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Abstract. This paper is concerned with the standard L, estimate of solutions to the
resolvent problem for the Stokes operator on an infinite layer.

§1. Introduction.
Let Q c R" (n=2) be an infinite layer, i.e.,
Q={x=("x)eR"|x = (x1,...,x,-1) eR",0 < x, <1}.

This paper is concerned with the resolvent problem of the Stokes operator on Q with
Dirichlet zero boundary condition:

. A=ADu+Vp=f, V-u=0 inQ,
( . ) ”’xnzo =u xp=1 - 07
where u = u(x) = (u(x),...,u,(x)) and p = p(x) denote the unknown velocity vector

and pressure at x € Q, respectively, and the resolvent parameter 1 is contained in the
sector 2, which is defined as follows:

2, ={ze C\{0}||argz| <m—¢}, O0<e<m/2.

Here and hereafter, for the differentiation, we use the following notation:

"L 0%
av=3 o5 V=) =0f0n, Vie=(@olld =k)
k=1

n
Au= (Muy,... . Au,), V-u=> duy, Viu=(0"ul|le|=kj=1,...,n).
J=1

Let Ifff?l () be a function space for the pressure, which is defined as follows:

A

%1 (Q)={veLyic(Q)|Vve L,(2)" and

Hu} = C,(Q) such that [[V(v; —v)llp, @) — 0 as j — oo},
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where

Cio)(R2) = {ue C*(Q)|3R > 0 such that u(x) =0 for |x'| > R}.

The purpose of this paper is to prove the following theorem.

THEOREM 1.1. Let 1<p< oo and 0<e<mn/2. For any LeZX, and f =
(fisooos fu) € Ly(R2)", there exists a unique ue %2(52)" which together with some
pe Wpl () solves (1.1); p is unique up to an additive constant. Moreover, for any Ao > 0
there exists a constant C = C, ,, . depending only on iy, p and ¢ such that there holds the
following estimate:

1/2
(1) (Al + 14Vl gy + V20l @)+ V7l @) < AL @)
provided that A€ X, and || = .

So many results of the mathematical analysis for the incompressible viscous fluids
in the whole space and in the exterior domain have been obtained when the domain is
unbounded. The case where domains have noncompact boundaries have been studied
in recent years as well. However, the special attention has given to problems having
cylindrical and conical outlets to infinity. But, the infinite layer case has been less
studied. Nazarov and Pileckas [6] proved the weak solvability of the Stokes and
Navier-Stokes problems in the layer-like domain in weighted L,-framework. Moreover,
in they obtained weighted a priori estimates and the asymptotic representation of
the solution to the Stokes problem. We are interested in the study of the same problem
as in in the L,-framework. Our approach is the following. Using the partial
Fourier transform with respect to x’ = (x,...,x,_1) variable, we transform to the
two point boundary value problem for a system of the ordinary differential equations
with parameter (¢, 1) where ¢’ € R"™! is a dual variable of x'. We solve this system
exactly and apply the Fourier multiplier theorem [4], [9], and a lemma concerning
the estimate of the singular integral operator due to Agmon-Douglis-Nirenberg [2] to the
exact formula of solutions to obtain the estimates stated in [Theorem 1.1. Our method
essentially follows Farwig and Sohr [3]. Since our domain is bounded in x, direction,
we can prove that 4 =0 is also in the resolvent set. This is one of the outstanding
features of our result. Our main result is the following theorem which was already
announced and proved roughly in Abe and Shibata [T].

THEOREM 1.2. Let 1 <p < oo and 0 <e<mn/2. Then, there exists a o >0 such
that for any A€ X,U{ze C||z| <o} and any f e L,(2)" (1.1) admits a unique solution
uc %2(9)" together with some p € VKI (), where p is unique up to an additive constant.
Moreover, there holds the following resolvent estimate:

12
2] lall (o) + |4 / VallL, @ + lullwzo) + VRl = GelfllL,w-

Since our proof is rather long, we decided to divide the paper into two parts.
And, this paper is concerned with the case where A€ 2,. The forthcoming paper will
be devoted to the analysis when 4 = 0.

Throughout the paper, to denote various constants we use the same letter C. By
C4 B c,. we denote a constant depending on the quantities 4,B,C,....
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§2. Representation formula of solutions.

First of all, by using the solution in R" we reduce to the case where f = 0 with
inhomogeneous boundary data. In order to do this, we have to define the extension of
[ Let ¢(x,) be a function in C* such that ¢(x,) =1 for x, < 1/3 and ¢(x,) =0 for
X, =2 2/3. For a function f(x) defined on @, put

() = 9(xa) f(x) + (1 = 9(x0)).f (x) = So(x) + /i (x)-

Let us define the even and odd extensions of fy and f; as follows:

21) o ={n 2o
R AN P
=l e
f'(x) = {g(zip(gélz))fgl)7)?()xgz — %) fc: i i,

And therefore, the even extension f¢ of f and odd extension f? of f are defined by the
formulae:

(2.2) Jo=0 v ST =00
Now, let us put F=(f,.... [, f’) for given f=(fi,...,f,) in (1.1} and

n

consider the following Stokes resolvent problem in R™:
(2.3) A—AHU+VOP=F, V-U=0 in R".

Applying V- to (2.3), we have 4® =V - F, and therefore U = (1 — A) ' (F — A7'VV - F).
Namely, we have the following formulae for U and &:

CIEPfe) — it g ) - é;énf;”(é)]
2.4 Ui(x) = 7. |— : - x),
24) i) =7 G+ 1EP)Er )
NI GRSy ékfnff(@]
2.5 Uy(x) = F! n k=1 k x),
23 ¥ =% TREEEE )
[—n—1 > o
26) R T “’] ).

Where J = 17" N = la I = \% _1: é/ = (éla' -wénfl); 5 = (gluén) = (617” '76}1); and ﬁ(é)
and 975_1 [w(&)](x) mean the Fourier transform of v and the Fourier inverse transform of
w, respectively, namely

() = 7@ = | e v 7 WO = g [ @

(2m)" ) g

In order to obtain the L, estimate for U and @, we begin with the following inequalities.
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LemMa 2.1. Let 0 <& < /2. Then, for any 1€, &€ R" and &' € R"™' we have
the following inequalities:

@) 1P 2 (sing ) 121+ K.

(2.8) Re /i + &7 2 eo\/ 12+ 1€,

where we have chosen a branch in such a way that Re+/ 4+ |¢f|2 > 0 and we have put
¢, = (sine/2)*>.

To obtain the L, estimate, the following Fourier multiplier theorem (cf. [9], [10]) is
the main tool in our argument.

TueOREM 2.2.  For every positive number n, put U = R"\{¢ e R"|&; =0 for some
Jj=1,...,n}. Then, for every pe (1,0), there exists a positive constant C, such that,
for every P(&) e C*"(U) satisfying the estimate

0P

¢ o7

sup
teU,ue{0,1}"

(é)‘ <4

the operator f(x) »—>,97{1[P(f) F(O))(x) is extended to a bounded linear operator on
L,(R") with the estimate

||<7”{1[P(f)f(f)]||Lp(R") < GAf ., &
By and [Theorem 2.2, we have the following lemma.

LEMMA 2.3. Let 1 <p< o0 and 0 <& <mn/2. Then, for U and @ defined in (2.4)—
(2.6) we have Ue W2(R")" and ® e W]',l (R") ={DPe L, 1c(R")|V® e L,(R")"}, and
moreover for any A€ X, we have the estimate:

AN Ly + 1P IVUL ey + 172U gy + IR L gy S Coell £l -

REMARK 2.4. (1) In order to obtain only, it is not necessary to use the
special extension of flike [2.2). But, a property of U, stated in below will
be necessary to prove our main result. The special extension of f in guarantees
such property.

