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A central limit theorem on a covering graph with

a transformation group of polynomial growth
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Abstract. We prove a central limit theorem for the transition operator of the
symmetric random walk on a covering graph with a covering transformation group of
polynomial growth. As the limit, the continuous semigroup of the sub-Laplacian on a
nilpotent Lie group is obtained.

1. Introduction.

Let X = (V,E) be a locally finite connected graph, V' being the set of vertices and
E being the set of oriented edges. For e e E, the origin and the terminus of e are
denoted by o(e) and t(e), respectively, and the inverse edge is denoted by ¢. We shall
assume that X is a covering graph of a finite graph whose covering transformation
group I is a finitely generated group of polynomial growth. A symmetric random walk
on X with a weight m: V' — R, is given by a transition probability p: E — R,
satisfying >, . p(e) =1 and p(e)m(o(e)) = p(e)m(t(e)), where E, = {e € E|o(e) = x}.
We assume m and p are [-invariant. The transition operator L associated with the
random walk is the operator acting on functions on V defined by

Lf(x) =) f(t(e)ple).
eck,

Suppose that X is realized in a continuous model M. Let C,(X) be the set of
functions on V" vanishing at infinity and C. (M) the set of continuous functions on M
vanishing at infinity. The purpose of this article is to show that, the n-th iteration of L
on C,(X) approaches a continuous semigroup on C. (M) as n goes to infinity with a
suitable scale change on M. M. Kotani and T. Sunada considered the case of a crystal
lattice, which is an abelian covering of a finite graph ([6], [8]). A central limit theorem
for magnetic transition operators on a crystal lattice is obtained in [6]. As a special
case of [6], when a vector potential is zero, the following central limit theorem is
deduced.

THEOREM (M. Kotani [6]). Let X be a crystal lattice with an abelian covering
transformation group I’ and @ : X — I' ® R a piecewise linear I'-equivariant map. Put
Xo=T\X and m(Xo) =) .y, m(x). Then for any feCy,(I" ®R), as n] 0, 610
and nd* — m(Xy)t, we have

IL"(f o (0@)) = (e ) 0 (6®)||. — O,

2000 Mathematics Subject Classification. Primary 22E25, 60F05; Secondary 43A80.
Key Words and Phrases. central limit theorem, covering graph, transition operator, sub-Laplacian,
Albanese metric, limit group.



838 S. ISHIWATA

where A is the Laplacian for the Albanese metric on I' ® R. In particular, for a sequence
{X5}s=0 in X with lims)o0P(x;5) = x,

lim L"(f o (6@))(xs) = e f(x).

Let I' be a finitely generated group of polynomial growth. G. Alexopoulos
obtained a local central limit theorem for the convolution powers on I ([1]). Limit
theorems for compositions of distribution on certain nilpotent Lie groups are obtained
by P. Crépel and A. Raugi [2], H. Hennion [4], G. Pap [11], [12], A. Raugi [14], V. N.
Tutubalin [17], A. D. Virtser [19]. We remark that a covering graph with a covering
transformation group of polynomial growth can be considered as a generalization of a
crystal lattice or the Cayley graph of a finitely generated group of polynomial growth.
Let X be a covering graph whose covering transformation group is /. By a theorem
of M. Gromov [3], I" has a finitely generated torsion free nilpotent subgroup N of
finite index so that X is a covering of the finite quotient graph N\ X with the covering
transformation group N. Therefore we may always assume that X is a covering graph
of a finite graph X, = (Vy, Ey) whose covering transformation group I is a finitely
generated torsion free nilpotent group.

As the continuous model, we take the limit group (Gr,*) of a connected, simply
connected nilpotent Lie group (Gr,-) such that " is isomorphic to a lattice of (Gr,-).
We have the following diagram.

