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Abstract. In this paper, we estimate the degree of symmetry and the semi-simple

degree of symmetry of certain fiber bundles by virtue of the rigidity theorem with respect

to the harmonic map due to Schoen and Yau. As a corollary of this estimate, we

compute the degree of symmetry and the semi-simple degree of symmetry of certain

product manifolds. In addition, by Albanese map, we estimate the degree of symmetry

and the semi-simple degree of symmetry of a compact smooth manifold under some

topological assumptions.

1. Introduction.

Let M n be a compact connected smooth n-manifold and NðM nÞ the degree of

symmetry of M n, that is, the maximum of the dimensions of the isometry groups of

all possible Riemannian metrics on M n. (All the manifolds of this paper are to be

compact and smooth.) Of course, NðMÞ is the maximum of the dimensions of the

compact Lie groups which can act e¤ectively and smoothly on M. The following is

well known:

NðM nÞa nðnþ 1Þ=2: ð1Þ

In addition, if the equality holds, then M n is di¤eomorphic to the standard sphere S n

or the real projective space RPn. In [10] H. T. Ku, L. N. Mann, J. L. Sicks and J. C.

Su obtained similar results on a product manifold M n ¼ M n1
1 �M n2

2 ðnb 19Þ where Mi

is a compact connected smooth manifold of dimension ni: they showed that

NðMÞa n1ðn1 þ 1Þ=2þ n2ðn2 þ 1Þ=2; ð2Þ

and that if the equality holds, then M n is a product of two spheres, two real projective

spaces or a sphere and a real projective space. A preliminary lemma for the proof of

Ku-Mann-Sicks-Su’s results claims that if M n ðnb 19Þ is a compact connected smooth

n-manifold which is not di¤eomorphic to the complex projective space CPm ðn ¼ 2mÞ,

then

NðM nÞa kðk þ 1Þ=2þ ðn� kÞðn� k þ 1Þ=2 ð3Þ

holds for each k A N such that the k-th Betti number bk of M is nonzero. Then we see

that when a compact oriented smooth manifold M of dimension 4mb 20 has nonzero

signature sðMÞ, then the following holds:

NðMÞaNðCP2mÞ ¼ 4mðmþ 1Þ: ð4Þ
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The equality in (4) was also showed by Ku-Mann-Sicks-Su in [10]. The semi-simple

degree of symmetry NsðMÞ [4] is defined similarly, where we consider only actions of

semi-simple compact Lie groups on M. It is clear that (1) also holds for the semi-

simple degree of symmetry if the manifold has dimensionb 2. Moreover, since the

semi-simple compact Lie group SUð2mþ 1Þ acts naturally on CP2m, we can see that

NsðCP2mÞ ¼ 4mðmþ 1Þ

holds provided 4mb 20. D. Burghelea and R. Schultz [4] showed NsðM
nÞ ¼ 0 if there

exist a1; . . . ; an in H 1ðM n;RÞ with a1 U � � �U an 0 0.

In Ku-Mann-Sicks-Su’s estimates (2), (3) and Burghelea-Schultz’s result they mainly

assumed conditions on the topology of M n. When considering if there exists a non-

trivial S1-action or S3-action on a manifold, we often meet obstructions from its dif-

ferential structure. Here a nontrivial S3-action [11] on a manifold means an e¤ective

and smooth S3-action or SOð3Þ-action on it. Let us see some examples as follows:

A spin manifold [11] is an oriented Riemannian manifold with a spin structure on

its tangent bundle. A famous theorem of M. Atiyah and F. Hirzebruch [2] claims that

a spin manifold has degree of symmetry 0 if the index of the Dirac operator on it, or

equivalently, its ÂA-genus, is nonzero. Let X be a spin manifold of dimension 8qþ 1

(resp. 8qþ 2), Atiyah and Singer [3] showed that the real dimension (resp. complex

dimension) ðmod 2Þ of the space of harmonic spinors on X can be identified with a

certain KO-characteristic number aðXÞ of the spin-cobordism class of X . Let Yn be the

group of homotopy n-spheres. This KO-characteristic number was shown by Milnor

and Adams [1] [15] to give a nontrivial homomorphism a : Yn ! Z2 for n ¼ 8qþ 1 or

