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Abstract. We classify smooth complex projective algebraic curves C of low genus

7a ga 10 such that the variety of nets W 2
g�1ðC Þ has dimension g� 7. We show that

dimW 2
g�1ðCÞ ¼ g� 7 is equivalent to the following conditions according to the values of

the genus g. (i) C is either trigonal, a double covering of a curve of genus 2 or a smooth

plane curve degree 6 for g ¼ 10. (ii) C is either trigonal, a double covering of a curve of

genus 2, a tetragonal curve with a smooth model of degree 8 in P
3 or a tetragonal curve

with a plane model of degree 6 for g ¼ 9. (iii) C is either trigonal or has a birationally

very ample g26 for g ¼ 8 or g ¼ 7.

1. Introduction and motivation.

Let C be a smooth projective algebraic curve of genus g over the field of complex

numbers. We denote by W r
d ðC Þ the locus in the Jacobian variety JðC Þ corresponding

to those line bundles of degree d with rþ 1 or more independent global sections. Then

W r
d ðC Þ is a subvariety of JðC Þ and can equivalently be viewed as the subvariety

consisting of all e¤ective divisor classes of degree d which move in a linear system of

projective dimension at least r.

By a well known thorem of Kleiman-Laksov [KL], if da gþ r� 2, the dimension

of W r
d ðC Þ is greater than or equal to the Brill-Noether number

rðd; g; rÞ :¼ g� ðrþ 1Þðg� d þ rÞ

for any curve C. Furthermore, by a theorem of Gri‰ths-Harris [GH], the dimension of

W r
d ðC Þ is equal to rðd; g; rÞ for a general curve C; whereas the dimension of W r

d ðC Þ

might be greater than rðd; g; rÞ for some special curves C.

On the other hand, the upper bound on the dimension of W r
d ðC Þ and the

description of those special (in the sense of moduli) curves C such that W r
d ðC Þ has

dimension more than the expected value rðd; g; rÞ were given by H. Martens and D.

Mumford, which can be stated as follows; cf. [Ma], [Mu], or [ACGH].
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Theorem 1.1 (H. Martens). Let d and r be integers such that

d � 2r > rðd; g; rÞ; rb 1:

Then

dimW r
d ðCÞa d � 2r

and the equality holds if and only if C is hyperelliptic.

Theorem 1.2 (Mumford). Let d and r be integers such that

d � 2r� 1 > rðd; g; rÞ; rb 1:

Suppose that

dimW r
d ðCÞ ¼ d � 2r� 1:

Then C is either trigonal, bi-elliptic or a smooth plane quintic.

There have been several partial extensions of the above two theorems due to

many authors; cf. [BKMO], [C], [K] and [Muk]). Furthermore, by a recent progress

made by the authors in [CKO], the next extension of H. Martens-Mumford theorem on

dimensions of W r
d ðC Þ for a smooth curve C has been finished o¤ and therefore one

knows that the following statement holds; [CKO; Theorem 1.5].

Theorem 1.3. Let C be a smooth algebraic curve of genus g. Let d and r be

integers such that

d � 2r� 2 > rðd; g; rÞ; rb 1:

If

dimW r
d ðCÞb d � 2r� 2b 0

then C is either hyperelliptic, trigonal, bi-elliptic, tetragonal, a smooth plane sextic or a

double covering of a curve of genus 2.

Indeed, [CKO; Theorem 1.4] gives necessary conditions for C satisfying

dimW 2
g�1 ¼ g� 7;

which was the only case left out in previous extensions of H. Martens-Mumford’s

Theorem. Furthermore, in the range of the genus gb 11, [CKO; Theorem 1.4] has

been pushed forward and it has been shown that dimW 2
g�1 ¼ g� 7 if and only if C is

either trigonal or a double covering of a curve of genus 2, eliminating the possibility for

C being tetragonal other than a two sheeted covering over a curve of genus 2; cf. [CKO;

Theorem 1.7]. However, [CKO] did not treat curves of low genus with dimW 2
g�1 ¼

g� 7, namely in the genus range 7a ga 10, in the same way as higher genus curves

were treated. The aim of this paper is to pursue a complete description of those

special curves and to come up with a necessary and su‰cient condition for C having

dimW 2
g�1 ¼ g� 7 when the genus of the curve C is low. Our main results are:
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Theorem I. Let C be a smooth projective algebraic curve of genus g ¼ 10. Then

dimW 2
g�1ðCÞ ¼ g� 7 if and only if C is either trigonal, a double covering of a curve of

genus 2 or a smooth plane curve degree 6.

Theorem II. Let C be a smooth projective algebraic curve of genus g ¼ 9. Then

dimW 2
g�1ðCÞ ¼ g� 7 if and only if C is either trigonal, a double covering of a curve of

genus 2, a tetragonal curve with a smooth model of degree 8 in P
3 or a tetragonal curve

with a plane model of degree 6.

Theorem III. Let C be a smooth algebraic curve of genus g ¼ 8 or g ¼ 7. Then

dimW 2
g�1ðCÞ ¼ g� 7 if and only if C is either trigonal or has a birationally very ample

g26 .

One notes immediately that nearly (but not exactly) the same statements as [CKO;

Theorem 1.7] hold. However, unlike the case gb 11, there appear smooth plane sextics

and some particular tetragonal curves C with dimW 2
g�1ðCÞ ¼ g� 7 other than double

coverings of genus two curves or trigonal curves. On the technical side, some of the

lemmas which were used to prove [CKO; Theorem 1.6] and [CKO; Theorem 1.7]—e.g.

[CKO; Lemma 3.4] which describes the component of W 1
g�3ðC Þ of maximal dimension

on a tetragonal curve—still have to be verified for curves of low genus and this will

require preparing several relevant results on W r
d ðC Þ for curves of low genus whose

proof we could not locate in any of the literature.

The organization of this paper is as follows. In Section 2, we collect several

results obtained in [CKO] which we will be using in this paper. In section 3, we prove

Theorem I after finding a proper description of a component of W 1
g�3ðC Þ of maximal

dimension on a tetragonal curve of low genus. In section 4, we prove Theorem II. In

section 5, after proving Theorem III, we discuss related results on W 2
g�1ðC Þ for a double

coverings of a curve of genus 2.

For notations and conventions, we adopt those from [ACGH]. Specifically, C

always denotes a smooth irreducible complex projective curve and gr
d is a possibly

incomplete r-dimensional linear system of degree d on C. A gr
d is said to be birationally

very ample if the induced morphism C ! P
r given by the base-point-free part of gr

d is

birational onto its image. We also say that a line bundle L A PicdðC Þ is birationally

very ample if the corresponding complete linear system gr
d is birationally very ample.

The set of all e¤ective divisors of degree d on C is denoted by Cd . KC and oC denote

a canonical divisor and the canonical bundle on C respectively. A curve C is called

k-gonal if C has a g1k but no g1k�1.

2. Preliminary results.

We first collect several elementary results regarding W 2
g�1ðC Þ which have been

observed in [CKO] already; cf. [CKO; Remark 2.1, Proposition 2.2 and Corollary 2.3].

Remark 2.1. Let C be a smooth algebraic curve of genus g.

(i) dimW 2
g�1ðCÞ ¼ g� 5b 0 if and only if C is hyperelliptic.

(ii) If gb 7, dimW 2
g�1ðCÞ ¼ g� 6 if and only if C is bi-elliptic.

(iii) For g ¼ 6, dimW 2
g�1ðCÞ ¼ g� 6 if and only if C is a smooth plane quintic.
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(iv) For a bi-elliptic curve of genus 6, W 2
g�1ðCÞ ¼ q.

(v) For a trigonal curve of genus gb 7, dimW 2
g�1ðCÞ ¼ g� 7.

(vi) If C is a double covering of a curve of genus 2 and gb 9, dimW 2
g�1ðCÞ ¼

g� 7.

We will make use of the following lemmas which also have been proved in [CKO];

cf. [CKO; Lemma 2.5, Lemma 2.6 and Lemma 3.1].

Lemma 2.2. Let C be a smooth algebraic curve of genus gb 7 which is neither a

double covering of a curve of genus ha 2 nor a trigonal curve. Assume dimW 2
g�1ðCÞ ¼

g� 7 and let X be a component of W 2
g�1ðC Þ of maximal dimension. If every component

of W 2
g�1ðC Þ of maximal dimension is generically base-point-free, then for a general element

L A X , both L and oC nL
�1 are complete base-point-free birationally very ample nets.

Lemma 2.3. Let C be a smooth algebraic curve of genus gb 7 such that

dimW 2
g�1ðCÞ ¼ g� 7. Suppose that every component of W 2

g�1ðC Þ of maximal dimension

is generically base-point-free. Assume further that for a general member L A X—where

X HW 2
g�1ðC Þ is a component of maximal dimension—both L and oC nL

�1 are bira-

tionally very ample. Then the following statements hold.

(i) dimW 1
g�3ðCÞb g� 7.

(ii) If dimW 1
g�3ðCÞ ¼ g� 7, then there is a component T HW 1

g�3ðC Þ with dimT ¼

g� 7 such that every L A X is of the form

L ¼ MnOCðPþQÞ

for some M A T and some P;Q A C.

Lemma 2.4. Let C a smooth tetragonal curve of genus gb 7 with dimW 2
g�1ðCÞ ¼

g� 7. We fix a g14 on C. Suppose that h0ðC;OCð2g
1
4ÞÞ ¼ 3. Let X HW 2

g�1ðC Þ be a

component of maximal dimension and set

EX :¼ fD A Cg�5 j jg
1
4 þDj A Xg:

Then for any D A EX , jKC � 2g14 �Dj0q and

jKC � 2g14 j ¼ 6
D AEX

Dþ jKC � 2g14 �Dj;

where the locus Dþ jKC � 2g14 �DjHC2g�10 is considered as a subset of jKC � 2g14 j.

Let’s briefly recall basic notions of scrollar invariants of an algebraic curve with a

pencil g1d . For a smooth algebraic curve C with a complete base-point-free pencil g1d ,

we set

Fi ¼ H 0ðC;oC nOCð�ig1d ÞÞ:

The vector spaces Fi ði ¼ 1; 2; . . .Þ give a filtration,

F0 IF1 I � � �IFn I � � �

and we define the scrollar invariants ei ¼ eiðg
1
d Þ ði ¼ 1; 2; . . . ; d � 1Þ by

ei ¼ eiðg
1
d Þ ¼ #f j A N ; dimðFj�1=FjÞb ig � 1 ði ¼ 1; 2; . . . ; d � 1Þ:
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One can easily show that

e1 þ � � � þ ed�1 ¼ g� d þ 1 and ed�1a � � �a e1

hold; cf. [KO] for further details.