(2) As is well-known (cf. Farwig-Sohr [3], Galdi [4]), for any @ € Wl',l (R"), there
exists a sequence {®;} = C;°(R") such that |[V(® — @))||; gy — 0 as j— oo, where
C;°(R") means the set of all functions in C*(R") with compact support. Therefore, the
restriction of @ to Q2 belongs to Wl;l ().

If we put u=U+v and p =@+ ¥, then the problem i1s reduced to the
following problem for » and ¥:

(29) (h—Mp+V¥ =0, V-v=0 in @, o, _,=-Ul,

=0 v xp=1 xp=1"

We shall introduce the equivalent problem to (2.9). Applying V- to (2.9) implies that
(2.10) A¥ =0 in Q.
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Applying 4 to the n-th component of the first equation of (2.9) and using (2.10), we
have (A — 4)4v, =0 in Q. Since V -v =0 in Q, by the boundary condition of (2.9) we
have

n—1

n—1
—_— . . — . /
Ontnly,—a = _E :aﬂ’/ = E 0Uj(x,a
J=1 J=1

for a =0,1. Therefore, we have the following equation for v,:

Xp=a

(2.11)  (A=Mdv, =0 in Q, vyl _, = —U(x",a), 0,0, _, Z@Ux a)

fora =0 and 1. And then, (2.10) and the n-th component of the first equation of (2.9)
imply the equation for ¥ as follows:

(2.12) AV =0 in Q, 0,¥|, _,=—(A— Dol _,
for a=0 and 1. Finally, the equation for vy,...,v, | are the following:
(213> (j“ - A)U] = _ajg/ in Q7 U.i|x,,:a = _Uj|x,,:a

for a=0 and 1.
First, we shall solve (2.11). In what follows, we shall write the partial Fourier
transform with respect to x’ = (xy,...,x,_1) € R""! and its inverse transform as follows:

0(&' x,) = J e u(x!, xy,) dx’,

Rnfl

a1 / no__ 1 ix!'-&' / /
PN = e [

For the notational simplicity, we write 4 = |£'| and B =1/ + |é’|2, below. Applying
the partial Fourier transform to (2.11), we have

(2.14) (02 — A*) (02 — BY)0n(4, &', x,) =0 for 0 < x, < 1,
ﬁ” Xp=a = _U’l(élﬁ a), aﬂﬁﬂ|xn:a = lf, ’ f]/(f/7 Cl)
for a =0 and 1, where U’ = (Uy,..., U, ;). Since the fundamental solutions to (2.14)

are e A=%) =A% p=B(l=%) and ¢~B% we look for the solution to (2.14) in the form
by, = aje= A=) 4 gye= 4 4 gze~BU=%) 1 gue=B% By the boundary condition, (ai,as,
as,ays) satisfies the following simultaneous linear equation:

a go e 1 e P 1
az gl 1 eiA 1 eiB
2.15 L = h L=
(2.15) as T Ae4 -4 Be®? _B
o h A —Ae? B —Be B
and
(216) ga - _ﬁn(é,7a)7 ha - Zél : 0/<f/’a)

for a =0 and 1. Concerning the Lopatinski determinant det L, we have the following
lemma.
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LemMA 2.5. If Ae C\(—0,0] and & # 0, then detL # 0.

Proor. If detL =0, then there exists a (a,b,c,d) # (0,0,0,0) such that v(x,) =
ae~AU0=%) 4 pe= A% 4 ce=BU=%) 1 Jo=B% satisfies the homogeneous equation:

(02 — A% (2 — BHo(x,) =0 0<x, <1,
v(0) =v(1) = 0,v(0) = d,v(1) =0.

Multiplying the equation by v(x,), integrating the resultant formula over (0, 1) and using
the boundary condition, by integration by parts we have

1 1 1
<z+|é/|2>|é/|2j |v<xn>|2dxn+<z+z|f'|2>j |anv<xn>|2dxn+j 220(x)| dxy = 0.
0 0 0

When Im/ # 0, taking the imaginary part implies that v(x,) =0. When ImA1 =20
and Rel >0, taking the real part implies that v(x,) =0. This is contradictory to
(a,b,c,d) # (0,0,0,0), which completes the proof of the lemma. OJ

In view of [Lemma 2.3, if 1 € C\(—00,0] and &’ # 0, then the solution o, to (2.14)
and the solution v, to (2.11) are represented as

— Atk (xn)

(2 17) ﬁ (2 f/ X, ) = ii Li7ke +Li7k+2efBTk(xn) g 1
. n\* % »n : detL detL o

n Lipa ge ™00 Ly gype Bulo) I
det L det L e

on(x) = Z [ou(4, &' 0] (X,
where L;, denotes the (j, k) cofactor of L. Here and hereafter, for the notational
simplicity, we put
T1(xn) =1 =X, 72(xn) = Xy
The detL and L;; are given by the following formulae:
(2.18) detL = —(1 —e ") (1 — e *%)(4* + B?)
+24B(1 + e ") (1 + e %) —84Be B *,
Lii=1Lyy,=(AB—B*)e e —24Be™® + (AB + B*)e ™,
Liy=Ly,=AB— B> —24Be ¢ % + (4B + B*)e 2,
Lis=1Lys=—(A%>—AB)e *e™® —24Be " + (4% + AB)e 5,
Lis=Ly3=—(A>— AB) —24Be e ® 4 (4% + AB)e 4,
Ly =—Lsr=—(A—Be e ?® 2B+ (4+ B,
Lys=—L4y=(A—B)+2Be e ® — (44 B)e™?2,
Lys=—Lss=(A—Be*e® —24e "+ (A+ B ®,

L374 = —L473 = —(A — B) + 2A€7AeiB — (A + B)eizA.
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Now, we shall consider (2.12). Taking the partial Fourier transform of (2.12), we
have

(2.19) (0 —A)¥ =0 for 0<x, <1, 3,P|,_,= (05 — B)iul, .

for a=0 and 1. Since

(07 — BNy, o = —2e Ky — AK>, (07 — B)by|, | = —AKj — ke K,

as follows from A (2.17) where K; = (det L)fl{Lngo + Ly jg1 + L3 jho + La jh}  for
j=1,2, putting ¥(1,&, x,) =ae A1)  be=4% and inserting this formula into the
boundary condition, we have

2 2
) A L;
k — Aty (x, . j+2,.k .
(2.20) P(0,E x,) = E E (—1) _{det gi-1 +det h]_l}.

J=1 k=1

Finally, we shall solve (2.13). Put

F_ —g¥, 0=x,=1,
710, xn ¢ [0,1], 7

If we put v;(x) = Vj(x) + w;(x), then (2.13) is reduced to the equation:

(2.21)

(2.22) (A=Dw;=0 in Q, wi|, _,=—(U+V)

Xp=a
for =0 and 1. Applying the partial Fourier transform and putting w;(4,¢’, x,) =
aje BU=>) 4 gre7B%  we have

—B(14+x,) _ efB(lfxn)

W €)= S (O 1) + VH(E, D)

e—B(Z—xn) — e~ B

S Y (T;(&,0) + V;(£',0)).

And therefore, we have
(2.23) 0(x) = Vi(x) + 72 [y (4, &', x)] (),

for j=1,....n—1.

Finally, we shall show the uniqueness of solutions to [I.I}], assuming that the exis-
tence of solution to holds. Let we W(Q)" and pe I/f;l (Q) satisfy the homo-
geneous equation:

(2.24) (A—Au+Vp=0, V.-u=0 in Q, ul, _o=ul, _; =0.