8qþ 2. Since for n ¼ 8qþ 1 or 8qþ 2, the homotopy n-spheres which bound spin

manifolds form a subgroup BSpinn of index 2 in Yn, we see that Ker a ¼ BSpinn. For

the a-invariant is additive with respect to connected sums of manifolds, it is always

possible to change the di¤erentiable structure of a spin manifold X , in dimension 8qþ 1

or 8qþ 2, to make aðX Þ nonzero. It follows from Lawson and Yau [13] that if aðXÞ is

nonzero, then there exists no nontrivial smooth e¤ective S3 action on X , or equivalently,

the only compact, connected e¤ective transformation groups on X are tori, from which

the followings hold:

NðXÞa dimX ; NsðXÞ ¼ 0: ð5Þ

Definition 1.1. We call a manifold significant if and only if it is oriented and

has nonzero signature. A manifold is said to be ÂA-nontrivial if and only if it is spin

and has nonzero ÂA-genus. A manifold X is said to be a-nontrivial if and only if it is

spin, of dimension 8qþ 1 or 8qþ 2, and aðX Þ0 0, where q may be zero.

Definition 1.2. We call a manifold S3-trivial if and only if there exists no smooth

and e¤ective S3-action on it, or equivalently, its semisimple degree of symmetry is zero.

Remark 1.1. Both ÂA-nontrivial manifolds and a-nontrivial manifolds are S3-

trivial. Lawson and Yau [13] showed that if a compact manifold does not admit a

Riemannian metric of positive scalar curvature, then it is S3-trivial.

One of the purposes of this paper is to make some estimate for certain nontrivial

compact fiber bundles and generalize partially Ku-Mann-Sicks-Su’s estimates (2). In
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particular, we obtain their bundle versions for (4) and the results by Atiyah-Hirzebruch

and Lawson-Yau when taking the special fibers in Definition 1.1.

Theorem 1.1. Let V be a compact manifold which can be equipped with a real

analytic metric of nonpositive curvature and E a compact smooth fiber bundle over V such

that the fiber F of E is connected. Then the followings hold:

NðEÞa dimFðdimF þ 1Þ=2þNðVÞ; NsðEÞa dimFðdimF þ 1Þ=2: ð6Þ

Particularly,

(i) suppose E is oriented and F is a significant manifold of dimensionb20. Then

the following holds:

NðEÞa dimFðdimF þ 4Þ=4þNðVÞ; NsðEÞa dimFðdimF þ 4Þ=4: ð7Þ

(ii) Suppose E is spin and F is an ÂA-nontrivial manifold. Then E is S3-trivial and

the following holds:

NðEÞaNðVÞ: ð8Þ

(iii) Suppose E is spin and F is an a-nontrivial manifold. Then E is S3-trivial and

the following holds:

NðEÞa dimF þNðVÞ: ð9Þ

(iv) Suppose S
n is an exotic n-sphere which does not bound a spin manifold and V is

spin. Then S
n � V is not di¤eomorphic to S n � V .

Remark 1.2. By a result in [12] we know the dimension of isometry group of V is

rank of the center of p1ðVÞ. On the other hand from [5] we know that if a compact

connected Lie group acting smoothly and e¤ectively on a compact aspherical manifold

A, then it is a torus of dimensiona rank of the center of p1ðAÞ. Combining these two

results, we immediately see the degree of symmetry of V is equal to rank of the center of

p1ðVÞ.

Remark 1.3. In Theorem 1.1, V cannot be replaced by an arbitrary compact

manifold because the Hopf bundle S1 ! S3 ! S2 forms a counterexample.

Remark 1.4. Let T 2 be a two dimensional torus and K a Klein bottle. Then

NðT 2Þ ¼ 2 and NðKÞ ¼ 1 hold. Therefore we see that the connectivity of fiber F is

necessary for the first inequality in (6) in Theorem 1.1.

By the definition of degree of symmetry, it is easy to see that for a product

manifold M1 �M2, where Mi is a compact connected smooth manifold, the following

holds:

NðM1 �M2ÞbNðM1Þ þNðM2Þ: ð10Þ

Combining (6), (7) and (8) with (10), we immediately obtain the following.