The following lemma, which may seem to be a little bit technical, however plays

an important role as it did in [CKO]; cf. [CKO; Lemma 3.4].

Lemma 2.5. Let C be a smooth tetragonal curve with a unique g14 of genus gb 8.

We assume that the following conditions hold on C:

(i) dimW 2
g�1ðCÞ ¼ g� 7.

(ii) C has no g26 .

(iii) C is not a double covering of a curve of genus 2 in case gb 9.

(iv) For a general L A X—where X HW 2
g�1ðC Þ is a component of maximal

dimension—both L and oC nL
�1 are base-point-free, birationally very ample

and jL� g14 j0q, joC nL
�1 � g14 j0q.

(v) For g ¼ 9, e3b 1 and ðe2; e3Þ0 ð1; 1Þ.

(vi) For g ¼ 8, e3b 1.

Let cL : C ! CL HP
2 be the morphism defined by L A X and let ~PP A CL be the ðg� 5Þ-

fold singular point corresponding to g14 , i.e. the image of points in the support of

jL� g14 j. Then ~PP A CL is an ordinary singular point if L A X is general.

We close this section by recalling the well-known Riemann-Hurwitz relation for

double coverings. Let E be a curve of genus h and let p : C ! E be a double

covering. Let RHE be a branch locus of p. Then we have

p�ðOCÞGOE lS and S
n2

GOEð�RÞ:ð2:AÞ

Also the algebra structure of p�ðOC Þ is given by the isomorphism

c : S
n2

GOEð�RÞHOE :ð2:BÞ

3. Curves of genus ten.

In this section we mainly treat curves of genus g ¼ 10 with dimW 2
g�1ðCÞ ¼ g� 7.

As was mentioned earlier in the introduction, we have new classes of curves in Theo-

rems I and II such as smooth plane sextics or some special tetragonal curves C with

dimW 2
g�1ðCÞ ¼ g� 7 besides double coverings of genus two curves or trigonal curves.

Specifically, some of these curves emerge fairly naturally in the course of the proofs

of the lemmas which describe the component of W 1
g�3ðC Þ of maximal dimension on a

tetragonal curve of genus g ¼ 9; 10.

For trigonal curves or double covering of genus two curves, we already have

dimW 2
g�1ðCÞ ¼ g� 7; cf. Remark 2.1 (v) and (vi). For the other curves C which newly

appear in Theorems I and II, one can show easily that dimW 2
g�1ðCÞ ¼ g� 7 as follows.

Proposition 3.1. Let C be a smooth algebraic curve of genus gb 7 with a

birationally very ample g26 . Then dimW 2
g�1ðCÞ ¼ g� 7.

Proof. C always has a base-point-free and complete g15 cut out by lines through

a general point of the plane model induced by g26 . We note that fg26g þWg�7ðC Þ
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is an irreducible subvariety of W 2
g�1ðC Þ, therefore dimW 2

g�1ðCÞb g� 7. Suppose that

dimW 2
g�1ðCÞ > g� 7. By Remark 2.1 (i) and (ii), C must be either hyperelliptic or

bi-elliptic, in which cases C cannot have a base-point-free and complete g15 by the

Castelnuovo-Severi inequality; cf. [A; Theorem 3.5]. r

Remark 3.2. (i) For a tetragonal curve C of genus g ¼ 9 with a smooth model of

degree 8 in P
3, the locus

fOCðg
3
8 � PþQ1 þ � � � þQg�8Þ jP;Q1; . . . ;Qg�8 A Cg

is an irreducible subvariety of W 2
g�1ðC Þ of dimension g� 7. Since C is an extremal

space curve of degree 8, C lies on a quadric surface SHP
3 and hence C is a complete

intersection of a quadric and a quartic. By using the adjunction formula for curves on

a smooth quadric surface (or on the ruled surface PðOC lOCð�2ÞÞ in case S is a quadric

cone), one can deduce that the canonical linear system jKC j is cut out by quadrics. A

divisor D A g14 must be collinear in P
3 since D fails to impose independent conditions

on jKC j which is cut out by quadrics, whence a g14 is cut out by the rulings of S and

dimW 1
4 ðCÞ ¼ 0; cf. [ACGH; Exercise F-2, page 199]. Thus C is not bi-elliptic and

hence dimW 2
g�1ðCÞ ¼ g� 7 by Remark 2.1 (ii).

(ii) For a tetragonal curve of genus g ¼ 9, it is easy to verify that there exists a

smooth model of degree 8 in P
3 if and only if either e3 ¼ 0 (with a unique g14 ) or there

exist two g14 ’s.

(iii) It is worthwhile to note that curves which newly appeared in Theorem I

and Theorem II—i.e. a smooth plane sextic, a curve with a plane model of degree 6 or

a tetragonal curve with a smooth space model of degree 8—are neither trigonal nor a

double covering of a curve of genus two. It is clear that a smooth plane sextic (or a

curve with a plane model of degree 6) is not a double covering of a curve of genus 2;

a plane sextic has a base-point-free g15 , whereas a double covering of a curve of genus

2 does not have a base-point-free g15 by Castelnuovo-Severi inequality.

Let p : C ! E be a double covering of a curve of genus h ¼ 2 and gðCÞ ¼ 9. By

(2.A), degS ¼ �6 and

h0ðC;OCð2p
�g12ÞÞ ¼ h0ðE;OEð2g

1
2ÞÞ þ h0ðE;OEð2g

1
2ÞnSÞ ¼ 3;

which implies e3 0 0. Furthermore, C has only one g14 ¼ p
�ðg12Þ by Castelnuovo-Severi

inequality. Therefore it follows that C cannot have a smooth space model of degree 8

by (ii).

(iv) For the proofs of Theorem I and Theorem II, we will use Lemma 2.5

regarding a tetragonal curve having a plane model of degree g� 1 with an ordinary

singular point of high multiplicity. Recall that Lemma 2.5 holds for a tetragonal curve

of genus g ¼ 9 under the assumption ðe2; e3Þ0 ð1; 1Þ. For tetragonal of curve of genus

g ¼ 9 with ðe2; e3Þ ¼ ð1; 1Þ, we have the following result.

Lemma 3.3. Let C be a tetragonal curve of genus g ¼ 9 with a unique g14 such that

e3 ¼ e2 ¼ 1 i.e. h0ðC;OCð2g
1
4ÞÞ ¼ 3, h0ðC;OCð3g

1
4ÞÞ ¼ 6. Suppose that C does not have

a g26 and dimW 2
g�1ðCÞ ¼ g� 7. Then C is a double covering of a curve of genus 2.
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Proof. We first claim that W 2
8 ðCÞH fg14g þW4ðC Þ. For L A W 2

8 ðC Þ which is of

the form L ¼ 2g14 , we clearly have L A fg14g þW4ðC Þ. Therefore we assume L0 2g14 .

Note that we have the following exact sequence by the base-point-free pencil trick;

0!H 0ðC;LnOð�g14ÞÞ!H 0ðC;LÞnH 0ðC;OCðg
1
4ÞÞ!H 0ðC;LnOCðg

1
4ÞÞ:ð3:3:1Þ

Recall that e1 þ e2 þ e3 ¼ g� 3 and hence e1 ¼ 4, which in turn implies oC GOCð4g
1
4Þ.

If h0ðC;LnOCðg
1
4ÞÞb 6, then oC nL

�1 nOCð�g14ÞGOCðg
1
4Þ by Riemann-Roch for-

mula and the uniqueness of g14 , hence L ¼ 2g14 which is a contradiction. Therefore we

have h0ðC;LnOCðg
1
4ÞÞa 5 which implies h0ðC;LnOCð�g14ÞÞ ¼ 1 by (3.3.1), finishing

the claim.

From now on, we assume that C is not a double covering of a curve of genus 2.

Claim: For any PþQ A C2, there exists Aþ B A C2 such that

OCðg
1
4 þ PþQþ Aþ BÞ A W 2

8 ðC Þ:

ð3:3:2Þ

We consider the locus

S :¼ fðL;OCðPþQÞÞ jPþQaD for some D A jL� g14 jgHW 2
8 ðCÞ �W2ðC Þ

and the projection map S !
f
W2ðC Þ to the second factor. Take an element

OCðPþQÞ A fðSÞHW2ðC Þ. By the non-existence of g26 , jKC � g14 j is very ample.

Suppose that jKC � g14 � P�Qj ¼ g310 is not base-point-free with a base point T A C.

Then jKC � g14 � P�Q� T j ¼ g39 and therefore jKC � g14 � P�Q� T � Sj A W 2
8 ðC Þ

for general S A C. By the previous claim,

jKC � 2g14 � P�Q� T � Sj ¼ j2g14 � P�Q� T � Sj0q:

Since S A C is general, j2g14 � P�Q� T j is a pencil of degree 5. Therefore, by

h0ðC;OCð2g
1
4ÞÞ ¼ 3, there exists R A C such that PþQþ T þ R A g14 . But then g27 ¼

jg14 þ PþQþ T j ¼ j2g14 � Rj and R is a base point of 2g14 which is a contradiction.

Therefore jKC � g14 � P�Qj must be base-point-free and birationally very ample since C

is not a double covering of a curve of genus 2. Note that OCðg
1
4 þ PþQþ Aþ BÞ A

W 2
8 ðC Þ for some Aþ B A C2 if and only if Aþ B maps to a singular point of the model

induced by the birationally very ample base-point-free jKC � g14 � P�Qj. Therefore f

has a finite fiber over a general point in the image. Furthermore since dimS ¼ 2, f is

in fact surjective and this finishes the proof of (3.3.2).

We take general P1 A C such that P1 is contained in a reduced member P1 þ P2 þ

P3 þ P4 A g14 .

Claim: j3g14 � Pi � Pj j is base-point-free g310 for any i0 j A f1; 2; 3; 4g.(3.3.3)

Without loss of generality, we assume that i ¼ 1, j ¼ 2. Note that Bsj3g14 � P1 � P2jH

fP3;P4g since j3g14 � P1 � P2j ¼ j2g14 þ P3 þ P4j. Assume that the base locus is not

empty, say P3 A Bsj3g14 � P1 � P2j. Then h0ðC;OCð3g
1
4 � P1 � P2 � P3ÞÞ ¼ 4 and by

taking the dual series it follows that h0ðC;OCðg
1
4 þ P1 þ P2 þ P3ÞÞ ¼ 3, contradicting

j2g14 j being a base-point-free g28 .

