Variety of nets of degree $g-1$ on smooth curves of low genus

Dedicated to Professor Makoto Namba on the occasion of his sixtieth birthday

By Kyung-Hye Сho, Changho Keem^{\dagger} and Akira $\mathrm{Ohbuchi}^{\ddagger}$

(Received Mar. 14, 2001)
(Revised Dec. 10, 2001)

Abstract

We classify smooth complex projective algebraic curves C of low genus $7 \leq g \leq 10$ such that the variety of nets $W_{g-1}^{2}(C)$ has dimension $g-7$. We show that $\operatorname{dim} W_{g-1}^{2}(C)=g-7$ is equivalent to the following conditions according to the values of the genus g. (i) C is either trigonal, a double covering of a curve of genus 2 or a smooth plane curve degree 6 for $g=10$. (ii) C is either trigonal, a double covering of a curve of genus 2 , a tetragonal curve with a smooth model of degree 8 in \boldsymbol{P}^{3} or a tetragonal curve with a plane model of degree 6 for $g=9$. (iii) C is either trigonal or has a birationally very ample g_{6}^{2} for $g=8$ or $g=7$.

1. Introduction and motivation.

Let C be a smooth projective algebraic curve of genus g over the field of complex numbers. We denote by $W_{d}^{r}(C)$ the locus in the Jacobian variety $J(C)$ corresponding to those line bundles of degree d with $r+1$ or more independent global sections. Then $W_{d}^{r}(C)$ is a subvariety of $J(C)$ and can equivalently be viewed as the subvariety consisting of all effective divisor classes of degree d which move in a linear system of projective dimension at least r.

By a well known thorem of Kleiman-Laksov [KL], if $d \leq g+r-2$, the dimension of $W_{d}^{r}(C)$ is greater than or equal to the Brill-Noether number

$$
\rho(d, g, r):=g-(r+1)(g-d+r)
$$

for any curve C. Furthermore, by a theorem of Griffiths-Harris $[\mathbf{G H}]$, the dimension of $W_{d}^{r}(C)$ is equal to $\rho(d, g, r)$ for a general curve C; whereas the dimension of $W_{d}^{r}(C)$ might be greater than $\rho(d, g, r)$ for some special curves C.

On the other hand, the upper bound on the dimension of $W_{d}^{r}(C)$ and the description of those special (in the sense of moduli) curves C such that $W_{d}^{r}(C)$ has dimension more than the expected value $\rho(d, g, r)$ were given by H . Martens and D . Mumford, which can be stated as follows; cf. [Ma], [Mu], or [ACGH].

[^0]Theorem 1.1 (H . Martens). Let d and r be integers such that

$$
d-2 r>\rho(d, g, r), \quad r \geq 1 .
$$

Then

$$
\operatorname{dim} W_{d}^{r}(C) \leq d-2 r
$$

and the equality holds if and only if C is hyperelliptic.
Theorem 1.2 (Mumford). Let d and r be integers such that

$$
d-2 r-1>\rho(d, g, r), \quad r \geq 1
$$

Suppose that

$$
\operatorname{dim} W_{d}^{r}(C)=d-2 r-1
$$

Then C is either trigonal, bi-elliptic or a smooth plane quintic.
There have been several partial extensions of the above two theorems due to many authors; cf. [BKMO], [C], [K] and [Muk]). Furthermore, by a recent progress made by the authors in [CKO], the next extension of H. Martens-Mumford theorem on dimensions of $W_{d}^{r}(C)$ for a smooth curve C has been finished off and therefore one knows that the following statement holds; [CKO; Theorem 1.5].

Theorem 1.3. Let C be a smooth algebraic curve of genus g. Let d and r be integers such that

$$
d-2 r-2>\rho(d, g, r), \quad r \geq 1
$$

If

$$
\operatorname{dim} W_{d}^{r}(C) \geq d-2 r-2 \geq 0
$$

then C is either hyperelliptic, trigonal, bi-elliptic, tetragonal, a smooth plane sextic or a double covering of a curve of genus 2 .

Indeed, [CKO; Theorem 1.4] gives necessary conditions for C satisfying

$$
\operatorname{dim} W_{g-1}^{2}=g-7,
$$

which was the only case left out in previous extensions of H. Martens-Mumford's Theorem. Furthermore, in the range of the genus $g \geq 11$, [CKO; Theorem 1.4] has been pushed forward and it has been shown that $\operatorname{dim} W_{g-1}^{2}=g-7$ if and only if C is either trigonal or a double covering of a curve of genus 2 , eliminating the possibility for C being tetragonal other than a two sheeted covering over a curve of genus 2 ; cf. [CKO; Theorem 1.7]. However, [CKO] did not treat curves of low genus with $\operatorname{dim} W_{g-1}^{2}=$ $g-7$, namely in the genus range $7 \leq g \leq 10$, in the same way as higher genus curves were treated. The aim of this paper is to pursue a complete description of those special curves and to come up with a necessary and sufficient condition for C having $\operatorname{dim} W_{g-1}^{2}=g-7$ when the genus of the curve C is low. Our main results are:

Theorem I. Let C be a smooth projective algebraic curve of genus $g=10$. Then $\operatorname{dim} W_{g-1}^{2}(C)=g-7$ if and only if C is either trigonal, a double covering of a curve of genus 2 or a smooth plane curve degree 6 .

Theorem II. Let C be a smooth projective algebraic curve of genus $g=9$. Then $\operatorname{dim} W_{g-1}^{2}(C)=g-7$ if and only if C is either trigonal, a double covering of a curve of genus 2, a tetragonal curve with a smooth model of degree 8 in \boldsymbol{P}^{3} or a tetragonal curve with a plane model of degree 6 .

Theorem III. Let C be a smooth algebraic curve of genus $g=8$ or $g=7$. Then $\operatorname{dim} W_{g-1}^{2}(C)=g-7$ if and only if C is either trigonal or has a birationally very ample g_{6}^{2}.

One notes immediately that nearly (but not exactly) the same statements as [CKO; Theorem 1.7] hold. However, unlike the case $g \geq 11$, there appear smooth plane sextics and some particular tetragonal curves C with $\operatorname{dim} W_{g-1}^{2}(C)=g-7$ other than double coverings of genus two curves or trigonal curves. On the technical side, some of the lemmas which were used to prove [CKO; Theorem 1.6] and [CKO; Theorem 1.7]-e.g. [CKO; Lemma 3.4] which describes the component of $W_{g-3}^{1}(C)$ of maximal dimension on a tetragonal curve-still have to be verified for curves of low genus and this will require preparing several relevant results on $W_{d}^{r}(C)$ for curves of low genus whose proof we could not locate in any of the literature.

The organization of this paper is as follows. In Section 2, we collect several results obtained in $[\mathbf{C K O}]$ which we will be using in this paper. In section 3, we prove Theorem I after finding a proper description of a component of $W_{g-3}^{1}(C)$ of maximal dimension on a tetragonal curve of low genus. In section 4, we prove Theorem II. In section 5, after proving Theorem III, we discuss related results on $W_{g-1}^{2}(C)$ for a double coverings of a curve of genus 2 .

For notations and conventions, we adopt those from ACGH. Specifically, C always denotes a smooth irreducible complex projective curve and g_{d}^{r} is a possibly incomplete r-dimensional linear system of degree d on C. A g_{d}^{r} is said to be birationally very ample if the induced morphism $C \rightarrow \boldsymbol{P}^{r}$ given by the base-point-free part of g_{d}^{r} is birational onto its image. We also say that a line bundle $\mathscr{L} \in \operatorname{Pic}^{d}(C)$ is birationally very ample if the corresponding complete linear system g_{d}^{r} is birationally very ample. The set of all effective divisors of degree d on C is denoted by $C_{d} . \quad K_{C}$ and ω_{C} denote a canonical divisor and the canonical bundle on C respectively. A curve C is called k-gonal if C has a g_{k}^{1} but no g_{k-1}^{1}.

2. Preliminary results.

We first collect several elementary results regarding $W_{g-1}^{2}(C)$ which have been observed in [CKO] already; cf. [CKO; Remark 2.1, Proposition 2.2 and Corollary 2.3].

Remark 2.1. Let C be a smooth algebraic curve of genus g.
(i) $\operatorname{dim} W_{g-1}^{2}(C)=g-5 \geq 0$ if and only if C is hyperelliptic.
(ii) If $g \geq 7, \operatorname{dim} W_{g-1}^{2}(C)=g-6$ if and only if C is bi-elliptic.
(iii) For $g=6, \operatorname{dim} W_{g-1}^{2}(C)=g-6$ if and only if C is a smooth plane quintic.
(iv) For a bi-elliptic curve of genus $6, W_{g-1}^{2}(C)=\varnothing$.
(v) For a trigonal curve of genus $g \geq 7, \operatorname{dim} W_{g-1}^{2}(C)=g-7$.
(vi) If C is a double covering of a curve of genus 2 and $g \geq 9, \operatorname{dim} W_{g-1}^{2}(C)=$ $g-7$.
We will make use of the following lemmas which also have been proved in [CKO]; cf. [CKO; Lemma 2.5, Lemma 2.6 and Lemma 3.1].

Lemma 2.2. Let C be a smooth algebraic curve of genus $g \geq 7$ which is neither a double covering of a curve of genus $h \leq 2$ nor a trigonal curve. Assume $\operatorname{dim} W_{g-1}^{2}(C)=$ $g-7$ and let X be a component of $W_{g-1}^{2}(C)$ of maximal dimension. If every component of $W_{g-1}^{2}(C)$ of maximal dimension is generically base-point-free, then for a general element $\mathscr{L} \in X$, both \mathscr{L} and $\omega_{C} \otimes \mathscr{L}^{-1}$ are complete base-point-free birationally very ample nets.

Lemma 2.3. Let C be a smooth algebraic curve of genus $g \geq 7$ such that $\operatorname{dim} W_{g-1}^{2}(C)=g-7$. Suppose that every component of $W_{g-1}^{2}(C)$ of maximal dimension is generically base-point-free. Assume further that for a general member $\mathscr{L} \in X$-where $X \subset W_{g-1}^{2}(C)$ is a component of maximal dimension—both \mathscr{L} and $\omega_{C} \otimes \mathscr{L}^{-1}$ are birationally very ample. Then the following statements hold.
(i) $\operatorname{dim} W_{g-3}^{1}(C) \geq g-7$.
(ii) If $\operatorname{dim} W_{g-3}^{1}(C)=g-7$, then there is a component $T \subset W_{g-3}^{1}(C)$ with $\operatorname{dim} T=$ $g-7$ such that every $\mathscr{L} \in X$ is of the form

$$
\mathscr{L}=\mathscr{M} \otimes \mathcal{O}_{C}(P+Q)
$$

for some $\mathscr{M} \in T$ and some $P, Q \in C$.
Lemma 2.4. Let C a smooth tetragonal curve of genus $g \geq 7$ with $\operatorname{dim} W_{g-1}^{2}(C)=$ $g-7$. We fix a g_{4}^{1} on C. Suppose that $h^{0}\left(C, \mathcal{O}_{C}\left(2 g_{4}^{1}\right)\right)=3$. Let $X \subset W_{g-1}^{2}(C)$ be a component of maximal dimension and set

$$
\mathscr{E}_{X}:=\left\{D \in C_{g-5}| | g_{4}^{1}+D \mid \in X\right\}
$$

Then for any $D \in \mathscr{E}_{X},\left|K_{C}-2 g_{4}^{1}-D\right| \neq \varnothing$ and

$$
\left|K_{C}-2 g_{4}^{1}\right|=\bigcup_{D \in \mathscr{\delta}_{X}} D+\left|K_{C}-2 g_{4}^{1}-D\right|
$$

where the locus $D+\left|K_{C}-2 g_{4}^{1}-D\right| \subset C_{2 g-10}$ is considered as a subset of $\left|K_{C}-2 g_{4}^{1}\right|$.
Let's briefly recall basic notions of scrollar invariants of an algebraic curve with a pencil g_{d}^{1}. For a smooth algebraic curve C with a complete base-point-free pencil g_{d}^{1}, we set

$$
F_{i}=H^{0}\left(C, \omega_{C} \otimes \mathcal{O}_{C}\left(-i g_{d}^{1}\right)\right)
$$

The vector spaces $F_{i}(i=1,2, \ldots)$ give a filtration,

$$
F_{0} \supset F_{1} \supset \cdots \supset F_{n} \supset \cdots
$$

and we define the scrollar invariants $e_{i}=e_{i}\left(g_{d}^{1}\right)(i=1,2, \ldots, d-1)$ by

$$
e_{i}=e_{i}\left(g_{d}^{1}\right)=\#\left\{j \in \boldsymbol{N} ; \operatorname{dim}\left(F_{j-1} / F_{j}\right) \geq i\right\}-1 \quad(i=1,2, \ldots, d-1)
$$

One can easily show that

$$
e_{1}+\cdots+e_{d-1}=g-d+1 \quad \text { and } \quad e_{d-1} \leq \cdots \leq e_{1}
$$

hold; cf. [KO] for further details.
The following lemma, which may seem to be a little bit technical, however plays an important role as it did in [CKO]; cf. [CKO; Lemma 3.4].

Lemma 2.5. Let C be a smooth tetragonal curve with a unique g_{4}^{1} of genus $g \geq 8$. We assume that the following conditions hold on C :
(i) $\operatorname{dim} W_{g-1}^{2}(C)=g-7$.
(ii) C has no g_{6}^{2}.
(iii) C is not a double covering of a curve of genus 2 in case $g \geq 9$.
(iv) For a general $\mathscr{L} \in X$-where $X \subset W_{g-1}^{2}(C)$ is a component of maximal dimension—both \mathscr{L} and $\omega_{C} \otimes \mathscr{L}^{-1}$ are base-point-free, birationally very ample and $\left|\mathscr{L}-g_{4}^{1}\right| \neq \varnothing,\left|\omega_{C} \otimes \mathscr{L}^{-1}-g_{4}^{1}\right| \neq \varnothing$.
(v) For $g=9, e_{3} \geq 1$ and $\left(e_{2}, e_{3}\right) \neq(1,1)$.
(vi) For $g=8, e_{3} \geq 1$.

Let $\psi_{\mathscr{L}}: C \rightarrow C_{\mathscr{L}} \subset \boldsymbol{P}^{2}$ be the morphism defined by $\mathscr{L} \in X$ and let $\tilde{P} \in C_{\mathscr{L}}$ be the $(g-5)$ fold singular point corresponding to g_{4}^{1}, i.e. the image of points in the support of $\left|\mathscr{L}-g_{4}^{1}\right|$. Then $\tilde{P} \in C_{\mathscr{L}}$ is an ordinary singular point if $\mathscr{L} \in X$ is general.

We close this section by recalling the well-known Riemann-Hurwitz relation for double coverings. Let E be a curve of genus h and let $\pi: C \rightarrow E$ be a double covering. Let $R \subset E$ be a branch locus of π. Then we have

$$
\begin{equation*}
\pi_{*}\left(\mathcal{O}_{C}\right) \cong \mathcal{O}_{E} \oplus \mathscr{S} \quad \text { and } \quad \mathscr{S}^{\otimes 2} \cong \mathcal{O}_{E}(-R) . \tag{2.A}
\end{equation*}
$$

Also the algebra structure of $\pi_{*}\left(\mathcal{O}_{C}\right)$ is given by the isomorphism

$$
\begin{equation*}
\psi: \mathscr{S}^{\otimes 2} \cong \mathcal{O}_{E}(-R) \subset \mathcal{O}_{E} . \tag{2.B}
\end{equation*}
$$

3. Curves of genus ten.

In this section we mainly treat curves of genus $g=10$ with $\operatorname{dim} W_{g-1}^{2}(C)=g-7$. As was mentioned earlier in the introduction, we have new classes of curves in Theorems I and II such as smooth plane sextics or some special tetragonal curves C with $\operatorname{dim} W_{g-1}^{2}(C)=g-7$ besides double coverings of genus two curves or trigonal curves. Specifically, some of these curves emerge fairly naturally in the course of the proofs of the lemmas which describe the component of $W_{g-3}^{1}(C)$ of maximal dimension on a tetragonal curve of genus $g=9,10$.

