
(3.37) 0?z" — aesc iz’ + (0> — ocot )z = 0.

Therefore, z=z(s) is a O-Legendre curve in S° according to [Lemma 2.4.
Consequently, the flat slant surface M is given by

N

(3.38) x(x,8) = z(s)x + Jo B(u)z' (u) du.

where z(s) is a 0-Legendre curve in S3. Thus, in this case, we obtain (3.1).

CaStE (b). u,p #0 and eyu # 0.
In this case, the equation of Codazzi and (3.18) imply

(3.39) wi(e]) =0, e1p=gpw,(e;) = —p?cotd

which implies [(1/u)er, (1/¢p)es] = 0. Thus, there exists a coordinate chart {x, y}
such that e; = u(d/0x), e; = ¢(0/0y). By the assumption: e;u =0, we know
that u = u(x) must be a function of x. Therefore, the metric tensor of M is
given by

dx>  dy?
3.40 = +—=-.
(340) R
Applying and we obtain (1/¢), =cot@/u. Therefore
1 Y odx
3.41 -=k —I—cotﬁj —_—
34D g et

for some function k = k().

Using and we obtain

0w 0 o . 0 o . 0 0,0
342 0 ‘»—:——x— ‘,—:——x— ~ _:—X____
(342) Voo e % Vijox 3y 0 3’ Vijay P S Sy

On the other hand, from (1.1), (2.18) and (3.18) we have
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o 2 0 d
h(a,a)—(CSCQ)JE—(COtG)/—la—y,
0 0
4 —,7 | =
(3.43) h(@x’@y) 0,
o a u 2
h(@,@)—(cote);a"’(csce):]@

Gauss’s formula together with (3.42) and [3.43) implies that the immersion x of
M in C? satisfies the following system of partial differential equations:

(3.44) Xyy = (—& +icsc H) X, — 14 cot Ox,,
It It

Py
(3.45) Xyy = —?xy,

u 1y Py
3.46 Xy, = (— cotf + X)xx— (——icsc@)x .
(3.46) »= 1, pe p y
Applying {3.41) and [3.39), equation [(3.46] becomes
(3.47) Xy, = <—%+ icsc H)xy.

Solving (3.47) for x, yields
iycscl

(3.48) X, = - A,

for some C*-valued function 4 = A(x). Substituting [3.48) into implies
that 4’(x) =0. Thus

eiycsc@

(3.49) X, = C,

4
for some vector C in C?. Substituting [3.49) into [3.44) gives

iycsc
(3.50) Yoo+ <‘ﬁ— i cse H)xx _ T cotd
u u

By solving [3.50) for x, we obtain
1

(3.51) xe = — (B(y)e™™e? — iCel0 co3 0),
U

for some C*-valued functions B(y). Therefore, by integrating with respect
to x, we obtain
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. x
dx — iCe’yCS"gcosGJ —x,
0o M

X jixcscl

(3.52) xmw=0m+me -

for some CZ*-valued functions B(y),D(y) and some vector C.
From (3.41), [(3.49) and (3.52) we obtain

X ixcscl

dx = Ck(y)e™ .

(3.53) vm+RmL -

Differentiating (3.53) with respect to x yields B’(y) =0 which implies that B is
a constant vector. Thus (3.53) implies D’(y) = Ck(y)e?*¢’. Hence
v

mw:cjuwmww+a
0

for some vector E. Without loss of generality, we may choose £ =0. Com-
bining this with |3.52) yields

y . . X dx X eixcsc@
(3.54) x(x,y) = C{J k(y)e? el dy — ielyCSCHCOSHJ —} + BJ dx
0 oM 0o M
where B, C are constant vectors.
If we choose the following initial conditions:
x,(0 0)—L(COSH sinf), x,(0 0)—L(z’ 0)
X 9 /,l(O) 9 ) y 9 g0(0) ) )

then (3.54) gives B = (0,sinf),C = (i,0). Hence we obtain (3.3).