Gr/|Gr, Gr] «—— H;(Xp,R)
Idual Idual

Hom(Gr/|Gr, Gr],R) —— H!(Xy, R)

where H!(Xy,R) is the first cohomology of Xp. By identifying H'(Xp, R) with the
space of harmonic 1-forms on Xj, we introduce an inner product on H!(Xj, R). Let g
be the Lie algebra of Gr and g) a subspace of g satisfying g =g @ [g,q]. Since
gV ~ Gr/[Gr, Gr], we can induce the metric from H'(Xy, R) to g") by this diagram.
We call the induced metric the Albanese metric on g'"). We define a sub-Laplacian Q,
on Gr by setting

d
0.3 xx!
>
where {X 1(1), e ,Xd(lll)} is an orthonormal basis for the Albanese metric on g(!) and Xi(*l)

is the extension of Xl-(l) € g to a left invariant vector field on the limit group (G, *) of

(Ga )
A piecewise smooth I'-equivariant map @ : X' — G is said to be a realization. By
using Trotter’s approximation theory and [Theorem 3, we have

THEOREM 1 (The central limit theorem). Let X be a covering graph of a finite graph
Xo whose covering transformation group I is a finitely generated torsion free nilpotent
group and @ : X — Gr a realization. Then for any f e C,(Gr), as n1 oo, 6 | 0 and
né* — m(Xo)t, we have

IL"(f o (z5®)) = (¢7 f) o (z5®)l|.. — O,
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where 15 is the dilation on Gr. In particular, for a sequence {xs}s;., in X with
lim(jl() T(;@(x(;) =X,
lim L"(f o (15D))(xs) = e ™ f(x).
The proof of is reduced to the case when the composite 7o @ :

X — Gr/|Gr, Gr] is harmonic, where x is the canonical surjective homomorphism from
Gr to the abelian group Gr/[Gr,Gr] (see the proof).

DEerINITION (M. Kotani and T. Sunada [7]). A piecewise linear map F : X — G/
[Gr, Gr| is said to be harmonic if for each x € X,

AF(x) =m(x)"" Y m(e){F(t(e)) — F(o(e))} = 0, (1)

where m(e) = m(o(e))p(e).

Since ¢! ~ Gr/[Gr, Gr], the composite 7 o @” is harmonic if and only if

> m(e){exp™! @"(1(e))| ) —exp™" @"(o(e)) |y} =0
eekE,
for each x e X.
According to the argument of harmonic maps from a graph to a Riemannian
manifold [7], we have the existence and uniqueness of o

TueoREM 2 (M. Kotani and T. Sunada [7)). There exists a realization ®" : X — Gr
such that the composite o ®" is harmonic. If mo ®} and mo @} are harmonic,

no @ — 1o d! = constant.
We prove that the sub-Laplacian ., can be written in terms of &”.

THEOREM 3. Let @ : X — Gr be a realization such that the composite o ®" is
harmonic. Then we have

Q.= 33" m(e)fexp™ @ (o(e)) ! @ (1(0)] 0 )2

L’EEO
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2. Limit group.

We will introduce the notion of limit groups, which is given by a deformation of
the product on a nilpotent Lie group. We can find the definition of the limit group
in G. Alexopoulos [1] (see also A. D. Virtser [19], P. Crépel and A. Raugi [2], A. Raugi
[14]). We remark that the limit group is isomorphic to G,, defined by P. Pansu [10].

The invariance under the deformation of product (Cemma 2.3) and stratification (Cemmal
2.1) play an important role in the proof of the central limit theorem.
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Let (G,-) be a connected, simply connected nilpotent Lie group and g its Lie
algebra. We set n; =g and n;y; = [g,n;] for i > 1. Since g is nilpotent, we have the
filtration: g =n >2ny > --- o n, #{0} on. ={0}. We consider subspaces gl ...,
g < g such that

ni = Q(k) @ Ny 1.

By this decomposition, each elements X € g can be represented uniquely as X =
XU 4 x@ 4o x® 4.4 X0 for some X*®) e g®). For ¢ > 0, we define a linear
operator T, :g — g by

TE(X(U + x@ S x &) S X(’)) —exW +82X(2) 4o —|—8kX(k) 4o _|_8VX(V).
We also define a Lie product [,]” on g, by setting
(X, Y] = lin’é T[T X, T Y].
&e—

For any X® e g®, X) e ¢), we have
X9, X = [XO, X ]| (2)
We denote the dilation 7,: G — G by
7(x) = exp(T(exp ' x))
for the exponential map exp:g— G. On G, we define a product *, by setting
X*y= 11113 To(T,1X - T ).