Let f=(fi,..., /o) € C(2)" and let (v,q) € VI@%(Q)” X I/Z,}(Q) be a solution to the
equation:

(2.25) (A—Mov+Vq=f, V-o=0 in Q, o, o=0vl,_; =0,

where p' =p/(p—1). Since p € VKI (2), there exists a sequence {0;} c C(Og)(Q) such
that lim; . [|V(0; = p)|l, @ =0. Since V-v=0in Q and v|, _, =0v|, _; =0, we have

(Vp,v) = hm (Vﬁj,v) = lim (6;,V -v) =0

J—ow
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where we have put

w0 = | ot m) = S wm)

J=1

for scalar functions v, w and vector valued functions v = (vy,...,v,) and w=
(wi,...,wy). Since qe I/Z}(Q), V.u=0 in Q and u|, _o=u| _; =0, in the same
manner we have (u,Vq) =0. Therefore, by (2.24) and (2.25) we have

0=(A—Du+Vp,v)= (u,(i— ) = (u,(h— Ao +Vq) = (uf).

The arbitrariness of choice of f implies that # = 0, which combined with (2.24) implies
also that Vp =0. Therefore, p is a constant. This completes the proof of the
uniqueness of the solution to [1.1).

§3. Analysis of 9,(4,¢, x,).

In this section, we shall estimate the coefficients of g; and A4; of o, defined by (2.17)
studying the three cases.

3.1 Case 1.

We shall consider the case where 4 € X, and ¢’ € R"™! satisfy the condition: || = «
and |&'] < Vs Here, o is an arbitrary positive number and y, , is a sufficiently small
positive number depending only on « and ¢, which will be given in [Cemma 3.1 below.
If we put

—24

L= ey 4 B

A
—2B(1 +e )1 + e 28) + 8Be™ e 8,

(3.1) I(4,B) =

by (2.18) we have
(3.2) det L = — Al (A, B).
Here and hereafter, we put A4 = |¢'| and B= /A + |&'|* like in §2.

Lemma 3.1. Let 0<e<mn/2 and o >0. Then, there exist constants y,,, 0<
Ve = 1, and ¢, > 0 depending only on o and ¢ such that there holds the estimate:

(A, B)| 2 e, (1 +|BP)
provided that ). € 3, and &' € R"™" satisfy the condition: |1 Z o and |&'| < Voo

Proor. First, we shall show that there exist constants 4,, > 0 and d,, > 0 such
that

(3.3) 11(A, B)| = Ay, B

provided that 0 < 4 <1, A€ Z, and |/1|1/2 >d, .. In fact, since

1 — ef2A 1
_— = 2J e 21940 > 2¢72
A 0
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when 0 < 4 <1, we have
(3-4) (4, B)] 2 |BI*{2¢ (1 — e *Re#)(1 — |4/B*)
— 2B (1 +e)(1 + e ?ReP) —8|B| e e Ry,
By [2.8), we have |B| > ReB > cg|/1|1/2 = c.d, . when |/1|1/2 >d, ., and therefore
(3.5) (1 —eRB) (1 —4/B)") 2 (1 = e V) (1 = (coddy) ),
20BN (1 4+ e )1+ e 2ReB) 1 8|B| e e R B < 16(cudy )

Put A,, =e (1 —e2V%)/2 and choose d,, >0 so large that (c,d,,) ' <1/2 and
16(c,dy )" < A,,, and then (3.4) and imply [3.3].

Next, we consider the case where A€ X, and o <[4 <d;,. When o <[4 £d7,
and 0 < 4 < 1, we have |B| < /|| + &) £ ,/1 +d?,. When || Za and 1€ X, we
have ReB > CSWI/ 2> cv/o. From these observations, if we put

K={zeC||z| £/1+d?,Rez = c;\/a},

then Be K when a < |1 <d?,, AeX, and 0 <4< 1. Therefore, to complete the

o, &
proof, it is sufficient to prove that there exist constants y, ., 0 <y,, =<1, and C,, >0
such that
(3.6) |i(4,B)| =z C,, when 0<A4=<y,, Bek.

Since K is compact and /;(4, B) is a continuous function of (A4, B), to prove (3.6) it is
sufficient to prove that

(3.7) 1,(0,B) #0 when ReB > 0.

As an auxiliary problem, we consider the following ordinary differential equation:

(3.8) <%>2 ((%)2 — B2> ut)=0 0<tr<l,

u(0) = go, u(l) =g1, u'(0)=hy, u'(1)=h

which is the equation corresponding to (2.14) with 4 =0. If we put u(¢) = a; + at +
aze B + aue B0-1 from the boundary condition we see that (a;,a»,as,as) satisfies the
following simultaneous linear equation:

ap 9o 1 0 1 e B
_B
M e ,  Where M = bl ¢ I
as ho 0 1 —B Be B
ay h] 0 1 —BeiB B

Since det M = —1,(0,B)/2, if ;(0,B) =0 for some B with Re B > 0, then there exists
a (ay,as,as,as) # (0,0,0,0) such that u(f) = a; + ayt + aze B + aze 81~ satisfies
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with go = g1 = ho = h; = 0. Multiplying by u(f) and integrating the resultant
formula over (0,1), by integration by parts we have

Na2u, |? Yu , |?
=| |— B’ .
0 L i (1) dt+ J 7 (1) dt
Taking the imaginary part implies that
Yu , |*
2(ReB)(ImB)J —(1)| dt=0,
o|dt

and therefore # =0 when ImB # 0 and ReB# 0. When ImB =0 and ReB # 0, we
have also u =0. This is contradictory to (a;,a,as,as) # (0,0,0,0), which completes

the proof. ]
In Case 1, we transform (2.17) into the following formula:
2
. Lii+Li, _ Li-A
3.9 ) J) / ) = s 7 Aty (x,) Js D(A ;
(9) (k) §,__13{—dew + 22 D(4,x,)

2 L2
]m —Br (x
m n U
* detL (7=1)

2
Liooi+Liv22 _4r(x) Lj+2,2AD 4
Z{ det L ¢ + det L (4, x)

l+2 m+2 —BT (x .
§ : (% U(-,j—1
+ ot I }zé (,j—1),

where we have put
1

e—Axn _ e—A(l—xn) (1 B2y 1
. , Xp) = = (1 —2x, e T n .
(3.10) D(4, x,) y (1-2 )J ((1=x)+02%=1) 49
0
To represent the coefficients in [3.9), we also put
1 — eka 1
(3.11) di(A) :T:kj e~ qp.

0

Then, we have the following formulae concerning the coefficients in [3.9):

Lit+Lis Loi+Las BXdi(A)(1—e ) =~ B (1 +e)(1—eB)?)
det detL I1(4, B) ’

(3.12)

L3+ 13> _ _L4,1 + L4 . B(dl(A)(l + 6_3)2 — B_l(l +e_A)(l — e_ZB))
detL detL Ii(A4, B) ’

LisA B> ((1—B'4)+2B 'de e 8 — (1 + B 14)e8)
detL I1(4,B) ’

Ly2A B ((1-B'A)e e +2B ' 4e78 — (14 B '4)e)
det L a ll(A7B) 7




Stokes equation on an infinite layer 479

L32A B(l—-B'4-2e4¢ 8+ (1+B'4)e?8)

detL (A, B) ’
LirA  B((1-B'A)e e —2e 8+ (1+B'4)e)
detL (4, B) ’
L1’3 . L2’4 . B(—(l — B’IA)e’ZAe’B + De 4 — (1 + BilA)efB)
detL detlL Ii(A4, B) ’
L174 . L273 . B(—(l — B_1A> —+ e A8 — (1 -+ B_lA)e_ZA)
detL detL I,(A, B) ’
L373 . L474 . B(—dz(A)e_B — B le 2o 8 + 2B le 4 — B~ €_B>
detL  detl (A, B) ’
Lys  Lys  B(—dry(A)+B ' —2B e e B+ B le2)
detL  detl I,(A, B) '

In order to estimate the coefficients of #,, we shall use the following lemma.