CaSE (¢). u,90#0, exu #0 and ejp = 0.
In this case, the equation of Codazzi and (3.18) imply

(3.55) oi(e)) = ex(Inp), wi(ez) =0,
(3.56) poi(e2) + pwi(er) = upcot o,

Apply [3.55) and (3.56) we get [(1/u)er, (1/p)es] =0. Thus, there exists a co-
ordinate chart {x, y} such that e; = u(d/dx), e; = ¢(0/dy). Hence, the metric

tensor of M is given by
1 1

2 2
(3.57) g:/?dx +?dy :

Using (3.55), (3.56) and (3.57) we obtain

= 'u—; tan 6.

(3.58) ;

S| =
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Hence, by using e;9 =0, we obtain (1/x),, =0. Therefore

(3.59) % = u(x) +v(y),

for some functions u = u(x) and v = v(y). It follows from e,u # 0 that v'(y) # 0.
Moreover, and [3.59) imply ¢~' =v'(p). These show that the metric
tensor of M is given by

(3.60) g = (u(x) +v(y))* dx* + (v'() tan 0)* dp?,
Using we obtain

0 u(x) o (ut+v) ,,0
Vﬁ/axa—u+va— ‘U’(y) cot 8@,
0 vy 0
3.61 — = —
( ) V@/axay U+ x’
0 () @

Vorrs 3, = () oy

On the other hand, from [I.1}, (2.18) and (3.18) we have

h(a 6) = (csc@)Ji—l—u—l_vcotzﬁﬁ,

ox’ Ox ox  v'(y) dy
o 0
(3.62) h(&’@) =0,
o o\ v(y 0 0
h(@,@> = 8x+(CSC0>Jay'

From (3.61), and Gauss’ formula we know that the immersion x of M in
C? satisfies the following system of partial differential equations:

(3.63) Xyy = (u ) +icsc H)xx,
u+v
v'(y)
64 o =—x,,
(3.64) Yy = X
vy v"(y) .
(3.65) Xy, = u—}—va+ (v’(y) +icscl )x,.

Solving for x, yields
(3.66) Xy = (u+v)A(x),
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for some C*-valued function 4 = A(x). Substituting into yields
A'(x) =icsc0A(x). Thus, we get A(x) = Ce™°?  Therefore, we obtain from

(3.66) that
(3.67) X = Clu+v)e™>?,

for some vector C in C?. Integrating [3.67)] with respect to x yields
A /

(3.68) X = C{J u(x)e™? dx — iv(y) sin Heixcsca} + B(y),
0

for some C?-valued function B(y). Substituting [3.68) into [3.65] yields

(3.69) B"(y) - <l;/,,((;)) Licse 0> B'(y) = 0.

Solving (3.69) yields

y )
B(y) = DJ v’(y)e‘ycscedy +E,
0

for some vectors D, E. Consequently, we get

(3.70) x(x,y) = C{J u(x)e™ e dx — je™Vy( ) sin 9}
0

y .
+DJ v/(y)ezycsc(} dy_I_E
0

If we choose the following initial conditions:
x(0,0) = (0,0),
x:(0,0) = (u(0) + v(0),0),
x,(0,0) = (—iv'(0) sin @, v'(0) sin O tan 0),
then gives
C=(1,0), D= (0,sinftand), E = (iv(0)sind,0).
Hence we obtain (3.4).

Case (d). p#0, eou#0 and ejp # 0.
In this case, (3.18) and the equation of Codazzi imply

(3.71) ex =y (en),
(3.72) poi(e) + gori(er) = ppcoto,
(3.73) e\p = —¢w12(e2).
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From |3.71), (3.72) and 3.73) we get [(1/w)e1, (1/p)ea] = 0. Thus, there exists a
coordinate chart {x, y} such that e; = u(d/0x), ex = ¢(0/dy). Hence, the metric
tensor of M is given by

2

p
3.74 g =prdx* + ——2—dy*.
S SHx =)
Using |3.74), the flatness of M, and Gauss’s Theorema Egregium, we find
(3.75) (w—/éy) + <“—§”2"> — 0.
), \9* ),
On the other hand, [3.71), and imply
PLy  pp,
(3.76) ﬂ—zy_ p = cot 6.
Applying and we obtain
(3.77) <¢—’éy> + (w—@ )
W)\,
Put u=x+y, v=x—y. Then becomes (PHy/u?) =0. Thus
Pr
(3.78) M—2y=f(x—y),

for some function f* of one variable. Therefore, we obtain ¢ = —f(x —y)/p,,
where p = u~!. Applying [3.75) and [3.78)] we know that p satisfies the wave
equation