Corollary 1.1. Let V be a compact manifold which can be equipped with a real

analytic metric of nonpositive curvature. Then the followings hold:

NðS n � VÞ ¼ NðS nÞ þNðVÞ; NsðS
n � VÞ ¼ NsðS

nÞ:

The degree of symmetry of compact manifolds 729



Suppose V is oriented. Then the equalities

NðCP2m � VÞ ¼ NðCP2mÞ þNðVÞ; NsðCP2m � VÞ ¼ NðCP2mÞ

hold provided 4mb 20. Moreover if V is spin and X is ÂA-nontrivial, then the following

holds:

NðX � VÞ ¼ NðVÞ:

Remark 1.5. Corollary 1.1 shows the estimates (6), (7) and (8) in Theorem 1.1 are

sharp for bundles with fibers as sphere S n, complex projective space CP2m ðmb 5Þ and

ÂA-nontrivial manifold respectively.

From (3) we see that if M n ðnb 19Þ is a compact connected smooth n-manifold

with nonzero first Betti number, then the following holds:

NðM nÞa nðn� 1Þ=2þ 1:

The other of the purposes of this paper is to refine this inequality and Burghelea-

Schultz’s result:

Theorem 1.2.* Let M be an n-dimensional compact smooth manifold with nonzero

first Betti number b1.

(i) Suppose that there exist k one-dimensional real cohomology classes a1; . . . ; ak
of M such that their cup product a1 U � � �U ak does not vanish in the k-dimensional real

cohomology group H kðM;RÞ. Then the followings hold:

NðMÞa ðn� k þ 1Þðn� kÞ=2þ k; NsðMÞa ðn� k þ 1Þðn� kÞ=2:

(ii) Let i be 1 or 2. If b1b i, then the followings hold:

NðMÞa ðn� i þ 1Þðn� iÞ=2þ i; NsðMÞa ðn� i þ 1Þðn� iÞ=2:

Particularly, if n� i ¼ 1, then NsðMÞ ¼ 0.

(iii) Suppose b1b 3. Then the following holds:

NðMÞa
ðn� 2Þðn� 1Þ=2; if nb 5;

4; if n ¼ 4:

�

ð11Þ

This paper is organized as follows. In Section 2, we prepare for the following

sections. Particularly, if there exists a nontrivial harmonic map from a compact Rie-

mannian manifold M to a compact manifold of nonpositive curvature, we can estimate

the dimension of isometry group of M from above (cf. Lemma 2.2 and Lemma 2.3). In

Section 3, from the assumptions in Theorem 1.1, we show the nontriviality of the

harmonic map homotopic the fibration map from E to V and prove Theorem 1.1 by the

cobordism theory. In Section 4, we show the nontriviality of the Albanese map from

M to a b1ðMÞ-dimensional flat torus and prove Theorem 1.2.
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2. Preliminaries.

2.1. The isometry group of a Riemannian manifold and the harmonic map due

to Schoen and Yau.

For a compact Riemannian manifold M let IðMÞ, I 0ðMÞ be the isometry group

of M and its identity component respectively. The following is known:

Proposition 2.1 (cf. Theorem 4 in [19]). Suppose M, N are compact real analytic

Riemannian manifolds and N has nonpositive sectional curvatures. Suppose h : M ! N

is a surjective harmonic map and its induced map h� : p1ðMÞ ! p1ðNÞ is also surjective.

Then the space of surjective harmonic maps homotopic to h is represented by fb � h j

b A I 0ðNÞg.

Lemma 2.1. Let Mm be a connected Riemannian manifold and f a smooth map

from it to a smooth manifold N n. Suppose y A N is a regular point of f and F is a

connected component of the submanifold f �1ðyÞ. If an isometry a of M satisfies that

h � a ¼ h and that

aðxÞ ¼ x for any x A F ;

then a is the identity map of M.

Proof. Restricting the di¤erential da of the isometry a on the tangent bundle TF

of F , we obtain the identity map. h � a ¼ h implies that the restriction of da on the

normal bundle of TF in the tangent bundle TM of M is also the identity map. Hence

the map da : TMjF ! TMjF is the identity. By the connectivity of M, we can see that

the isometry a is the identity map of M. r

Lemma 2.2. Under the hypotheses of Proposition 2.1 it follows that

dim I 0ðMÞa ðm� nþ 1Þðm� nÞ=2þ dim I 0ðNÞ;

where m ¼ dimM and n ¼ dimN.