We now take Q1 A C such that Q1 B SuppðP1 þ P2 þ P3 þ P4Þ and let Q1 þQ2 þ
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Q3 þQ4 A g14 . By Claim (3.3.2) we already know that OCðg
1
4 þ P1 þQ1 þ Aþ BÞ A

W 2
8 ðC Þ for some A;B A C. By Lemma 2.4,

jKC � 2g14 � P1 �Q1 � A� Bj ¼ j2g14 � P1 �Q1 � A� Bj

¼
X

4

i¼2

ðPi þQiÞ � A� B

�

�

�

�

�

�

�

�

�

�

0q

and h0ðC;OCð2g
1
4 � P1 �Q1ÞÞ ¼ 1 by the general choice of P1 and Q1 therefore

one finds that Aþ B <
P4

i¼2ðPi þQiÞ. Assume that A;B A fP2;P3;P4g, say A ¼ P2,

B ¼ P3 and hence h0ðC;OCðg
1
4 þ P1 þ P2 þ P3 þQ1ÞÞ ¼ 3. But this is a contradiction;

since j2g14 þQ1j is a g29 with the unique base point Q1;P4 cannot be a base point of

j2g14 þQ1j. The case A;B A fQ2;Q3;Q4g does not occur by the same reason. There-

fore we must have A ¼ P2, B ¼ Q2 and h0ðC;OCðg
1
4 þ

P2
i¼1ðPi þQiÞÞÞ ¼ 3. By taking

the dual series,

h0 C;OC KC � g14 �
X

2

i¼1

ðPi þQiÞ

 ! !

¼ h0 C;OC 3g14 �
X

2

i¼1

ðPi þQiÞ

 ! !

¼ 3:

As we vary Q1 A C, it follows that the base-point-free g310 ¼ j3g14 � P1 � P2j induces a

degree 2 morphism onto a curve of degree 5 in P
3. Therefore C becomes a double

covering of a curve of genus 2, contrary to the assumption which we made before

(3.3.2). r

For curves of genus g ¼ 9 or 10, we would like to have a proper description of

components of W 1
g�3ðC Þ of maximal dimension; cf. [CKO; Lemma 3.4] in higher genus

cases. For this purpose, we begin with the following which is due to M. Coppens.

Lemma 3.4. Let C be a smooth algebraic curve of genus g. If g ¼ 10 and

dimW 1
7 ðCÞ ¼ 3, then dimW 1

6 ðCÞ ¼ 2. If g¼ 9 and dimW 1
6 ðCÞ ¼ 2, then dimW 1

5 ðCÞ ¼ 1.

Proof. See [K; Lemma 2.6] or [C; Proposition 12 and Proposition 13]. r

Lemma 3.5. (i) Let AHW r
d ðC Þ be an irreducible closed subset satisfying

dimAb rþ 1:

Then for any P A C,

dim½W r
d�1ðCÞnOCðPÞ�VAb dimA� ðrþ 1Þ:

(ii) Let C be a tetragonal curve without g26 . Then for a component AHW 1
6 ðC Þ of

dimension 2,

dimAV ½W 1
5 ðCÞ þW1ðCÞ�b 1:

(iii) Let C be a tetragonal curve with a unique g14 of genus g ¼ 9 or 10. Assume that

W 2
6 ðCÞ ¼ q, dimW 1

g�3ðCÞ ¼ g� 7 and W 1
g�4ðC Þ has only one component fg14g þWg�8ðC Þ

of maximal dimension. Let AHW 1
g�3ðC Þ be a component of maximal dimension. If

AIT þW1ðC Þ for some closed irreducible nonempty subset T HW 1
g�4ðC Þ, then A ¼

fg14g þWg�7ðC Þ.
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Proof. (i) is also due to M. Coppens which follows easily from excess linear series

result of Fulton-Harris-Lazarsfeld [FHL]; cf. [C; Proposition 1].

(ii) The proof is a minor modification of the proof of [C; Theorem 2]. We

consider the diagram:

W1ðCÞ  ���

p1
ZHW 1

5 ðCÞ �W1ðCÞ C ðL;OCðPÞÞ?
?
?
y

p2

?
?
?
y

p2

?
?
?
y

AH W 1
6 ðCÞ C LnOCðPÞ

where Z ¼ p�12 ðAÞ and p1 is the projection map onto the second factor. By (i), p1 is

surjective and hence there exists an irreducible component ~ZZ of Z dominating W1ðC Þ

with dimð ~ZZÞb 1. If dimð p2ð ~ZZÞÞ ¼ dimð ~ZZÞ, then we are done. Suppose dimðp2ð ~ZZÞÞ <

dimð ~ZZÞ. Note that p2 is injective on the fibers of p1. Therefore it follows that

dimð p2ð ~ZZÞÞ ¼ dimð ~ZZÞ � 1. Furthermore, for each L A p2ð ~ZZÞ and for each P A C there

exists M A W 1
5 ðC Þ such that LGMnOCðPÞ. Since there is no g26 this would imply

that every point in C is base point of L which is an absurdity.

(iii) For A0 fg14g þWg�7ðC Þ, a general element of A has no base point by the

assumption on W 1
g�4ðC Þ. Suppose AIT þW1ðC Þ. Since a general L A A is base-

point-free, we have h0ðC;oC nL
�2Þb 1 by the description of the Zariski tangent

spaces to the scheme W 1
g�3ðC Þ and by the base-point-free pencil trick; cf. [ACGH;

Propostion 4.2, page 189]. Hence h0ðC;oC nL
�2
0 nOCð�2PÞÞb 1 for any L0 A T

and for any P A C by semi-continuity. Therefore h0ðC;oC nL
�2
0 Þb 3 for L0 A T and

joC nL
�2
0 j ¼ g26 , a contradiction. r

Lemma 3.6. Let C be a tetragonal curve of genus g ¼ 10 without g26 and assume that

C is not a double covering of a curve of genus 2. If dimW 1
7 ðCÞ ¼ 3, then fg14g þW3ðC Þ

is the only component of W 1
7 ðC Þ of maximal dimension.

Proof. We first note that there is a unique g14 and h0ðC;OCð2g
1
4ÞÞ ¼ 3. Other-

wise there exists a base-point-free g38 which is either birationally very ample or com-

pounded inducing a morphism of degree two onto a curve of degree 4 in P
3; but both

cases cannot occur by Castelnuovo genus bound or C not being bi-elliptic (by the non-

existence of g26 ). Note that dimW 1
6 ðCÞ ¼ 2 by Lemma 3.4, and hence dimW 1

5 ðCÞ ¼ 1.

We further remark that a component of W 1
5 ðC Þ of dimension one is of the form

W 1
4 ðCÞ þW1ðC Þ. If not, there is a component of W 1

5 ðC Þ of dimension one whose

general element is base-point-free, and by the same argument as in [K]—especially [K;

Theorem 2.3 and the case (a) in the proof ]—one concludes that C is a smooth plane

sextic contrary to the hypothesis.

(3.6.1) Claim: W 1
4 ðCÞ þW2ðC Þ is the only component of W 1

6 ðC Þ of maximal di-

mension.

Suppose that a general element of a component Y HW 1
6 ðC Þ of maximal dimension

has a base point. Then it follows that Y ¼ Z þW1ðC Þ—where ZHW 1
5 ðC Þ is a

component of dimension one—hence Z ¼W 1
4 ðCÞ þW1ðC Þ and Y ¼W 1

4 ðCÞ þW2ðC Þ.
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Suppose that a general element of a component Y HW 1
6 ðC Þ of maximal dimension is

base-point-free. By Lemma 3.5 (ii), we have

dimðY V ½W 1
5 ðCÞ þW1ðCÞ�Þb 1:

Assume that Y IZ þW1ðC Þ where ZHW 1
5 ðC Þ is a closed subset. By the description

of the Zariski tangent space to the scheme W 1
6 ðC Þ, h

0ðC;oC nL
�2Þb 2 for a general

L A Y and hence h0ðC;oC nL
�2Þb 2 for any L A Y by semi-continuity. Therefore

h0ðC;oC nL
�2
0 nOCð�2PÞÞb 2 for any choices of L0 A Z and P A C, which implies

h0ðC;oC nL
�2
0 Þb 4 and hence jKC � 2L0j ¼ g38 . Since C is a curve without g26 , g

3
8

must be base-point-free. By Castelnuovo genus bound, g38 cannot be birationally very

ample and therefore induces a morphism of degree 2 onto an elliptic curve or a rational

curve. This is again a contradiction to the fact that C is a curve without g26 .

Therefore we have Y RZ þW1ðC Þ for any closed subset ZHW 1
5 ðC Þ and hence

dimðY V ½W 1
4 ðCÞ þW2ðCÞ�Þb 1:

Let S be a one-dimensional component of Y V ½W 1
4 ðCÞ þW2ðCÞ� and let sHW2ðC Þ be

a one-dimensional locus such that

S ¼ fOCðg
1
4 þ PþQÞ jOCðPþQÞ A sg:

For OCðPþQÞ A s, OCðg
1
4 þ PþQÞ A Y V ½W 1

4 ðCÞ þW2ðCÞ�HW 1
6 ðC Þ is a singular

point and hence h0ðC;OCðKC � 2g14 � P�QÞÞb 3 by the description of the Zariski

tangent space to the scheme W 1
6 ðC Þ. Assume that BsjKC � 2g14 j ¼q. Recalling

h0ðC;OCðKC � 2g14ÞÞ ¼ 4, we see that OCðPþQÞ A s maps to one point by the mor-

phism induced by jKC � 2g14 j. Therefore jKC � 2g14 j is not birationally very ample and

C should be a double covering of a curve of genus ha 2 contrary to the hypothesis.

Assume BsjKC � 2g14 j ¼ D0q, say R0 A BsjKC � 2g14 j, then R0 EPþQ for general

OCðPþQÞ A s; for if s¼ fOCðR0þPÞ jP A Cg then fOCðg
1
4 þR0ÞgþW1ðCÞHY , which

we avoided already. Therefore jKC � 2g14 � Dj is not birationally very ample. Hence

C is either hyperelliptic, bi-elliptic or trigonal and this finishes the proof of Claim (3.6.1).