379 T 0 - ) - -l =0

Applying (3.74) we obtain

Va/axax ;a—gay
d _py 0 Py [\ O

G oy PafN 0 [Py S\ 0
Vin—=|—S5m+ 55| =+ =+ | =,
I oy ( P o\, Sy

where f = f(x—y).
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From (1.1), (2.18), (3.18) and we find

h(i i) = icscﬁai—l—ﬁcotﬁg,

ox’ 0x X p, oy
0 0
3.81 — | =
a ada\ _ o . 0
h(@,@>— pfcot98x+zcsc06y.

Using 3.79), (3.80), (3.81) and the formula of Gauss we know that the
immersion of M/ in C? satisfies

Xox = (&Jricsc@)xx+f(cot0—f)£xy,
p Py

Py P
Xy = — X, + —cotf) —x,,
(3.82) » = ff )Py y

p p '

Y Yy .

Xpp = ——X,+ | —+==+icscl |x,.
S R VR g

Combining the first and the second equations in we find

(3.83) Xy + Xy = <% + %y) X, + icscOx,.

Solving |3.83) yields
(384) X, = G(X _ y)pe(i/Z)cscﬁ(x—Q-y),

where G is a positive function of one variable. Thus, if we put

(385) G(x — y) — K(X — y)e(i/Z)CSCO(x—y)7
we obtain
(3.86) x, = K(x — y)pe™~ee?,

On the other hand, by the second and the third equations of we have

3.87 Xy + Xy = @—I—pl x, +icscOx,.
y T Xyy y y
Py Py

Solving (3.87) yields
(388) X, = H(x . y)pye(i/Z) csc(i(x—i—y)’
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where H is a positive function of one variable. Hence, by putting H(x — y) =
F(x — y)eli/2)esc00=3) we obtain
(3.89) x, =F(x— y)pyeixcsce.

By taking the derivative of |3.86) with respect to y and compare it with the
second equation of (3.82) and (3.89), we find

(3.90) K' = f(cotd —f)F.
Therefore, becomes
(391) pyK/ ixcscl

5T Fleot0— 1) !

By taking the derivative of [3.91) with respect to x and comparing it with the
second equation of [3.82), we obtain

(3.92) K"+ <icsc@—f_f7;c)w>K’+f(f—cot0)K:O

by virtue of [3.79), and (3.91).
Integrating [3.86) with respect to x we obtain

(3.93) X = J K(x —y)pe™? dx + H(y),
0

for some C>-valued function H(y). Taking the derivative of [3.93] with respect
to y and comparing with yields

(3 94) H/(y) _ pyK/ ez’xcscH _ JX(K(X _ y)p) eixcsc@ dx
' f(cotf —f) 0 g .

Since p satisfies and K satisfies [3.92], a direct computation shows that the

right hand side of is a function of y only. Thus, we obtain

v (p K (x—y) x .
395 ston) = [ (L m T [ pkx -ty

+ J pK(x —y)eixcscedx + C,
0

where C is a constant vector. If we choose the initial conditions: x(0,0) =
(0,0), we obtain C = (0,0). Thus, the immersion of M in C? is given by (3.7)
for some C?-valued function K(u) which satisfies the second order ordinary dif-
ferential equation [3.92). By comparing the metric g given by with
and we obtain |[K|* =1 and |K'|* = (f — cot0)?. This completes the proof
of the theorem. ]
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RemMARK 3.1. For any nonzero function f of one variable and any
0 € (0,7/2], the wave equation admits infinitely many solutions. For ex-
ample, every linear combination of

. Sl

P = sm(JO f(1) dl—xcot@),
Xy

Py = cos(JO f(2)dt — xcot@),

Py = <r_yf(u) cos(ucot 0) du)pl

0

+ { ny 7(u) sin(ucot 0) du — 2 JU ( J £(1)dt — xcot 9) du}pz,

0 0 0

P (JH 7(u) cos(ucot 0) du) s

0

_ { J 7 f(u) sin(ucot 0) du — 2 JH ( J F(8)di — xcot 9) du}pl,

0 0 0
is a solution of the wave equation [3.5).