Proof. Taking an element a A I 0ðMÞ, we obtain a surjective harmonic map h � a

homotopic to h. By Proposition 2.1 and the surjectivity of h, there exists a unique

rðaÞ A I 0ðNÞ such that h � a ¼ rðaÞ � h. We see that r : I 0ðMÞ ! I 0ðNÞ is a homo-

morphism. The proof is completed if we can show that Ker r, which acts smoothly and

e¤ectively on M, has dimensiona ðm� nþ 1Þðm� nÞ=2. Taking a regular value y A V

of h, since h is surjective we see that h�1ðyÞ is an ðm� nÞ-dimensional submanifold of

M. Let F be an arbitrary connected component of h�1ðyÞ. By the definition of r and

Lemma 2.1, Ker r acts e¤ectively on F and then has dimensiona ðm� nþ 1Þðm� nÞ=2.

2.2. The isometry group of a Riemannian manifold and the Albanese map.

For a compact oriented Riemannian manifold M with nonzero first Betti number

b1ðMÞ, let H be the real vector space of all harmonic 1-forms on M and n the
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natural projecion from the universal covering ~MM of M. For x0 A
~MM, set p0 ¼ nðx0Þ.

We define a smooth map ~aa : ~MM ! H
� from ~MM to the dual space H

� of H by a line

integral

~aaðxÞðoÞ ¼

ð x

x0

n�o:

For s A p1ðMÞ

~aaðsxÞ ¼ ~aaðxÞ þ cðsÞ

holds, where cðsÞðoÞ ¼
Ð sx0

x0
n�o, so that c is a homomorphism from p1ðMÞ into H

�

as an additive group. It is a fact that D ¼ cðp1ðMÞÞ is a lattice in the vector space

H
�, and clearly this vector space has a natural Euclidean metric from the global inner

prduct of forms on M. With the quotient metric, we call the torus AðMÞ ¼ H
�=D the

Albanese torus of Riemannian manifold M. By the above relation between ~aa and c, we

obtain a map a : M ! AðMÞ satisfying ~aaðxÞ A a � nðxÞ for any x A ~MM. We call the map

a the Albanese map. From the very construction of a, we see that the map it induces

on fundamental groups

a� : p1ðMÞ ! p1ðAðMÞÞ

is surjective and that a� maps the space of harmonic 1-forms on AðMÞ isomorphically

onto H. By Corollary 1 in [17], the Albanese map is harmonic. We shall prove

Lemma 2.3. Let M be an n-dimensional oriented compact Riemannian manifold

and a : M ! AðMÞ its Albanese map. Let da denote the di¤erential of a and set

ra :¼ maxfrank daðpÞ j p A Mg:

Then dim I 0ðMÞa ðn� ra þ 1Þðn� raÞ=2þ ra.

Proof. For any g A I 0ðMÞ, a � g is also a harmonic mapping from M to the

Albanese torus AðMÞ and homotopic to a. By Lemma 3 in [17] there is a unique

translation rðgÞ of the torus AðMÞ such that

a � g ¼ rðgÞ � a:

Then we have a homomorphism r : I 0ðMÞ ! T b1 , where the torus T b1 is the translation

group of Albanese torus AðMÞ. Similarly to the proof of Lemma 2.2, we can show

that Ker r has dimensiona ðn� ra þ 1Þðn� raÞ=2. As a subgroup of the translation

group of AðMÞ, Im r acts freely on the image of a so that Im r has dimensiona

dim aðMÞ ¼ ra. The proof is completed. r

3. Proof of Theorem 1.1.

We firstly prove a topological result on fiber bundles.

Proposition 3.1. Let p0 : E ! B be a fiber bundle over a compact connected

smooth manifold B such that the fiber of E is also connected. Suppose p1 : E ! B is a

continuous map homotopic to p0. Then p1 is surjective.
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Proof. The proof is an application of the Serre spectral sequence. Suppose there

exists a point x A B such that the image of p1 : E ! B lies in the space B 0
:¼ B� fxg.