LemMa 32, Let 0 <e<n/2, & eR" ' and )€ %,. Then, for any multi-index o' =
(ot1,...,00—1) we have the following estimates:

08 A¥| < Cr i) Vk € R,
10 B < Cor ok (A + 1E)1E T vk eR,
|ag,’e*’”f“| < Ca,’m|é/|f|a’\ef(m/2)|é'\ VYm > 0,
(02 ™A] < Cor || 112" Vm > 0,
0% e™B| < Cy || e DN Ty > 0,

where c; is the same constant as in Lemma 2.1. Here and hereafter; C4 p c,.. means the

constant depending only on the subscripts A,B,C,...; and
o / a‘ﬂv / /
e = g gy W=t o, = ().

To prove [Lemma 3.2, we use the following known formula for the derivatives of the
composite function, which are easily proved by induction:

o'

(3.13) Lw(pE)) ="

v=1

ST dele) - ade@)].
z=p(¢') oy -y =o'
M

d"w(z)
dz”

If we combine with to treat B and the fact that there holds the
relation: |6g,'|é’|2| < 21¢')>7™1 for any multi-index o/, we can show [Cemma 3.2. The
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argument is rather standard, so that we may omit the proof (cf. Simader [8, Appendix

1]). By Lemma 3.1, Lemma 3.2l and Leibniz’s rule, we have

(3.14) 02 1B 11 (A, B) ]| £ Cool2] VP2,
0% di(A)] = ol Kk =1,2,
020, D(4, x,)| = Cl&| 1 Wk 2 0,¥x, € [0, 1],

for any o' when 1€ 2, |2| 2o and |¢'| <y, (£1), where we have used the fact that
¢/ < Bl £ T+ A £ V1 +a 14" to get the first relation. Therefore, applying
(3.14), Lemma 3.1 and Leibniz’s rule to the formulas in (3.12), we have the following
lemma.

Lemma 3.3, Let 0 <e<m/2. Let o be any positive number and y, , be a number
given in Lemma 3.1.  Then, when J.€ X,, |A| Z o and |&'| <y, , there hold the following
estimates for any multi-indices o', ', integer k =0, j=1,2, m=1,2,3,4 and x, € [0, 1]:

’ ’ L71+L2 _ B T o
(e ar g 2e ) )| s ol

—1/2 —la’
det L < Cyop AP

H <(é’)ﬂ’af {L’W 22 i)

det L

—1/2 —la’
< Cyop AT PE T

/ / L A T
o NB Ak | H+2,2
oz ((5 ) ! [—detL D(A.x,)]

kj2-1/2) 21—t
< Co o222,

n

oz <(f’>ﬂ/0,’f [Lf’zAmA,xn{ ) < Cpy &

’ ! L j 1
0% np ak m,j+2 —Bri(x,)
< ((é ) [detL ¢ ]

3.2 Case 2.

We shall consider the case where le X, and &' e R™! satisfy the condition:
&'l =y and |¢']? < B,.|4l. Here, yis an arbitrary positive number and f3, , is a positive
constant depending on y and ¢ which will be chosen so small that there hold the
inequalities (3.17) and (3.18), below.

Put

(3.15) L(A,B) = (1 —e ) (1 — e 25)(1 + (4B ")?)
—24B7' (1 +e ) (1 + e 28) + 84B e e 8,
and then recalling (2.18) we have

(3.16) det L = —B?L(A, B).

In view of [2.8), noting that 4 =y and Re B = ¢,\/|A| + €'|* = ¢,7, we have
(A, B) = (1 — e ¥)(1 — e *7)(1 — |4B') — 16487,
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because Re B> 0. When |¢'|? < f, .||, we have

BT o
NS e =

If we choose f,, >0 so small that there hold the inequalities:

(3.17) —\/? <1/V2,

<318> 166‘8_1 ﬁy,g é 1 — 6_2"/)(1 e—ZCay%

then we have
(3.19) (4, B)| = 7 (1 —e™)(1 = e77).

In this case, by [2.16) and (2.17) we represent ,(4,¢&’, x,) as follows:

2 2

L L 2
2 An / ) = J,m *ATm(xn) ]7m+2 7BTm(x") nle _1
(3.20)  Bu(2,¢' %) ZZ{detLe el € Un(-,j—1)

481

2
JH2,m Az, (x,) LJ+2 m+2  —Br,(x, U’ i—1
o33 b e Lt i Vi G )

m=1 j=1
Then, by (2.18) and [3.16), each coefficient in (3.20) is represented as follows:

Ly Ly (1 —AB Ve 4e 28 4 24B e B — (1 + AB 1)e A
detL detL I (A, B) ;

(3.21)

L, Ly (1-AB ") +24B'e e —(1+4B")e 28

detL detL I»(A, B) :
L173 o L274 _ ((AB—I)z —AB_1)€_2A8_3—|—2AB_1€_A - ((AB_1)2 +AB_1)e_B
detL detL 1 (4, B)

Lia  Lys ((ABY —AB') +24B e e P — (AB")> + AB )e 4
detL detL I (A4, B) ;
Ls . Ly > . —(1 - AB_l)e_Ae_zB + 2B — (1 —f-AB_l)e_A

detL  detL B (A4, B) :

Ly Ly 1—AB ' —2e4e B4 (1+ 4B 1)e 28

detL  detL Bl (A4, B) ;

Ly Lyy (1—AB Ne e B4 24B e — (1+ 4B ")e

detL  detL Bh(A, B) ;

Lys  Liz  —(1—A4AB ") —24B'e e B+ (1 + 4B ")e
detL  detl Bl (A, B)
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By and Leibniz’s formula, we have
(322) 02 4B < Cor o121 + 121721,
and therefore by [Lemma 3.2 Leibniz’s formula, and [3.19), we have

(3:23) 02 ((4, B)B) ™| £ Coro(|2] +1€"17) 72187,

when [¢'|>y, e, and |¢')> <B,,|4. Applying Lemma 3.2, [3:22), [3.23] and

Leibniz’s formula to (3.21), we have the following lemma.

LEMMA 3.4. Let 0 <& <m/2. Lety be any positive number and f,. be a constant
for which (3.17) and (3.18) hold. Then, when |&'| =y, 1€ X, and |&'|* < B, .|| we have
the following estimates for any multi-index o':

8gm o«fy‘é’ ‘O( j:1727 k217273747
08 o S G AP, =12 k=1,2,3.4.
3.3. Case 3.

We shall consider the case where Ae X, and & e R"! satisfy the condition:
Bl < 1¢')* and || = Rg .. Here, f is an arbitrary positive number and Rg, >0 is a
positive constant depending on f and ¢, which will be chosen so large that there holds
(3.29) below.

Since
(3.24) detL = —(4 — B)> + (A4 — B)* (e + ¢725)
— (A —B)?e e L 44B(e™ — ¢ B)?,
if we put
—Ay _ ,—By 1
325) = —d.By), d(ABy) =y | 0B a,
- 0
(3.26) L(A,B)=1— (e +e2B) + e21e28 _44Bd(4, B, 1)?,
we have
(3.27) det L = —(A4 — B)’I5(4, B).

Note that Re(64 + (1 — 0)B) = ¢4 for 0 < 6 < 1, which follows from [2.8). By [2.8)
and we have

(3.28) (4, B.y)| S et e S e

When g|4] < |€']?, by we have

|4ABd(A,B,1)*| < 4\/1 4 4% 294 < 8\/1+ 1 (c,) 2e 4,
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and therefore when f|4| < |¢'|* and |¢'] = R by we have

(4, B)| Z 1 = (72K &2 4 ¢ 24 8\ [1 4 71 (e) e oK),

If we choose R = Rg . so large that

2R + e—ZCgR + e—2(1+C;,)R +84/1 +ﬂ—1(68>—28—CcR é 1/27
we have
(3.29) |l5(4,B)| = 1/2 when p|J| < |f/|2, & = Rg ..