Then (G, ) is a nilpotent Lie group and its Lie algebra is isomorphic to (g,[,]"). We
call (G, ) the limit group of (G,-). The limit group (G, *) has the following properties.

Lemma 2.1.

(a) For X,Yeg, expX*expY =exp(X + Y +1/2[X,Y]" +---[,]"--).

(b)  The exponential map from (g,[,]") to (G,*) is equal to the original exponential
map.

(¢) (G,x) is a stratified Lie group. Namely, the Lie algebra (g,[,]") of (G,*) has
a direct sum decomposition @/};:1 a®) which satisfies
() If k+s<r, [g9, g < g,
If k+¢>r [g® ¢ ={0}.
(i) oV generates g.
(d)  75(x*y) = T5x * 5.

Proor. (a) Let x =expX and y =exp Y. From the Campbell-Hausdorff formula,

. 1
x*y:llil’é exp<X+ Y+§TS[Y}1X,T84 Y]

1 1
+ 3 LT X, T Y], T Y] = S LT X, T Y], T X )

By the definition of 7, we have
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lll’l’é n[[];—lX7 7—;:—1 Y], T84 Y] = lémo 71[7;—1 (T(s[T()»lX, T(S—l Y]), 7—;—1 Y].
&— &,0—

So we conclude

1 1 * *
x*y:exp(X—l— Y—|-§[X'7 Y]*+E [X, Y] ,Y] +)

(b) Let ¢(¢t) =exptX for te R and X €g. Since
$(t1) * p(t2) = expt1 X * exp o X
|
= exp(th + X +§[I1X’ lzX]* + - )

= exp(t1 + lz)X = ¢(l1 + t2)a

¢ is a one-parameter subgroup of (G,x). Hence the exponential map of (G, ) is equal
to the original exponential map.

() We will show that (g,[,]") satisfies the properties of the stratified Lie group.
By (2), for k+ ¢ <r, we have

[6"),g]" = g**).

For m > 2, we assume that g!) generates g""~!). From the definition of g and [,]",
we have

)

By the induction, (G,x*) is a stratified Lie group.
(d) For a fixed 0 > 0, we have

5(x*y) =715 lir% Te(T1 X - T )
E—
= (lolil’é 758(7(53)*‘ ToX T (51 75))
= TsX * Ty ). ]
By the definition of * and [Lemma 2.1, we easily obtain

exp ! (x* y) |y = exp ' (x - ¥)|q0),

exp ' (xxp)|yo =exp (x|

for any x,y e G. For k > 3, exp' (x * )|, is not equal to exp ' (x - )|, in general.
These invariances for k = 1,2 are important for the central limit theorem.

We consider a basis {Xl(k),Xz(k),...,Xf(lf)} of g% for each k <r. We have two
identifications of G with R" as differential manifold given by

r r 1 r r r r 1 1
(xc(,r),xc(lr)il, e ,xi )) — expxg’n)XcSr) -expxc(lr)lecgr)fl Ca -expxi )Xl( )
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and

Xcgr) | Kk EXp xgi)Xl(l).

CENE (1) ) %1 4 exp)

(xd*,xdil*,...,xl*)Hexpxlec% (t)

We call them (-)-coordinates and (x)-coordinates of second kind respectively. For

x € G, we denote Pl.(k) (x) :xl(-k) and E(f) (x) :ng). The following lemma gives a

comparison of the two coordinates.

LEmMA 2.2. For xe€ G, we have

P = BY(), (3)
P2 (x) = PP (x), 4)
P =P+ > P (5)
0<|K|<k—1
for some constants Ck, where K denotes a multi-index ((i1, k1), ..., (in, ko)) and PX(x) =

Pl.(lkl)(x)Ping)(x) : Pl(k)(x) We call K| ="k, the order of PX(x).