Then the composition of p1 : E ! B with the inclusion i : B 0 ! B is homotopic to the

projection p0 : E ! B. It is known that there exists a fibration (in the sense of Serre)

p2 : E
0 ! B 0 and a map f : E 0 ! E such that f is a homotopy equivalence and the

compostion p1 � f is homotopic to p2. Let F and F 0 be the homotopy fibers and H
�

a ,

H
�
b the Serre local systems of the fiber bundles p0 : E ! B and p2 : E

0 ! B 0 respec-

tively. Then for these two fiber bundles we have two spectral sequences

ðaÞ: E
p;q
2 ¼ H pðB;Hq

a Þ ! H �ðEÞ

and

ðbÞ: E
p;q
2 ¼ H pðB 0

;H
q
b Þ ! H �ðE 0Þ

respectively, where we use cohomology groups with coe‰cients Z=2Z. Since

f : E 0 ! E is a fiber bundle map in the sense of homotopy over the map i : B 0 ! B, we

also have a natural map between the spectral sequences f : ðaÞ ! ðbÞ. For n ¼ dimB

and k ¼ dimF , we compare the E n;k
y -terms of (a) and (b) by the map f. The E n;k

y -

term of (a) is Z=2Z, which is naturally isomorphic to H nþkðEÞ. The E n;k
y -term of (b)

is 0, whose proof is put in the next paragragh. Hence the map f on the E n;k
y -term is

0, which implies that the natural map f� : H
nþkðEÞ ! H nþkðE 0Þ is trivial. This con-

tradicts that f : E ! E 0 is a homotopy equivalence.

Now we prove that the E n;k
y -term of (b) is 0. We have only to show that the E

n;k
2 -

term of (b) is 0, which is just a special case of the equality

H nðB 0
;SÞ ¼ 0

for any local system S with coe‰cients Z=2Z over B 0. Since B is a smooth

compact connected manifold of dimension n, we claim that B has a cell structure with

only one n-cell. In fact if taking a decomposition of B by polyhedra such that the

number of the n-cells is minimum, then we see that the number of the n-cell is one.

Otherwise, since B is connected, then there exist two n-cells which have a common

ðn� 1Þ-dimenional cell. Deleting the common ðn� 1Þ-cell, we obtain another decom-

position of B by polyhedra with less number of n-cells. Contradictions! It is clear

that B 0 ¼ B� fxg has the homotopy type of the ðn� 1Þ-skeleton Bn�1 of this decom-

position. Calculating H�ðBn�1
;SÞ by this cell decompostion, we immediately see

H nðBn�1
;SÞ ¼ 0 and complete the proof. r

Lemma 3.1. If a real projective space RPn is spin, then it bounds a spin manifold.

Proof. The total Stiefel-Whitney class of KPn is w ¼ 1þ w1 þ w2 þ � � � ¼ ð1þ gÞn

where g, the generator of the cohomology ring of KPn, has dimension 1 and 2 for

K ¼ R and C respectively. When K ¼ R, the condition w1 ¼ 0, w2 ¼ 0 is equivalent

to ðnþ 1Þ1 nðnþ 1Þ=21 0 ðmod 2Þ. That is to say that RPn is spin if and only if

n1 3 ðmod 4Þ. It is obvious that CPodd is spin. Let n be 4k þ 3 and L the tau-

tological line bundle on CP2kþ1. LnL is spin since its first Chern class is the twice of

that of L. Then we see the total space of the disk bundle of L2 is spin and has the

boundary RPn. r
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Proof of Theorem 1.1. We remark that if a compact Lie group G acts smoothly

on a compact manifold M, then there exists an analytic structure on M such that G acts

on it analytically. In fact by Theorem 4.7.1 in [9] there exists an analytic embedding of

M to Euclidean space. The remark follows by that there exists an equivariantly

analytic embedding of M to a representation space of G, which can be proved similar to

Theorem 4.7.1 in [9]. Hence the degree of symmetry of E is also equal to the maximum

of the dimensions of the isometry groups of all real analytic Riemannian metrics on E.

For the proof of the first inequality in (6), we have only to show that for any real

analytic Riemannian metric on E, the inequality

dim I 0ðEÞa dimFðdimF þ 1Þ=2þNðVÞ

holds. The projection p : E ! V of the fiber bundle induces a surjective map from

p1ðEÞ to p1ðVÞ since the fiber F is connected. Using a well-known result by J. Eells

and J. Sampson [7], we see that there exist harmonic maps homotopic to the projection

p : E ! V . By Proposition 3.1, we see that each of them is surjective. Combining

Remark 1.2 and Lemma 2.2, we obtain the above inequality. For the proof of the

second inequality in (6), we have only to show that for a semi-simple compact Lie group

G which acts isometrically on the analytic Riemannian manifold E, the following

estimate holds:

dimGa dimF ðdimF þ 1Þ=2: ð12Þ

Using a harmonic map homotopic to the projection p : E ! V , we can construct a

homomorphism r : G ! I 0ðVÞ by the same way as the proof of Lemma 2.2. Since any

Lie group homomorphism from G to a torus is trivial, it is followed that

dimG ¼ dimKer r:

We obtain (12) by the estimate of dimKer r in the proof of Lemma 2.2.