For trigonal curves or double covering of genus two curves, we already have $\operatorname{dim} W_{g-1}^{2}(C)=g-7$; cf. Remark 2.1 (v) and (vi). For the other curves C which newly appear in Theorems I and II, one can show easily that $\operatorname{dim} W_{g-1}^{2}(C)=g-7$ as follows.

Proposition 3.1. Let C be a smooth algebraic curve of genus $g \geq 7$ with a birationally very ample g_{6}^{2}. Then $\operatorname{dim} W_{g-1}^{2}(C)=g-7$.

Proof. C always has a base-point-free and complete g_{5}^{1} cut out by lines through a general point of the plane model induced by g_{6}^{2}. We note that $\left\{g_{6}^{2}\right\}+W_{g-7}(C)$
is an irreducible subvariety of $W_{g-1}^{2}(C)$, therefore $\operatorname{dim} W_{g-1}^{2}(C) \geq g-7$. Suppose that $\operatorname{dim} W_{g-1}^{2}(C)>g-7$. By Remark 2.1 (i) and (ii), C must be either hyperelliptic or bi-elliptic, in which cases C cannot have a base-point-free and complete g_{5}^{1} by the Castelnuovo-Severi inequality; cf. [A; Theorem 3.5].

Remark 3.2. (i) For a tetragonal curve C of genus $g=9$ with a smooth model of degree 8 in \boldsymbol{P}^{3}, the locus

$$
\left\{\mathcal{O}_{C}\left(g_{8}^{3}-P+Q_{1}+\cdots+Q_{g-8}\right) \mid P, Q_{1}, \ldots, Q_{g-8} \in C\right\}
$$

is an irreducible subvariety of $W_{g-1}^{2}(C)$ of dimension $g-7$. Since C is an extremal space curve of degree $8, C$ lies on a quadric surface $S \subset \boldsymbol{P}^{3}$ and hence C is a complete intersection of a quadric and a quartic. By using the adjunction formula for curves on a smooth quadric surface (or on the ruled surface $\boldsymbol{P}\left(\mathcal{O}_{C} \oplus \mathcal{O}_{C}(-2)\right)$ in case S is a quadric cone), one can deduce that the canonical linear system $\left|K_{C}\right|$ is cut out by quadrics. A divisor $D \in g_{4}^{1}$ must be collinear in \boldsymbol{P}^{3} since D fails to impose independent conditions on $\left|K_{C}\right|$ which is cut out by quadrics, whence a g_{4}^{1} is cut out by the rulings of S and $\operatorname{dim} W_{4}^{1}(C)=0$; cf. [ACGH; Exercise F-2, page 199]. Thus C is not bi-elliptic and hence $\operatorname{dim} W_{g-1}^{2}(C)=g-7$ by Remark 2.1 (ii).
(ii) For a tetragonal curve of genus $g=9$, it is easy to verify that there exists a smooth model of degree 8 in \boldsymbol{P}^{3} if and only if either $e_{3}=0$ (with a unique g_{4}^{1}) or there exist two g_{4}^{1} 's.
(iii) It is worthwhile to note that curves which newly appeared in Theorem I and Theorem II-i.e. a smooth plane sextic, a curve with a plane model of degree 6 or a tetragonal curve with a smooth space model of degree 8-are neither trigonal nor a double covering of a curve of genus two. It is clear that a smooth plane sextic (or a curve with a plane model of degree 6) is not a double covering of a curve of genus 2 ; a plane sextic has a base-point-free g_{5}^{1}, whereas a double covering of a curve of genus 2 does not have a base-point-free g_{5}^{1} by Castelnuovo-Severi inequality.

Let $\pi: C \rightarrow E$ be a double covering of a curve of genus $h=2$ and $g(C)=9$. By (2.A), $\operatorname{deg} \mathscr{S}=-6$ and

$$
h^{0}\left(C, \mathcal{O}_{C}\left(2 \pi^{*} g_{2}^{1}\right)\right)=h^{0}\left(E, \mathcal{O}_{E}\left(2 g_{2}^{1}\right)\right)+h^{0}\left(E, \mathcal{O}_{E}\left(2 g_{2}^{1}\right) \otimes \mathscr{S}\right)=3,
$$

which implies $e_{3} \neq 0$. Furthermore, C has only one $g_{4}^{1}=\pi^{*}\left(g_{2}^{1}\right)$ by Castelnuovo-Severi inequality. Therefore it follows that C cannot have a smooth space model of degree 8 by (ii).
(iv) For the proofs of Theorem I and Theorem II, we will use Lemma 2.5 regarding a tetragonal curve having a plane model of degree $g-1$ with an ordinary singular point of high multiplicity. Recall that Lemma 2.5 holds for a tetragonal curve of genus $g=9$ under the assumption $\left(e_{2}, e_{3}\right) \neq(1,1)$. For tetragonal of curve of genus $g=9$ with $\left(e_{2}, e_{3}\right)=(1,1)$, we have the following result.

Lemma 3.3. Let C be a tetragonal curve of genus $g=9$ with a unique g_{4}^{1} such that $e_{3}=e_{2}=1$ i.e. $h^{0}\left(C, \mathcal{O}_{C}\left(2 g_{4}^{1}\right)\right)=3, h^{0}\left(C, \mathcal{O}_{C}\left(3 g_{4}^{1}\right)\right)=6$. Suppose that C does not have a g_{6}^{2} and $\operatorname{dim} W_{g-1}^{2}(C)=g-7$. Then C is a double covering of a curve of genus 2 .

Proof. We first claim that $W_{8}^{2}(C) \subset\left\{g_{4}^{1}\right\}+W_{4}(C)$. For $\mathscr{L} \in W_{8}^{2}(C)$ which is of the form $\mathscr{L}=2 g_{4}^{1}$, we clearly have $\mathscr{L} \in\left\{g_{4}^{1}\right\}+W_{4}(C)$. Therefore we assume $\mathscr{L} \neq 2 g_{4}^{1}$. Note that we have the following exact sequence by the base-point-free pencil trick;

$$
\begin{equation*}
0 \rightarrow H^{0}\left(C, \mathscr{L} \otimes \mathcal{O}\left(-g_{4}^{1}\right)\right) \rightarrow H^{0}(C, \mathscr{L}) \otimes H^{0}\left(C, \mathcal{O}_{C}\left(g_{4}^{1}\right)\right) \rightarrow H^{0}\left(C, \mathscr{L} \otimes \mathcal{O}_{C}\left(g_{4}^{1}\right)\right) \tag{3.3.1}
\end{equation*}
$$

Recall that $e_{1}+e_{2}+e_{3}=g-3$ and hence $e_{1}=4$, which in turn implies $\omega_{C} \cong \mathcal{O}_{C}\left(4 g_{4}^{1}\right)$. If $h^{0}\left(C, \mathscr{L} \otimes \mathcal{O}_{C}\left(g_{4}^{1}\right)\right) \geq 6$, then $\omega_{C} \otimes \mathscr{L}^{-1} \otimes \mathcal{O}_{C}\left(-g_{4}^{1}\right) \cong \mathscr{O}_{C}\left(g_{4}^{1}\right)$ by Riemann-Roch formula and the uniqueness of g_{4}^{1}, hence $\mathscr{L}=2 g_{4}^{1}$ which is a contradiction. Therefore we have $h^{0}\left(C, \mathscr{L} \otimes \mathcal{O}_{C}\left(g_{4}^{1}\right)\right) \leq 5$ which implies $h^{0}\left(C, \mathscr{L} \otimes \mathcal{O}_{C}\left(-g_{4}^{1}\right)\right)=1$ by (3.3.1), finishing the claim.

From now on, we assume that C is not a double covering of a curve of genus 2 .
(3.3.2) Claim: For any $P+Q \in C_{2}$, there exists $A+B \in C_{2}$ such that

$$
\mathcal{O}_{C}\left(g_{4}^{1}+P+Q+A+B\right) \in W_{8}^{2}(C) .
$$

We consider the locus

$$
\Sigma:=\left\{\left(\mathscr{L}, \mathcal{O}_{C}(P+Q)\right) \mid P+Q \leq D \text { for some } D \in\left|\mathscr{L}-g_{4}^{1}\right|\right\} \subset W_{8}^{2}(C) \times W_{2}(C)
$$

and the projection map $\Sigma \xrightarrow{\phi} W_{2}(C)$ to the second factor. Take an element $\mathcal{O}_{C}(P+Q) \in \phi(\Sigma) \subset W_{2}(C)$. By the non-existence of $g_{6}^{2},\left|K_{C}-g_{4}^{1}\right|$ is very ample. Suppose that $\left|K_{C}-g_{4}^{1}-P-Q\right|=g_{10}^{3}$ is not base-point-free with a base point $T \in C$. Then $\left|K_{C}-g_{4}^{1}-P-Q-T\right|=g_{9}^{3}$ and therefore $\left|K_{C}-g_{4}^{1}-P-Q-T-S\right| \in W_{8}^{2}(C)$ for general $S \in C$. By the previous claim,

$$
\left|K_{C}-2 g_{4}^{1}-P-Q-T-S\right|=\left|2 g_{4}^{1}-P-Q-T-S\right| \neq \varnothing .
$$

Since $S \in C$ is general, $\left|2 g_{4}^{1}-P-Q-T\right|$ is a pencil of degree 5. Therefore, by $h^{0}\left(C, \mathcal{O}_{C}\left(2 g_{4}^{1}\right)\right)=3$, there exists $R \in C$ such that $P+Q+T+R \in g_{4}^{1}$. But then $g_{7}^{2}=$ $\left|g_{4}^{1}+P+Q+T\right|=\left|2 g_{4}^{1}-R\right|$ and R is a base point of $2 g_{4}^{1}$ which is a contradiction. Therefore $\left|K_{C}-g_{4}^{1}-P-Q\right|$ must be base-point-free and birationally very ample since C is not a double covering of a curve of genus 2. Note that $\mathcal{O}_{C}\left(g_{4}^{1}+P+Q+A+B\right) \in$ $W_{8}^{2}(C)$ for some $A+B \in C_{2}$ if and only if $A+B$ maps to a singular point of the model induced by the birationally very ample base-point-free $\left|K_{C}-g_{4}^{1}-P-Q\right|$. Therefore ϕ has a finite fiber over a general point in the image. Furthermore since $\operatorname{dim} \Sigma=2, \phi$ is in fact surjective and this finishes the proof of (3.3.2).

We take general $P_{1} \in C$ such that P_{1} is contained in a reduced member $P_{1}+P_{2}+$ $P_{3}+P_{4} \in g_{4}^{1}$.
(3.3.3) Claim: $\left|3 g_{4}^{1}-P_{i}-P_{j}\right|$ is base-point-free g_{10}^{3} for any $i \neq j \in\{1,2,3,4\}$.

Without loss of generality, we assume that $i=1, j=2$. Note that $\mathrm{Bs}\left|3 g_{4}^{1}-P_{1}-P_{2}\right| \subset$ $\left\{P_{3}, P_{4}\right\}$ since $\left|3 g_{4}^{1}-P_{1}-P_{2}\right|=\left|2 g_{4}^{1}+P_{3}+P_{4}\right|$. Assume that the base locus is not empty, say $P_{3} \in \mathrm{Bs}\left|3 g_{4}^{1}-P_{1}-P_{2}\right|$. Then $h^{0}\left(C, \mathcal{O}_{C}\left(3 g_{4}^{1}-P_{1}-P_{2}-P_{3}\right)\right)=4$ and by taking the dual series it follows that $h^{0}\left(C, \mathcal{O}_{C}\left(g_{4}^{1}+P_{1}+P_{2}+P_{3}\right)\right)=3$, contradicting $\left|2 g_{4}^{1}\right|$ being a base-point-free g_{8}^{2}.

We now take $Q_{1} \in C$ such that $Q_{1} \notin \operatorname{Supp}\left(P_{1}+P_{2}+P_{3}+P_{4}\right)$ and let $Q_{1}+Q_{2}+$
$Q_{3}+Q_{4} \in g_{4}^{1}$. By Claim (3.3.2) we already know that $\mathcal{O}_{C}\left(g_{4}^{1}+P_{1}+Q_{1}+A+B\right) \in$ $W_{8}^{2}(C)$ for some $A, B \in C$. By Lemma 2.4,

$$
\begin{aligned}
\left|K_{C}-2 g_{4}^{1}-P_{1}-Q_{1}-A-B\right| & =\left|2 g_{4}^{1}-P_{1}-Q_{1}-A-B\right| \\
& =\left|\sum_{i=2}^{4}\left(P_{i}+Q_{i}\right)-A-B\right| \neq \varnothing
\end{aligned}
$$

and $h^{0}\left(C, \mathcal{O}_{C}\left(2 g_{4}^{1}-P_{1}-Q_{1}\right)\right)=1$ by the general choice of P_{1} and Q_{1} therefore one finds that $A+B<\sum_{i=2}^{4}\left(P_{i}+Q_{i}\right)$. Assume that $A, B \in\left\{P_{2}, P_{3}, P_{4}\right\}$, say $A=P_{2}$, $B=P_{3}$ and hence $h^{0}\left(C, \mathcal{O}_{C}\left(g_{4}^{1}+P_{1}+P_{2}+P_{3}+Q_{1}\right)\right)=3$. But this is a contradiction; since $\left|2 g_{4}^{1}+Q_{1}\right|$ is a g_{9}^{2} with the unique base point Q_{1}, P_{4} cannot be a base point of $\left|2 g_{4}^{1}+Q_{1}\right|$. The case $A, B \in\left\{Q_{2}, Q_{3}, Q_{4}\right\}$ does not occur by the same reason. Therefore we must have $A=P_{2}, B=Q_{2}$ and $h^{0}\left(C, \mathcal{O}_{C}\left(g_{4}^{1}+\sum_{i=1}^{2}\left(P_{i}+Q_{i}\right)\right)\right)=3$. By taking the dual series,

$$
h^{0}\left(C, \mathcal{O}_{C}\left(K_{C}-g_{4}^{1}-\sum_{i=1}^{2}\left(P_{i}+Q_{i}\right)\right)\right)=h^{0}\left(C, \mathcal{O}_{C}\left(3 g_{4}^{1}-\sum_{i=1}^{2}\left(P_{i}+Q_{i}\right)\right)\right)=3
$$

As we vary $Q_{1} \in C$, it follows that the base-point-free $g_{10}^{3}=\left|3 g_{4}^{1}-P_{1}-P_{2}\right|$ induces a degree 2 morphism onto a curve of degree 5 in \boldsymbol{P}^{3}. Therefore C becomes a double covering of a curve of genus 2 , contrary to the assumption which we made before (3.3.2).

For curves of genus $g=9$ or 10 , we would like to have a proper description of components of $W_{g-3}^{1}(C)$ of maximal dimension; cf. [CKO; Lemma 3.4] in higher genus cases. For this purpose, we begin with the following which is due to M. Coppens.

Lemma 3.4. Let C be a smooth algebraic curve of genus g. If $g=10$ and $\operatorname{dim} W_{7}^{1}(C)=3$, then $\operatorname{dim} W_{6}^{1}(C)=2$. If $g=9$ and $\operatorname{dim} W_{6}^{1}(C)=2$, then $\operatorname{dim} W_{5}^{1}(C)=1$.