Proor. (3) and (4) are obtained immediately by comparing (-)-coordinates and (x)-
coordinates of x € G. We will show (5) by induction for k of B(f)(x). Indeed the
cases k =1 and k =2 are obvious. We assume that it is true in the case ng) (x) for
/ <k—1. Then the (i,k)-component of x is

exp ! x| o = P,.(f) (x) + Z CKPrl(.k) (XK1 PX(x)
' |K|=k

=P+ Y CkPrP[XKPE(x)
0<|K|<k

for some constants Cg, where [XX]= [X,-(]k‘),[Xl-(ZkZ)a[Xigk3)=--'=Xiikn)]]”']’ (XK =
[Xl.(lk'), [Xl.(zkz), [Xl.gk"), e Xif,k")]*]* ---]* and Prl(k) X = X|,w. By the hypothesis of induc-

tion, the lower order terms do not affect for this claim. Since CKPrl(-k) (X X]
CKPrfk) [XX] for |K|=k by (2), the terms of order k are cancelled. Consequently,

*_

PO =P+ Y PR O
0<|K|<k—1

As an invariance under the deformation of the product on G, we conclude

Lemma 2.3.
P (xxy) =PV (x-y), (6)
PP (xxy) = PP (x-y), (7)
POxxy) =P x-0)+ > CkxPR)PR(x-y). (8)

|Ki|+|Ka| <k—1,
‘K2‘>0
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Proor. From (2), and the Campbell-Hausdorff formula, (6) and (7)
are obtained easily. We will show (8) inductively. By the definition of x,
and the hypothesis of induction, the difference of Pl.(*k) (x*y) and Pi(k) (x-y) is the terms

whose order is less than k. Namely,

POxxy)=PYx-p)+ Y CrrPR(0)PR(y). 9)
0<|K; |+ K> | <k—1

We can replace PX(y) with

PR (x-y) — > Cix, PEX)PR(x-y)+ > CxkP¥(x)
0<|K3|+|Ks| < K> 0<|K| <K |
by using
k k k
PO =P y) - PP = > Gk PR()PR(y).

0<|K)|+|K2 | <k
Hence we refine (9) to
POy =B+ 3 CrePNPRey) - 30 CePR(),
|K) |+ Ks | <k—1, 0<|K|<k—1

‘K2|>0

But >0 k<1 Cx PX(x) vanish because if y = x!, then x*y=x-y=-e. Moreover
PXi(x) can be replaced with PXi(x) because of [Lemma 2.2 So we conclude

k k b
PO =P+ Y CrmPR@PR(x-y). O
|Ky |+ K2 | <k—1,
|K>[>0

ExampLE 2.4. For k =3, we have

3 1 1
P (x) = x)——ZP xV xMPY (x) PY (),
l]>12
3
PO (xxy) =PV (x-y) ——ZPr D XIUPY ()P (x - )
1>10

1 1 1 1
= PV (x- )P () + BV ()P (- )

3. The central limit theorem.

We shall prove a convergence of the transition operator by using the approximation
theory of H. F. Trotter [16]. Let G, be the nilpotent Lie group such that I" is
isomorphic to a lattice of Gr. There exists uniquely such a connected and simply
connected nilpotent Lie group up to isomorphism by A. I. Malcev [9] and I is a
cocompact lattice (cf. M. S. Raghunathan [13]).
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Let g be the Lie algebra of Gy and denote gV,...,g"), subspaces of g as in
Section 1. We define a map Ps: C,(Gr) — C(X) by Psf(x) = f(ts®P(x)), where
75 : Gr — Gr is a dilation. We remark that (C,(Gr),| -||.,) and (C. ( ) |1l ) are
Banach spaces, where || - ||, is the sup. norm. Take a basis {X1 L dek } of g¥) for
each k <r and we identify Xl.(k) with the left invariant vector field on Gr. We denote
by d the Carnot-Carathéodory distance. More precisely, let C be the set of all abso-
lutely continuous paths ¢ : [0, 1] — Gr, satisfying ¢(¢) = > ;4 ai(z)x_(l)(c(z)), for almost

every te€[0,1]. Put
1/2
o=l (gen)
i<d

d(x,y) = inf{[c[|c € C,¢(0) = x,¢(1) = p}.