4. Existence theorems.

The following existence theorem together with and Remark 3.1
imply that the class V of flat slant surfaces in C? is very large.

THEOREM 4.1.  For any given nonzero function f of one variable defined on an
open interval I and for any 0 € (0,7/2] such that f # cot0), there exists a C>-
valued solution K = K(u) of the second order ordinary differential equation:

4.1)  K'(u)+ (icscé’— #%)K’(u) + f(u)(f (u) — cotO)K(u) = 0,

that also satisfies the two conditions:
(4.2) K|*=1, |K'|*=(f—cotd)>.
PROOF. Suppose f is a nonzero function of one variable defined on an open

interval [ such that f # cotf for some 6 € (0,7/2]. Let p(x,y) be any given
solution of the wave equation:

43 =TT w0 ) - =0

with p, # 0 (such a solution always exists, cf. Remark 3.1). Let U be a simply-

connected open subset of R? on which f(x — y) is defined. We define a metric
g on U by
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2

Py 2
fz(x—y)dy '

(4.4) g=prdx*+

Then M = (U,g) is a flat surface.
Consider the orthonormal frame {e;,e;} on M given by

10 _ Slx=y) d
pox’ py 0y

(45) el =

We define an endomorphism P on the tangent bundle TM by
(4.6) Pey = cosbe,, Pe, = —cos ley
and also define a symmetric bilinear form o by

(4.7) a(er,er) = —wel, a(er,er) =0, afer,er) = wez.

p Py
By a long straightforward computation, we may prove that (M, P, a,0) satisfies
all of the conditions mentioned in the existence theorem of slant immersions
(section 2). Therefore, by applying the existence theorem of slant immersions,
we conclude that there exists a 0-slant isometric immersion x : M — C? from M
into C? whose second fundamental form # is given by

(4.8) ( Y)=csc? (Pa(X,Y) — Ja(X, Y)).
Applying [4.5), [4.6], (4.7) and we have
<6—6x,%> zcsc@a-kfp cotH@
0 0
4.9 — | =
a ada\ _ Py o .
(5,@> = COtH&x+ zcsc@ay

0 py 0 [Py [f')O
(4.10) Vajox === 2=+ (yf> e

0 Pbxy  PASN O [Py f1) 0
Va/ayay< y2f2y+ ny3> +<pyyy+f>(3y’
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where f = f(x—y). Thus, by [4.3), and [4.10], we know that the im-

mersion x must satisfies the system

Xy = (%—l—icscH)xx—l—f(cotﬁ—f)pﬁxy,

y

p p
(4.11) Xy ==X+ f(f —cotl) —x,,
P v
Py Py .
Xy, = ——X,+ | —+=+icscl |x,.
Yoo (py f g
Therefore, as in the proof of Mheorem 3.1, we conclude that there is a C*-valued
function K of one variable so that
: p.K' .
4.12 — K(x — ixcsc — Y lXCSC(L).
( ) Xx (x y)pe ) x)/ f(COt 0 _f) €

From [4.11) and [4.12), we also know that the function K satisfies the differential
equation (4.1). Furthermore, by applying and [4.11) we have |K =1 and
|K |2 = (f —cot 0)2. Consequently, we conclude that, for any given nonzero

function f # cot0, the differential equation (4.1) admits a C*-valued solution K
which satisfies condition [4.2). O

/l

The next theorem shows the existence of ample 0-Legendre curves in S°
which implies that class I of flat slant surfaces in C? is quite large too.

THEOREM 4.2.  For any 0 € (0,7/2] and any nonzero function A(s) defined on
an open interval I, there is a unit speed 0-Legendre curve in S° whose curvature in
S3 is given by 1 = Jcsc.

Proor. Let 1= A(y) be a nonzero function defined on an open interval
I. Denote by U the open subset of R® given by the product: R x I. On U we
define a Riemannian metric g by

(4.13) g =dx* + (x+y)* dy.