Proof. See [K; Lemma 2.6] or [C; Proposition 12 and Proposition 13].
Lemma 3.5. (i) Let $A \subset W_{d}^{r}(C)$ be an irreducible closed subset satisfying

$$
\operatorname{dim} A \geq r+1
$$

Then for any $P \in C$,

$$
\operatorname{dim}\left[W_{d-1}^{r}(C) \otimes \mathcal{O}_{C}(P)\right] \cap A \geq \operatorname{dim} A-(r+1)
$$

(ii) Let C be a tetragonal curve without g_{6}^{2}. Then for a component $A \subset W_{6}^{1}(C)$ of dimension 2,

$$
\operatorname{dim} A \cap\left[W_{5}^{1}(C)+W_{1}(C)\right] \geq 1
$$

(iii) Let C be a tetragonal curve with a unique g_{4}^{1} of genus $g=9$ or 10. Assume that $W_{6}^{2}(C)=\varnothing, \operatorname{dim} W_{g-3}^{1}(C)=g-7$ and $W_{g-4}^{1}(C)$ has only one component $\left\{g_{4}^{1}\right\}+W_{g-8}(C)$ of maximal dimension. Let $A \subset W_{g-3}^{1}(C)$ be a component of maximal dimension. If $A \supset T+W_{1}(C)$ for some closed irreducible nonempty subset $T \subset W_{g-4}^{1}(C)$, then $A=$ $\left\{g_{4}^{1}\right\}+W_{g-7}(C)$.

Proof. (i) is also due to M. Coppens which follows easily from excess linear series result of Fulton-Harris-Lazarsfeld [FHL]; cf. [C; Proposition 1].
(ii) The proof is a minor modification of the proof of $[\mathbf{C}$; Theorem 2]. We consider the diagram:

where $Z=p_{2}^{-1}(A)$ and p_{1} is the projection map onto the second factor. By (i), p_{1} is surjective and hence there exists an irreducible component \tilde{Z} of Z dominating $W_{1}(C)$ with $\operatorname{dim}(\tilde{Z}) \geq 1$. If $\operatorname{dim}\left(p_{2}(\tilde{Z})\right)=\operatorname{dim}(\tilde{Z})$, then we are done. Suppose $\operatorname{dim}\left(p_{2}(\tilde{Z})\right)<$ $\operatorname{dim}(\tilde{Z})$. Note that p_{2} is injective on the fibers of p_{1}. Therefore it follows that $\operatorname{dim}\left(p_{2}(\tilde{\boldsymbol{Z}})\right)=\operatorname{dim}(\tilde{\boldsymbol{Z}})-1$. Furthermore, for each $\mathscr{L} \in p_{2}(\tilde{\boldsymbol{Z}})$ and for each $P \in C$ there exists $\mathscr{M} \in W_{5}^{1}(C)$ such that $\mathscr{L} \cong \mathscr{M} \otimes \mathcal{O}_{C}(P)$. Since there is no g_{6}^{2} this would imply that every point in C is base point of \mathscr{L} which is an absurdity.
(iii) For $A \neq\left\{g_{4}^{1}\right\}+W_{g-7}(C)$, a general element of A has no base point by the assumption on $W_{g-4}^{1}(C)$. Suppose $A \supset T+W_{1}(C)$. Since a general $\mathscr{L} \in A$ is base-point-free, we have $h^{0}\left(C, \omega_{C} \otimes \mathscr{L}^{-2}\right) \geq 1$ by the description of the Zariski tangent spaces to the scheme $W_{g-3}^{1}(C)$ and by the base-point-free pencil trick; cf. [ACGH; Propostion 4.2, page 189]. Hence $h^{0}\left(C, \omega_{C} \otimes \mathscr{L}_{0}^{-2} \otimes \mathcal{O}_{C}(-2 P)\right) \geq 1$ for any $\mathscr{L}_{0} \in T$ and for any $P \in C$ by semi-continuity. Therefore $h^{0}\left(C, \omega_{C} \otimes \mathscr{L}_{0}^{-2}\right) \geq 3$ for $\mathscr{L}_{0} \in T$ and $\left|\omega_{C} \otimes \mathscr{L}_{0}^{-2}\right|=g_{6}^{2}$, a contradiction.

Lemma 3.6. Let C be a tetragonal curve of genus $g=10$ without g_{6}^{2} and assume that C is not a double covering of a curve of genus 2 . If $\operatorname{dim} W_{7}^{1}(C)=3$, then $\left\{g_{4}^{1}\right\}+W_{3}(C)$ is the only component of $W_{7}^{1}(C)$ of maximal dimension.

Proof. We first note that there is a unique g_{4}^{1} and $h^{0}\left(C, \mathcal{O}_{C}\left(2 g_{4}^{1}\right)\right)=3$. Otherwise there exists a base-point-free g_{8}^{3} which is either birationally very ample or compounded inducing a morphism of degree two onto a curve of degree 4 in \boldsymbol{P}^{3}; but both cases cannot occur by Castelnuovo genus bound or C not being bi-elliptic (by the nonexistence of g_{6}^{2}). Note that $\operatorname{dim} W_{6}^{1}(C)=2$ by Lemma 3.4, and hence $\operatorname{dim} W_{5}^{1}(C)=1$. We further remark that a component of $W_{5}^{1}(C)$ of dimension one is of the form $W_{4}^{1}(C)+W_{1}(C)$. If not, there is a component of $W_{5}^{1}(C)$ of dimension one whose general element is base-point-free, and by the same argument as in [K]-especially [K; Theorem 2.3 and the case (a) in the proof]-one concludes that C is a smooth plane sextic contrary to the hypothesis.
(3.6.1) Claim: $W_{4}^{1}(C)+W_{2}(C)$ is the only component of $W_{6}^{1}(C)$ of maximal dimension.

Suppose that a general element of a component $Y \subset W_{6}^{1}(C)$ of maximal dimension has a base point. Then it follows that $Y=Z+W_{1}(C)$-where $Z \subset W_{5}^{1}(C)$ is a component of dimension one-hence $Z=W_{4}^{1}(C)+W_{1}(C)$ and $Y=W_{4}^{1}(C)+W_{2}(C)$.

Suppose that a general element of a component $Y \subset W_{6}^{1}(C)$ of maximal dimension is base-point-free. By Lemma 3.5 (ii), we have

$$
\operatorname{dim}\left(Y \cap\left[W_{5}^{1}(C)+W_{1}(C)\right]\right) \geq 1
$$

Assume that $Y \supset Z+W_{1}(C)$ where $Z \subset W_{5}^{1}(C)$ is a closed subset. By the description of the Zariski tangent space to the scheme $W_{6}^{1}(C), h^{0}\left(C, \omega_{C} \otimes \mathscr{L}^{-2}\right) \geq 2$ for a general $\mathscr{L} \in Y$ and hence $h^{0}\left(C, \omega_{C} \otimes \mathscr{L}^{-2}\right) \geq 2$ for any $\mathscr{L} \in Y$ by semi-continuity. Therefore $h^{0}\left(C, \omega_{C} \otimes \mathscr{L}_{0}^{-2} \otimes \mathcal{O}_{C}(-2 P)\right) \geq 2$ for any choices of $\mathscr{L}_{0} \in Z$ and $P \in C$, which implies $h^{0}\left(C, \omega_{C} \otimes \mathscr{L}_{0}^{-2}\right) \geq 4$ and hence $\left|K_{C}-2 \mathscr{L}_{0}\right|=g_{8}^{3}$. Since C is a curve without g_{6}^{2}, g_{8}^{3} must be base-point-free. By Castelnuovo genus bound, g_{8}^{3} cannot be birationally very ample and therefore induces a morphism of degree 2 onto an elliptic curve or a rational curve. This is again a contradiction to the fact that C is a curve without g_{6}^{2}. Therefore we have $Y \not \supset Z+W_{1}(C)$ for any closed subset $Z \subset W_{5}^{1}(C)$ and hence

$$
\operatorname{dim}\left(Y \cap\left[W_{4}^{1}(C)+W_{2}(C)\right]\right) \geq 1
$$

Let Σ be a one-dimensional component of $Y \cap\left[W_{4}^{1}(C)+W_{2}(C)\right]$ and let $\sigma \subset W_{2}(C)$ be a one-dimensional locus such that

$$
\Sigma=\left\{\mathcal{O}_{C}\left(g_{4}^{1}+P+Q\right) \mid \mathcal{O}_{C}(P+Q) \in \sigma\right\} .
$$

For $\mathcal{O}_{C}(P+Q) \in \sigma, \quad \mathcal{O}_{C}\left(g_{4}^{1}+P+Q\right) \in Y \cap\left[W_{4}^{1}(C)+W_{2}(C)\right] \subset W_{6}^{1}(C)$ is a singular point and hence $h^{0}\left(C, \mathscr{O}_{C}\left(K_{C}-2 g_{4}^{1}-P-Q\right)\right) \geq 3$ by the description of the Zariski tangent space to the scheme $W_{6}^{1}(C)$. Assume that $\mathrm{Bs}\left|K_{C}-2 g_{4}^{1}\right|=\varnothing$. Recalling $h^{0}\left(C, \mathcal{O}_{C}\left(K_{C}-2 g_{4}^{1}\right)\right)=4$, we see that $\mathcal{O}_{C}(P+Q) \in \sigma$ maps to one point by the morphism induced by $\left|K_{C}-2 g_{4}^{1}\right|$. Therefore $\left|K_{C}-2 g_{4}^{1}\right|$ is not birationally very ample and C should be a double covering of a curve of genus $h \leq 2$ contrary to the hypothesis. Assume $\mathrm{Bs}\left|K_{C}-2 g_{4}^{1}\right|=\Delta \neq \varnothing$, say $R_{0} \in \mathrm{Bs}\left|K_{C}-2 g_{4}^{1}\right|$, then $R_{0} \not \leq P+Q$ for general $\mathcal{O}_{C}(P+Q) \in \sigma$; for if $\sigma=\left\{\mathcal{O}_{C}\left(R_{0}+P\right) \mid P \in C\right\}$ then $\left\{\mathcal{O}_{C}\left(g_{4}^{1}+R_{0}\right)\right\}+W_{1}(C) \subset Y$, which we avoided already. Therefore $\left|K_{C}-2 g_{4}^{1}-\Delta\right|$ is not birationally very ample. Hence C is either hyperelliptic, bi-elliptic or trigonal and this finishes the proof of Claim (3.6.1).
(3.6.2) Claim: For a component $A \subset W_{7}^{1}(C)$ of maximal dimension,

$$
\operatorname{dim}\left[A \cap\left(W_{6}^{1}(C)+W_{1}(C)\right] \geq 2\right.
$$

The proof for this claim is very much similar to the proof of Lemma 3.5 (ii). We again consider the diagram:

where $Z=p_{2}^{-1}(A)$ and p_{1} is a projection map. By Lemma 3.5 (i), p_{1} is surjective and each fiber of p_{1} contains an irreducible component of dimension at least 1. Hence there exists an irreducible component \tilde{Z} of Z dominating $W_{1}(C)$ with $\operatorname{dim}(\tilde{Z}) \geq 2$. If $\operatorname{dim}\left(p_{2}(\tilde{\boldsymbol{Z}})\right)=\operatorname{dim}(\tilde{\boldsymbol{Z}})$, then we are done. Suppose $\operatorname{dim}\left(p_{2}(\tilde{\boldsymbol{Z}})\right)<\operatorname{dim}(\tilde{\boldsymbol{Z}})$. Note that
p_{2} is injective on the fibers of p_{1}. Therefore it follows that $\operatorname{dim}\left(p_{2}(\tilde{\boldsymbol{Z}})\right)=\operatorname{dim}(\tilde{\boldsymbol{Z}})-1$. Furthermore for each $\mathscr{L} \in p_{2}(\tilde{Z})$ and for each $P \in C$ there exists $\mathscr{M} \in W_{6}^{1}(C)$ such that $\mathscr{L} \cong \mathscr{M} \otimes \mathcal{O}_{C}(P)$. If $\mathscr{L} \notin W_{7}^{2}(C)$, then every point $P \in C$ would be a base point of \mathscr{L}. This is a contradiction. Hence $p_{2}(\tilde{Z}) \subset W_{7}^{2}(C)$. By the non-existence of $g_{6}^{2}, \mathscr{L} \in$ $p_{2}(\tilde{Z}) \subset W_{7}^{2}(C)$ is base-point-free and birationally very ample. Therefore it follows that $p_{2}(\tilde{\boldsymbol{Z}})-W_{1}(C) \subset W_{6}^{1}(C)$ is a component of dimension 2 with a base-point-free general element, contradicting (3.6.1) and this finishes the proof of (3.6.2).

We now suppose that there is a component $A \subset W_{7}^{1}(C)$ of dimension 3 other than $W_{4}^{1}(C)+W_{3}(C)$. By (3.6.1), a general element of A is base-point-free. We also have the inequality

$$
\operatorname{dim} A \cap\left[W_{4}^{1}(C)+W_{3}(C)\right] \geq 2
$$

by (3.6.2) and Lemma 3.5 (iii). Let Σ be a component of $A \cap\left[W_{4}^{1}(C)+W_{3}(C)\right]$ of dimension two and consider the morphism $\pi: \Sigma \rightarrow W_{3}(C)$ where $\pi(\mathscr{L})=\left|\mathscr{L}-g_{4}^{1}\right|$ and put $\sigma:=\pi(\Sigma)$, which is a two dimensional family of effective divisor classes $\mathcal{O}_{C}(P+Q+R)$ such that $\mathcal{O}_{C}\left(g_{4}^{1}+P+Q+R\right)$ are also contained in the component A. Therefore $\mathcal{O}_{C}\left(g_{4}^{1}+P+Q+R\right)$ is a singular point of $W_{7}^{1}(C)$ for every $\mathcal{O}_{C}(P+Q+R) \in$ σ. Hence by the description of the Zariski tangent spaces to the scheme $W_{7}^{1}(C)$ and by the base-point-free pencil trick, one has

$$
\begin{equation*}
h^{0}\left(C, \mathcal{O}_{C}\left(K_{C}-2 g_{4}^{1}-P-Q-R\right)\right) \geq 2 \quad \text { for every } \mathcal{O}_{C}(P+Q+R) \in \sigma \tag{3.6.3}
\end{equation*}
$$

We remark that $\operatorname{dim}\left|K_{C}-2 g_{4}^{1}\right|=3$ and the morphism defined by $\left|K_{C}-2 g_{4}^{1}\right|$ is birationally very ample (even when it has a base point) by the hypothesis that C is not a double covering of a curve of genus $h \leq 2$. Let $\phi: C \rightarrow \boldsymbol{P}^{3}$ be the morphism defined by $\left|K_{C}-2 g_{4}^{1}\right|$ and we consider the following two possibilities.
(a) Suppose $\left|K_{C}-2 g_{4}^{1}\right|$ is base-point-free. For every $\mathcal{O}_{C}(P+Q+R) \in \sigma$, $\mathcal{O}_{C}(P+Q+R)$ fails to impose independent conditions on the linear system $\left|K_{C}-2 g_{4}^{1}\right|$ by (3.6.3), and hence the linear span of the image $\phi(P+Q+R)$ is a trisecant line to $\phi(C)$. Therefore the non-degenerate curve $\phi(C) \subset \boldsymbol{P}^{3}$ has a two dimensional family of tri-secant lines which contradicts the general position theorem; [ACGH, page 109].
(b) Suppose $\left|K_{C}-2 g_{4}^{1}\right|$ has nonempty base locus. We remark that there is only one base point, otherwise there exists g_{8}^{3} which would imply $g \leq 9$ by Castelnuovo bound or C is bi-elliptic. Let $R_{0} \in C$ be the base point and consider the morphism $\phi: C \rightarrow \boldsymbol{P}^{3}$ defined by $\left|K_{C}-2 g_{4}^{1}-R_{0}\right|=g_{9}^{3}$. In case $R_{0} \notin \operatorname{Supp} \mathcal{O}_{C}(P+Q+R)$ for general $\mathcal{O}_{C}(P+Q+R) \in \sigma$, the same argument as in (a) applies to get a contradiction. We now suppose that $R_{0} \in \operatorname{Supp} \mathcal{O}_{C}(P+Q+R)$ for general $\mathscr{O}_{C}(P+Q+R) \in \sigma$. Since $R_{0} \in \operatorname{Supp} \mathcal{\theta}_{C}(P+Q+R)$ is a closed condition and σ is irreducible, we have $R_{0} \in \operatorname{Supp} \mathcal{O}_{C}(P+Q+R)$ for all $\mathcal{O}_{C}(P+Q+R) \in \sigma$. Consider the morphism $\alpha: \sigma \rightarrow$ $W_{2}(C)$, where $\alpha\left(\mathcal{O}_{C}(P+Q+R)\right)=\mathcal{O}_{C}\left(P+Q+R-R_{0}\right)$. Again by the irreducibility of $\sigma, \alpha(\sigma)=W_{2}(C)$ which in turn implies

$$
\sigma=\left\{\mathcal{O}_{C}\left(P+Q+R_{0}\right): P+Q \in C_{2}\right\} .
$$

Therefore $\Sigma=\left\{g_{4}^{1}\right\}+\sigma=\mathcal{O}_{C}\left(g_{4}^{1}+R_{0}\right)+W_{2}(C) \subset A$ and $A=\left\{g_{4}^{1}\right\}+W_{3}(C)$ by Lemma 3.5 (iii).