Then d is a left invariant distance, which induces the topology of G (see [18]).

and for x,ye Gr,

LemMa 3.1. {(Co(X),Ps)}s~o is a sequence of Banach spaces approximating to
Co(Gr). Namely, for any f € C,(Gr), we have

151l < [1f 1l (10)
1BsfNloe = I/Nle as 6 —0. (11)

PROOF. is trivial. We consider (11). Fix a e Gr which satisfies |f(a)| =
I/1l.- Then

B3] = sup If (50(x)) =/ (@) +/ (@)
> |f (@) - inf /(@) (00,

On the other hand, since I' < Gy is a cocompact lattice and @ is I'-equivariant, we
have

ing/ d(a,7sP(x)) =0 ing( d(t51a,P(x)) <M

for M = sup,.r ver, d(9, P(x)) < 0, where F = Gr and Fy < X are these fundamen-
tal domains. Since f is continuous at a, for any & > 0, there exists 6’ > 0 such that
if d(a,y) <d', then |f(a)—f(y)|<e. For d=06"/M, there exists x’ € X such that
d(a,t5(x")) <d'. Hence for any ¢ > 0, there exists 6 > 0 such that

inf |/ (@) = f(z:2(x))| < |f (@) —f(m@(x))] <e.

Consequently we have ||Psf], — | f|l.,, as 6 — 0. O

According to the theorem of H. F. Trotter ([16], Theorem 5.3), to deduce the
assertion of [Theorem 1, it suffices to show the following lemma which gives the con-
vergence of the sequence of the infinitesimal generators.
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LEMMA 3.2. Let ®": X — G be a realization such that the composite T o o s
harmonic. Then for any f e Cy(Gr) and N 1 oo, 6 |0 with N?6 — 0, we have

‘ m(Xo)
N>

(I = LY)Pf = PQ.f

— 0,
o0

where Pl f(x) = f(1sD"(x)).
Proor. By the definition of the transition operator, we have

m(Xo) N phi _ m(Xo)
N52 (I_L )Péf(x) - N52

> pOLf(D5(x) —f(D5(1(c)))},

CEC/ N

where C, y is a set of paths (ej,...,ey) with o(e;) = x, p(c) = p(er)p(e2) ---p(ey) and
fp(? = 7;@". By the same arguments as G. Alexopoulos [T] and M. Kotani [6], we apply
the Taylor formula for the (*)-coordinates of second kind to f'(g) = f(®¥(x) * g) with
g =@} (x)"" « ®)(t(c)). Then we have

m(Xp)
N&§?

(I = LYN)P)f(x)

=Tt 2 { > KT @EN@] 00" 2 e)
ceCy y

(i1, k1) > (i, k2) (i2,k2)> (i1, k1)

1 k k k
2( SERTLCEDS Xlz:)x,sﬁ)f@m

PR (@E ()T @2 (2(e))) PE (@1 (x) !+ D (2(c)))

= X (RN @) @)
K k k ¥
6 (i1, k1), (i, k), (i3, k3 ) 5?61(1*1)5?51(25)%53*3) 1

PE(@5(x) ™+ @5 (1) P (@5 () *Cbé’(l(C)))} (12)

for some 0 € G satisfying [P (0)] < [P (@2(x)™"  ®}(¢(c)))], where (ir, k1) > (in, k)
means ky >k, or k1 = ks, i1 > ip. Slnce (Gr,*) is a stratified Lie group,

PO (@8 (x) ™ x @2 (1(c))) = 0 PY (@ (x) 7!+ D" (1(c))).

We denote by Ords(k) the terms of (12) whose order of J is k. Then (12) is rewritten as

m]\(,?) (I = LY)PJ f(x) = Ords(~1) + Ords(0) + > Ord(k (13)
k>1

We will consider three terms in (13) separately.

ESTIMATE OF Ords(—1). From [Lemma 2.2, 2.3 and the harmonicity of 7 o ®”, we
have inductively
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+exp! @"(0(e)) " - D" (1(e))] 0 }
= Z p(e )P (@"(x) ™+ " (1(¢'))
=0.

This shows that Ords(—1) vanishes.