(3.6.2) Claim: For a component AHW 1
7 ðC Þ of maximal dimension,

dim½AV ðW 1
6 ðCÞ þW1ðCÞ�b 2:

The proof for this claim is very much similar to the proof of Lemma 3.5 (ii). We again

consider the diagram:

W1ðCÞ  ���

p1
ZHW 1

6 ðCÞ �W1ðCÞ C ðL;OCðPÞÞ?
?
?
y

p2

?
?
?
y

p2

?
?
?
y

AH W 1
7 ðCÞ C LnOCðPÞ

where Z ¼ p�12 ðAÞ and p1 is a projection map. By Lemma 3.5 (i), p1 is surjective

and each fiber of p1 contains an irreducible component of dimension at least 1. Hence

there exists an irreducible component ~ZZ of Z dominating W1ðC Þ with dimð ~ZZÞb 2. If

dimð p2ð ~ZZÞÞ ¼ dimð ~ZZÞ, then we are done. Suppose dimðp2ð ~ZZÞÞ < dimð ~ZZÞ. Note that
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p2 is injective on the fibers of p1. Therefore it follows that dimðp2ð ~ZZÞÞ ¼ dimð ~ZZÞ � 1.

Furthermore for each L A p2ð ~ZZÞ and for each P A C there exists M A W 1
6 ðC Þ such that

LGMnOCðPÞ. If L B W 2
7 ðC Þ, then every point P A C would be a base point of

L. This is a contradiction. Hence p2ð ~ZZÞHW 2
7 ðC Þ. By the non-existence of g26 , L A

p2ð ~ZZÞHW 2
7 ðC Þ is base-point-free and birationally very ample. Therefore it follows

that p2ð ~ZZÞ �W1ðCÞHW 1
6 ðC Þ is a component of dimension 2 with a base-point-free

general element, contradicting (3.6.1) and this finishes the proof of (3.6.2).

We now suppose that there is a component AHW 1
7 ðC Þ of dimension 3 other than

W 1
4 ðCÞ þW3ðC Þ. By (3.6.1), a general element of A is base-point-free. We also have

the inequality

dimAV ½W 1
4 ðCÞ þW3ðCÞ�b 2;

by (3.6.2) and Lemma 3.5 (iii). Let S be a component of AV ½W 1
4 ðCÞ þW3ðCÞ�

of dimension two and consider the morphism p : S ! W3ðC Þ where pðLÞ ¼ jL� g14 j

and put s :¼ pðSÞ, which is a two dimensional family of e¤ective divisor classes

OCðPþQþ RÞ such that OCðg
1
4 þ PþQþ RÞ are also contained in the component A.

Therefore OCðg
1
4 þ PþQþ RÞ is a singular point of W 1

7 ðC Þ for every OCðPþQþ RÞ A

s. Hence by the description of the Zariski tangent spaces to the scheme W 1
7 ðC Þ and

by the base-point-free pencil trick, one has

h0ðC;OCðKC � 2g14 � P�Q� RÞÞb 2 for every OCðPþQþ RÞ A s:ð3:6:3Þ

We remark that dimjKC � 2g14 j ¼ 3 and the morphism defined by jKC � 2g14 j is bi-

rationally very ample (even when it has a base point) by the hypothesis that C is not

a double covering of a curve of genus ha 2. Let f : C ! P
3 be the morphism defined

by jKC � 2g14 j and we consider the following two possibilities.

(a) Suppose jKC � 2g14 j is base-point-free. For every OCðPþQþ RÞ A s,

OCðPþQþ RÞ fails to impose independent conditions on the linear system jKC � 2g14 j

by (3.6.3), and hence the linear span of the image fðPþQþ RÞ is a trisecant line to

fðC Þ. Therefore the non-degenerate curve fðCÞHP
3 has a two dimensional family of

tri-secant lines which contradicts the general position theorem; [ACGH, page 109].

(b) Suppose jKC � 2g14 j has nonempty base locus. We remark that there is only

one base point, otherwise there exists g38 which would imply ga 9 by Castelnuovo

bound or C is bi-elliptic. Let R0 A C be the base point and consider the morphism

f : C ! P
3 defined by jKC � 2g14 � R0j ¼ g39 . In case R0 B SuppOCðPþQþ RÞ for

general OCðPþQþ RÞ A s, the same argument as in (a) applies to get a contradic-

tion. We now suppose that R0 A SuppOCðPþQþ RÞ for general OCðPþQþ RÞ A s.

Since R0 A SuppOCðPþQþ RÞ is a closed condition and s is irreducible, we have

R0 A SuppOCðPþQþ RÞ for all OCðPþQþ RÞ A s. Consider the morphism a : s !

W2ðC Þ, where aðOCðPþQþ RÞÞ ¼ OCðPþQþ R� R0Þ. Again by the irreducibility of

s, aðsÞ ¼ W2ðC Þ which in turn implies

s ¼ fOCðPþQþ R0Þ : PþQ A C2g:

Therefore S ¼ fg14g þ s ¼ OCðg
1
4 þ R0Þ þW2ðCÞHA and A ¼ fg14g þW3ðC Þ by Lemma

3.5 (iii). r
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Theorem 3.7. Let C be a tetragonal curve of genus g ¼ 10 which is not a double

covering of a curve of genus ha 2. Then

dimW 2
g�1ðCÞY g� 7:

Proof. We assume that there is a component X HW 2
g�1ðC Þ with dimX ¼ g� 7.

By exactly the same argument as in the proof of [CKO; Theorem 1.6], one can easily

show that a general element of X is base-point-free. Therefore can apply Lemma 2.3 as

well as Lemma 2.2 to our present situation. Recall the following diagram encountered

in the proof of [CKO; Lemma 2.6];

W 1
g�3ðCÞ �W2ðCÞI q�1ðXÞ ���!

q
X HW 2

g�1ðCÞ

p

?
?
?
y

W 1
g�3ðCÞ:

Let

q�1ðXÞ ¼ Z0 U � � �UZa UY1 U � � �UYb;

where Z0; . . . ;Za are components of q�1ðX Þ dominating X and Y1; . . . ;Yb are those

which do not dominate X. Since dim pðZiÞ ¼ g� 7 for every i by Lemma 2.3 (ii) (more

precisely by the proof of [CKO; Lemma 2.6 (ii)]), we apply Lemma 3.6 to have

pðZiÞ ¼ g14 þWg�7ðC Þð3:7:1Þ

for every component Zi H q�1ðXÞ dominating X.

We take a general L A XnðqðY1ÞU � � �U qðYbÞÞ and let ðM;OCðAþ BÞÞ A q�1ðLÞ

and fix i, say i ¼ 0 such that q�1ðLÞVZ0 0q. Since L is base-point-free, M A pðZ0Þ

is a complete pencil of degree g� 3 and hence M ¼ OCðg
1
4 þ P1 þ � � � þ Pg�7Þ by (3.7.1).

Since L ¼ OCðg
1
4 þ P1 þ � � � þ Pg�7 þ Aþ BÞ is birationally very ample, the plane curve

CL—the image of the morphism cL induced by L—has an ordinary singular point of

multiplicity g� 5 corresponding to the divisor P1 þ � � � þ Pg�7 þ Aþ B by Lemma 2.5.

Since

paðCLÞ ¼
ðg� 2Þðg� 3Þ

2
> gþ

ðg� 5Þðg� 6Þ

2
;

it follows that there exists at least one extra singular point on the curve CL.

Let m be the multiplicity of an extra singular point of the plane curve CL. Then it

follows that there is a complete base-point-free pencil h1g�1�m such that L ¼ h1g�1�m n

OCðQ1 þ � � � þQmÞ for some Q1; . . . ;Qm A C; h1g�1�m is cut out by lines through extra

singular point. On the other hand, by the choice of L A XnðqðY1ÞU � � �U qðYbÞÞ, we

have

ðh1g�1�m nOCðQ1 þ � � � þQm�2Þ;OCðQm�1 þQmÞÞ A q�1ðLÞVZi

for some component Zi H q�1ðX Þ dominating X.

If m < g� 5 (i.e. m� 2 < g� 7), then this leads to a contradiction to the assertion

(3.7.1) that every complete pencil of degree g� 3 in W 1
g�3ðC Þ which is in pðZiÞ, must
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have g� 7 base points. Therefore m ¼ g� 5 and we have at least two singular points

on CL with multiplicities g� 5, hence

ga paðCLÞ � 2 �
ðg� 5Þðg� 6Þ

2
¼

ðg� 2Þðg� 3Þ

2
� 2 �

ðg� 5Þðg� 6Þ

2
:

But this is impossible for g ¼ 10. r

Proof of Theorem I. For a trigonal curve, a double covering of a curve of genus

2 or a smooth plane sextic, dimW 2
g�1 ¼ g� 7 by Remark 2.1 (v), Remark 2.1 (vi) and

Proposition 3.1. The converse holds by [CKO; Theorem 1.4] and Theorem 3.7. r

4. Curves of genus nine.

For curves of genus g ¼ 9, we also need to describe precisely the component

of W 1
g�3ðC Þ of maximal dimension as we did in Lemma 3.6 for curves of genus g ¼ 10.

Unfortunately, in the course of the proof of Lemma 4.1, there emerges another class

of curves of genus g ¼ 9 which needs to be examined carefully; namely, the double

coverings of a smooth plane quartic. In fact, it turns out that such a curve C does not

satisfy dimW 2
g�1ðCÞ ¼ g� 7, whose proof is rather lengthy and technical. Therefore we

provide a proof of the result regarding double coverings of a smooth plane quartic in the

Appendix.

Lemma 4.1. Let C be a tetragonal curve of genus g ¼ 9 without g26 . We assume

that dimW 2
g�1ðCÞ ¼ g� 7 and that C is neither a double covering of a curve of genus 2

nor a curve with a smooth model of degree 8 in P
3; hence C has only one g14 and

h0ðC;OCð2g
1
4ÞÞ ¼ 3. We assume further that ðe2; e3Þ0 ð1; 1Þ, i.e. h0ðC;OCð3g

1
4ÞÞa 5.

If dimW 1
g�3ðCÞ ¼ g� 7, then fg14g þW2ðC Þ is the only component of W 1

6 ðC Þ of maximal

dimension.

Proof. Note that C is not bi-elliptic by the non-existence of g26 and dimW 1
5 ðCÞ ¼

1 by Lemma 3.4.

(4.1.1) Claim: W 1
4 ðCÞ þW1ðC Þ is the only component of W 1

5 ðC Þ of maximal di-

mension; this follows easily from [K; Theorem 2.3 and the case (b) in the proof ].