Theorem 3.7. Let C be a tetragonal curve of genus $g=10$ which is not a double covering of a curve of genus $h \leq 2$. Then

$$
\operatorname{dim} W_{g-1}^{2}(C) \lesseqgtr g-7
$$

Proof. We assume that there is a component $X \subset W_{g-1}^{2}(C)$ with $\operatorname{dim} X=g-7$. By exactly the same argument as in the proof of [CKO; Theorem 1.6], one can easily show that a general element of X is base-point-free. Therefore can apply Lemma 2.3 as well as Lemma 2.2 to our present situation. Recall the following diagram encountered in the proof of [$\mathbf{C K O}$; Lemma 2.6];

$$
\begin{gathered}
W_{g-3}^{1}(C) \times W_{2}(C) \supset q^{-1}(X) \xrightarrow{q} X \subset W_{g-1}^{2}(C) \\
\stackrel{\downarrow}{W_{g-3}^{1}(C) .}
\end{gathered}
$$

Let

$$
q^{-1}(X)=Z_{0} \cup \cdots \cup Z_{\alpha} \cup Y_{1} \cup \cdots \cup Y_{\beta}
$$

where $Z_{0}, \ldots, Z_{\alpha}$ are components of $q^{-1}(X)$ dominating X and Y_{1}, \ldots, Y_{β} are those which do not dominate X. Since $\operatorname{dim} p\left(Z_{i}\right)=g-7$ for every i by Lemma 2.3 (ii) (more precisely by the proof of $[\mathbf{C K O}$; Lemma 2.6 (ii)]), we apply Lemma 3.6 to have

$$
\begin{equation*}
p\left(Z_{i}\right)=g_{4}^{1}+W_{g-7}(C) \tag{3.7.1}
\end{equation*}
$$

for every component $Z_{i} \subset q^{-1}(X)$ dominating X.
We take a general $\mathscr{L} \in X \backslash\left(q\left(Y_{1}\right) \cup \cdots \cup q\left(Y_{\beta}\right)\right)$ and let $\left(\mathscr{M}, \mathscr{O}_{C}(A+B)\right) \in q^{-1}(\mathscr{L})$ and fix i, say $i=0$ such that $q^{-1}(\mathscr{L}) \cap Z_{0} \neq \varnothing$. Since \mathscr{L} is base-point-free, $\mathscr{M} \in p\left(Z_{0}\right)$ is a complete pencil of degree $g-3$ and hence $\mathscr{M}=\mathcal{O}_{C}\left(g_{4}^{1}+P_{1}+\cdots+P_{g-7}\right)$ by (3.7.1). Since $\mathscr{L}=\mathcal{O}_{C}\left(g_{4}^{1}+P_{1}+\cdots+P_{g-7}+A+B\right)$ is birationally very ample, the plane curve $C_{\mathscr{L}}$-the image of the morphism $\psi_{\mathscr{L}}$ induced by \mathscr{L}-has an ordinary singular point of multiplicity $g-5$ corresponding to the divisor $P_{1}+\cdots+P_{g-7}+A+B$ by Lemma 2.5. Since

$$
p_{a}\left(C_{\mathscr{L}}\right)=\frac{(g-2)(g-3)}{2}>g+\frac{(g-5)(g-6)}{2},
$$

it follows that there exists at least one extra singular point on the curve $C_{\mathscr{Q}}$. Let μ be the multiplicity of an extra singular point of the plane curve $C_{\mathscr{L}}$. Then it follows that there is a complete base-point-free pencil $h_{g-1-\mu}^{1}$ such that $\mathscr{L}=h_{g-1-\mu}^{1} \otimes$ $\mathcal{O}_{C}\left(Q_{1}+\cdots+Q_{\mu}\right)$ for some $Q_{1}, \ldots, Q_{\mu} \in C ; h_{g-1-\mu}^{1}$ is cut out by lines through extra singular point. On the other hand, by the choice of $\mathscr{L} \in X \backslash\left(q\left(Y_{1}\right) \cup \cdots \cup q\left(Y_{\beta}\right)\right)$, we have

$$
\left(h_{g-1-\mu}^{1} \otimes \mathcal{O}_{C}\left(Q_{1}+\cdots+Q_{\mu-2}\right), \mathscr{O}_{C}\left(Q_{\mu-1}+Q_{\mu}\right)\right) \in q^{-1}(\mathscr{L}) \cap Z_{i}
$$

for some component $Z_{i} \subset q^{-1}(X)$ dominating X.
If $\mu<g-5$ (i.e. $\mu-2<g-7$), then this leads to a contradiction to the assertion (3.7.1) that every complete pencil of degree $g-3$ in $W_{g-3}^{1}(C)$ which is in $p\left(Z_{i}\right)$, must
have $g-7$ base points. Therefore $\mu=g-5$ and we have at least two singular points on $C_{\mathscr{L}}$ with multiplicities $g-5$, hence

$$
g \leq p_{a}\left(C_{\mathscr{L}}\right)-2 \cdot \frac{(g-5)(g-6)}{2}=\frac{(g-2)(g-3)}{2}-2 \cdot \frac{(g-5)(g-6)}{2}
$$

But this is impossible for $g=10$.
Proof of Theorem I. For a trigonal curve, a double covering of a curve of genus 2 or a smooth plane sextic, $\operatorname{dim} W_{g-1}^{2}=g-7$ by Remark 2.1 (v), Remark 2.1 (vi) and Proposition 3.1. The converse holds by [CKO; Theorem 1.4] and Theorem 3.7.

4. Curves of genus nine.

For curves of genus $g=9$, we also need to describe precisely the component of $W_{g-3}^{1}(C)$ of maximal dimension as we did in Lemma 3.6 for curves of genus $g=10$. Unfortunately, in the course of the proof of Lemma 4.1, there emerges another class of curves of genus $g=9$ which needs to be examined carefully; namely, the double coverings of a smooth plane quartic. In fact, it turns out that such a curve C does not satisfy $\operatorname{dim} W_{g-1}^{2}(C)=g-7$, whose proof is rather lengthy and technical. Therefore we provide a proof of the result regarding double coverings of a smooth plane quartic in the Appendix.

Lemma 4.1. Let C be a tetragonal curve of genus $g=9$ without g_{6}^{2}. We assume that $\operatorname{dim} W_{g-1}^{2}(C)=g-7$ and that C is neither a double covering of a curve of genus 2 nor a curve with a smooth model of degree 8 in \boldsymbol{P}^{3}; hence C has only one g_{4}^{1} and $h^{0}\left(C, \mathcal{O}_{C}\left(2 g_{4}^{1}\right)\right)=3$. We assume further that $\left(e_{2}, e_{3}\right) \neq(1,1)$, i.e. $h^{0}\left(C, \mathcal{O}_{C}\left(3 g_{4}^{1}\right)\right) \leq 5$. If $\operatorname{dim} W_{g-3}^{1}(C)=g-7$, then $\left\{g_{4}^{1}\right\}+W_{2}(C)$ is the only component of $W_{6}^{1}(C)$ of maximal dimension.

Proof. Note that C is not bi-elliptic by the non-existence of g_{6}^{2} and $\operatorname{dim} W_{5}^{1}(C)=$ 1 by Lemma 3.4.
(4.1.1) Claim: $W_{4}^{1}(C)+W_{1}(C)$ is the only component of $W_{5}^{1}(C)$ of maximal dimension; this follows easily from [K; Theorem 2.3 and the case (b) in the proof].

We suppose that there is a component $A \subset W_{6}^{1}(C)$ of dimension 2 other than $W_{4}^{1}(C)+W_{2}(C)$. Then a general element of A is base-point-free by (4.1.1). By Lemma 3.5 (ii), we have

$$
\begin{equation*}
\operatorname{dim} A \cap\left[W_{5}^{1}(C)+W_{1}(C)\right] \geq 1 \tag{4.1.2}
\end{equation*}
$$

Since $W_{4}^{1}(C)+W_{1}(C)$ is the only component of $W_{5}^{1}(C)$ of maximal dimension, we have the following inequality by (4.1.2) and Lemma 3.5 (iii),

$$
\begin{equation*}
\operatorname{dim} A \cap\left[W_{4}^{1}(C)+W_{2}(C)\right] \geq 1 \tag{4.1.3}
\end{equation*}
$$

Let Σ be a component of $A \cap\left[W_{4}^{1}(C)+W_{2}(C)\right]$ of dimension one and consider the morphism $\pi: \Sigma \rightarrow W_{2}(C)$ where $\pi(\mathscr{L})=\left|\mathscr{L}-g_{4}^{1}\right|$. Put $\sigma:=\pi(\Sigma)$. Note that
$\mathcal{O}_{C}\left(g_{4}^{1}+P+Q\right)$ is a singular point of $W_{6}^{1}(C)$ for every $\mathcal{O}_{C}(P+Q) \in \sigma$. Hence by the description of the Zariski tangent spaces to the scheme $W_{6}^{1}(C)$ and by the base-pointfree pencil trick, one has

$$
\begin{equation*}
h^{0}\left(C, \mathcal{O}_{C}\left(K_{C}-2 g_{4}^{1}-P-Q\right)\right) \geq 2 \text { for all } \mathcal{O}_{C}(P+Q) \in \sigma \tag{4.1.4}
\end{equation*}
$$

Let $\phi: C \rightarrow \boldsymbol{P}^{2}$ be the morphism induced by $\left|K_{C}-2 g_{4}^{1}\right|=g_{8}^{2}$ and we consider the following two cases.
(a) Suppose $\left|K_{C}-2 g_{4}^{1}\right|$ has a nonempty base locus. We note that there is only one base point, otherwise there exists g_{6}^{2}. Let $R_{0} \in C$ be the base point. Then morphism $\phi: C \rightarrow \boldsymbol{P}^{2}$ is indeed induced by $\left|K_{C}-2 g_{4}^{1}-R_{0}\right|=g_{7}^{2}$ which must be birationally very ample. If $R_{0} \notin \operatorname{Supp} \mathcal{O}_{C}(P+Q)$ for general $\mathcal{O}_{C}(P+Q) \in \sigma$, (4.1.4) implies $\operatorname{deg} \phi \geq 2$ which is a contradiction. We now suppose that $R_{0} \in \operatorname{Supp} \mathscr{\theta}_{C}(P+Q)$ for general $\mathcal{O}_{C}(P+Q) \in \sigma$. Since $R_{0} \in \operatorname{Supp} \mathcal{O}_{C}(P+Q)$ is a closed condition and σ is irreducible, we have $R_{0} \in \operatorname{Supp} \mathcal{O}_{C}(P+Q)$ for all $\mathcal{O}_{C}(P+Q) \in \sigma$. Consider a morphism $\alpha: \sigma \rightarrow W_{1}(C)$, where $\alpha\left(\mathcal{O}_{C}(P+Q)\right)=\mathcal{O}_{C}\left(P+Q-R_{0}\right)$. By the irreducibility of σ, $\alpha(\sigma)=W_{1}(C)$ which in turn implies

$$
\begin{equation*}
\sigma=\left\{\mathcal{O}_{C}\left(P+R_{0}\right): P \in C\right\} . \tag{4.1.5}
\end{equation*}
$$

Therefore

$$
\Sigma=\left\{g_{4}^{1}\right\}+\sigma=\mathcal{O}_{C}\left(g_{4}^{1}+R_{0}\right)+W_{1} \subset A
$$

and hence $A=\left\{g_{4}^{1}\right\}+W_{2}(C)$ by Lemma 3.5 (iii).
(b) Suppose $\left|K_{C}-2 g_{4}^{1}\right|$ is base-point-free. If $\operatorname{deg} \phi=4$, then $\left|K_{C}-2 g_{4}^{1}\right|=\left|2 g_{4}^{1}\right|$ and hence $h^{0}\left(C, \mathcal{O}_{C}\left(3 g_{4}^{1}\right)\right) \geq 6$, contrary to the hypothesis $\left(e_{2}, e_{3}\right) \neq(1,1)$. We also note that $\operatorname{deg} \phi \neq 1$ by (4.1.4); for one dimensional family of effective divisors $\mathcal{O}_{C}(P+Q) \in \sigma$, P and Q have the same image under ϕ.