EsTIMATE OF Ords(0). Let us first observe the coefficient of X,.(f) f(@k(x)). Then
we have

> p(c){l’f)(@h(x) (1)) 3 > P X )

12>11

PO(@"(x)7" + @"(1(c))) P (0" (x) " # cbh<r<c>>>}

:m(]([‘/()) Z plc)exp ' @"(x)™" « & (1( ))le(z)

CECX.N
m(Xp) &= -1

== S ple) Y pleyexp D (o(e)) ™t D (1(e))]
k=0 ceCy i eeEyy
N-1

PN S e FGLe)) (14)
k=0 CECka

where F(x) =3, g p(e Yexp~! @"(o(e))" - @ h(l(e))|X_<2). Since F(yx) = F(x), there
exists a function f: Xo — R such that fy(x(x)) = F(x), where x: X — X, is the cov-
ering map. Let Ly be the transition operator on C(Xj). By the ergodicity (cf. [6]), we
have

_ Z m(e) eXp—l 45/1(0(8))*1 . ¢l1<t(€))’Xi<2) + 0(%)

However, Y, m(e)exp ! @' (o(e)) " @”(t(e))|X_<2> = 0. Hence (14) goes to 0.
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()(

By the harmonicity and ergodicity, the coefficient of X; X,/ f f(@k(x)) is given by

Xo
Z ll* lz* ¢§ (x))

i1, <d1

Y PR (@) @ (1(0)) P (@ (x) 7 " ((0)))

ce C,\'N

—= 3 3 men (@ o(e) " () P (@ ofe) ! @ 0(e))

i1,ip<d) ~ eekp

1
X s@lo)+ oy )

From [Theorem 3, Ord;(0) converges to PIQ. f(x).

ESTIMATE OF ) ,.,Ords(k). We observe the coefficient of Xiik) f(@k(x)). By
and

PP (@"(x)7" - @"(1(c)))| < CN*,

for a continuous function M[(k)

k=2
% > PR (@" () @' (1(e))

on G, we have

ceCy N
m(Xo)0* 2 (k) g h
=——— 2 PR (@) @ (1(0))
ceCy N

+ > CaPR(@"(x)HPR(@" () @' (1(0))

|Ky |+ Ky | <k—1,
|K2|>O
< MO (@k(x) | SN 3T sy (15)
|Ki|+| K> | <k—1,
|Ky| =2

because

S ple)PR(D(x) - D" (1(e))) = 0

ceCyn

when |K>| =1. By the assumptions of N and J, (15) converges to 0.

By the same argument as above, the coefficient of X, (kl)Xl(z* ) g (@4 (x)) for ky +ky =3
converges to 0.

Finally we consider the coefficient of (8°f’/(dx 1 lzk*’) Xiyn ))(9) Since f €
Cy(Gr) and
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a3f/ ) p 1
supp < supp f' = @4 (x)  *supp f,
oo :

it suffices to show that, for a continuous function Ml.(k)

[P (@2 (x) ™ ®2(t(c)))| < M (@ (x) x 0)ON

if ON < 1. For k=1 and 2, this is true. Assume it holds for less than k. Then

on G,

P50+ @J(1(0)) = 6* B (@' () + @(1(c)))

= ok | PR (@8 (x)" . @"(1(c))

+ Y CkPR(@"x) PR () D" (1(c)))
|Ki |+ K| <k—1,
‘K2‘>0

Since
P (@) (x)") = P,-E@w*(@;(x)*e)‘l)
Y0 0) + PE (0(x) «0)7)
+ > CLLPROPR(@Lx) < 0),

|L1 |+ La|=k1,
|L1],| L2 >0

we have inductively |P (k1) (q5h( )| < M(®)(x) % 0) for ky <k —1. So we conclude

P (@] () 5 @] (1(0)))]

<C|&N+ Y M(®)(x)x 0)" KNI
|Ki |+ K| <k—1,
|K>[>0
< M™ (@!(x) % 0)SN.

From these estimates, it follows that ), ., Ords(k) converges to 0. Hence the proof of
the lemma is completed. (]

We remark that Q. has the following property.

Lemma 3.3 (D. W. Robinson [15], p. 304). For A>0, the range of Q.+ 4 in
Co(Gr) is dense.