We suppose that there is a component AHW 1
6 ðC Þ of dimension 2 other than

W 1
4 ðCÞ þW2ðC Þ. Then a general element of A is base-point-free by (4.1.1). By

Lemma 3.5 (ii), we have

dimAV ½W 1
5 ðCÞ þW1ðCÞ�b 1:ð4:1:2Þ

Since W 1
4 ðCÞ þW1ðC Þ is the only component of W 1

5 ðC Þ of maximal dimension, we

have the following inequality by (4.1.2) and Lemma 3.5 (iii),

dimAV ½W 1
4 ðCÞ þW2ðCÞ�b 1:ð4:1:3Þ

Let S be a component of AV ½W 1
4 ðCÞ þW2ðCÞ� of dimension one and consider

the morphism p : S ! W2ðC Þ where pðLÞ ¼ jL� g14 j. Put s :¼ pðSÞ. Note that
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OCðg
1
4 þ PþQÞ is a singular point of W 1

6 ðC Þ for every OCðPþQÞ A s. Hence by the

description of the Zariski tangent spaces to the scheme W 1
6 ðC Þ and by the base-point-

free pencil trick, one has

h0ðC;OCðKC � 2g14 � P�QÞÞb 2 for all OCðPþQÞ A s:ð4:1:4Þ

Let f : C ! P
2 be the morphism induced by jKC � 2g14 j ¼ g28 and we consider the

following two cases.

(a) Suppose jKC � 2g14 j has a nonempty base locus. We note that there is only

one base point, otherwise there exists g26 . Let R0 A C be the base point. Then

morphism f : C ! P
2 is indeed induced by jKC � 2g14 � R0j ¼ g27 which must be bira-

tionally very ample. If R0 B SuppOCðPþQÞ for general OCðPþQÞ A s, (4.1.4) implies

deg fb 2 which is a contradiction. We now suppose that R0 A SuppOCðPþQÞ for

general OCðPþQÞ A s. Since R0 A SuppOCðPþQÞ is a closed condition and s is irre-

ducible, we have R0 A SuppOCðPþQÞ for all OCðPþQÞ A s. Consider a morphism

a : s ! W1ðC Þ, where aðOCðPþQÞÞ ¼ OCðPþQ� R0Þ. By the irreducibility of s,

aðsÞ ¼ W1ðC Þ which in turn implies

s ¼ fOCðPþ R0Þ : P A Cg:ð4:1:5Þ

Therefore

S ¼ fg14g þ s ¼ OCðg
1
4 þ R0Þ þW1 HA

and hence A ¼ fg14g þW2ðC Þ by Lemma 3.5 (iii).

(b) Suppose jKC � 2g14 j is base-point-free. If deg f ¼ 4, then jKC � 2g14 j ¼ j2g14 j

and hence h0ðC;OCð3g
1
4ÞÞb 6, contrary to the hypothesis ðe2; e3Þ0 ð1; 1Þ. We also note

that deg f0 1 by (4.1.4); for one dimensional family of e¤ective divisors OCðPþQÞ A s,

P and Q have the same image under f.

Finally we assume deg f ¼ 2 and let fðCÞ ¼ E which is a plane curve of degree

4. If E is singular, then E is a curve of genus ha 2, contrary to the hypothesis.

Hence E is a smooth non-hyperelliptic curve of genus 3 and jKC � 2g14 j ¼ jf�KE j. Let

i : C ! C be an involution induced by the double covering f. By Riemann-Hurwitz

relation (2.A), f�OC ¼ OE lS and degS�1 ¼ 4. Hence

S
�1

GOEðKEÞ or S
�1

GOEðh
1
4Þ

where h14 is a complete pencil of degree 4 on E. Assume S
�1

GOEðKEÞ. Then

H 0ðC;OCðKC � 2g14ÞÞGH 0ðC;OCðf
�KEÞÞ

GH 0ðE;OEðKEÞÞlH 0ðE;SnOEðKEÞÞ;

hence h0ðC;OCðKC � 2g14ÞÞ ¼ 4, contrary to the assumption h0ðC;OCð2g
1
4ÞÞ ¼ 3.

Therefore we have S
�1

GOEðh
1
4Þ. Since g14 is unique, i�g14 ¼ g14 and it follows that

OCð2g
1
4ÞG f�

M for some line bundle M of degree 4 on E. Therefore

H 0ðC;OCð2g
1
4ÞÞGH 0ðE;MÞlH 0ðE;OEð�h14ÞnMÞ:

Since h0ðC;OCð2g
1
4ÞÞ ¼ 3, we have either MGOEðh

1
4Þ or MGOEðKEÞ. If MG

OEðKEÞ, then the fact OCð2g
1
4ÞG f�

M together with jKC � 2g14 j ¼ jf�KE j imply
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jKC j ¼ j4g14 j which is contradictory to the hypothesis ðe2; e3Þ0 ð1; 1Þ. Therefore we

have reached to the following special situation:
8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ðiÞ There is a degree two map f : C ! E;

E is a non-hyperelliptic curve of genus 3:

ðiiÞ KC @ f�ðKEÞ þ 2g14
ðiiiÞ h0ðC;OCð2g

1
4ÞÞ ¼ 3

ðivÞ 2g14 ¼ f�ðh14Þ for some h14 on E

ðvÞ OEðh
1
4ÞZOEðKEÞ

ðviÞ f�OC GOE lOEð�h14Þ

ðviiÞ C is not a double covering of a curve of genus ha 2:

ð4:1:6Þ

By Proposition A.0 in the Appendix, for a curve C of genus g ¼ 9 satisfying the

conditions (4.1.6), one has dimW 2
8 ðCÞ < 2 and this finishes the proof. r

We are now ready to prove the following theorem which is a genus nine version of

Theorem 3.7.

Theorem 4.2. Let C be a tetragonal curve of genus g ¼ 9 without g26 which is

neither a double covering of a curve of genus ha 2 nor a curve with a smooth model of

degree 8 in P
3, then

dimW 2
g�1ðCÞY g� 7:

Proof. By Remark 3.2 (ii), we may assume that C is a tetragonal curve with a

unique g14 . By Lemma 3.3, we may further assume that ðe2; e3Þ0 ð1; 1Þ. In order to

save ink, we avoid repeating same argument which already appeared in the proof of

Theorem 3.7. Since we now have Lemma 4.1 for g ¼ 9 which is a variation of Lemma

3.6, one can argue as in the proof of Theorem 3.7 that a plane model CL defined by a

general L A X has at least two singular points of multiplicities 4; at least one of them

being an ordinary 4-fold point by Lemma 2.5. Accordingly

paðCLÞ ¼ 21 ¼
ðg� 2Þðg� 3Þ

2
b gþ 2 �

ðg� 5Þðg� 6Þ

2
¼ 21

and hence CL HP
2 has exactly two singular points of multiplicities 4 as its only

singularities, contrary to the assumption for g14 being unique. r

Proof of Theorem II. If C is either trigonal, a double covering of a curve of

genus 2, a tetragonal curve with a smooth model of degree 8 in P
3 or a curve with a

plane model of degree 6, then dimW 2
g�1ðCÞ ¼ g� 7 by Remark 2.1 (v), Remark 2.1 (vi),

Remark 3.2 (i) and Proposition 3.1. The converse holds by [CKO; Theorem 1.4] and

Theorem 4.2. r

5. Curves of genus seven and eight.

In this section, we prove Theorem III. We also estimate the dimension of W 2
g�1ðC Þ

for a double covering of a curve of genus 2 which was left out in [CKO; Corollary 2.3]

for the cases g ¼ 7; 8; cf. [CKO; Remarks 2.4 (i)].
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Proof of Theorem III. Suppose C is either trigonal or has a birationally very

ample g26 . Then dimW 2
g�1ðCÞ ¼ g� 7 by Remark 2.1 (v) and Proposition 3.1.

If dimW 2
g�1ðCÞ ¼ g� 7 and g ¼ 7, then g26 A W 2

6 ðC Þ must be either birationally

very ample or of the form g26 ¼ 2g13 by Remark 2.1 (ii).

Suppose dimW 2
g�1ðCÞ ¼ g� 7 and g ¼ 8. If there exists g27 A W 2

7 ðC Þ with

nonempty base locus, then C must be either trigonal or a curve with a birationally

very ample g26 . Therefore we may assume that every g27 A W 2
7 ðC Þ is base-point-free,

birationally very ample and that C is neither trigonal nor a curve with a birationally

very ample g26 . From Lemma 2.3, Theorem 1.2 and Remark 2.1, it follows that

dimW 1
5 ðCÞ ¼ 1. Therefore by [BKMO; Theorem 1], C must be a tetragonal curve.

Furthermore every component of dimW 1
5 ðC Þ of maximal dimension is of the form

fg14g þW1ðC Þð5:I:1Þ

by [BKMO; (3.2.1) Corollary 2]. Note that C has only one g14 ; otherwise we have a g38
which is birationally very ample but not very ample, in which case there exists a g26 cut

out by hyperplanes through a singular point. Since every element of W 2
7 ðC Þ is base-

point-free and birationally very ample, C has a plane model CL of degree 7 with an

ordinary triple point by Lemma 2.5. Since g ¼ 8 < paðCLÞ � 3, there exists another

singular point on CL whose multiplicity must be 3 by (5.I.1) inducing another base-

point-free g14 ; the arguments in these lines are almost parallel to the latter part of the

proof of Theorem I or Theorem II. And this is contradictory to the uniqueness of

g14 . r

For the rest of this section, we would like to concentrate on the dimension estimate

of W 2
g�1ðC Þ for curves of genus g ¼ 7; 8 which are double coverings of a curve of genus

2. As we saw in Theorem III, the necessary and su‰cient conditions for W 2
g�1ðC Þ being

of dimension g� 7 for these low genus curves are slightly di¤erent from those of higher

genus; doubling coverings of curves of genus 2 suddenly disappear from the list of curves

with dimW 2
g�1ðCÞ ¼ g� 7. Since Theorem III does not provide any direct information

on the dimension of W 2
g�1ðC Þ for double coverings of curves of genus 2, it seems to be

worthwhile to estimate the dimension of W 2
g�1ðC Þ.

Proposition 5.1. Let C be curve of genus g ¼ 8 which is a double covering of a

curve of genus 2. Then C does not have a birationally very ample g26 and dimW 2
g�1ðCÞa

g� 8.

Proof. For a double cover p : C ! E of a curve of genus 2, one notes that

g14 ¼ p
�ðg12Þ is a unique base-point-free g14 by Castelnuovo-Severi inequality.

Claim: jKC � g14 j ¼ g410 is very ample.