Finally we assume $\operatorname{deg} \phi=2$ and let $\phi(C)=E$ which is a plane curve of degree 4. If E is singular, then E is a curve of genus $h \leq 2$, contrary to the hypothesis. Hence E is a smooth non-hyperelliptic curve of genus 3 and $\left|K_{C}-2 g_{4}^{1}\right|=\left|\phi^{*} K_{E}\right|$. Let $\imath: C \rightarrow C$ be an involution induced by the double covering ϕ. By Riemann-Hurwitz relation (2.A), $\phi_{*} \mathcal{O}_{C}=\mathcal{O}_{E} \oplus \mathscr{S}$ and $\operatorname{deg} \mathscr{S}^{-1}=4$. Hence

$$
\mathscr{S}^{-1} \cong \mathcal{O}_{E}\left(K_{E}\right) \quad \text { or } \quad \mathscr{S}^{-1} \cong \mathcal{O}_{E}\left(h_{4}^{1}\right)
$$

where h_{4}^{1} is a complete pencil of degree 4 on E. Assume $\mathscr{S}^{-1} \cong \mathcal{O}_{E}\left(K_{E}\right)$. Then

$$
\begin{aligned}
H^{0}\left(C, \mathcal{O}_{C}\left(K_{C}-2 g_{4}^{1}\right)\right) & \cong H^{0}\left(C, \mathcal{O}_{C}\left(\phi^{*} K_{E}\right)\right) \\
& \cong H^{0}\left(E, \mathcal{O}_{E}\left(K_{E}\right)\right) \oplus H^{0}\left(E, \mathscr{S} \otimes \mathcal{O}_{E}\left(K_{E}\right)\right)
\end{aligned}
$$

hence $h^{0}\left(C, \mathcal{O}_{C}\left(K_{C}-2 g_{4}^{1}\right)\right)=4$, contrary to the assumption $h^{0}\left(C, \mathcal{O}_{C}\left(2 g_{4}^{1}\right)\right)=3$. Therefore we have $\mathscr{S}^{-1} \cong \mathcal{O}_{E}\left(h_{4}^{1}\right)$. Since g_{4}^{1} is unique, $l^{*} g_{4}^{1}=g_{4}^{1}$ and it follows that $\mathcal{O}_{C}\left(2 g_{4}^{1}\right) \cong \phi^{*} \mathscr{M}$ for some line bundle \mathscr{M} of degree 4 on E. Therefore

$$
H^{0}\left(C, \mathcal{O}_{C}\left(2 g_{4}^{1}\right)\right) \cong H^{0}(E, \mathscr{M}) \oplus H^{0}\left(E, \mathcal{O}_{E}\left(-h_{4}^{1}\right) \otimes \mathscr{M}\right)
$$

Since $h^{0}\left(C, \mathcal{O}_{C}\left(2 g_{4}^{1}\right)\right)=3$, we have either $\mathscr{M} \cong \mathcal{O}_{E}\left(h_{4}^{1}\right)$ or $\mathscr{M} \cong \mathcal{O}_{E}\left(K_{E}\right)$. If $\mathscr{M} \cong$ $\mathcal{O}_{E}\left(K_{E}\right)$, then the fact $\mathcal{O}_{C}\left(2 g_{4}^{1}\right) \cong \phi^{*} \mathscr{M}$ together with $\left|K_{C}-2 g_{4}^{1}\right|=\left|\phi^{*} K_{E}\right|$ imply
$\left|K_{C}\right|=\left|4 g_{4}^{1}\right|$ which is contradictory to the hypothesis $\left(e_{2}, e_{3}\right) \neq(1,1)$. Therefore we have reached to the following special situation:

$$
\left\{\begin{array}{l}
\text { (i) There is a degree two map } \phi: C \rightarrow E, \tag{4.1.6}\\
\quad E \text { is a non-hyperelliptic curve of genus } 3 . \\
\text { (ii) } K_{C} \sim \phi^{*}\left(K_{E}\right)+2 g_{4}^{1} \\
\text { (iii) } h^{0}\left(C, \mathcal{O}_{C}\left(2 g_{4}^{1}\right)\right)=3 \\
\text { (iv) } 2 g_{4}^{1}=\phi^{*}\left(h_{4}^{1}\right) \text { for some } h_{4}^{1} \text { on } E \\
\text { (v) } \mathcal{O}_{E}\left(h_{4}^{1}\right) \nsupseteq \mathcal{O}_{E}\left(K_{E}\right) \\
\text { (vi) } \phi_{*} \mathcal{O}_{C} \cong \mathcal{O}_{E} \oplus \mathcal{O}_{E}\left(-h_{4}^{1}\right) \\
\text { (vii) } C \text { is not a double covering of a curve of genus } h \leq 2 .
\end{array}\right.
$$

By Proposition A. 0 in the Appendix, for a curve C of genus $g=9$ satisfying the conditions (4.1.6), one has $\operatorname{dim} W_{8}^{2}(C)<2$ and this finishes the proof.

We are now ready to prove the following theorem which is a genus nine version of Theorem 3.7.

Theorem 4.2. Let C be a tetragonal curve of genus $g=9$ without g_{6}^{2} which is neither a double covering of a curve of genus $h \leq 2$ nor a curve with a smooth model of degree 8 in \boldsymbol{P}^{3}, then

$$
\operatorname{dim} W_{g-1}^{2}(C) \not f g-7
$$

Proof. By Remark 3.2 (ii), we may assume that C is a tetragonal curve with a unique g_{4}^{1}. By Lemma 3.3, we may further assume that $\left(e_{2}, e_{3}\right) \neq(1,1)$. In order to save ink, we avoid repeating same argument which already appeared in the proof of Theorem 3.7. Since we now have Lemma 4.1 for $g=9$ which is a variation of Lemma 3.6, one can argue as in the proof of Theorem 3.7 that a plane model $C_{\mathscr{L}}$ defined by a general $\mathscr{L} \in X$ has at least two singular points of multiplicities 4; at least one of them being an ordinary 4 -fold point by Lemma 2.5. Accordingly

$$
p_{a}\left(C_{\mathscr{L}}\right)=21=\frac{(g-2)(g-3)}{2} \geq g+2 \cdot \frac{(g-5)(g-6)}{2}=21
$$

and hence $C_{\mathscr{L}} \subset \boldsymbol{P}^{2}$ has exactly two singular points of multiplicities 4 as its only singularities, contrary to the assumption for g_{4}^{1} being unique.

Proof of Theorem II. If C is either trigonal, a double covering of a curve of genus 2, a tetragonal curve with a smooth model of degree 8 in \boldsymbol{P}^{3} or a curve with a plane model of degree 6 , then $\operatorname{dim} W_{g-1}^{2}(C)=g-7$ by Remark 2.1 (v), Remark 2.1 (vi), Remark 3.2 (i) and Proposition 3.1. The converse holds by [CKO; Theorem 1.4] and Theorem 4.2.

5. Curves of genus seven and eight.

In this section, we prove Theorem III. We also estimate the dimension of $W_{g-1}^{2}(C)$ for a double covering of a curve of genus 2 which was left out in [CKO; Corollary 2.3] for the cases $g=7,8$; cf. [CKO; Remarks 2.4 (i)].

Proof of Theorem III. Suppose C is either trigonal or has a birationally very ample g_{6}^{2}. Then $\operatorname{dim} W_{g-1}^{2}(C)=g-7$ by Remark 2.1 (v) and Proposition 3.1.

If $\operatorname{dim} W_{g-1}^{2}(C)=g-7$ and $g=7$, then $g_{6}^{2} \in W_{6}^{2}(C)$ must be either birationally very ample or of the form $g_{6}^{2}=2 g_{3}^{1}$ by Remark 2.1 (ii).

Suppose $\operatorname{dim} W_{g-1}^{2}(C)=g-7$ and $g=8$. If there exists $g_{7}^{2} \in W_{7}^{2}(C)$ with nonempty base locus, then C must be either trigonal or a curve with a birationally very ample g_{6}^{2}. Therefore we may assume that every $g_{7}^{2} \in W_{7}^{2}(C)$ is base-point-free, birationally very ample and that C is neither trigonal nor a curve with a birationally very ample g_{6}^{2}. From Lemma 2.3, Theorem 1.2 and Remark 2.1, it follows that $\operatorname{dim} W_{5}^{1}(C)=1$. Therefore by $[\mathbf{B K M O}$; Theorem 1], C must be a tetragonal curve. Furthermore every component of $\operatorname{dim} W_{5}^{1}(C)$ of maximal dimension is of the form

$$
\begin{equation*}
\left\{g_{4}^{1}\right\}+W_{1}(C) \tag{5.I.1}
\end{equation*}
$$

by [BKMO; (3.2.1) Corollary 2]. Note that C has only one g_{4}^{1}; otherwise we have a g_{8}^{3} which is birationally very ample but not very ample, in which case there exists a g_{6}^{2} cut out by hyperplanes through a singular point. Since every element of $W_{7}^{2}(C)$ is base-point-free and birationally very ample, C has a plane model $C_{\mathscr{L}}$ of degree 7 with an ordinary triple point by Lemma 2.5. Since $g=8<p_{a}\left(C_{\mathscr{L}}\right)-3$, there exists another singular point on $C_{\mathscr{L}}$ whose multiplicity must be 3 by (5.I.1) inducing another base-point-free g_{4}^{1}; the arguments in these lines are almost parallel to the latter part of the proof of Theorem I or Theorem II. And this is contradictory to the uniqueness of g_{4}^{1}.

For the rest of this section, we would like to concentrate on the dimension estimate of $W_{g-1}^{2}(C)$ for curves of genus $g=7,8$ which are double coverings of a curve of genus 2. As we saw in Theorem III, the necessary and sufficient conditions for $W_{g-1}^{2}(C)$ being of dimension $g-7$ for these low genus curves are slightly different from those of higher genus; doubling coverings of curves of genus 2 suddenly disappear from the list of curves with $\operatorname{dim} W_{g-1}^{2}(C)=g-7$. Since Theorem III does not provide any direct information on the dimension of $W_{g-1}^{2}(C)$ for double coverings of curves of genus 2 , it seems to be worthwhile to estimate the dimension of $W_{g-1}^{2}(C)$.

Proposition 5.1. Let C be curve of genus $g=8$ which is a double covering of a curve of genus 2. Then C does not have a birationally very ample g_{6}^{2} and $\operatorname{dim} W_{g-1}^{2}(C) \leq$ $g-8$.

Proof. For a double cover $\pi: C \rightarrow E$ of a curve of genus 2 , one notes that $g_{4}^{1}=\pi^{*}\left(g_{2}^{1}\right)$ is a unique base-point-free g_{4}^{1} by Castelnuovo-Severi inequality.
Claim: $\left|K_{C}-g_{4}^{1}\right|=g_{10}^{4}$ is very ample.
Let $P, Q \in C$ and consider $\mathcal{O}_{C}\left(g_{4}^{1}+P+Q\right)$. Recall that $\pi_{*}\left(\mathcal{O}_{C}\right) \cong \mathcal{O}_{E} \oplus \mathscr{S}, \operatorname{deg} \mathscr{S}=-5$ by the Riemann-Hurwitz relation (2.A). If $P+Q=\pi^{*}(p)$ for some $p \in E$, then

$$
\begin{aligned}
h^{0}\left(C, \mathcal{O}_{C}\left(g_{4}^{1}+P+Q\right)\right) & =h^{0}\left(E, \pi_{*} \mathcal{O}_{C}\left(\pi^{*}\left(g_{2}^{1}+p\right)\right)\right) \\
& =h^{0}\left(E, \mathcal{O}_{E}\left(g_{2}^{1}+p\right)\right)+h^{0}\left(E, \mathcal{O}_{E}\left(g_{2}^{1}+p\right) \otimes \mathscr{S}\right) \\
& =h^{0}\left(E, \mathcal{O}_{E}\left(g_{2}^{1}+p\right)\right)=2 .
\end{aligned}
$$

If $P+Q \neq \pi^{*}(p)$ for any $p \in E$, we take $P^{\prime}, Q^{\prime} \in C$ which are conjugate points of P, Q with respect to π. Set $p=\pi(P), q=\pi(Q)$. Again by (2.A) and the projection formula, we have

$$
\begin{aligned}
h^{0}\left(C, \mathcal{O}_{C}\left(g_{4}^{1}+P+P^{\prime}+Q+Q^{\prime}\right)\right) & =h^{0}\left(C, \mathcal{O}_{C}\left(\pi^{*}\left(g_{2}^{1}+p+q\right)\right)\right) \\
& =h^{0}\left(E, \pi_{*} \mathcal{O}_{C}\left(\pi^{*}\left(g_{2}^{1}+p+q\right)\right)\right) \\
& =h^{0}\left(E, \mathcal{O}_{E}\left(g_{2}^{1}+p+q\right)\right)+h^{0}\left(E, \mathcal{O}_{E}\left(g_{2}^{1}+p+q\right) \otimes \mathscr{S}\right) \\
& =3 .
\end{aligned}
$$

Since $\pi^{*}\left(g_{2}^{1}+p+q\right)$ is base-point-free, $h^{0}\left(C, \Theta_{C}\left(g_{4}^{1}+P+Q\right)\right)=2$ and this finishes the proof of the claim.

Now we assume that C has a birationally very ample $\mathscr{L}=g_{6}^{2}$ with the induced plane model $C_{\mathscr{L}}$, which must be singular since $g=8<p_{a}\left(C_{\mathscr{L}}\right)=10$. Since C cannot be trigonal by Castelnuovo-Severi inequality, $C_{\mathscr{L}}$ has only double points and hence there exist $P, Q \in C$ (corresponding to a double point) such that $|\mathscr{L}-P-Q|=\pi^{*}\left(g_{2}^{1}\right)$. On the other hand, it follows from the Claim that

$$
h^{0}\left(C, \omega_{C} \otimes \mathcal{O}_{C}\left(-g_{4}^{1}-P-Q\right)\right)=h^{0}\left(C, \omega_{C} \otimes \mathscr{L}^{-1}\right)=h^{0}\left(C, \omega_{C} \otimes \mathcal{O}_{C}\left(-g_{4}^{1}\right)\right)-2=3
$$

which in turn implies $h^{0}(C, \mathscr{L})=2$ by the Riemann-Roch formula and this is a contradiction. Therefore C cannot have a birationally very ample g_{6}^{2} and $\operatorname{dim} W_{7}^{2}(C) \leq 0$ by Theorem III.

For a curve of genus $g=7$ which is a double covering of a curve of genus 2 , it may happen that $\operatorname{dim} W_{g-1}^{2}(C)=g-7$ or $W_{g-1}^{2}(C)=\varnothing$.

Proposition 5.2. For $g=7$,
(i) there exists a double covering C of a curve of genus 2 such that $\operatorname{dim} W_{6}^{2}(C)=0$.
(ii) There also exists a double covering C of a curve of genus 2 such that $W_{6}^{2}(C)=$ \varnothing.
A proof of Proposition 5.2 requires several supplementary lemmas.
Lemma 5.3. For a tetragonal curve C of genus $g=7, C$ has a birationally very ample g_{6}^{2} if and only if either $2 \leq \operatorname{Card} W_{4}^{1}(C)<\infty$ or $\operatorname{Card} W_{4}^{1}(C)=1$ and $h^{0}\left(C, \mathcal{O}_{C}\left(2 g_{4}^{1}\right)\right)=4$.

Proof. Let C be a curve with a birationally very ample $\mathscr{L}=g_{6}^{2}$. We note that C is not bi-elliptic; a curve with a birationally very ample g_{6}^{2} has a base-pointfree g_{5}^{1} whereas a bi-elliptic curve cannot have a base-point-free g_{5}^{1} by CastelnuovoSeveri inequality. Therefore $\operatorname{dim} W_{4}^{1}(C)=0$ by Theorem 1.2. Let $\psi_{\mathscr{L}}: C \rightarrow \boldsymbol{P}^{2}$ be the morphism induced by \mathscr{L} and assume Card $W_{4}^{1}(C)=1$. Since $g=7<p_{a}\left(\psi_{\mathscr{L}}(C)\right)=10$, the unique g_{4}^{1} on C is induced by a unique double point $P \in \psi_{\mathscr{L}}(C)$. Moreover we have two infinitely near singular points Q and R. Considering the linear system on C induced by the linear system $\left|\mathcal{O}_{P^{2}}(3)-P-Q-R\right|$ of cubics in \boldsymbol{P}^{2} with assigned base points P, Q and R, one has

$$
h^{0}\left(C, \mathcal{O}_{C}\left(3 g_{4}^{1}\right)\right) \geq h^{0}\left(\boldsymbol{P}^{2}, \mathcal{O}_{\boldsymbol{P}^{2}}(3)-P-Q-R\right) \geq 7 .
$$

Therefore $\mathcal{O}_{C}\left(3 g_{4}^{1}\right) \cong \omega_{C}$ and hence $h^{0}\left(C, \mathcal{O}_{C}\left(2 g_{4}^{1}\right)\right)=4$.

Assume that either $2 \leq \operatorname{Card} W_{4}^{1}(C)<\infty$ or $\operatorname{Card} W_{4}^{1}(C)=1$ and $h^{0}\left(C, \mathcal{O}\left(2 g_{4}^{1}\right)\right)=$ 4 holds. In both cases, we have a base-point-free $\mathscr{D}=g_{8}^{3}$ which is of the form $\left|g_{4}^{1}+h_{4}^{1}\right|, g_{4}^{1} \neq h_{4}^{1}$ or $\left|2 g_{4}^{1}\right|$. We note that C cannot be bi-elliptic; for a bi-elliptic curve C, $\operatorname{dim} W_{4}^{1}(C)=1$. Therefore \mathscr{D} induces a birational morphism $\psi_{\mathscr{D}}$ onto $C_{0}=$ $\psi_{\mathscr{D}}(C) \subset \boldsymbol{P}^{3}$ which lies either on a smooth quadric if $\mathscr{D}=\left|g_{4}^{1}+h_{4}^{1}\right|$ or on a quadric cone if $\mathscr{D}=\left|2 g_{4}^{1}\right|$. Since $p_{a}\left(C_{0}\right)=9, C_{0}$ has a singular point P with $\operatorname{mult}_{P}\left(C_{0}\right)=2$ and hence hyperplanes through P cut out a birationally very ample g_{6}^{2}.