In Case 3, we transform (2.17) into the following formula:
2 2
+ Ljmi2 _
330 j, 11 J,m -L,m ' ,mre m+ ATm(Vn)
S

Lj,m+2(A — B) R ‘
Adet L Ad(A’B’ Tm(x”)) Un( )y J 1)

< +2,m + Lo me2 4z, (x)
] m ] m — Aty (X,
2.2 AR

j=1 m=1

Lj+2,m+2 (A - B)
Adet L

Ad(A, B, Tm(xn))}if/- U, j—1).

By (2.18) and [3.27), each coefficient in (3.30) is represented as follows:

L1+ L3 _ Lro+ Loy _ —(A + Be_Ae_B)d(A,B, 1)+ e e84
detlL ~  detL (A, B) ’

(3.31)

Lir+Lia Lyi+Lys 11— (e —Bd(A4,B,1)° — ABd(4, B, 1)’

detL —  detL (A, B) ’
Lyi+Lss  Lap+Lag  —(1-e“eP)d(4,B,1)
detL detL I;(A4, B) ’
L372 —|—L374 . _L471 —{—L473 . (A —|—B)d(A,B, 1)2
detL detL 3(A, B) ’
Li3(A—B) Ly4(A—B) —eB(1—e?")—2Bd(4,B,1)
AdetL —  AdetL I5(A, B) ’
Li4(A—B) Ly3(A—B) 1—e?*+2Bed(4,B,1)
AdetL ~  AdetL I;(A, B) ’
L373(A — B) _ L474(A — B) o 873(1 — 672’4) — 2Ad(A,B, 1)
AdetL AdetL Al(A, B) ’

L374(A — B) . L473(A — B) . (1 — €_2A> — 2A€_Ad(A,B, 1)
AdetL AdetL Al(A, B)

To estimate these coefficients, we use the following lemma.
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LemMa 3.5. Let 0 <e<m/2. Let f be any positive number and Rg . a positive
constant depending on f and e, for which (3.29) holds. If ). € X, and &' € R"™" satisfying
the condition: B3] < |&')* and |&'| = Rgp ., then, for any multi-index o' and y =0 there
hold the following estimates:

02 (6] A B"d(A4, B, )| £ Cy g p &'/ el
where k=1, m=0, j=0,1,2, and

0415(4,B) | < Cur o pl&'| 7.

Proor. Since Re(0A4 + (1 — 0)B) = c;A as follows from (2.8), by [Lemma 3.2 and
Leibniz’s rule we have

102d(A, B, p)| < Co |E'| ¥ ye (@2,
Then, by and Leibniz’s rule we have
(3.32) |6C‘3‘,'AkBmd(A,B, V)| £ Cyo|E |y e/ 21y
< (4/66)Ca/76|é/|k+m717\a’|e—(1/4)58|§’\y’
which shows the first relation for j =0, because |B| < WA. Since

0,d(4,B,y) = —Ad(4,B,y) + e, 0d(4,B,y) = A’d(A, B, y) — (A + B)e™™

by Lemma 3.2, (3.32) and Leibniz’s formula, we have the first relation for j =1 and
2. By [Lemma 3.2 [3.13) and (3.29), we have the second relation, which completes the
proof of the lemma. ]

Applying Lemmas and to (3.31), we have the following lemma concerning
the estimate for the coefficient in (3.31).

Lemma 3.6. Let 0 <e<mn/2. Let f and Rg, be the same as in Lemma 3.5.
If L€, and & € R"" satisfy the condition: p|2| < |E')* and |E'| = Ry,,, then for any
multi-index o', and integer m = 0 there hold the following estimates:

9

! L L T |y’ ! -
ag' a’T {%e_m}(&) = Ca',c,ﬁ7m|é/|m o ‘e_(1/2)|é |71 (xn)

Y

det L

, L; L; ] | / ,
agl 8:1“ {( j+2,1 + _1+2,l+2)lék e*AT[(.xn) < Coc/,a,/},m|f/|m7|“ \87(1/2)|§ |7/(2)
0% om Lj12(4 - B)
Sr|l AdetL

Liys 142(A — B)i&;
Adet L

Ad(A, B, Tl<xn>) é Ca’,e,ﬁ,m|é/|m_|al‘6_(1/4)C€‘§,|T/(x”);

#ay| Ad(A, B,y (x50)) || £ Co || e 0 ),

where j=1,2,1=1,2, k=1,...,n—1 and 7/(x,) 2 0.
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§4. Estimates for v,,.

In this section, we shall derive an estimate for v, defined in (2.17). For the sake of
notational brevity, we put

1/2
Lp(0, D) = |21 0], ) + 12121Vl ) + V200l -
The following theorem is a main result of this section.

THEOREM 4.1. Let 1 <p< o, 0<e<mn/2 and 19 >0. Let v, be a function
defined in (2.17). Then, there exists a constant C depending only on p, ¢ and L such that
there holds an estimate:

Lp (00, Q) = CropellfllL, @ provided that 7€ X, and || 2 Aq.

According to the classification in §3, we divide v, into four parts. Let Ay be a
given positive number. In Case 1, we take « = 4o and put y; =y, .. Next, in Case 2,
we take y =1y, ./2 and put y, =f,, with y =y, /2. Finally, in Case 3, we take
f=7,/2 and put R= Rg, with f=y,/2. In this situation, we have the estimates of
coefficients of v, stated in when A€ 2, |1 = 4o and |&'| £ y,, those stated in
when A€, |A| =2, |€')> < 9,|4] and |&'] = 9,/2, and those stated in
when Ae X, |&']* = (y,/2)]4] and |&'| = R. Let ¢(¢') be a function in
C(R™") such that p(¢) =1 for |¢'] £1/2 and ¢(¢') =0 for |¢'| =3/4. Put

010N = 0(E /1)y 2 E) = (1= (& [2)p(E ) (1] 2])?),
034 &) = (1= (&' /) (1 = 0(& [ (m]2]) *))p(¢' [ R),

042, &) = (1= o(& /7)) (1 = (&' /(1] A) D) (1 — p(&'/R)),
Vi, &' xn) = 0;(4, &) 0n(4, & x),  j=1,2,3,4.

Since ij‘:l(gi(/17é’) =1, we have
4
oa(x) = Y Wi(x), Wilx) = Z ' V(2. )] (x).
=

We shall prove that each of Wj(x) satisfies the estimate:
(4.1) LW, Q) = Coypellfll, @ provided that A€ X, and [A] 2 4o.

We start with the estimate for W;. Since suppp,(4,¢&') < {& e R" 1| |&'| < 3y,/4},
applying Lemma 3.3 and [Theorem 2.2 to (3.9), we have

(42) A% WAt %)l

1 n—1
< Z Cig,&,p,ﬂ’{'M 1U(- s @)l g1y + Z AU 7a)||Lp(R"‘)}%
a=0 =1

k
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2 1 I
(43) |i| 1/ ”anafl Wl(- 7'xn>||Lp(R"_1) + Haiaf, Wl(- 7‘xn>HLp(R"_l)

n 1
Z > Gyl N U @) oy
k=1 a=0

for any multi-index p’ when /e X, and |l = Ay. Inserting the estimates obtained in
[Cemma 4.2 below into (4.2) and [4.3), we see that W, satisfies (4.1).

LemMa 4.2. Let 1 <p < oo, 0<e<m/2 and o> 0. Let Uj(x) be the functions
defined in (2.4) and (2.5). Then, we have the following estimates:

1 n
m/2
ZZMI PO @)l gy S Caopell Flly @) m = 0,1,

a=0 k

Z M' ||‘/f Am ( /7a)]||Lp(R"*1) = Cp,s,m,ionHL,,(Q)a m = —1,0, 17 sy

provided that A€ X, and |A| = Ao.