For the proof of (i), (ii) and (iii) of Theorem 1.1, we also have only to prove

corresponding results for the isometry group with respect to any analytic Riemannian

metric on E. Let h be a harmonic map homotopic to the projection p : E ! V .

We recall the homomorhism r : I 0ðEÞ ! I 0ðVÞ constructed from the harmonic map

h. Taking a regular point y A V of h, and a connected component F 0 of h�1ðyÞ, we

have showed in the proof of Lemma 2.2 that Ker r acts e¤ectively on F 0.

We claim that there exists a cobordism in E between F 0 and F . In fact,

choosing generic smooth homotopy P : E � ½0; 1� ! V between h and p such that y is

also the regular value of P, we can see that P�1ðyÞ ¼ F is a submanifold of E � ½0; 1�

with boundary F 0 and F . Since the normal bundle of F in E � ½0; 1� is trivial, F

is oriented if E is oriented and it is spin if E is spin. It implies that F and F 0 are

oriented cobordant if E is oriented and they are spin cobordant if E is spin. Since

signature, ÂA-genus and KO-characteristic number are invariants of oriented cobordism,

spin cobordism respectively, if F is significant, ÂA-nontrivial or a-nontrivial, so is F 0.

Although F 0 may be not connected, we see that there exists a connected component F �

of F 0 which has the significant, ÂA-nontrivial or a-nontrivial property if F 0 does. For

Ker r acts e¤ectively on F �, if F � is significant, we can estimate its dimension by (4) and

then obtain the first inequality of (7). The second inequality of (7) follows similarly to

(6). If F � is ÂA-nontrivial, by Atiyah-Hirzebruch’s theorem we see that Ker r is trivial

B. Xu734



and (ii) of Theorem 1.1 follows. The proof of (iii) of Theorem 1.1 is completed by

Lawson-Yau’s result (cf. (5)).

Finally in the above argument taking the product manifold Sn � V as a trivial

bundle on V , we can find a connected component F 0 of h�1ðyÞ which is spin and does

not bound a spin manifold. Lemma 3.1 tells us that if a real projective space is spin,

then it must bound a spin manifold. Then we see that F 0 is di¤eomorphic to neither a

sphere S n nor a real projective space RPn. Since Ker r acts e¤ectively on F 0, it follows

by (1) that
dimKer raNðF 0Þ < NðS nÞ ¼ nðnþ 1Þ=2:

Hence we obtain that NðSn � VÞ < NðS n � VÞ, which completes the proof of

(iv). r

4. Proof of Theorem 1.2.

In order to prove Theorem 1.2, we need lemmas.

Lemma 4.1. Let p : M 0 ! M be a finite covering between compact smooth

manifolds. Then we have NðMÞaNðM 0Þ.

Proof. We can assume that p : ~MM ! M is a Riemannian covering. It is

enough to show dim IðMÞa dim IðM 0Þ. Since IðMÞ and IðM 0Þ are Lie groups of

finite dimension, we only need to compare the dimensions of their Lie algebras. Given

a Killing vector field V on M, the pullback of V by p is also a Killing field on M 0 so

that the Lie algebra of IðMÞ is a subalgebra of that of IðM 0Þ. r

Let p : ~XX ! X be an n-sheeted covering space defined by an action of group G on
~XX . Then (cf. [8], Proposition 3H.1) with coe‰cients in a field F whose characteristic is

0 or a prime not dividing n, the map p� : H kðX ;FÞ ! H kð ~XX ;FÞ is injective with image

the subgroup H kð ~XX ;FÞG consisting of classes a such that g�ðaÞ ¼ a for all g A G. In

particular, we see

Lemma 4.2. Let M be a non-orientable compact manifold, p : M 0 ! M its ori-

entable double covering. Then

(1) b1ðMÞa b1ðM
0Þ;

(2) If M has the property that there exist k one dimensional real cohomology classes

a1; . . . ; ak of M such that a1 U � � �U ak is nonzero in H kðM;RÞ, then so does M 0.

Lemma 4.3. Let M be an n-dimensional oriented compact Riemannian manifold with

nonzero first Betti number b1. Let a : M ! AðMÞ be its Albanese map.