By the same argument as M. Kotani [6], we conclude
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THEOREM 1 (The central limit theorem). Let @ : X — G be a realization. For any
feCy,(Gr), asnl oo, 6|0 and no? — m(Xo)t, we have

IL"Psf — Poe " [, — 0. (16)
For any x € Gr, choose {x;} = X such that ®s(x;) — x as 0 | 0. Then
L"Psf(xs) — e ™ f(x). (17)

Proor. Let ®" be a realization such that the composite 7o @” is harmonic.
Then

IL"Psf — Pse ™ f||, < IL"(Psf — PLf)l., (18)
+ ||IL"PLf — Pl 1|, (19)
+||Pfe @ f — Pe 2 f) . (20)

Since f and e~ f are uniformly continuous and
d(5®(x), 75@" (x)) = dd(®(x), " (x)) <M

for M = sup, .y d(®(x), P"(x)) < o0, and converges to 0 as 6 — 0.
Take N T oo and 6 | 0 such that N6 — 0. Then Lemma 3.2, 3.3 and Trotter
([16], Theorem 5.3) imply for any f e C.(Gr),

1LY NP f = Pie @ £, — 0 (1)

as kyNo* — m(Xy)t. Now we will prove that converges to 0. Let N(n) be
the integer with n'/5 < N(n) <n'/° 4+ 1 and ky and ry are the quotient and remainder
of n/N respectively. n1 o and 6|0 imply N — oo, N26 < (n'/*+1)*6 — 0 and
kyN6? = nd> — ryd>. We also see kyNo&> — m(Xy)t, since ry < N and N2 < NO2 <
(n'/® +1)0> — 0. Then we have

IL"BLS = P |, = LY Pl f — Ple® ||,
< LR (L =R+ LY PLf = Phe @ 1],

From the property of N, 6 and ky, holds. Since r}d < (n'/54+1)*0 — 0 and by
Lemma 3.2,

m(Xo)
2

(I—L™)Plp— PiQ.p|| —0

0

VN5

for any ¢ e C°(Gr). This implies ||L*N(L™ —T)Plf||.,, — 0. Hence we conclude
6).
Finally is given by

[L"Ps [ (x5) — e~ f(x)]

< |IL"Psf — Poe™"® [l o + e f(@5(x5)) — e f(x)] — 0. [
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4. Existence and uniqueness of a realization such that the composite with =7 is
harmonic.

Let n : G — Gr/[Gr, Gr] be the canonical surjective homomorphism. It is known
that n(I") = Gr/[Gr,Gr] is also lattice (A. I. Mal’cev [9], M. S. Raghunathan [13]).
We apply the arguments of harmonic map from X to the torus 7' = z(I")\(Gr/[Gr, Gr)).
For a flat metric on the torus 7, we consider an energy functional E of the piecewise
smooth map F: Xy — T defined by

1
E(F) = % Z m(e) Jo

eekEy

2

F.
d dt,

o (0

where F, : [0,1] — T is the restriction of F to e € Ey such that F,(0) = o(e), F.(1) = t(e).
Then we have the following result (cf. [7]):

THEOREM (M. Kotani and T. Sunada). A piecewise smooth map F : Xo — T is a
critical map if and only if F, is a geodesic for every e € Ey and at each x € VY,

S m(e) d;; € (0) = 0.

eeck,

Then the critical map does not depend on the choice of a flat metric on 7. We
remark that the composite 7o @ : X — G /[Gr, Gr| is harmonic if and only if the map
(mo @), : Xo — T, whose lift is equal to 7o @ is a critical map. From these results, we
have

THeOREM 2 (M. Kotani and T. Sunada [7]).

(a) Each homotopy class of piecewise smooth maps of Xy into T contains at least
one harmonic map.

(b) If two harmonic maps F;: Xo — T, (i = 1,2) are homotopic, then there exists
aeT such that Fi — F, = a.

(c) There exists a realization ®" : X — Gr such that the composite ©o ®" is har-
monic. If mo @{1 and mo CDQ are harmonic, then

no @ — o @) = constant.

Proor. We will show (c) by using (a), (b). Let C be a homotopy class of Xj into
T such that for any F e C, F, : n;(Xo) — m(T) = =n(I") satisfies

F.([e]) = n(ac).

Here o, € I' satisfies g.0(¢) = #(¢), where ¢ is a lift of ¢ to X. From (i), there exists a
harmonic map F” in C. By the definition of C, F": X — G/[Gr, Gr], the lift of F"
is m-equivariant. Namely, F/(yx) = F*(x) + n(y) for any xe X and ye[I.