Let P;Q A C and consider OCðg
1
4 þ PþQÞ. Recall that p�ðOCÞGOE lS, degS ¼ �5

by the Riemann-Hurwitz relation (2.A). If PþQ ¼ p
�ðpÞ for some p A E, then

h0ðC;OCðg
1
4 þ PþQÞÞ ¼ h0ðE; p�OCðp

�ðg12 þ pÞÞÞ

¼ h0ðE;OEðg
1
2 þ pÞÞ þ h0ðE;OEðg

1
2 þ pÞnSÞ

¼ h0ðE;OEðg
1
2 þ pÞÞ ¼ 2:
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If PþQ0 p�ðpÞ for any p A E, we take P 0;Q 0 A C which are conjugate points of

P;Q with respect to p. Set p ¼ pðPÞ, q ¼ pðQÞ. Again by (2.A) and the projection

formula, we have

h0ðC;OCðg
1
4 þ Pþ P 0 þQþQ 0ÞÞ ¼ h0ðC;OCðp

�ðg12 þ pþ qÞÞÞ

¼ h0ðE; p�OCðp
�ðg12 þ pþ qÞÞÞ

¼ h0ðE;OEðg
1
2 þ pþ qÞÞ þ h0ðE;OEðg

1
2 þ pþ qÞnSÞ

¼ 3:

Since p�ðg12 þ pþ qÞ is base-point-free, h0ðC;OCðg
1
4 þ PþQÞÞ ¼ 2 and this finishes the

proof of the claim.

Now we assume that C has a birationally very ample L ¼ g26 with the induced

plane model CL, which must be singular since g ¼ 8 < paðCLÞ ¼ 10. Since C cannot be

trigonal by Castelnuovo-Severi inequality, CL has only double points and hence there

exist P;Q A C (corresponding to a double point) such that jL� P�Qj ¼ p�ðg12Þ. On

the other hand, it follows from the Claim that

h0ðC;oC nOCð�g14 � P�QÞÞ ¼ h0ðC;oC nL
�1Þ ¼ h0ðC;oC nOCð�g14ÞÞ � 2 ¼ 3

which in turn implies h0ðC;LÞ ¼ 2 by the Riemann-Roch formula and this is a con-

tradiction. Therefore C cannot have a birationally very ample g26 and dimW 2
7 ðCÞa 0

by Theorem III. r

For a curve of genus g ¼ 7 which is a double covering of a curve of genus 2, it may

happen that dimW 2
g�1ðCÞ ¼ g� 7 or W 2

g�1ðCÞ ¼ q.

Proposition 5.2. For g ¼ 7,

(i) there exists a double covering C of a curve of genus 2 such that dimW 2
6 ðCÞ ¼ 0.

(ii) There also exists a double covering C of a curve of genus 2 such that W 2
6 ðCÞ ¼

q.

A proof of Proposition 5.2 requires several supplementary lemmas.

Lemma 5.3. For a tetragonal curve C of genus g ¼ 7, C has a birationally

very ample g26 if and only if either 2aCardW 1
4 ðCÞ < y or CardW 1

4 ðCÞ ¼ 1 and

h0ðC;OCð2g
1
4ÞÞ ¼ 4.

Proof. Let C be a curve with a birationally very ample L ¼ g26 . We note

that C is not bi-elliptic; a curve with a birationally very ample g26 has a base-point-

free g15 whereas a bi-elliptic curve cannot have a base-point-free g15 by Castelnuovo-

Severi inequality. Therefore dimW 1
4 ðCÞ ¼ 0 by Theorem 1.2. Let c

L
: C ! P

2 be the

morphism induced by L and assume CardW 1
4 ðCÞ ¼ 1. Since g ¼ 7 < paðcLðCÞÞ ¼ 10,

the unique g14 on C is induced by a unique double point P A c
L
ðC Þ. Moreover we

have two infinitely near singular points Q and R. Considering the linear system on C

induced by the linear system jO
P

2ð3Þ � P�Q� Rj of cubics in P
2 with assigned base

points P;Q and R, one has

h0ðC;OCð3g
1
4ÞÞb h0ðP2

;O
P

2ð3Þ � P�Q� RÞb 7:

Therefore OCð3g
1
4ÞGoC and hence h0ðC;OCð2g

1
4ÞÞ ¼ 4.
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Assume that either 2aCardW 1
4 ðCÞ < y or CardW 1

4 ðCÞ ¼ 1 and h0ðC;Oð2g14ÞÞ ¼

4 holds. In both cases, we have a base-point-free D ¼ g38 which is of the form

jg14 þ h14 j, g14 0 h14 or j2g14 j. We note that C cannot be bi-elliptic; for a bi-elliptic

curve C, dimW 1
4 ðCÞ ¼ 1. Therefore D induces a birational morphism c

D
onto C0 ¼

cDðCÞHP
3 which lies either on a smooth quadric if D ¼ jg14 þ h14 j or on a quadric

cone if D ¼ j2g14 j. Since paðC0Þ ¼ 9, C0 has a singular point P with multPðC0Þ ¼ 2 and

hence hyperplanes through P cut out a birationally very ample g26 . r

Let C !
p
E be a double covering of a curve E with gðEÞ ¼ 2 and gðCÞ ¼ 7. Let

RHE be the branch locus of p. By (2.A) and base-point-free pencil trick, we have

SGOEð�g12 � p� qÞ. Let s A H 0ðE;OEð2g
1
2 þ 2pþ 2qÞÞ be a section with the zero

locus ðsÞ0 ¼ R. Let V be a subspace of H 0ðE;OEð2g
1
2 þ 2pþ 2qÞÞ which is the image of

the cup product map

H 0ðE;OEðg
1
2 þ pþ qÞÞn2 !

d
H 0ðE;OEð2g

1
2 þ 2pþ 2qÞÞ

and consider a natural morphism

H 0ðC; p�
OEðg

1
2 þ pþ qÞÞn2 !

a
H 0ðC; p�

OEð2g
1
2 þ 2pþ 2qÞÞ:

Using the identifications

H 0ðC;OCðp
�ðg12 þ pþ qÞÞÞGH 0ðE; p�p

�
OEðg

1
2 þ pþ qÞÞ

GH 0ðE;OEðg
1
2 þ pþ qÞÞlH 0ðE;SnOEðg

1
2 þ pþ qÞÞ

GH 0ðE;OEðg
1
2 þ pþ qÞÞlH 0ðE;OEÞ

and

H 0ðC;OCðp
�ð2g12 þ 2pþ 2qÞÞÞð5:AÞ

GH 0ðE;OEð2g
1
2 þ 2pþ 2qÞÞlH 0ðE;OEðg

1
2 þ pþ qÞÞ;

we see that the morphism a induces the map

c : H 0ðE;OEÞnH 0ðE;OEÞG kn k ! H 0ðE;OEð2g
1
2 þ 2pþ 2qÞÞ

with cð1Þ ¼ s by the algebra structure of p�ðOC Þ. We also see that

Im a ¼ SpanfV ; sglH 0ðE;OEðg
1
2 þ pþ qÞÞ;ð5:BÞ

under the identification (5.A).

Lemma 5.4. Let C !
p
E be a double covering with gðEÞ ¼ 2 and gðCÞ ¼ 7. We

assume that C is not bi-elliptic and put g14 ¼ p�ðg12Þ.

(i) h0ðC;OCð2g
1
4ÞÞb 4 if and only if SGOEð�2g12Þ.

(ii) Suppose SZOEð�2g12Þ. Then C has at least two complete pencil of degree 4

if and only if s A V .

Proof. (i) follows directly from the following equality;

h0ðC;OCð2g
1
4ÞÞ ¼ h0ðC;OCðp

�ð2g12ÞÞÞ ¼ h0ðE; p�OCðp
�ð2g12ÞÞÞ

¼ h0ðE;OEð2g
1
2ÞÞ þ h0ðE;OEð2g

1
2ÞnSÞ:
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(ii) Since SZOEð�2g12Þ, SGOEð�g12 � p� qÞ for pþ q B g12 and hence the mor-

phism E ! P
2 induced by jg12 þ pþ qj is birationally very ample. Thus we have an

exact sequence

0 ! Sym2 H 0ðE;OEðg
1
2 þ pþ qÞÞ !

~dd
H 0ðE;OEð2g

1
2 þ 2pþ 2qÞÞ;

and we see that

dimV ¼ dim Im d ¼ dim Im ~dd ¼ dimSym2 H 0ðE;OEðg
1
2 þ pþ qÞÞ ¼ 6:

Therefore it follows that a is surjective if and only if s B V by (5.B).

Assume that C has a pencil h14 0 g14 and put k1
4 :¼ jKC � g14 � h14 j. Since C is not

bi-elliptic, the morphism z : C ! P
3 induced by jKC � g14 j ¼ jh14 þ k1

4 j birational onto

its image and zðCÞHP
3 lies on a quadric surface. By the Riemann-Hurwitz relation

jKC j ¼ jp�ðKE þS
�1Þj, we have jp�ðg12 þ pþ qÞj ¼ jh14 þ k1

4 j. Since

dimSym2 H 0ðC; p�
OEðg

1
2 þ pþ qÞÞ ¼ h0ðC; p�

OEð2g
1
2 þ 2pþ 2qÞÞ ¼ 10;

it follows that the map

Sym2 H 0ðC; p�
OEðg

1
2 þ pþ qÞÞ ! H 0ðC; p�

OEð2g
1
2 þ 2pþ 2qÞÞ

is not surjective. Hence the map a is not surjective and we have s A V .

Conversely, assume that s A V . Then the morphism a is not surjective and

hence the image of the morphism C ! P
3 induced by the birationally very ample

jp�ðg12 þ pþ qÞj is contained in a quadric surface SHP
3. In case S is a cone, there

is a pencil h14 such that h0ðC;OCð2h
1
4ÞÞ ¼ 4. From the assumption SZOEð�2g12Þ, it

follows that h0ðC;OCð2g
1
4ÞÞ ¼ 3 by (i) and hence g14 0 h14 . In case S is a non-singular

quadric, we also have two pencils of degree 4 corresponding to the rulings of S. r

A curve C of genus ga 7 which is a double covering of a curve of genus 2 may be

also bi-elliptic, whereas a curve of genus gb 8 cannot be both bi-elliptic and a double

covering of a curve of genus 2 by Castelnuovo-Severi inequality. The following lemma

provides a simple criteria for a double covering of a curve of genus 2 being bi-elliptic.

Lemma 5.5. Let C be a curve of genus g ¼ 7 which is a double covering of a curve

of genus 2 with an involution i induced by the covering. If C is also bi-elliptic, then the

bi-elliptic involution t commutes with i; i.e., it ¼ ti.