Proor. By the usual trace theorem, we have

1 n
1
ZZ PO @)l ey = CLA2 Ul oy
a=0 k

which combined with implies the first relation, because |4| = 4.
To prove the second relation, we use the formula and our special extension of
f. By the definition of f and f°, we have

A? 1 M i o (et
U, (¢',0) = 27zJ W{L (e eV ) p(¥n) Ju(E, Yu) dyn

1
‘f‘J (e_iy”é" —e i2=yn) C”)(l - ( n))f;,(élvyn)dyn}dén

1/3

é 2/3 o . A
Z i W{J (€04 g () (€ i)y

1
+J (e en e~ 2y (1 — () fo (& yn)dyn} dé,.

1/3

By the residue theorem, we have

LJW e’ﬁCn dé _i (e—|a|A _e_a|B)
) Gl 224 B

IJOO elné i a, _ B
— = Mg, =— — (el _ plalB
2n) o (A4 1€ 2 jal' )
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for a € R\{0}, which inserted into the representation formula of U,(¢’,0) implies that

44)  0,(¢,0) = ;1; J ; { (e—:A B e—ly;B)

67(27)/,,) gf(zfy")B N /
_< I )u—qo(yn))mf,yn)dyn

n—1 . 1
# SR e - ey

1/3

+ (e7 A — B (1 — 0(3)) fi (€', yu) .

Employing the same argument, we have also

A2 (2B | fe~(-va  o=(1-y)B
@) G =5 {( — )

e—(l+y,1)A e_(l+y’7)B A / d
_( R )co(yn)fn(é,yn) Vn

n—1 .
o Zli_kl[z/3{(e(1yn)/4 - e*(lfyn)B)
24 )o

+ (7 — BN (1) fi (&', ya) dyn.
By we have

|62€I/<Ake—tA)| é Ca/7k’é,|kilw|€_(t/2)A é Coc’,k’é/|7|al‘,
0%/ (4*B 1) < Coten |8 et < ¢, 1877,

when r>1/3. If 1/3<y,<1, then y,>1/3 and 2—y, =1 in (44). And also, if
0<y,<2/3,thenl—y,>1/3and 1 +y, =1 in (4.5). Therefore, applying
2.2 to (4.4) and (4.5) with respect to x’ variables, we have

|7 A T )l g <cj 1ol sy dn < Clf DL o

for any integer kK = —1 and a = 0,1, which completes the proof of the lemma. ]
Now, we shall estimate W,. We divide W, into the following four parts:

W2 = ng + W2g + Wlh + W2h

where
_ ! I, — ATy, (Xn) T [ /
W) = 32357 ) e 0@ )
2 2 1- Lm+2 B A
W) = 30307 | aln &) T2 IO 1) (),

1 /=1 L



488 T. ABE and Y. SHIBATA

2 2 -
L m _— At x ! . /
W) = 3037 ol &) G tier G - 1)),
m=1 j=1 L
2 2 g'fl- [’]Jr2 m+2 _PBr (x (=l . /
th(x):ZZ/é, (Pz(/%f)ﬁe i gE j 1) (),

(cf. (3.20) and (2.16)). Since supp ¢, (4, &) = {& € R" | y,/2 < |&'| < 3(3,|A)) /2 /41, by
Lemma 3.2 [Lemma 3.4 and Leibniz’s rule, we have

(4.6)

! Lk !
f, / 75 —yA < , !/ ‘O(|
aé ((pZ(}"f)detLe )’ = C17/L078|£ | )

when y 20, 1€ X, |1 = 4 and &' e R"'. By [4.6), Theorem 2.2 and [Lemma 4.2, we

have

47) I 2l ety £ G, elilz 1O G Dz, mey £ Cpoioell Fllz, 0

In order to continue the estimate, we shall use the following lemma.

LEmMMA 4.3. Let 1 <p<oo, 0<e<m/2 and 29 >0. Put Ry =(—o0,1], R, =
[0,00) and R" = R"™' x R,,, m=1,2.

(1) Let D be a set in C and ®(1,¢',x,) be a function defined on
D x (R"\{0}) x Ry. Assume that ®(1, & x,) belongs to C*((R"'\{0}) x Ry) for
each A€ D and satisfies the estimate:

4.8 0% okD (), & x,)| < M|E|F1¥ gm0l
(4.8) 0z ok @2, ¢, |

for any multi-index o with |o'| <n—1, & e R"™1\{0}, Ae D, k =0,1,2 and x, € Ry with
some positive constants M and 6. Given g(x) € %Z(R”) and a € R, we put

Vm(x) [ (}“ f TWI(xn)) ( /aa)](xl)’ m=1,2.
Then, there hold the following estimates:
(4.9) 177G o)l ey < CoMIlgC @l g tys %o € R
(4.10) VAVl ey < CoMIVEGll, grys e = 1,2.

(2) Let ®(1,¢&") be a function defined on X, x (R""'\{0}). Assume that ®(1,¢")
belongs to C*(R""\{0}) for each )€ X, and satisfies the estimate:

(4.11) 02 (2, EN < MIET o <n—1
for some positive constant M. Given g(x) € Wz(R”), we put

W) (x) = ! [@(2, e Prtg (& a)] (x').
Then, we have the following estimates:

(4.12) LW, Ry) £ Cpi, e M1 p(g, R”).
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REMARK 4.4. Let ¥(A,¢') be a function defined on D x (R"'\{0}) which belongs
to C*(R""'\{0}) and satisfies the estimate: |6§‘/’5”(/1,£’)| < M for any o’ with |o'| <
n—1and 1eD. By and Leibniz’s rule, we see that ¥(1,¢ )e 4% satisfies
(4.8).

Proor. (1) By Mheorem 2.2l we have immediately. In order to prove [4.10),

we consider the function

4o (x) = Fr e OB G )| (') = 2] O (3, 61259y a)

Rn—l axn

where E is a fundamental solution of —4 of the form: E(x) = ¢,|x| "~ when n = 3
and E(x) = ¢, log|x| when n = 2 with some constant ¢, depending on n. By a theorem
due to Agmon-Douglis-Nirenberg [2, Theorem 3.3] (cf. also Galdi [4, Theorem 9.6]), we
have

413) V¥l = GoolVEa(a+ ),y = GrolVEl Ly K =1,2.
Put |D'[*h(x") = 7 [|€']*A(E))(x"). Noting that [¢'] = =31 (i&|¢'|7")i&;, by The-

orem 2.2 we have

k I
(4.14) D' Hl oy < Cep S N8 AL o
1B 1=k

By (4.13) and (4.14) we have
g '
(4.15) ||af«|D'|k95||L,,(Ri) < Coo iV gl (g

To prove (4.10), we write

OV (x) = F [0E0(h, & x| D g 3.
By (4.8), Lemma 3.2 and Leibniz’s rule, we have
0L 0K D (4, &', x,)[E'|FeP ] < Come |

for any multi-index o’ with |¢/| £n —1 and x, € R, and therefore by Theorem 2.2 we
have

’ / k
||(3£, ay]l{I/GZ( 7_)(,'H)HLP(Rn—l) é C()MHaf/ |D/| ga( 7‘xl’l)HLp(R"_l)7

which combined with implies for RY. If we use the change of variable:
x, =1—y, we have also for Ry.
Now, we shall show (4.12). By [Lemma 3.2, we have

APty

|aoc[ (lf)e Bx,,]|<C Me (c:/2)|A

&'

for any o’ with |o'| <n—1. By [Theorem 2.2, we have

(¢ 1172
M“l “ M/az( ’xn)HLp(Rnfl) é Cp,sMe ( 8/2)‘” n

g(- 7a>HLP(R"’1)
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for x, = 0. Integrating the p-th power of the both sides over the interval [0, c0), we
obtain