We define @”(x) such that 7o @"(x) :ﬁ(x) for a vertex x in a fundamental
domain ¥ c X. Next we define @"(yx) = y@”"(x) for all ye I'. Tterating these pro-
cesses for all vertices in &, we can realize all vertices of X to Gp. Finally for any e € E,
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we define a smooth map @’ :[0,1] — Gr which satisfies 7o @"(t) = Fi (1) (te]0,1])
with @"(0) = @"(o(e)), @"(1) = ®"(1(e)) and @fe =y®".  Consequently, " is a real-
ization such that the composite 7o @” is harmonic.

From the result of (b), if #o ¢f’, o @é’ are both harmonic, then

T o QD{’ — 7o @é’ = constant. ]

5. Sub-Laplacian for the Albanese metric.
First we consider the following diagram.
Gr/|Gr, Gr] ~ aIN®R «——— Hj(Xy,R)
]dual Idual Jdual
Hom(Gr/|Gr, Gr],R) ~ Hom(n(I'),R) —— H'(X,, R)

where Gr/[Gr,Gr] is identified with g!') by a homomorphism exp~'|, : G — gV
We identify H!(X,, R) with the set of harmonic 1-forms on X, by the discrete analogue
of Hodge-Kodaira’s theorem. Namely,

H'(X,,R) ~ {a) : By — R|w(@) = —o(e), Y wle) = o}.

eekE,

We have an inner product on the set of harmonic 1-forms given by

1
o,ny ==Y m(e)w(e)n(e
X 22}; (e)o(e)(e)
for any harmonic 1-forms w,#s. By the identification, we define an inner product on
H'!(Xy, R).

The surjective homomorphism p: H(Xo,Z) — =n(I") is given by p([c]) = n(a,),
where o, € I satisfies o.0(¢) =#(¢). Since =(I") is a lattice in the abelian group
Gr/|Gr,Gr|, we have Gr/|Gr,Gr] ~n(I') ® R. Hence the surjective homomorphism
p:Hi(Xo,R) — Gr/|Gr,Gr] is defined. We induce the metric from H!(Xy, R) to
Hom(Gr/[Gr, Gr],R) by 'p:Hom(Gr/|Gr,Gr],R) — H!'(Xy, R), the transpose of p.
The dual metric on Gr/[Gr,Gr] is said to be the Albanese metric.

We define the Albanese map Alb: X — Gr/|Gr, Gr] by

Alb(x)o = J & (weHom(Gr/[Gr, Grl, R))
X0
for a base point xpe V, where @ is the lift of w to X. For an orthonormal
basis {wi,...,w4} on Hom(Gr/|Gr,Gr],R) and the dual basis {Xl(l),...,Xégll)} on
Gr/[Gf,Gr], we have

Alb(x) = (Jx a)lj cbdl) -y r oix,

Xo Xo i<dy )Xo

Because | @ = 0 for any closed path ¢ in X and w € Hom(G/[Gr, Gr|,R), Alb is well-
defined. For any xe X, ye I, and w €e Hom(Gr/|Gr, Gr],R), Alb satisfies
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X X
Alb(yx)w = J o+ J @ = Alb(x)w + J ,
[e;]

X0 X

where ¢, is a loop in X, satisfying #(¢,) = yo(¢,). Since w € Hom(Gr/[Gr, Gr],R), we
have j[c},] o = 7n(y)ow. Thus Alb is a m-equivariant map. Moreover, Alb is harmonic.
Hence we conclude

THEOREM 3. Let @ : X — Gr be a realization such that the composite o ®" is
harmonic. Then

— __Z )(exp ! @"(o(e ))71‘15}’@(6))\9(103'

L’EE()

ProOF. From [Theorem 2 and the identification of Gr/[Gr,Gr] with g1, there
exists X e gV such that Alb =exp' ®@"| 1, + X!). Hence we have

1 1
0.=— 3 33 meoleo X

i,j<d ceEo

= ——Zm(e )(Alb(z(e)) —Alb(0<e)))f

eeEo

= 33 m(e)exp™! @ (o(e)) ! B (1(e)] 0 )2 O

eeEo
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