Proof. Let p1 : C ! E1 be a double covering, where E1 is an elliptic curve and let

t be the involution induced by p1. Consider the double covering p2 : C ! E2 induced

by i�1ti. We remark that Q A C is invariant under i�1ti if and only if iðQÞ is invariant

under t. Thus, if R is the ramification locus of p1 then iðRÞ is the ramification locus of

p2. It follows that i�1ti is also a bi-elliptic involution by the Riemann-Hurwitz for-

mula. By Castelnuovo-Severi inequality, bi-elliptic involution of C is unique and hence

it ¼ ti. r

Remark 5.6. From Lemma 5.5, it follows easily that if a double covering C !
p
E

is also bi-elliptic then there is an automorphism on E which lifts to the bi-elliptic

involution t via p.
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Proof of Proposition 5.2. We take a curve E of genus 2 such that AutðEÞ ¼

fs; 1Eg where s is the hyperelliptic involution on E. Let

C ¼ SpecðOE lOEð�g12 � p� qÞÞ

with pþ q B g12 where p; q A E are not fixed points of s. If C is bi-elliptic with a

bi-elliptic involution t, then s lifts to t by Remark 5.6; note that 1E does not lift to

t via p. Then it follows that s�
OEð�g12 � p� qÞGOEð�g12 � p� qÞ, which implies

sðpÞ þ sðqÞ ¼ pþ q and hence sðpÞ ¼ p, sðqÞ ¼ q contrary to the choice of p; q A E

as non-fixed points of s. Therefore C cannot be bi-elliptic.

We now prove (i) and use the same notations we used in Lemma 5.4. Choose

t1; t2 A H 0ðE;OEðg
1
2 þ pþ qÞÞ such that ðt1Þ0, ðt2Þ0 are reduced and ðt1Þ0 V ðt2Þ0 ¼

q. Then R ¼ ðsÞ0, where s ¼ t1t2, is also reduced. We note that s A V . There-

fore the curve C ¼ SpecðOE lOEð�g12 � p� qÞÞ with the branch locus R is non-

singular, which has g26 by Lemma 5.3 and Lemma 5.4. For (ii), recall that VW

H 0ðE;OEð2g
1
2 þ 2pþ 2qÞÞ and take s B V such that R ¼ ðsÞ0 is reduced. Then the

curve C with branch locus R has no g26 by Lemma 5.3 and Lemma 5.4. r

Appendix.

We prove the following proposition which was left out in the proof of Lemma

4.1. Throughout we assume that C is a tetragonal curve of genus g ¼ 9 with a unique

g14 satisfying the condition (4.1.6). In particular, C admits a degree 2 morphism

f : C ! E induced by jKC � 2g14 j, where E is a smooth plane quartic. We also assume

that C has no g26 .

Proposition A.0. dimW 2
8 ðCÞY 2.

Lemma A.1. C does not have a base-point-free g15 .

Proof. Assume that there is a base-point-free g15 . By the base-point-free

pencil trick, we have h0ðC;OCðf
�KE � g15ÞÞb 1 and hence jf�KE j ¼ jDþ g15 j for some

e¤ective divisor D of degree 3. Since f is a morphism of degree 2, this is a con-

tradiction. r

Lemma A.2. Let g16 A W 1
6 ðC Þ be a base-point-free pencil. Then jKC � g14 � g16 j is

a pencil of degree 6. Moreover jKC � g14 � g16 j is base-point-free if and only if g16 B

f�W 1
3 ðEÞ.

Proof. Since there is no g26 , a base-point-free g16 is complete and h0ðC;

Oðg14 þg16ÞÞb4 by the base-point-free pencil trick. Therefore h0ðC;OCðKC�g14 �g16ÞÞb

2 and hence jKC � g14 � g16 j is a pencil of degree 6. Put h16 :¼ jKC � g14 � g16 j and

assume Bs h16 0q. Then h16 ¼ jg14 þ PþQj for some P;Q A C by Lemma A.1. There-

fore g16 ¼ jKC � 2g14 � P�Qj ¼ jf�ðKEÞ � P�Qj. Since

h0ðC;OCðf
�ðKEÞ � P�QÞÞ ¼ h0ðC;OCðg

1
6ÞÞ ¼ 2;

we have PþQ ¼ f�ðrÞ for some r A E and therefore g16 A f�W 1
3 ðEÞ. Conversely,

assume that g16 A f�W 1
3 ðEÞ. Then g16 ¼ f�ðg13Þ ¼ f�ðjKE � rjÞ for some r A E. Hence

h16 ¼ jKC � g14 � g16 j ¼ jg14 þ f�ðrÞj has non-empty base locus. r
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From now on, we assume dimW 2
8 ðCÞ ¼ 2 and let AHW 2

8 ðC Þ be a component of

dimension 2.

Lemma A.3. For a general L A A, L and jKC �Lj are base-point-free and bira-

tionally very ample.

Proof. Assume that a general L A A has a base point. Then there is a com-

ponent BHW 2
7 ðC Þ such that A ¼ BþW1ðC Þ and dimB ¼ 1. Since C does not have

a g26 , every element M A B is base-point-free. We put

Z ¼ B�W1ðCÞ ¼ fMnOCð�PÞ jM A B;P A CgHW 1
6 ðCÞ;

which is a component of dimension 2. Note that W 1
3 ðEÞ ¼ fOEðKE � rÞ j r A Eg and

hence dim f�ðW 1
3 ðEÞÞ ¼ 1. We take a general

g16 ¼ MnOCð�PÞ A Znf�ðW 1
3 ðEÞÞ;

which may be assumed to be base-point-free; recall M A B is base-point-free. Therefore

jKC � g14 � g16 j ¼ h16 is base-point-free by Lemma A.2 and hence jKC � g16 j ¼ jh16 þ g14 j

is also base-point-free. On the other hand, jg16 þ Pj ¼ jMj ¼ g27 which implies that P

is a base point of jKC � g16 j. And this contradiction shows that a general L A A has

no base point. In the same way, one can easily check that jKC �Lj has no base

point. Finally both L and jKC �Lj are birationally very ample for a general L A A

by Lemma 2.2. r

Lemma A.4. For every L A A, jL� g14 j0q and jKC �L� g14 j0q.

Proof. This is clear by the base-point-free pencil trick. r

Let c
L

: C ! CL HP
2 be the morphism defined by a general L A A. By

Lemma A.3, Lemma A.4, Lemma 3.3 and the condition (4.1.6) on C, every assump-

tion in Lemma 2.5 is satisfied and hence there is an ordinary 4-fold singular point

P1 A CL. Since paðCLÞ ¼ 21 > 9þ ð4� 1Þð4� 2Þ=2, CL has another singular point Q.

If multQ CLb 4, then C has two g14 ’s, contrary to the uniqueness of g14 . If multQ CL ¼

3, then C has a base-point-free g15 , contradicting Lemma A.1. Therefore multQ CL ¼ 2

for any singular point Q A CL other than P1. Since paðCLÞ � ð9þ ð4� 1Þð4� 2Þ=2Þ ¼

6, CL has 6 double points P2; . . . ;P7 where some of P2; . . . ;P7 may possibly be infinitely

near singular points, i.e. singular points appearing in the blowing-ups of P
2.

Let p : SL ! P
2 be the blowing-up at P1; . . . ;P7 and let ei be the total transform of

the exceptional divisor corresponding to Pi. Then

PicðSLÞ ¼ ZllZe1 l � � �lZe7 and C@ 8l � 4e1 � 2e2 � � � � � 2e7

where l ¼ p�
O
P

2ð1Þ.

We put S0 ¼ P
2, S1 ¼ a blowing-up of S0 at P1 and let E1 HS1 be the exceptional

divisor. Let C1 HS1 be the proper transform of CL. Since P1 is an ordinary singular

point, any singular point of C1 lies outside E1. Let P2 be one of singular points of C1

and let S2 be the blowing up at P2 with the exceptional divisor E2 HS2 corresponding

to P2. Let C2 HS2 be the proper transform of C1. If all the singular points of C2 lie

outside E2, then we take P3 as one of singular points of C2. In case a singular point
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of C2 is in E2, we remark that such a singular point is unique: If there were more than

one singular points of C2 in E2, we have ðE2:C2Þb 4. On the other hand, since any

singular point of C1 is a double point we also have ðE2:C2Þ ¼ 2, a contradiction.

Therefore, if a singular point of C2 lies on E2, we take P3 as the unique singular point

lying on E2. We continue this process and finally we get P
2 ¼ S0;S1;S2; . . . ;SL ¼

S7, P1 A S0, P2 A S1; . . . ;P7 A S6 and Ei HSi ði ¼ 1; . . . ; 7Þ which are the exceptional

divisors corresponding to Pi. In our situation, we always regard ei, which is the total

transform of Ei, sitting inside SL ¼ S7. By [De; page 36, (1)], an irreducible component

of a support of e1 þ � � � þ e7 is one of the following form:

e1; e2; . . . ; e7 or ei � eiþ1 � � � � � et ð2a i < tÞ:ðA:4:1Þ

We denote by ÊEi the proper transform of Ei HSi in each steps, i.e. in Siþ1;Siþ2; . . . and

let S ¼ fP1; . . . ;Prg; r ¼ 7 in our situation. We use the following notion and result due

to Demazure; cf. [De; pp. 38–39, p. 38 a) and p. 39 Définition 1].

Definition A.5. We say that S is in almost general position if:

(1) For any i ¼ 1; . . . ; r, Pi B ÊE1; . . . ; ÊEi�2.

(2) There is no line which pass through 4 points of S.

(3) There is no conic which pass through all the points of S.

By definition, the condition (1) is equivalent to the following condition.

(1)? For any i ¼ 1; . . . ; r, ÊEi ¼ ei � eeiþ1 where e ¼ 1 or 0.

Lemma A.6 (Demazure; [De, Théorème 1]). If S is in almost general position, then

�KSL is nef.

We also use the following result which is called Reider’s method.

Lemma A.7 (Reider; [R, Theorem 1 (i)]). Let S be a smooth algebraic surface over

C and let L be a nef line bundle. If ðL2Þb 5 and p is a base point of jKS þLj, then

there exists an e¤ective divisor E passing through p such that

either ðL:EÞ ¼ 0; ðE2Þ ¼ �1 or ðL:EÞ ¼ 1; ðE2Þ ¼ 0:

Now we consider linear systems jl � e1j and j3l � e1 � e2 � � � � � e7j on the smooth

rational surface SL.

Lemma A.8. dimjl � e1j ¼ 1, dimj3l � e1 � e2 � � � � � e7j ¼ 2, jl � e1jjC ¼ jg14 j and

j3l � e1 � e2 � � � � � e7jjC ¼ jKC � 2g14 j.