— —-1/2
P IWRIL oy S (G2, 1P P gL

On the other hand,

“ 0 _
ool oy == [ o [[. 0601 | s, < ool e Nl ue
Combining these inequalities implies that
1/2
(4.16) A2 ) < CoeMAIA 9]y + 1221V ey -

To estimate the derivative of W, let us write
W) = P @2, ) (B) (1 + 121 e Mg (e a))(x)

F (L) B (A 4 | e B | D gy &' )] ()

where 0 = ¢,/4. Since
02 (@ (2, &) (=B) (121> + &1 < Co oM e,

|8§‘/,[Q5(l, f/)(_B)kOilk/z + |€/|k)—lefoneJAxn] < Coc’,gM|é,|_‘a/|,

for any o' with |¢'| <n—1 as follows from [Lemma 3.2l and [4.11), by [Theorem 2.2
(4.10), (4.15) and (4.16) we have (4.12) for m =2. Using the change of variable:
Xp=1—y, (412) with m =1 follows from (4.12) with m =2. This completes the
proof of the lemma. ]

By Lemma 3.4, [4.10), (4.12) and Lemma 2.3, we have

2
1/2
(4.17) 21,0 + DA IV Wl 0 + IV Wil 00}
j=1

= Clo,p,alfl,p(UmRn) = Cp,/lo,eEHfHLp(Q)

Since

aoc <(ﬂ2(l é)\/‘diZZic)’ é Cw,)vo,s|f,|_‘w|

as follows from Lemma 3.4, by [4.9), [4.10] and Lemma 2.3 we have

(4.18) AWl o) < CWW”ZHVUHL &) < CoinslfllL, @

J=

—1

AT Wit o) S oo 3 IV ey S ool o
j=1



Stokes equation on an infinite layer 491

Since

det L = C“'Joye‘é/r‘ﬁ

, L;
0% {(pz(m’)ék J}

as follows from [Lemma 3.4, by [4.10), (4.12) and Lemma 2.3, we have
(419) ||V2 WthL +IAP(W211,Q>

n—1

= pJo,SZIAp(Uj?Rn) = Cp-,ioya'Hf”Lp(Q)
=1
Combining (4.7), (4.17), (4.18) and (4.19), we see that W, satisfies (4.1).

Next, we shall estimate W;. Since suppe;(A,&) c{&eR" |y /2|8 <
3R/AYOH{E € RIE(75]2) 2] 2 1/23, 3 (2]2])'7? > 3R/2, then suppps(4.¢') = .
Namely, if |1| > (3R/2y21/ )2, then W3 = 0. Therefore, it suffices to estimate W; under
the assumption: 4o < |4| < (3R/272/%)%.  But, by we know that L; ;/det L
are C* functions, and then by [Theorem 2.2, [Cemma 2.3 and Cemma 4.2, we see
immediately that W3 satisfies (4.1).

Finally, we shall estimate Wj. Since |4 < (2/7,)|'|* on suppg,(2,&'), we have
L,(Wy, Q) £ Cyy pellV? Wallp, 0 ). On the other hand, in view of [Lemma 3.6, applying
to (3.30) and using Lemma 2.3, we have |V? Wall, @) = Cio,p,e”VZUHL,,(R")-
Combining these two estimates we see that W, satisfies (4.1) Wthh completes the proof

of Theorem 4.1.

§5. Estimates for the pressure term.
In this section, we shall prove the following theorem.

THEOREM 5.1. Let 1 <p<oo, 0<e<m/2 and 2o >0. Then, there exists a
Ve Vzl (Q) such that ¥ solves (2.12) and satisfies the estimate:

| Q) = Cp,io-,stHL,,(Q)
provided that A€ X, and |1 = Ao.

Let ¢;(4,&'), j=1,2,3,4, be the same functions as in §4 and let Y(),E x,) be a
function defined in [(2.20). Put

2
(5.1) Z1(4,& x0) = (2, V(2,8 x0) = D 554, ¢ x),

Jj=1
where

Zn(A, &' fjfj (4,EN (- —L”’” AT “‘MU(é’ i~ 1)
=11 (A, 7xl’l = 2 - e e — Uy yJ — 1),
= det L A

2
En(h &) = 33 gk &))" R e Lt e 1y,

det L

-

1 m=1

J
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Since &€ 9’ (R™™"), j=2,3,4, we can define the partial Fourier inverse transform
F ' [5(0, &, x)|(x'). But, £ has singularity at &' =0, and1 when n =2, 5| in fact is

not locally integrable, and therefore we can not define 7' [Z1(4,&',x,)](x’). There-

fore, we start with the following lemma which will be proved in the appendix below.

LemMa 5.2. Let A(¢',x,) be a function in C*((R"'\{0}) x [0, 1]) which satisfies
the condition:
’ag;a:’nA<él,xn)’ é C(x/|é/‘n1flf‘a’|

for any multi-index o', integer m =20 and x,€(0,1]. Moreover, we assume that
A(E' x,) =0 when |E'| =y, with some yy > 0. Given f(x')e L,(R"™"), we put
v(x) = Z [iEAE  xa) f(EN(), j=1,...,n—1,

va(x) = 97571[anA(f’,xn)f(f/)](xl).
I’i{;l

Then, there exists a ue (Q) such that oru=vi, k=1,....,n and

10ullL,2) = Coll NI, mn1y-
ReEMARK 5.3. Since

02 (& A )| < Col'| T, [0 (2aA(E )| = CorleI 7,
by Mheorem 2.2 v;(x) and v,(x) are well-defined as functions in L,(R"") with respect to
x’ e R""! for any x, €[0,1] and
||Uj||Lp(g) = Cp||fHLp(R'H)a Jj=1...,n

Therefore, the point of the lemma is to show the existence of u € VZ‘ (Q).
Now, we shall apply Lemma 3.2 to =(4,¢’,x,). In view of [Lemma 3.1, [3.2) and
(2.18), applying we see that

! L' i !
0L |0y (4, &) L e\ | < Gy 71
dlnne) et | < coder

\/Ilik Lj+2: m e—Axn

O(,’ / < , 1=1=o|
aé [(pl</l7é ) A detL == C[X ‘0|é | )

for m=1,2 and x, = 0 provided that |1| = Ao and Z1€ X,. By [Lemma 5.2, we know
that there exists a ¥j(x) € Ifff,l (2) such that

(5.2) (X)) = Zo iGE (A, & x| (X), j=1,...,n—1,

2
(5.3) V¥l 6 {H%Tl AT OLE = Dl ey
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Combining (5.3) and Lemma 4.2 implies that
(5.4) ”VTlHLP(Q) = Cp,/"»o,stHLP(Q)

For j=2,3,4, we put ¥(x) :%TI[Ej(i,é/,xn)](x’). We shall estimate ¥j(x),
Jj=2,3,4. First, we shall consider ¥,(x). Put ¥(x) = %Tl[Ezj(i,f/,xn)](x’). Note
that

A1 - 1) (),

o <x>—§zj§239’“ (&) 1>’"(’f'>ﬁ/ Lin 1001, j - 1)| ()
y' 121 —j:I P & @A, A detL ] .
Since
o / ij n—le’|
/ : = ol e ’
2% |nn ) 2] | = ol

' / l'/ﬁl L; ] r—|o! /
62‘/ [¢2(l,f ) ( é) gk = Coc’,£|é | | |7 |ﬂ | = 17

as follows from [Lemma 3.4, by [Theorem 2.2 we have

(55 1%l gty + V215 o
1 A A
< Chopoe S AN Z AT )l sy + 12175 10 )] o) -
a=0

By Lemma 3.4, we have

i&V/ Lisa, =A%,
A de tL

1ym—|o’|
é Ca’,slé ‘

0%, [(pz(% ¢')

form=0,1,2, j=1,2,/=1,2and x, = 0. Applying and to ¥,,, we have

(5.6) [R271€ axn)HLl,(R”’l) + ||V¥I22||LP(Q)