Let $C \xrightarrow{\pi} E$ be a double covering of a curve E with $g(E)=2$ and $g(C)=7$. Let $R \subset E$ be the branch locus of π. By (2.A) and base-point-free pencil trick, we have $\mathscr{S} \cong \mathcal{O}_{E}\left(-g_{2}^{1}-p-q\right)$. Let $s \in H^{0}\left(E, \mathcal{O}_{E}\left(2 g_{2}^{1}+2 p+2 q\right)\right)$ be a section with the zero locus $(s)_{0}=R$. Let V be a subspace of $H^{0}\left(E, \mathcal{O}_{E}\left(2 g_{2}^{1}+2 p+2 q\right)\right)$ which is the image of the cup product map

$$
H^{0}\left(E, \mathcal{O}_{E}\left(g_{2}^{1}+p+q\right)\right)^{\otimes 2} \xrightarrow{\delta} H^{0}\left(E, \mathcal{O}_{E}\left(2 g_{2}^{1}+2 p+2 q\right)\right)
$$

and consider a natural morphism

$$
H^{0}\left(C, \pi^{*} \mathcal{O}_{E}\left(g_{2}^{1}+p+q\right)\right)^{\otimes 2} \xrightarrow{\alpha} H^{0}\left(C, \pi^{*} \mathcal{O}_{E}\left(2 g_{2}^{1}+2 p+2 q\right)\right) .
$$

Using the identifications

$$
\begin{aligned}
H^{0}\left(C, \mathcal{O}_{C}\left(\pi^{*}\left(g_{2}^{1}+p+q\right)\right)\right) & \cong H^{0}\left(E, \pi_{*} \pi^{*} \mathcal{O}_{E}\left(g_{2}^{1}+p+q\right)\right) \\
& \cong H^{0}\left(E, \mathcal{O}_{E}\left(g_{2}^{1}+p+q\right)\right) \oplus H^{0}\left(E, \mathscr{S} \otimes \mathcal{O}_{E}\left(g_{2}^{1}+p+q\right)\right) \\
& \cong H^{0}\left(E, \mathcal{O}_{E}\left(g_{2}^{1}+p+q\right)\right) \oplus H^{0}\left(E, \mathcal{O}_{E}\right)
\end{aligned}
$$

and

$$
\begin{align*}
& H^{0}\left(C, \mathcal{O}_{C}\left(\pi^{*}\left(2 g_{2}^{1}+2 p+2 q\right)\right)\right) \tag{5.A}\\
& \quad \cong H^{0}\left(E, \mathcal{O}_{E}\left(2 g_{2}^{1}+2 p+2 q\right)\right) \oplus H^{0}\left(E, \mathcal{O}_{E}\left(g_{2}^{1}+p+q\right)\right)
\end{align*}
$$

we see that the morphism α induces the map

$$
\psi: H^{0}\left(E, \mathcal{O}_{E}\right) \otimes H^{0}\left(E, \mathcal{O}_{E}\right) \cong k \otimes k \rightarrow H^{0}\left(E, \mathcal{O}_{E}\left(2 g_{2}^{1}+2 p+2 q\right)\right)
$$

with $\psi(1)=s$ by the algebra structure of $\pi_{*}\left(\mathcal{O}_{C}\right)$. We also see that

$$
\begin{equation*}
\operatorname{Im} \alpha=\operatorname{Span}\{V, s\} \oplus H^{0}\left(E, \mathcal{O}_{E}\left(g_{2}^{1}+p+q\right)\right), \tag{5.B}
\end{equation*}
$$

under the identification (5.A).
Lemma 5.4. Let $C \xrightarrow{\pi} E$ be a double covering with $g(E)=2$ and $g(C)=7$. We assume that C is not bi-elliptic and put $g_{4}^{1}=\pi^{*}\left(g_{2}^{1}\right)$.
(i) $h^{0}\left(C, \mathcal{O}_{C}\left(2 g_{4}^{1}\right)\right) \geq 4$ if and only if $\mathscr{S} \cong \mathcal{O}_{E}\left(-2 g_{2}^{1}\right)$.
(ii) Suppose $\mathscr{S} \not \not \mathcal{O}_{E}\left(-2 g_{2}^{1}\right)$. Then C has at least two complete pencil of degree 4 if and only if $s \in V$.

Proof. (i) follows directly from the following equality;

$$
\begin{aligned}
h^{0}\left(C, \mathcal{O}_{C}\left(2 g_{4}^{1}\right)\right) & =h^{0}\left(C, \mathcal{O}_{C}\left(\pi^{*}\left(2 g_{2}^{1}\right)\right)\right)=h^{0}\left(E, \pi_{*} \mathcal{O}_{C}\left(\pi^{*}\left(2 g_{2}^{1}\right)\right)\right) \\
& =h^{0}\left(E, \mathcal{O}_{E}\left(2 g_{2}^{1}\right)\right)+h^{0}\left(E, \mathcal{O}_{E}\left(2 g_{2}^{1}\right) \otimes \mathscr{S}\right) .
\end{aligned}
$$

(ii) Since $\mathscr{S} \not \not \mathcal{O}_{E}\left(-2 g_{2}^{1}\right), \mathscr{S} \cong \mathcal{O}_{E}\left(-g_{2}^{1}-p-q\right)$ for $p+q \notin g_{2}^{1}$ and hence the morphism $E \rightarrow \boldsymbol{P}^{2}$ induced by $\left|g_{2}^{1}+p+q\right|$ is birationally very ample. Thus we have an exact sequence

$$
0 \rightarrow \operatorname{Sym}^{2} H^{0}\left(E, \mathcal{O}_{E}\left(g_{2}^{1}+p+q\right)\right) \xrightarrow{\tilde{\delta}} H^{0}\left(E, \mathcal{O}_{E}\left(2 g_{2}^{1}+2 p+2 q\right)\right),
$$

and we see that

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{Im} \delta=\operatorname{dim} \operatorname{Im} \tilde{\delta}=\operatorname{dim} \operatorname{Sym}^{2} H^{0}\left(E, \mathcal{O}_{E}\left(g_{2}^{1}+p+q\right)\right)=6
$$

Therefore it follows that α is surjective if and only if $s \notin V$ by (5.B).
Assume that C has a pencil $h_{4}^{1} \neq g_{4}^{1}$ and put $k_{4}^{1}:=\left|K_{C}-g_{4}^{1}-h_{4}^{1}\right|$. Since C is not bi-elliptic, the morphism $\zeta: C \rightarrow \boldsymbol{P}^{3}$ induced by $\left|K_{C}-g_{4}^{1}\right|=\left|h_{4}^{1}+k_{4}^{1}\right|$ birational onto its image and $\zeta(C) \subset \boldsymbol{P}^{3}$ lies on a quadric surface. By the Riemann-Hurwitz relation $\left|K_{C}\right|=\left|\pi^{*}\left(K_{E}+\mathscr{S}^{-1}\right)\right|$, we have $\left|\pi^{*}\left(g_{2}^{1}+p+q\right)\right|=\left|h_{4}^{1}+k_{4}^{1}\right|$. Since

$$
\operatorname{dim} \operatorname{Sym}^{2} H^{0}\left(C, \pi^{*} \mathcal{O}_{E}\left(g_{2}^{1}+p+q\right)\right)=h^{0}\left(C, \pi^{*} \mathcal{O}_{E}\left(2 g_{2}^{1}+2 p+2 q\right)\right)=10
$$

it follows that the map

$$
\operatorname{Sym}^{2} H^{0}\left(C, \pi^{*} \mathcal{O}_{E}\left(g_{2}^{1}+p+q\right)\right) \rightarrow H^{0}\left(C, \pi^{*} \mathcal{O}_{E}\left(2 g_{2}^{1}+2 p+2 q\right)\right)
$$

is not surjective. Hence the map α is not surjective and we have $s \in V$.
Conversely, assume that $s \in V$. Then the morphism α is not surjective and hence the image of the morphism $C \rightarrow \boldsymbol{P}^{3}$ induced by the birationally very ample $\left|\pi^{*}\left(g_{2}^{1}+p+q\right)\right|$ is contained in a quadric surface $S \subset \boldsymbol{P}^{3}$. In case S is a cone, there is a pencil h_{4}^{1} such that $h^{0}\left(C, \mathcal{O}_{C}\left(2 h_{4}^{1}\right)\right)=4$. From the assumption $\mathscr{S} \not \not \mathcal{O}_{E}\left(-2 g_{2}^{1}\right)$, it follows that $h^{0}\left(C, \mathcal{O}_{C}\left(2 g_{4}^{1}\right)\right)=3$ by (i) and hence $g_{4}^{1} \neq h_{4}^{1}$. In case S is a non-singular quadric, we also have two pencils of degree 4 corresponding to the rulings of S.

A curve C of genus $g \leq 7$ which is a double covering of a curve of genus 2 may be also bi-elliptic, whereas a curve of genus $g \geq 8$ cannot be both bi-elliptic and a double covering of a curve of genus 2 by Castelnuovo-Severi inequality. The following lemma provides a simple criteria for a double covering of a curve of genus 2 being bi-elliptic.

Lemma 5.5. Let C be a curve of genus $g=7$ which is a double covering of a curve of genus 2 with an involution 1 induced by the covering. If C is also bi-elliptic, then the bi-elliptic involution τ commutes with i; i.e., $\tau \tau=\tau$.

Proof. Let $\pi_{1}: C \rightarrow E_{1}$ be a double covering, where E_{1} is an elliptic curve and let τ be the involution induced by π_{1}. Consider the double covering $\pi_{2}: C \rightarrow E_{2}$ induced by $l^{-1} \tau \iota$. We remark that $Q \in C$ is invariant under $l^{-1} \tau \iota$ if and only if $\imath(Q)$ is invariant under τ. Thus, if R is the ramification locus of π_{1} then $l(R)$ is the ramification locus of π_{2}. It follows that $l^{-1} \tau l$ is also a bi-elliptic involution by the Riemann-Hurwitz formula. By Castelnuovo-Severi inequality, bi-elliptic involution of C is unique and hence $\imath \tau=\tau \iota$.

Remark 5.6. From Lemma 5.5, it follows easily that if a double covering $C \xrightarrow{\pi} E$ is also bi-elliptic then there is an automorphism on E which lifts to the bi-elliptic involution τ via π.

Proof of Proposition 5.2. We take a curve E of genus 2 such that $\operatorname{Aut}(E)=$ $\left\{\sigma, 1_{E}\right\}$ where σ is the hyperelliptic involution on E. Let

$$
C=\mathbf{S p e c}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}\left(-g_{2}^{1}-p-q\right)\right)
$$

with $p+q \notin g_{2}^{1}$ where $p, q \in E$ are not fixed points of σ. If C is bi-elliptic with a bi-elliptic involution τ, then σ lifts to τ by Remark 5.6; note that 1_{E} does not lift to τ via π. Then it follows that $\sigma^{*} \mathcal{O}_{E}\left(-g_{2}^{1}-p-q\right) \cong \mathcal{O}_{E}\left(-g_{2}^{1}-p-q\right)$, which implies $\sigma(p)+\sigma(q)=p+q$ and hence $\sigma(p)=p, \sigma(q)=q$ contrary to the choice of $p, q \in E$ as non-fixed points of σ. Therefore C cannot be bi-elliptic.

We now prove (i) and use the same notations we used in Lemma 5.4. Choose $t_{1}, t_{2} \in H^{0}\left(E, \mathcal{O}_{E}\left(g_{2}^{1}+p+q\right)\right)$ such that $\left(t_{1}\right)_{0},\left(t_{2}\right)_{0}$ are reduced and $\left(t_{1}\right)_{0} \cap\left(t_{2}\right)_{0}=$ \varnothing. Then $R=(s)_{0}$, where $s=t_{1} t_{2}$, is also reduced. We note that $s \in V$. Therefore the curve $C=\boldsymbol{\operatorname { S p e c }}\left(\mathcal{O}_{E} \oplus \mathcal{O}_{E}\left(-g_{2}^{1}-p-q\right)\right)$ with the branch locus R is nonsingular, which has g_{6}^{2} by Lemma 5.3 and Lemma 5.4. For (ii), recall that $V \subsetneq$ $H^{0}\left(E, \mathcal{O}_{E}\left(2 g_{2}^{1}+2 p+2 q\right)\right)$ and take $s \notin V$ such that $R=(s)_{0}$ is reduced. Then the curve C with branch locus R has no g_{6}^{2} by Lemma 5.3 and Lemma 5.4.

Appendix.

We prove the following proposition which was left out in the proof of Lemma 4.1. Throughout we assume that C is a tetragonal curve of genus $g=9$ with a unique g_{4}^{1} satisfying the condition (4.1.6). In particular, C admits a degree 2 morphism $\phi: C \rightarrow E$ induced by $\left|K_{C}-2 g_{4}^{1}\right|$, where E is a smooth plane quartic. We also assume that C has no g_{6}^{2}.

Proposition A. $0 . \quad \operatorname{dim} W_{8}^{2}(C) \lesseqgtr 2$.
Lemma A.1. C does not have a base-point-free g_{5}^{1}.
Proof. Assume that there is a base-point-free g_{5}^{1}. By the base-point-free pencil trick, we have $h^{0}\left(C, \mathcal{O}_{C}\left(\phi^{*} K_{E}-g_{5}^{1}\right)\right) \geq 1$ and hence $\left|\phi^{*} K_{E}\right|=\left|D+g_{5}^{1}\right|$ for some effective divisor D of degree 3. Since ϕ is a morphism of degree 2, this is a contradiction.

Lemma A.2. Let $g_{6}^{1} \in W_{6}^{1}(C)$ be a base-point-free pencil. Then $\left|K_{C}-g_{4}^{1}-g_{6}^{1}\right|$ is a pencil of degree 6. Moreover $\left|K_{C}-g_{4}^{1}-g_{6}^{1}\right|$ is base-point-free if and only if $g_{6}^{1} \notin$ $\phi^{*} W_{3}^{1}(E)$.

Proof. Since there is no g_{6}^{2}, a base-point-free g_{6}^{1} is complete and $h^{0}(C$, $\left.\mathcal{O}\left(g_{4}^{1}+g_{6}^{1}\right)\right) \geq 4$ by the base-point-free pencil trick. Therefore $h^{0}\left(C, \mathcal{O}_{C}\left(K_{C}-g_{4}^{1}-g_{6}^{1}\right)\right) \geq$ 2 and hence $\left|K_{C}-g_{4}^{1}-g_{6}^{1}\right|$ is a pencil of degree 6. Put $h_{6}^{1}:=\left|K_{C}-g_{4}^{1}-g_{6}^{1}\right|$ and assume $\operatorname{Bs} h_{6}^{1} \neq \varnothing$. Then $h_{6}^{1}=\left|g_{4}^{1}+P+Q\right|$ for some $P, Q \in C$ by Lemma A.1. Therefore $g_{6}^{1}=\left|K_{C}-2 g_{4}^{1}-P-Q\right|=\left|\phi^{*}\left(K_{E}\right)-P-Q\right|$. Since

$$
h^{0}\left(C, \mathcal{O}_{C}\left(\phi^{*}\left(K_{E}\right)-P-Q\right)\right)=h^{0}\left(C, \mathcal{O}_{C}\left(g_{6}^{1}\right)\right)=2
$$

we have $P+Q=\phi^{*}(r)$ for some $r \in E$ and therefore $g_{6}^{1} \in \phi^{*} W_{3}^{1}(E)$. Conversely, assume that $g_{6}^{1} \in \phi^{*} W_{3}^{1}(E)$. Then $g_{6}^{1}=\phi^{*}\left(g_{3}^{1}\right)=\phi^{*}\left(\left|K_{E}-r\right|\right)$ for some $r \in E$. Hence $h_{6}^{1}=\left|K_{C}-g_{4}^{1}-g_{6}^{1}\right|=\left|g_{4}^{1}+\phi^{*}(r)\right|$ has non-empty base locus.