From (4.13) we have

0 0 1 0
Vojox5==0, Vijox=—= < >—,

0x
(4.14)




Classification of flat slant surfaces 741

On M = (U,g) we define an endomorphism P on the tangent bundle of M
by

0 cosf 0 0 0
. —_— = —_— P e — —_— — —_—
(4.15) P(ax) el (8y> (x+y)cosHax

We also define a symmetric bilinear 7’M-valued form o by

0 0 0 0 0 0 0
: — _ 0L
(4.16) (8x ﬁx) <6x 8y> 0, (6)} 8y) My)sin oy

By a straightforward computation we know that (M, P, o) satisfies all of the
conditions mentioned in existence theorem of section 2. Thus, there exists an
isometric f-slant immersion x : M — C* whose second fundamental form is given
by

(4.17) h(X,Y)=csc?0(Pa(X,Y) — Ja(X,Y)).

From (4.15), (4.16) and (4.17) we find

0 0 0 0
h(&%) :h(a’@) =0

0 0 :
h(a,a) = A(y)(x + y)cotOx, + idcscOx,.

(4.18)

Combining (4.14), (4.18) and Gauss’s formula, we obtain

Xxx = 07

Xy
Xxy = )
(4.19) Y x4y

1
Xy, = (Acot0 — 1)(x + y)xy + <m+ i/tcscH)xy

Solving the first equation of yields

(4.20) x(x,y) = C(y)x+ D(y),

for some CZ-valued functions C(y) and D(y). From we have

(4.21) X =C(y), x=Cy)x+D'(y).
If we put z(y) = C(y), then, [4.19) and [4.21) 1mply D'(y) =yz'(y). Hence,

D(y) = [ uz'(u) du. Therefore we obtam from that
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(4.22) x(x,y) =z(y)x + Jy uz'(u) du.

Differentiating (4.22) yields

(4.23) xe=2(y), x = (x+»)2' (),

x
4.24 =L 1+ (x+»)"(y).
(4.24) Xyy X+y (x+y)z"(»)
Comparing with the third equation of gives
(4.25) Z"(y) = (Acot® — 1)z(y) + ikesc 02/ (y),

by virtue of [4.23). Using [4.13) and [4.23] we get <z,z) = 1. Thus z defines a
curve in S3. Moreover, from [4.13) and [4.23)] we also know that z is a unit
speed curve. Consequently, by applying [Lemma 2.1, we conclude that z is a unit
speed 0-Legendre curve in S3. These imply that for any nonzero function /
defined on an open interval, there exists a f-Legendre curve in S°. Since at each
point on a curve in S* the position vector is normal to S3, (4.25) implies that iz’
is the principal normal vector of the curve z in S° and the curvature of the curve
in S° is given by Acscd. O

5. Some explicit examples of flat slant surfaces of class V.

Here we provide some explicit solutions of the differential equation (4.1)
which also satisfy the two prescribed conditions given in [(4.2). By applying
these solutions we construct explicit examples of flat slant surfaces belonging to
class V.

Let
1
(5.1) fzi(cotﬁ—l—c), ¢ # cotl.
Then (3.6) becomes
1
(5.2) K" +icscOK' — 1 (cot? 0 — ¢*)K = 0.

The general solution of is given by

, / ) V/ 2
(5.3) K(u) —e(’/z)“me(cl cos( 1;—c u) + ¢ sin( 1;_6 u))

From (5.3) we find
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: [ o2
(5.4) K(O)=c1, K'(0) =3 cscle +° 2“ &
Since K needs to satisfy the two conditions:

1
(5.5) K@)|* =1, WTMV=Z@—CN®2

required by [Theorem 3.1, so we choose the following initial condition:
(5.6) K(0) =¢; =(1,0).

From the condition |K(u)|* =1, we have (K(u),K'(u)> =0. Thus, im-
plies <{c1,c2> =0. Hence, by applying we know that ¢, takes the form:
¢; = (ia,z) for some real number a.

Since f = (1/2)(cotd+ c), the wave equation reduces to

(5.7) 4p., + (cot® 0 — *)p = 0.