1
é C)vo,p,s{z

a=0 k=1

n—1
|

1/2 1/2
AU @)l g +ZM| PV Ukl ., gy }

Combining [Lemma 2.3, [Lemma 4.2, (5.5) and (5.6) implies that ¥, e I/I@l () and

(5.7) 12l 0) = Cgpoell L, @

As was stated in §4, ¢;(4,¢") =0 when |A| > (3R/2y1/2) and ¢’ € R"!. There-
fore, in view of [Lemma 2.3, we see immediately that ¥3 e W!(2) and

(5.8) 1511 (0) = G,




494 T. ABE and Y. SHIBATA

Finally, we shall estimate ¥;. To do this, we rewrite 54 as follows:

2 2
A Lm —At, (x .
a1 (4, & x,) ZZ(/)4 N(=1)" VB détL Ana) 4T, (' j— 1),
j=1 m=1
L)
mlfk/lL 2m Ao (x
a0 =58 o1 g )
J=1 k=1 m=

Note that 1/(4 — B) = —(A+ B). By (3.27) and (2.18), we have
A L171 . A L272 . (A + B)B(Q_Ae_ZB — 2Ad(A,B, 1) — €_A)

(5.9)

AdetL  AdetL Al (A, B)

A Lip A Ly _ (A+B)B(1+2A4d(A4,B,1)e 8 — 728)
AdetL  AdetL Al(A, B) ’

A L i Lyy —(A+ B)(e e +2Bd(4,B,1) —e 1)

detL ~  AdetL Al;(A, B) ’

A
i L372 _i L4’1 - (A+B)(1 —2Bd(A,B,1)€7B—€723)
AdetL  AdetL Al(A, B) ‘

Applying [Lemma 3.3, [3.32) and to [5.9), we have

’ /1 L'[ o’
0% 94 (2,8 -5 L e )| < Cyr o |

i&; A L; 0o m—lo!
g,ay(%(z,f/)A—’; dfetZLe A)‘ < Cy e,

for j,l=1,2, m=0,1,2 and x, = 0. Therefore, applying and to ¥, we
have

(5.10) 15C 3l ety S Cape Y17 TAURC @)l 1y
k=1

||V¥I4||L,,(Q) = Cfloyp,sz “V%TI[AU]C]”LP(Q)

Since

n—1

17 A 5l gty < € D107V x)ll oo
=

as follows from [4.15), by (5.10), the trace theorem and we see that
¥ e W!(Q) and
(5.11) ||¥/4||W1 = Ci.p. 8||U||W2 (R") = = Cig.p, s||f||L

Since I/Z)l (2) c VZ (Q), if we put ¥ =¥, + ¥, + V5 + ¥, then by (5.4}, [5.7), [5.8)

and we see that ¥ has the required properties in [Theorem 3.1.
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§6. Estimates for v, j=1,...,n— 1.
In this section, we shall prove the following theorem.

THEOREM 6.1. Let 1<p< oo, 0<e<m/2 and Ay >0. Let vi(x), j=1,...,
n—1, be the functions defined in (2.23). Then, there holds the following estimate:

2 vill @) + Mll/ZHVUjHLp(Q) V20l 0 = Connell fllz, 0
provided that A€ X, and |J| = Ao.

For the notational simplicity, we also use the notation I; ,(v, D) in this section,
which was defined in §4. Let V;, j=1,...,n—1, be the functions defined in
(2.21). By [Theorem 2.2 and [Theorem 5.1, we have

(6.1) Lp(Vi, RY) = Gy || F

L&) = Gpel 0¥/ 0xj]

L,(Q) = Cp-,io,chHL,,(Q)'

Let w;, j=1,...,n—1, be the functions defined in (2.22). Since A€ 2, and |i| = Ao,
we have

- e—ZB’ > 1 _p2ReB> | _ e—zcg(xo)‘/2

as follows from [2.8), and therefore by

of eiB
aé’ [1 _ e_ZB}

Applying (4.12) to (2.22), we have

(6.2) < Gyl

I/L,I’(W]'?‘Q) = Clo,p,s(li,p(UjaRn) + [X,p<I§aRn))7

which combined with [Lemma 2.3 and (6.1) implies that

(6.3) Lp(wj, Q) = Cpig el fllr, @)
If we put v; = V; 4+ wj, then by and we have [Theorem 6.1.

Appendix. A Proof of Lemma 5.2.
The essential part of our proof of [Lemma 3.2 is the following.

Lemma Ap.l. Let A(¢' x,) and vi(x), j=1,....n be the same functions as in
Lemma 5.2. Then, there exists a sequence {u;} < Co) (Q) such that

auk

li
m axj

k— o0

L,y(Q)

PrOOF. An idea of our proof is based on the argument in a proof of Lemma 2.4 of
Kozono and Yamazaki [5]. Let y be a function in Cj° (R"!) such that 0 < ¥ <1 and
2(E) =1 for |&'| <1 and y(¢&") =0 for |¢'| = 2. Put

wi(x) = 72 [(1 = 25N A xa) 1 (&' /70) F (EN).
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Since (1 — x(2KEN)AE, x)x (&' /7o) f (") has a compact support, wi € C*(R"" x [0,1]).
) -

Put ¢y(&') = x(&') — x(2&') and go;(x') = Z ' [g(1)&1E'|7*] (). Since
(1= 2 (2%ENAE x)1 (€' [70) (&)
k n—1
== > Y g @ENiEIE ) gAE xa) f(E)
h=—k+1 j=1

when k is large enough, we have

n—1

(Ap.1) Iwill, (@) < Co2* where Co= " llgojll w1 lloillz, )
=1

If we put B;(¢',x,) = i&A(E x,), j=1,...,n—1, and B,(¢', x,) = 6,A4(¢’, x,,), we have

Wk

— vy = —F [ (25N B (& xu)x (€ /90) F(E)]

8xj

= T RN BE )]+ T (& ) P,

where * means the convolution with respect to the variable x’. By [Theorem 2.2,
|7 [ (25" ) By (&, X)llll, ety = Cll7 '« (2"6’)]HL w1y for any x,e(0,1]. There-
fore, noting that ||/,1[X(2kf )]||L R =27 (n=D)k/p’ [E7 Uy ]]|Lp(Rn_1) with 1/p+1/p’ =
1, by Young’s inequality we have

Lp(Rn—l)

< 27" VIUF [ g ey 17 DCE 20 ey

which implies that

6wk
[ — v.
a7

fle, )

5Wk
oY

(Ap.2) lim 3%,

k— o0

=0, j=1,....n—1.
L,(©)

Put wu(x) = 2(27*x")wi(x), and then u e Cf5(2). Observe that

() - ) = 227 | G2 -

an 8xj

£ L @) = 1= 2 )

for j=1,...,n—1. By (Ap.l) and [Ap.2), we see easily that

auk
P

1i
1m an

k— o0

=0, j=1,....n—1.
L,(©)

Since

Quk =2k | Ok 2k 1
%, vy = x(277X") 0% Un (1 — (277X ]on,
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by the fact that v, € L,(£2) and (Ap.2), we have also

which completes the proof of the lemma. ]

Let {u;} be a sequence constructed in Ap.l. Employing the same argu-
ment as in the proof of Lemma 5.1 in Galdi [4, II], by using Poincaré¢’s inequality we
can find a ue L, 1,.(L2) such that

ou, Ou

0x;  0x; =0

L,(Q)
for j=1,2,...,n. This completes the proof of [Cemma 3.2l

lim
k— o0
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