(1) Suppose there exist k integral one dimensional real cohomology classes a1; . . . ; ak
such that a1 U � � �U ak does not vanish in H kðM;RÞ. Then rab k holds.

(2) Let r be 1 or 2. If b1b r, then rab r holds.

Proof. (1) By the assumption, the Albanese map a of M induces a non-trivial

homomorphism a� : H kðAðMÞ;RÞ ! H kðM;RÞ, which implies there exists a nonzero

k-form o on AðMÞ such that its pullback a�ðoÞ is also a nonzero k-form. Since ra is

equal to

maxf j j a� : W jðAðMÞÞ ! W jðMÞ is not identically zerog;

we see rab k.
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(2) In case of r ¼ 1 this statement is obvious. When b1b 2, it is implied by

the general unique continuation property of harmonic mappings (cf. Theorem 3 in

[18]). In fact, if the maximal rank of da is 1, a maps M onto a closed geodesic of

AðMÞ since a : M ! AðMÞ is harmonic. This contradicts surjectivity of the homo-

morphism a� : p1ðMÞ ! p1ðAðMÞÞGZ
b1 . r

Finally we arrive at the proof of Theorem 1.2.

Proof of Theorem 1.2. By Lemma 4.1 together with Lemma 4.2, we may assume

M is an oriented Riemannian manifold and let a : M ! aðMÞ denote its Albanese

map. We omit the proof of the estimates for semi-simple degree of symmetry here since

it is similar to that of the second inequality in (6).

From Lemma 2.3 together with Lemma 4.3, we see that one of the upper bounds of

dim IðMÞ is

max
1

2
ðn� j þ 1Þðn� jÞ þ j j j ¼ k; k þ 1; . . . ; n

� �

;

which is equal to ðn� k þ 1Þðn� kÞ=2þ k. Hence we obtain (i) of Theorem 1.2.

By Lemma 2.3 and Lemma 4.3, we obtain (ii) of Theorem 1.2.

For the proof of (iii) of Theorem 1.2, we have only to consider the analytic

Riemannian metric on M. Since the first Betti number b1 is not less than 3, we see by

Lemma 4.3 that rab 2 holds. If rab 3, then from Lemma 2.3 we know

dim IðMÞa
1

2
ðn� 2Þðn� 3Þ þ 3:

Suppose r ¼ 2. We recall the homomorphism r from I 0ðMÞ to the translation group

T b1 of AðMÞ constructed in the proof of Lemma 2.3. We claim that the homomor-

phism r is trivial so that

dim I 0ðMÞ ¼ dimKer ra
1

2
ðn� 1Þðn� 2Þ:

Otherwise, there is a translation group S1 acting freely and isometrically on the

image of a. Since both M and AðMÞ are real analytic, a theorem of Morrey [16]

shows that the harmonic mapping a is in fact real analytic. By well-known theorems

in real analytic geometry [14] we know that both M and AðMÞ can be triangulated

so that aðMÞ is a 2-dimensional compact connected simplicial subcomplex of AðMÞ.

We write the orbit space of the free and isometric S1 actions on AðMÞ and aðMÞ by

AðMÞ=S1 and aðMÞ=S1 respectively, in which the former is in fact also a flat torus of

dimension b1 � 1. Since the natural projection map p : AðMÞ ! AðMÞ=S1 is totally

geodesic, we see that by a result in [6] the composition map p � a : M ! AðMÞ=S1 is a

harmonic map, whose image is aðMÞ=S1, the orbit space of the free S1 action on the

two dimensional simplicial subcomplex aðMÞ of AðMÞ. Hence aðMÞ=S1, the image of

p � a in AðMÞ=S1 has dimensional 1 so that the di¤erential of harmonic map p � a

has ranka 1 at any point of M. By Theorem 3 in [18], we see that p � a maps M

onto a closed geodesic of AðMÞ=S1, which means that aðMÞ is a 2-dimensional torus.
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This contradicts the surjectivity of the homomorphism a� : p1ðMÞ ! p1ðAðMÞÞGZ
b1

ðb1b 3Þ. Hence we obtain

dim IðMÞamax
1

2
ðn� 3Þðn� 2Þ þ 3;

1

2
ðn� 1Þðn� 2Þ

� �

;

which implies (iii) of Theorem 1.2. r
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