It is easy to verify that

(58) p= e{(x+y)c+(x—y)cot0}/2
is a solution of [5.7). Suppose that x is the immersion of the flat slant surface
associated with K and p mentioned in [Theorem 3.1. Then from the proof of
we know that the metric of the slant surface is given by
>
(5.9) g=pdx*+——2—dy*
fHx =)
Moreover, we also have
. p.K' .
5.10 — K(x — ixcscl — y ixcsc
( ) Xx (X y)pe ’ xy f(COt 0 _f)

Using (5.1}, [(5.5), (5.9), (5.10) and the f-slantness of the surface, we have

(¢ —cotf)cos@.

N —

(5.11) <z'K(O),K’(O)>:%(c—cotﬁ)@el,ez):

Combining [(5.4), and (5.11) yields

sin@ + ccos

(512) <iCl,Cz> = \/]_-|—_c7

Therefore, and (5.12) imply
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1
5.13 ) = i(sinf + ccosf),z
(5.13) > = e (i )2

for some z.

On the other hand, by applying [5.4), [5.5] and [5.12] we find |c;|* = 1.
Thus, from (5.13), we obtain |z|* = (cos# — ¢sin0)*. In particular, if we choose
z=cost) — csinf, then we have

(5.14) = (i(sin@ + ccos ), cos @ — csinh).

1
V1+c?

By combining (5.3), (5.6) and (5.13) we have

/l

(5.15)
e—(i/2)ucsc0 Vv1+ c2
_ 2
K(u) = — (\/1+c cos( U

V/ 2 V/ 2
+i(sin0+ccos9)sin( 1;6 u),(cos@csin@)sin( 1;—0 u))

It is straightforward to verify that K(u) satisfies conditions |K(u)|* =1 and
K (u)|* = (1/4)(c - cot 0)”.
By a direct long computation, we find

(5 16) J~x K( ) i escd J e{(x+y)(c+i0500)+(xfy) cot0}/2
) X — e X =
o! ' VI +cX(c+iescd)(esind + cos0)

- ((c?sin (1 + icos 0) + cos O(isin O — ¢) + ic) sinw
+ V14 c*{cosO(1 +icosf) + csinf(1 —icos )} cosw,
(sin O cos @ — csin® O){(c + cot @ + icscf) sinw — /1 4 c2cosw}),

where w = (1/2)V1 + c2(x — ).
On the other hand, by a straightforward but very long computation we
obtain

(5.17)

4p K'(x — . o ]
M ixescd J (pK(X _y))yelxcsce dx = 0.

e
cot? 0 — ¢? 0

Consequently, by combining (3.95), (5.1), (5.8), (5.16) and (5.17), we conclude
that, up to rigid motions of C?, the flat slant surface is given by
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e{ (x+y)(c+icscO)+(x—y)cot 0} /2

V14 c*(c+icsch)(csinf+ cos b))

(5.18) x(x,y) =

NS
X ((czsinﬁ(l—l—icosH)-I—cosH(isinH—c)—|—ic) sin( ;_c (x—y))

+ V14 c2{cosO(1 +icosO) + csinf(1 —icos0)}

\/ 2
X cos( 1;—c (x—y)),(sin@cos@—csin2 0)

X {(c+cot0+icsc€) sin( 1;62 (xy))

\/1+c2005< 1;—02()6)/)>}>.

By a straightforward long computation one can verify that (5.18) defines a
flat f-slant surface belonging to class V.
When ¢ =0, (5.18) reduces to

(519> x(x, y) _ e{i(x+y) cscO0+(x—y)cot 0}/2 sin 6

xX—y xX—y

, (1 —icos0)sin

X (sin@sinx;y + (cos 0 — i) cos

-I-isin@cosx;y).

REMARK 5.1.  The conditions |K| = 1 and |K'| = (f — cot0)® in statement V
of are necessary. For instance, although

K (u) = e~ i/2ucscd (cosg + i(csc 0 + cos O cot 0) sing ,cos fsin g) :

is a C?-valued solution of (3.6) associated with f = (1/2)cotf, the map (3.7)
with p = e¥2)et0/2 does not define a flat O-slant surface in C>.

Added in Proof. For the visualization of some flat slant surfaces in C2,
including the one defined by (5.19), see [10].
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