Proof. It is clear that dimjl � e1j ¼ 1, jl � e1jjC ¼ jg14 j and Bsjl � e1j ¼ q. We

note that

KSL @�3l þ e1 þ � � � þ e7 and KSL þ C � 2ðl � e1Þ@ 3l � e1 � e2 � � � � � e7;

therefore it follows that

OCð3l � e1 � e2 � � � � � e7ÞGOCðKC � 2g14Þ:

Since

3l � e1 � e2 � � � � � e7 � C@�5l þ 3e1 þ e2 þ � � � þ e7
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and

h0ðSL;OSLð5l � 3e1 � e2 � � � � � e7ÞÞ > 0;

we have h0ðSL;OSLð3l � e1 � e2 � � � � � e7 � CÞÞ ¼ 0. Therefore, from the exact

sequence

0 ! OSLð3l � e1 � � � � � e7 � CÞ ! OSLð3l � e1 � � � � � e7Þ ! OCð3l � e1 � � � � � e7Þ ! 0;

we deduce that

h0ðSL;OSLð3l � e1 � e2 � � � � � e7ÞÞa h0ðC;OCðKC � 2g14ÞÞ ¼ 3:

On the other hand, h0ðSL;OSLð3l � e1 � e2 � � � � � e7ÞÞb h0ðP2
;O

P
2ð3ÞÞ � 7 ¼ 3, and

hence dimj3l � e1 � e2 � � � � � e7j ¼ 2. r

Lemma A.9. �KSL is nef.

Proof. By Lemma A.6, we only need to check that S is in almost general

position. Note that ðC2Þ > 0 since C@ 8l � 4e1 � 2e2 � � � � � 2e7. Hence C is nef

by the irreducibility of C. Let F be an irreducible component of e1 þ � � � þ e7 which

should be of the form

e1; . . . ; e7 or ei � � � � � et where 2a i < t

by (A.4.1). Since C is nef, ðC:FÞb 0 which in turn implies t ¼ i þ 1. Therefore, on

SL, the condition (1)? of the Definition A.5 is satisfied.

We now check the condition (2). Assume that (2) does not hold, then l�

ei4 � � � � � ei7 is linearly equivalent to an e¤ective divisor G for some four distinct indices

i4; . . . ; i7 A f1; . . . ; 7g ¼ fi1; . . . ; i7g. Since C is nef, ðC:GÞb 0 and we have i4; . . . ; i7 A

f2; . . . ; 7g. From the exact sequence

0 ! OSLð2l � ei1 � ei2 � ei3Þ ! OSLð3l � e1 � � � � � e7Þ ! OGð3l � e1 � � � � � e7Þ ! 0;

and

ðG:3l � e1 � � � � � e7Þ ¼ ðl � ei4 � � � � � ei7 :3l � e1 � � � � � e7Þ ¼ �1 < 0;

we have H 0ðG;OGð3l � e1 � � � � � e7ÞÞ ¼ 0. Therefore G is in a fixed component of

j3l � e1 � � � � � e7j.

A divisor D A j2l � ei1 � ei2 � ei3 j corresponds a conic in P
2 which passes through

Pi1 ;Pi2 ;Pi3 . If D is irreducible, then j2l � ei1 � ei2 � ei3 j is fixed component free and

it follows that j2l � ei1 � ei2 � ei3 j is base-point-free. Since ðð2l � ei1 � ei2 � ei3Þ
2Þ ¼ 1,

j2l � ei1 � ei2 � ei3 j defines a birational morphism SL ! P
2 which is bijective outside

the locus T of ð�1Þ-curves or total transform of ð�1Þ-curves. Hence T RC implies

that the linear system j3l � e1 � e2 � � � � � e7 � G jjC ¼ j2l � ei1 � ei2 � ei3 jjC defines a

birational morphism on C which is contradictory to the fact that

j2l � ei1 � ei2 � ei3 jjC ¼ jKC � 2g14 j

is not birationally very ample. If any member of j2l � ei1 � ei2 � ei3 j is a union of two

lines, then moving part should be jlj and l � ei1 � ei2 � ei3 is linearly equivalent to some

e¤ective divisor F 0. This implies 7 points are in a conic (i.e. union of two lines), which

will be considered in the next case.
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Finally we check the condition (3). If the condition (3) does not hold, then

j2l � e1 � � � � � e7j0q, which implies 2l � e1 � � � � � e7 should be a fixed part of

j3l � e1 � � � � � e7j whereas jlj is the moving part. As j3l � e1 � � � � � e7jjC ¼ jKC � 2g14 j

is not birationally very ample and jljjC is birationally very ample, this is a contra-

diction. r

Lemma A.10. j�KSL j ¼ j3l � e1 � � � � � e7j is base-point-free.

Proof. We apply Reider’s method (Lemma A.7) to �2KSL . Note that

�2KSL is also nef by Lemma A.9 and ðð�2KSLÞ
2Þ ¼ 8b 5. Let E@ al � b1e1 �

� � � � b7e7 be an e¤ective divisor such that ð�2KSL :EÞ ¼ 0 and ðE2Þ ¼ �1. Then

we have a2 � b21 � � � � � b27 ¼ �1 and 3a� b1 � � � � � b7 ¼ 0. By Schwartz’s inequality

ðb1 þ � � � þ b7Þ
2
a 7ðb21 þ � � � þ b27Þ, it follows that ð3aÞ2a 7ða2 þ 1Þ and hence a ¼

0; 1;�1. But for these values of a, the equations a2 � b21 � � � � � b27 ¼ �1 and 3a�

b1 � � � � � b7 ¼ 0 have no integral solutions. Therefore there is no e¤ective divisor E

such that ð�2KSL :EÞ ¼ 0 and ðE2Þ ¼ �1. Since it is clear that there is no e¤ective

divisor E such that ð�2KSL :EÞ ¼ 1 and ðE2Þ ¼ 0, we conclude that j�KSL j is base-point-

free by Lemma A.7. r

Let f : C ! P
1 � P

2 be the morphism defined by ðjg14 j; jK � 2g14 jÞ. By

Lemmas A.8 and A.10, the morphism fL : SL ! P
1 � P

2 induced by ðjl � e1j;

j3l � e1 � e2 � � � � � e7jÞ is an extension of the morphism f for a general L A A.

Lemma A.11. fLðSLÞ@ 2fptg � P
2 þ 2P1 �H where H is a hyperplane in P

2.

Proof. Let fLðSLÞ@ afptg � P
2 þ bP1 �H. Then

2 ¼ ðð3l � e1 � � � � � e7Þ
2Þ ¼ ð f �

L
ðP1 �HÞ2Þ

¼ deg fL � ððP1 �HÞ2: fLðSLÞÞ ¼ a � deg fL;

and

2 ¼ ðl � e1:3l � e1 � � � � � e7Þ ¼ ð f �
L
ðfptg � P

2Þ: f �
L
ðP1 �HÞÞ

¼ deg fL � ðfptg � P
2
:P

1 �H: fLðSLÞÞ ¼ b � deg fL:

If deg fL ¼ 2, then fLðSLÞ@ fptg � P
2 þ P

1 �H. Therefore fLðSLÞ is in a hyper-

plane in P
5 by the Segre map P

1 � P
2
,! P

5 and hence C also lies on a hyperplane

in P
5. But the morphism C ! P

5 which is defined by jKC � 2g14 þ g14 j ¼ jKC � g14 j is

non-degenerate. This contradiction shows that deg fL ¼ 1, and hence a ¼ b ¼ 2. r

Lemma A.12. For a general L A A, fM A A j fLðSLÞ ¼ fMðSMÞg is a finite set.

Proof. By a simple computation using Schwartz inequality, one finds easily

that ðE:4l � 2e1 � e2 � � � � � e7Þ0 0 for any ð�1Þ-curve E on SL. Therefore SL is

the minimal resolution of the normalization of fLðSLÞ. Hence fLðSLÞ ¼ fMðSMÞ

implies SL G

a
SM. We note that the composition morphism p � a : SL !

a
SM !

p
P

2

is completely determined by 7 divisors e1; . . . ; e7 HSL such that ðKSL þ ei:eiÞ ¼ �2,

ðe2i Þ ¼ �1; here p is the blowing up of P
2 at the singular points of f

M
ðCÞHP

2.
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Since SL is a 7-points blowing-up of P
2, there exist only finitely many divisors e

such that ðKSL þ e:eÞ ¼ �2, ðe2Þ ¼ �1. Hence we have only finitely many possibilities

of such morphisms SL !
a

SM !
p

P
2 and therefore finitely many possibilities for M with

fLðSLÞ ¼ fMðSMÞ. r

Proof of Proposition A.0. Consider the following exact sequence coming from

the morphism f : C ! P
1 � P

2 induced by ðjg14 j; jK � 2g14 jÞ;

0 ! I ! O
P

1�P
2 ! OC ! 0:ðA:0:1Þ

We put O
P

1�P
2ðnÞ ¼ O

P
1�P

2ðfptg � P
2 þ P

1 �HÞnn and IðnÞ ¼ InO
P

1�P
2ðnÞ. By

Lemma A.11,

fLðSLÞ A PH 0ðP1 � P
2
;Ið2ÞÞ

and by Lemma A.12 we have a generically finite morphism

p : A ! PH 0ðP1 � P
2
;Ið2ÞÞ

defined by pðLÞ ¼ fLðSLÞ. From the long exact sequence on cohomology induced by

the short exact sequence (A.0.1), we have

h0ðP1 � P
2
;Ið2ÞÞb 2:

Let Q1;Q2 A H 0ðP1 � P
2
;Ið2ÞÞ be two independent quadrics. Since

ðQ1:Q2:fptg � P
2 þ P

1 �HÞ
P

1�P
2 ¼ 12;

the scheme theoretic intersection Q1 VQ2 HP
1 � P

2
HP

5 has degree 12. Note that

degðCÞ ¼ degðKC � g14Þ ¼ 12 and hence C ¼ Q1 VQ2:

Therefore the ideal of C (HO
P

1�P
2 ) is generated by the two quadrics Q1 and Q2 in

P
1 � P

2; i.e. h0ðP1 � P
2
;Ið2ÞÞ ¼ 2. Since

fLðSLÞ A PH 0ðP1 � P
2
;Ið2ÞÞ and dimPH 0ðP1 � P

2
;Ið2ÞÞ ¼ 1;

p : A ! PH 0ðP1 � P
2
;Ið2ÞÞ being a generically finite morphism is contradictory to the

assumption dimA ¼ 2. r
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