From now on, we assume $\operatorname{dim} W_{8}^{2}(C)=2$ and let $A \subset W_{8}^{2}(C)$ be a component of dimension 2.

Lemma A.3. For a general $\mathscr{L} \in A, \mathscr{L}$ and $\left|K_{C}-\mathscr{L}\right|$ are base-point-free and birationally very ample.

Proof. Assume that a general $\mathscr{L} \in A$ has a base point. Then there is a component $B \subset W_{7}^{2}(C)$ such that $A=B+W_{1}(C)$ and $\operatorname{dim} B=1$. Since C does not have a g_{6}^{2}, every element $\mathscr{M} \in B$ is base-point-free. We put

$$
Z=B-W_{1}(C)=\left\{\mathscr{M} \otimes \mathscr{O}_{C}(-P) \mid \mathscr{M} \in B, P \in C\right\} \subset W_{6}^{1}(C)
$$

which is a component of dimension 2. Note that $W_{3}^{1}(E)=\left\{\mathcal{O}_{E}\left(K_{E}-r\right) \mid r \in E\right\}$ and hence $\operatorname{dim} \phi^{*}\left(W_{3}^{1}(E)\right)=1$. We take a general

$$
g_{6}^{1}=\mathscr{M} \otimes \mathcal{O}_{C}(-P) \in Z \backslash \phi^{*}\left(W_{3}^{1}(E)\right),
$$

which may be assumed to be base-point-free; recall $\mathscr{M} \in B$ is base-point-free. Therefore $\left|K_{C}-g_{4}^{1}-g_{6}^{1}\right|=h_{6}^{1}$ is base-point-free by Lemma A. 2 and hence $\left|K_{C}-g_{6}^{1}\right|=\left|h_{6}^{1}+g_{4}^{1}\right|$ is also base-point-free. On the other hand, $\left|g_{6}^{1}+P\right|=|\mathscr{M}|=g_{7}^{2}$ which implies that P is a base point of $\left|K_{C}-g_{6}^{1}\right|$. And this contradiction shows that a general $\mathscr{L} \in A$ has no base point. In the same way, one can easily check that $\left|K_{C}-\mathscr{L}\right|$ has no base point. Finally both \mathscr{L} and $\left|K_{C}-\mathscr{L}\right|$ are birationally very ample for a general $\mathscr{L} \in A$ by Lemma 2.2.

Lemma A.4. For every $\mathscr{L} \in A,\left|\mathscr{L}-g_{4}^{1}\right| \neq \varnothing$ and $\left|K_{C}-\mathscr{L}-g_{4}^{1}\right| \neq \varnothing$.
Proof. This is clear by the base-point-free pencil trick.
Let $\psi_{\mathscr{L}}: C \rightarrow C_{\mathscr{L}} \subset \boldsymbol{P}^{2}$ be the morphism defined by a general $\mathscr{L} \in A$. By Lemma A.3, Lemma A.4, Lemma 3.3 and the condition (4.1.6) on C, every assumption in Lemma 2.5 is satisfied and hence there is an ordinary 4 -fold singular point $P_{1} \in C_{\mathscr{L}}$. Since $p_{a}\left(C_{\mathscr{L}}\right)=21>9+(4-1)(4-2) / 2, C_{\mathscr{L}}$ has another singular point Q. If mult ${ }_{Q} C_{\mathscr{L}} \geq 4$, then C has two g_{4}^{1} 's, contrary to the uniqueness of g_{4}^{1}. If mult $C_{\mathscr{Q}}=$ 3, then C has a base-point-free g_{5}^{1}, contradicting Lemma A.1. Therefore mult ${ }_{Q} C_{\mathscr{Q}}=2$ for any singular point $Q \in C_{\mathscr{L}}$ other than P_{1}. Since $p_{a}\left(C_{\mathscr{L}}\right)-(9+(4-1)(4-2) / 2)=$ 6, $C_{\mathscr{L}}$ has 6 double points P_{2}, \ldots, P_{7} where some of P_{2}, \ldots, P_{7} may possibly be infinitely near singular points, i.e. singular points appearing in the blowing-ups of \boldsymbol{P}^{2}.

Let $\pi: S_{\mathscr{L}} \rightarrow \boldsymbol{P}^{2}$ be the blowing-up at P_{1}, \ldots, P_{7} and let e_{i} be the total transform of the exceptional divisor corresponding to P_{i}. Then

$$
\operatorname{Pic}\left(S_{\mathscr{L}}\right)=\boldsymbol{Z} l \oplus \boldsymbol{Z} e_{1} \oplus \cdots \oplus \boldsymbol{Z} e_{7} \quad \text { and } \quad C \sim 8 l-4 e_{1}-2 e_{2}-\cdots-2 e_{7}
$$

where $l=\pi^{*} \mathcal{O}_{\boldsymbol{P}^{2}}(1)$.
We put $S_{0}=\boldsymbol{P}^{2}, S_{1}=$ a blowing-up of S_{0} at P_{1} and let $E_{1} \subset S_{1}$ be the exceptional divisor. Let $C_{1} \subset S_{1}$ be the proper transform of $C_{\mathscr{Q}}$. Since P_{1} is an ordinary singular point, any singular point of C_{1} lies outside E_{1}. Let P_{2} be one of singular points of C_{1} and let S_{2} be the blowing up at P_{2} with the exceptional divisor $E_{2} \subset S_{2}$ corresponding to P_{2}. Let $C_{2} \subset S_{2}$ be the proper transform of C_{1}. If all the singular points of C_{2} lie outside E_{2}, then we take P_{3} as one of singular points of C_{2}. In case a singular point
of C_{2} is in E_{2}, we remark that such a singular point is unique: If there were more than one singular points of C_{2} in E_{2}, we have $\left(E_{2} \cdot C_{2}\right) \geq 4$. On the other hand, since any singular point of C_{1} is a double point we also have $\left(E_{2} \cdot C_{2}\right)=2$, a contradiction. Therefore, if a singular point of C_{2} lies on E_{2}, we take P_{3} as the unique singular point lying on E_{2}. We continue this process and finally we get $\boldsymbol{P}^{2}=S_{0}, S_{1}, S_{2}, \ldots, S_{\mathscr{L}}=$ $S_{7}, P_{1} \in S_{0}, P_{2} \in S_{1}, \ldots, P_{7} \in S_{6}$ and $E_{i} \subset S_{i}(i=1, \ldots, 7)$ which are the exceptional divisors corresponding to P_{i}. In our situation, we always regard e_{i}, which is the total transform of E_{i}, sitting inside $S_{\mathscr{L}}=S_{7}$. By [De; page 36, (1)], an irreducible component of a support of $e_{1}+\cdots+e_{7}$ is one of the following form:

$$
\begin{equation*}
e_{1}, e_{2}, \ldots, e_{7} \quad \text { or } \quad e_{i}-e_{i+1}-\cdots-e_{t} \quad(2 \leq i<t) \tag{A.4.1}
\end{equation*}
$$

We denote by \hat{E}_{i} the proper transform of $E_{i} \subset S_{i}$ in each steps, i.e. in S_{i+1}, S_{i+2}, \ldots and let $\Sigma=\left\{P_{1}, \ldots, P_{r}\right\} ; r=7$ in our situation. We use the following notion and result due to Demazure; cf. [De; pp. 38-39, p. 38 a) and p. 39 Définition 1].

Definition A.5. We say that Σ is in almost general position if:
(1) For any $i=1, \ldots, r, P_{i} \notin \hat{E}_{1}, \ldots, \hat{E}_{i-2}$.
(2) There is no line which pass through 4 points of Σ.
(3) There is no conic which pass through all the points of Σ.

By definition, the condition (1) is equivalent to the following condition.
$(1)^{\star}$ For any $i=1, \ldots, r, \hat{E}_{i}=e_{i}-\varepsilon e_{i+1}$ where $\varepsilon=1$ or 0 .
Lemma A. 6 (Demazure; [De, Théorème 1]). If Σ is in almost general position, then $-K_{S_{\mathscr{Q}}}$ is nef.

We also use the following result which is called Reider's method.
Lemma A. 7 (Reider; [R, Theorem 1 (i)]). Let S be a smooth algebraic surface over \boldsymbol{C} and let \mathscr{L} be a nef line bundle. If $\left(\mathscr{L}^{2}\right) \geq 5$ and p is a base point of $\left|K_{S}+\mathscr{L}\right|$, then there exists an effective divisor E passing through p such that

$$
\text { either }(\mathscr{L} \cdot E)=0,\left(E^{2}\right)=-1 \quad \text { or } \quad(\mathscr{L} \cdot E)=1,\left(E^{2}\right)=0 .
$$

Now we consider linear systems $\left|l-e_{1}\right|$ and $\left|3 l-e_{1}-e_{2}-\cdots-e_{7}\right|$ on the smooth rational surface $S_{\mathscr{L}}$.

Lemma A.8. $\operatorname{dim}\left|l-e_{1}\right|=1, \operatorname{dim}\left|3 l-e_{1}-e_{2}-\cdots-e_{7}\right|=2,\left|l-e_{1}\right|_{\mid C}=\left|g_{4}^{1}\right|$ and $\left|3 l-e_{1}-e_{2}-\cdots-e_{7}\right|_{\mid C}=\left|K_{C}-2 g_{4}^{1}\right|$.

Proof. It is clear that $\operatorname{dim}\left|l-e_{1}\right|=1,\left|l-e_{1}\right|_{\mid C}=\left|g_{4}^{1}\right|$ and $\mathrm{Bs}\left|l-e_{1}\right|=\varnothing$. We note that

$$
K_{S_{\mathscr{Q}}} \sim-3 l+e_{1}+\cdots+e_{7} \quad \text { and } \quad K_{S_{\mathscr{Q}}}+C-2\left(l-e_{1}\right) \sim 3 l-e_{1}-e_{2}-\cdots-e_{7}
$$

therefore it follows that

$$
\mathcal{O}_{C}\left(3 l-e_{1}-e_{2}-\cdots-e_{7}\right) \cong \mathcal{O}_{C}\left(K_{C}-2 g_{4}^{1}\right)
$$

Since

$$
3 l-e_{1}-e_{2}-\cdots-e_{7}-C \sim-5 l+3 e_{1}+e_{2}+\cdots+e_{7}
$$

and

$$
h^{0}\left(S_{\mathscr{L}}, \mathcal{O}_{S_{\mathscr{L}}}\left(5 l-3 e_{1}-e_{2}-\cdots-e_{7}\right)\right)>0
$$

we have $h^{0}\left(S_{\mathscr{L}}, \mathcal{O}_{S_{\mathscr{Q}}}\left(3 l-e_{1}-e_{2}-\cdots-e_{7}-C\right)\right)=0$. Therefore, from the exact sequence
$0 \rightarrow \mathcal{O}_{S_{\mathscr{L}}}\left(3 l-e_{1}-\cdots-e_{7}-C\right) \rightarrow \mathcal{O}_{S_{\mathscr{Q}}}\left(3 l-e_{1}-\cdots-e_{7}\right) \rightarrow \mathcal{O}_{C}\left(3 l-e_{1}-\cdots-e_{7}\right) \rightarrow 0$, we deduce that

$$
h^{0}\left(S_{\mathscr{L}}, \mathcal{O}_{S_{\mathscr{L}}}\left(3 l-e_{1}-e_{2}-\cdots-e_{7}\right)\right) \leq h^{0}\left(C, \mathscr{O}_{C}\left(K_{C}-2 g_{4}^{1}\right)\right)=3 .
$$

On the other hand, $h^{0}\left(S_{\mathscr{L}}, \mathcal{O}_{S_{\mathscr{Q}}}\left(3 l-e_{1}-e_{2}-\cdots-e_{7}\right)\right) \geq h^{0}\left(\boldsymbol{P}^{2}, \mathcal{O}_{\boldsymbol{P}^{2}}(3)\right)-7=3$, and hence $\operatorname{dim}\left|3 l-e_{1}-e_{2}-\cdots-e_{7}\right|=2$.

Lemma A.9. $-K_{S_{\mathscr{Q}}}$ is nef.
Proof. By Lemma A.6, we only need to check that Σ is in almost general position. Note that $\left(C^{2}\right)>0$ since $C \sim 8 l-4 e_{1}-2 e_{2}-\cdots-2 e_{7}$. Hence C is nef by the irreducibility of C. Let F be an irreducible component of $e_{1}+\cdots+e_{7}$ which should be of the form

$$
e_{1}, \ldots, e_{7} \text { or } e_{i}-\cdots-e_{t} \quad \text { where } 2 \leq i<t
$$

by (A.4.1). Since C is nef, $(C . F) \geq 0$ which in turn implies $t=i+1$. Therefore, on $S_{\mathscr{L}}$, the condition (1) ${ }^{\star}$ of the Definition A. 5 is satisfied.

We now check the condition (2). Assume that (2) does not hold, then l -$e_{i_{4}}-\cdots-e_{i_{7}}$ is linearly equivalent to an effective divisor G for some four distinct indices $i_{4}, \ldots, i_{7} \in\{1, \ldots, 7\}=\left\{i_{1}, \ldots, i_{7}\right\}$. Since C is nef, $(C . G) \geq 0$ and we have $i_{4}, \ldots, i_{7} \in$ $\{2, \ldots, 7\}$. From the exact sequence

$$
0 \rightarrow \mathcal{O}_{S_{\mathscr{Q}}}\left(2 l-e_{i_{1}}-e_{i_{2}}-e_{i_{3}}\right) \rightarrow \mathcal{O}_{S_{\mathscr{Q}}}\left(3 l-e_{1}-\cdots-e_{7}\right) \rightarrow \mathcal{O}_{G}\left(3 l-e_{1}-\cdots-e_{7}\right) \rightarrow 0
$$

and

$$
\left(G .3 l-e_{1}-\cdots-e_{7}\right)=\left(l-e_{i_{4}}-\cdots-e_{i_{7}} .3 l-e_{1}-\cdots-e_{7}\right)=-1<0,
$$

we have $H^{0}\left(G, \mathcal{O}_{G}\left(3 l-e_{1}-\cdots-e_{7}\right)\right)=0$. Therefore G is in a fixed component of $\left|3 l-e_{1}-\cdots-e_{7}\right|$.

A divisor $D \in\left|2 l-e_{i_{1}}-e_{i_{2}}-e_{i_{3}}\right|$ corresponds a conic in \boldsymbol{P}^{2} which passes through $P_{i_{1}}, P_{i_{2}}, P_{i_{3}}$. If D is irreducible, then $\left|2 l-e_{i_{1}}-e_{i_{2}}-e_{i_{3}}\right|$ is fixed component free and it follows that $\left|2 l-e_{i_{1}}-e_{i_{2}}-e_{i_{3}}\right|$ is base-point-free. Since $\left(\left(2 l-e_{i_{1}}-e_{i_{2}}-e_{i_{3}}\right)^{2}\right)=1$, $\left|2 l-e_{i_{1}}-e_{i_{2}}-e_{i_{3}}\right|$ defines a birational morphism $S_{\mathscr{L}} \rightarrow \boldsymbol{P}^{2}$ which is bijective outside the locus T of (-1)-curves or total transform of (-1)-curves. Hence $T \not \supset C$ implies that the linear system $\left|3 l-e_{1}-e_{2}-\cdots-e_{7}-G\right|_{\mid C}=\left|2 l-e_{i_{1}}-e_{i_{2}}-e_{i_{3}}\right|_{\mid C}$ defines a birational morphism on C which is contradictory to the fact that

$$
\left|2 l-e_{i_{1}}-e_{i_{2}}-e_{i_{3}}\right|_{\mid C}=\left|K_{C}-2 g_{4}^{1}\right|
$$

is not birationally very ample. If any member of $\left|2 l-e_{i_{1}}-e_{i_{2}}-e_{i_{3}}\right|$ is a union of two lines, then moving part should be $|l|$ and $l-e_{i_{1}}-e_{i_{2}}-e_{i_{3}}$ is linearly equivalent to some effective divisor F^{\prime}. This implies 7 points are in a conic (i.e. union of two lines), which will be considered in the next case.

Finally we check the condition (3). If the condition (3) does not hold, then $\left|2 l-e_{1}-\cdots-e_{7}\right| \neq \varnothing$, which implies $2 l-e_{1}-\cdots-e_{7}$ should be a fixed part of $\left|3 l-e_{1}-\cdots-e_{7}\right|$ whereas $|l|$ is the moving part. As $\left|3 l-e_{1}-\cdots-e_{7}\right|_{\mid c}=\left|K_{C}-2 g_{4}^{1}\right|$ is not birationally very ample and $|l|_{\left.\right|_{C}}$ is birationally very ample, this is a contradiction.

Lemma A.10. $\left|-K_{S_{\mathscr{L}}}\right|=\left|3 l-e_{1}-\cdots-e_{7}\right|$ is base-point-free.
Proof. We apply Reider's method (Lemma A.7) to $-2 K_{S_{\mathscr{Q}}}$. Note that $-2 K_{S_{\mathscr{Q}}}$ is also nef by Lemma A. 9 and $\left(\left(-2 K_{S_{\mathscr{Q}}}\right)^{2}\right)=8 \geq 5$. Let $E \sim a l-b_{1} e_{1}-$ $\cdots-b_{7} e_{7}$ be an effective divisor such that $\left(-2 K_{S_{9}} \cdot E\right)=0$ and $\left(E^{2}\right)=-1$. Then we have $a^{2}-b_{1}^{2}-\cdots-b_{7}^{2}=-1$ and $3 a-b_{1}-\cdots-b_{7}=0$. By Schwartz's inequality $\left(b_{1}+\cdots+b_{7}\right)^{2} \leq 7\left(b_{1}^{2}+\cdots+b_{7}^{2}\right)$, it follows that $(3 a)^{2} \leq 7\left(a^{2}+1\right)$ and hence $a=$ $0,1,-1$. But for these values of a, the equations $a^{2}-b_{1}^{2}-\cdots-b_{7}^{2}=-1$ and $3 a-$ $b_{1}-\cdots-b_{7}=0$ have no integral solutions. Therefore there is no effective divisor E such that $\left(-2 K_{S_{\varphi}} \cdot E\right)=0$ and $\left(E^{2}\right)=-1$. Since it is clear that there is no effective divisor E such that $\left(-2 K_{S_{\mathscr{L}}} . E\right)=1$ and $\left(E^{2}\right)=0$, we conclude that $\left|-K_{S_{\mathscr{Q}}}\right|$ is base-pointfree by Lemma A.7.

Let $f: C \rightarrow \boldsymbol{P}^{1} \times \boldsymbol{P}^{2}$ be the morphism defined by $\left(\left|g_{4}^{1}\right|,\left|K-2 g_{4}^{1}\right|\right)$. By Lemmas A. 8 and A.10, the morphism $f_{\mathscr{L}}: S_{\mathscr{L}} \rightarrow \boldsymbol{P}^{1} \times \boldsymbol{P}^{2}$ induced by $\left(\left|l-e_{1}\right|\right.$, $\left.\left|3 l-e_{1}-e_{2}-\cdots-e_{7}\right|\right)$ is an extension of the morphism f for a general $\mathscr{L} \in A$.

Lemma A.11. $f_{\mathscr{L}}\left(S_{\mathscr{L}}\right) \sim 2\{\mathrm{pt}\} \times \boldsymbol{P}^{2}+2 \boldsymbol{P}^{1} \times H$ where H is a hyperplane in \boldsymbol{P}^{2}.
Proof. Let $f_{\mathscr{L}}\left(S_{\mathscr{L}}\right) \sim a\{\mathrm{pt}\} \times \boldsymbol{P}^{2}+b \boldsymbol{P}^{1} \times H$. Then

$$
\begin{aligned}
2 & =\left(\left(3 l-e_{1}-\cdots-e_{7}\right)^{2}\right)=\left(f_{\mathscr{L}}^{*}\left(\boldsymbol{P}^{1} \times H\right)^{2}\right) \\
& =\operatorname{deg} f_{\mathscr{L}} \cdot\left(\left(\boldsymbol{P}^{1} \times H\right)^{2} \cdot f_{\mathscr{L}}\left(S_{\mathscr{L}}\right)\right)=a \cdot \operatorname{deg} f_{\mathscr{L}}
\end{aligned}
$$

and

$$
\begin{aligned}
2 & =\left(l-e_{1} \cdot 3 l-e_{1}-\cdots-e_{7}\right)=\left(f_{\mathscr{L}}^{*}\left(\{\mathrm{pt}\} \times \boldsymbol{P}^{2}\right) \cdot f_{\mathscr{L}}^{*}\left(\boldsymbol{P}^{1} \times H\right)\right) \\
& =\operatorname{deg} f_{\mathscr{L}} \cdot\left(\{\mathrm{pt}\} \times \boldsymbol{P}^{2} \cdot \boldsymbol{P}^{1} \times H \cdot f_{\mathscr{L}}\left(\boldsymbol{S}_{\mathscr{L}}\right)\right)=b \cdot \operatorname{deg} f_{\mathscr{L}} .
\end{aligned}
$$

If $\operatorname{deg} f_{\mathscr{L}}=2$, then $f_{\mathscr{L}}\left(S_{\mathscr{L}}\right) \sim\{\mathrm{pt}\} \times \boldsymbol{P}^{2}+\boldsymbol{P}^{1} \times H$. Therefore $f_{\mathscr{L}}\left(S_{\mathscr{L}}\right)$ is in a hyperplane in \boldsymbol{P}^{5} by the Segre map $\boldsymbol{P}^{1} \times \boldsymbol{P}^{2} \hookrightarrow \boldsymbol{P}^{5}$ and hence C also lies on a hyperplane in \boldsymbol{P}^{5}. But the morphism $C \rightarrow \boldsymbol{P}^{5}$ which is defined by $\left|K_{C}-2 g_{4}^{1}+g_{4}^{1}\right|=\left|K_{C}-g_{4}^{1}\right|$ is non-degenerate. This contradiction shows that $\operatorname{deg} f_{\mathscr{L}}=1$, and hence $a=b=2$.

Lemma A.12. For a general $\mathscr{L} \in A,\left\{\mathscr{M} \in A \mid f_{\mathscr{L}}\left(S_{\mathscr{L}}\right)=f_{\mathscr{M}}\left(S_{\mathscr{M}}\right)\right\}$ is a finite set.
Proof. By a simple computation using Schwartz inequality, one finds easily that $\left(E .4 l-2 e_{1}-e_{2}-\cdots-e_{7}\right) \neq 0$ for any (-1)-curve E on $S_{\mathscr{L}}$. Therefore $S_{\mathscr{L}}$ is the minimal resolution of the normalization of $f_{\mathscr{L}}\left(S_{\mathscr{L}}\right)$. Hence $f_{\mathscr{L}}\left(S_{\mathscr{L}}\right)=f_{\mathscr{M}}\left(S_{\mathscr{M}}\right)$ implies $S_{\mathscr{L}} \stackrel{\alpha}{\cong} S_{\mathscr{M}}$. We note that the composition morphism $\pi \circ \alpha: S_{\mathscr{L}} \xrightarrow{\alpha} S_{\mathscr{M}} \xrightarrow{\pi} \boldsymbol{P}^{2}$ is completely determined by 7 divisors $\varepsilon_{1}, \ldots, \varepsilon_{7} \subset S_{\mathscr{L}}$ such that $\left(K_{S_{\mathscr{Q}}}+\varepsilon_{i} \cdot \varepsilon_{i}\right)=-2$, $\left(\varepsilon_{i}^{2}\right)=-1$; here π is the blowing up of \boldsymbol{P}^{2} at the singular points of $\phi_{\mathscr{M}}(C) \subset \boldsymbol{P}^{2}$.

Since $S_{\mathscr{L}}$ is a 7-points blowing-up of \boldsymbol{P}^{2}, there exist only finitely many divisors ε such that $\left(K_{S_{\mathscr{Q}}}+\varepsilon . \varepsilon\right)=-2,\left(\varepsilon^{2}\right)=-1$. Hence we have only finitely many possibilities of such morphisms $S_{\mathscr{L}} \xrightarrow{\alpha} S_{\mathscr{M}} \xrightarrow{\pi} \boldsymbol{P}^{2}$ and therefore finitely many possibilities for \mathscr{M} with $f_{\mathscr{L}}\left(S_{\mathscr{L}}\right)=f_{\mathscr{M}}\left(S_{\mathscr{M}}\right)$.

Proof of Proposition A.0. Consider the following exact sequence coming from the morphism $f: C \rightarrow \boldsymbol{P}^{1} \times \boldsymbol{P}^{2}$ induced by $\left(\left|g_{4}^{1}\right|,\left|K-2 g_{4}^{1}\right|\right)$;

$$
\begin{equation*}
0 \rightarrow \mathscr{I} \rightarrow \mathcal{O}_{\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}} \rightarrow \mathcal{O}_{C} \rightarrow 0 . \tag{A.0.1}
\end{equation*}
$$

We put $\mathcal{O}_{\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}}(n)=\mathcal{O}_{\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}}\left(\{\mathrm{pt}\} \times \boldsymbol{P}^{2}+\boldsymbol{P}^{1} \times H\right)^{\otimes n}$ and $\mathscr{I}(n)=\mathscr{I} \otimes \mathcal{O}_{\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}}(n) . \quad$ By Lemma A.11,

$$
f_{\mathscr{L}}\left(S_{\mathscr{L}}\right) \in \boldsymbol{P} H^{0}\left(\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}, \mathscr{I}(2)\right)
$$

and by Lemma A. 12 we have a generically finite morphism

$$
\pi: A \rightarrow \boldsymbol{P} H^{0}\left(\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}, \mathscr{I}(2)\right)
$$

defined by $\pi(\mathscr{L})=f_{\mathscr{L}}\left(S_{\mathscr{L}}\right)$. From the long exact sequence on cohomology induced by the short exact sequence (A.0.1), we have

$$
h^{0}\left(\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}, \mathscr{I}(2)\right) \geq 2
$$

Let $Q_{1}, Q_{2} \in H^{0}\left(\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}, \mathscr{I}(2)\right)$ be two independent quadrics. Since

$$
\left(Q_{1} \cdot Q_{2} \cdot\{\mathrm{pt}\} \times \boldsymbol{P}^{2}+\boldsymbol{P}^{1} \times H\right)_{\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}}=12,
$$

the scheme theoretic intersection $Q_{1} \cap Q_{2} \subset \boldsymbol{P}^{1} \times \boldsymbol{P}^{2} \subset \boldsymbol{P}^{5}$ has degree 12. Note that

$$
\operatorname{deg}(C)=\operatorname{deg}\left(K_{C}-g_{4}^{1}\right)=12 \quad \text { and hence } \quad C=Q_{1} \cap Q_{2} .
$$

Therefore the ideal of $C\left(\subset \mathcal{O}_{\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}}\right)$ is generated by the two quadrics Q_{1} and Q_{2} in $\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}$; i.e. $h^{0}\left(\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}, \mathscr{I}(2)\right)=2$. Since

$$
f_{\mathscr{L}}\left(S_{\mathscr{L}}\right) \in \boldsymbol{P} H^{0}\left(\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}, \mathscr{I}(2)\right) \quad \text { and } \quad \operatorname{dim} \boldsymbol{P} H^{0}\left(\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}, \mathscr{I}(2)\right)=1,
$$

$\pi: A \rightarrow \boldsymbol{P} H^{0}\left(\boldsymbol{P}^{1} \times \boldsymbol{P}^{2}, \mathscr{I}(2)\right)$ being a generically finite morphism is contradictory to the assumption $\operatorname{dim} A=2$.

References

[A] R. D. M. Accola, Topics in the theory of Riemann surfaces, Lecture Notes in Math., vol. 1595, Springer-Verlag, 1994.
[ACGH] E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of Algebraic Curves I, Springer-Verlag, 1985.
[BKMO] E. Ballico, C. Keem, G. Martens and A. Ohbuchi, On curves of genus eight, Math. Z., 227 (1998), 543-554.
[C] M. Coppens, Some remarks on the scheme W_{d}^{r}, Ann. Mat. Pura Appl. (4), 157 (1990), 183-197.
[CKO] K. Cho, C. Keem and A. Ohbuchi, On the variety of special linear systems of degree $g-1$ on smooth algebraic curves, International Journal of Mathematics, Vol. 13, No. 1 (2002), 11-29.
[De] M. Demazure, Surface de Del Pezzo-III, Positions presque générales., Séminaire sur les Singularités des Surfaces (Lecture Note in Math., 777) (A. Dold, B. Eckmann, eds.), Springer-Verlag, 1980, pp. 36-49.
[FHL] W. Fulton, R. Lazarsfeld and J. Harris, Excess linear series on an algebraic curve, Proc. Amer. Math. Soc., 92 (1984), 320-322.
[GH] Griffiths and Harris, The dimension of the variety of special linear systems on a general curve, Duke Math. J., 47 (1980), 233-272.
[K] C. Keem, On the variety of special linear systems on an algebraic curve, Math. Ann., 288 (1990), 309-322.
[KO] T. Kato and A. Ohbuchi, Very ampleness of multiple of tetragonal linear systems, Comm. Algebra, 21 (1993), 4587-4597.
[KL] S. Kleiman and D. Laksov, On the existence of special divisors, Amer. J. Math., 94 (1972), 431436.
[Ma] H. Martens, On the varieties of special divisors on a curve, J. Reine Angew. Math., 227 (1967), 111-120.
[Mu] D. Mumford, Prym varieties, Contributions to analysis (L. Ahlfors, I. Kra, B. Maskit and L. Nirenberg, eds.), Academic Press, 1974, pp. 325-350.
[Muk] S. Mukai, Curves and Grassmannians, Algebraic Geometry and Related Topics; Incheon-Korea, International Press, 1993, pp. 19-49.
[R] I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math., 127 (1988), 309-316.

Kyung-Hye Сно
Department of Mathematics
Seoul National University
Seoul 151-742
Korea
E-mail: khcho@math.snu.ac.kr

Changho Keem
Department of Mathematics
Seoul National University
Seoul 151-742
Korea
E-mail: ckeem@math.snu.ac.kr

Akira Ohbuchi

Department of Mathematics
Faculty of Integrated Arts and Sciences Tokushima University
Tokushima 770-8502
Japan
E-mail: ohbuchi@ias.tokushima-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. 14H45, 14H10, 14C20.
 Key Words and Phrases. algebraic curves, linear series, branched covering.
 ${ }^{\dagger}$ During the period when this manuscript was prepared for publication, the second named author was visiting the Mathematics Department of University of Notre Dame with a support from Seoam Scholarship Foundation. He is currently affiliated with the Research Institute of Mathematics at Seoul National University as a research fellow.
 ${ }^{\ddagger}$ The third named author was partially supported by Grant-in-Aid for Scientific Research (\#11640032), Japan Society for the Promotion of Science.

