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Abstract. We classify smooth complex projective algebraic curves C of low genus
7 < g <10 such that the variety of nets ng 1(C) has dimension g —7. We show that
dim Wg{ 1(C) =g —1 is equivalent to the following conditions according to the values of
the genus ¢. (i) C is either trigonal, a double covering of a curve of genus 2 or a smooth
plane curve degree 6 for g = 10. (ii) C is either trigonal, a double covering of a curve of
genus 2, a tetragonal curve with a smooth model of degree 8 in P or a tetragonal curve
with a plane model of degree 6 for g =9. (iii) C is either trigonal or has a birationally
very ample g2 for g=28 or g=17.

1. Introduction and motivation.

Let C be a smooth projective algebraic curve of genus g over the field of complex
numbers. We denote by W/ (C) the locus in the Jacobian variety J(C) corresponding
to those line bundles of degree d with r + 1 or more independent global sections. Then
W/(C) is a subvariety of J(C) and can equivalently be viewed as the subvariety
consisting of all effective divisor classes of degree d which move in a linear system of
projective dimension at least r.

By a well known thorem of Kleiman-Laksov [KL], if d < g+ r — 2, the dimension
of W/ (C) is greater than or equal to the Brill-Noether number

p(d,g,l’) :g—(r+1)(g—d+r)

for any curve C. Furthermore, by a theorem of Griffiths-Harris [GH], the dimension of
W/ (C) is equal to p(d,g,r) for a general curve C; whereas the dimension of W/ (C)
might be greater than p(d,g,r) for some special curves C.

On the other hand, the upper bound on the dimension of W)(C) and the
description of those special (in the sense of moduli) curves C such that W/(C) has
dimension more than the expected value p(d,g,r) were given by H. Martens and D.

Mumford, which can be stated as follows; cf. [Ma], [Mu], or [ACGH].
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THeOREM 1.1 (H. Martens). Let d and r be integers such that
d—2r>p(d,g,r), r=>1.
Then
dim W;(C) <d —2r
and the equality holds if and only if C is hyperelliptic.
THEOREM 1.2 (Mumford). Let d and r be integers such that
d—2r—1>p(dg,r), r=>1.
Suppose that
dim W;(C) =d —2r — 1.
Then C is either trigonal, bi-elliptic or a smooth plane quintic.

There have been several partial extensions of the above two theorems due to
many authors; cf. [BKMO], [C], and [Muk]). Furthermore, by a recent progress
made by the authors in [CKO], the next extension of H. Martens-Mumford theorem on
dimensions of W)/(C) for a smooth curve C has been finished off and therefore one
knows that the following statement holds; [CKO; Theorem 1.5].

THeEOREM 1.3. Let C be a smooth algebraic curve of genus g. Let d and r be
integers such that

d—2r—2>p(dg,r), r=1.

If
dim Wj(C) =d —2r—2>0

then C is either hyperelliptic, trigonal, bi-elliptic, tetragonal, a smooth plane sextic or a
double covering of a curve of genus 2.

Indeed, [CKO; Theorem 1.4] gives necessary conditions for C satisfying
dim %31 =g—1,

which was the only case left out in previous extensions of H. Martens-Mumford’s
MTheoreml Furthermore, in the range of the genus g > 11, [CKO; Theorem 1.4] has
been pushed forward and it has been shown that dim I/I{}z_l =g — 7 if and only if C is
either trigonal or a double covering of a curve of genus 2, eliminating the possibility for
C being tetragonal other than a two sheeted covering over a curve of genus 2; cf. [CKO;
Theorem 1.7]. However, did not treat curves of low genus with dim W2, =
g — 7, namely in the genus range 7 < g < 10, in the same way as higher genus curves
were treated. The aim of this paper is to pursue a complete description of those
special curves and to come up with a necessary and sufficient condition for C having
dim Wﬁ , =9 — 7 when the genus of the curve C i1s low. Our main results are:
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THEOREM 1. Let C be a smooth projective algebraic curve of genus g = 10. Then
dim Wf_l(C) =g — 7 if and only if C is either trigonal, a double covering of a curve of
genus 2 or a smooth plane curve degree 6.

THEOREM II. Let C be a smooth projective algebraic curve of genus g =9. Then
dim Wgz_l(C) =g — "7 if and only if C is either trigonal, a double covering of a curve of
genus 2, a tetragonal curve with a smooth model of degree 8 in P> or a tetragonal curve
with a plane model of degree 6.

THeOREM III. Let C be a smooth algebraic curve of genus g =8 or g ="7. Then
dim qu_l(C) =g — 7 if and only if C is either trigonal or has a birationally very ample

gz.

One notes immediately that nearly (but not exactly) the same statements as [CKO;
Theorem 1.7] hold. However, unlike the case g > 11, there appear smooth plane sextics
and some particular tetragonal curves C with dim Wg% (C) =g — 7 other than double
coverings of genus two curves or trigonal curves. On the technical side, some of the
lemmas which were used to prove [CKO; Theorem 1.6] and [CKO; Theorem 1.7]—e.g.
[CKO; Lemma 3.4] which describes the component of WgL3(C) of maximal dimension
on a tetragonal curve—still have to be verified for curves of low genus and this will
require preparing several relevant results on W/(C) for curves of low genus whose
proof we could not locate in any of the literature.

The organization of this paper is as follows. In Section 2, we collect several
results obtained in which we will be using in this paper. In section 3, we prove
I after finding a proper description of a component of %;(C) of maximal
dimension on a tetragonal curve of low genus. In section 4, we prove [Theorem| II. In
section 5, after proving 1T, we discuss related results on 1¥2,(C) for a double
coverings of a curve of genus 2.

For notations and conventions, we adopt those from [ACGH]. Specifically, C
always denotes a smooth irreducible complex projective curve and g is a possibly
incomplete r-dimensional linear system of degree d on C. A g/, is said to be birationally
very ample if the induced morphism C — P" given by the base-point-free part of g/, is
birational onto its image. We also say that a line bundle % € Pic?(C) is birationally
very ample if the corresponding complete linear system g/, is birationally very ample.
The set of all effective divisors of degree d on C is denoted by C,;. K¢ and w¢ denote
a canonical divisor and the canonical bundle on C respectively. A curve C is called
k-gonal if C has a g; but no g} ;.

2. Preliminary results.

We first collect several elementary results regarding Wgz_ (C) which have been
observed in already; cf. [CKO; Remark 2.1, Proposition 2.2 and Corollary 2.3].

REMARK 2.1. Let C be a smooth algebraic curve of genus g.
(i) dim Wgz_ (C)=g—5=0 if and only if C is hyperelliptic.
(i) If g >7, dim Wﬁ (C) =g —6 if and only if C is bi-elliptic.
(i) For g =6, dim I/I@% ((C) =g —6 if and only if C is a smooth plane quintic.
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(iv) For a bi-elliptic curve of genus 6, Wﬁ (C)=.

(v) For a trigonal curve of genus g > 7, dim qu_ (C)=g—T.

(vi) If C is a double covering of a curve of genus 2 and g > 9, dim Wg% (C) =
g—1.

We will make use of the following lemmas which also have been proved in [CKOJ;
cf. [CKO; Lemma 2.5, Lemma 2.6 and Lemma 3.1].

LEmMMA 2.2. Let C be a smooth algebraic curve of genus g > T which is neither a
double covering of a curve of genus h <2 nor a trigonal curve. Assume dim Wgz_ (C) =
g— 7 and let X be a component of Wﬁ (C) of maximal dimension. If every component
of Wgz_l(C ) of maximal dimension is generically base-point-free, then for a general element
P eX, both & and wc ® L' are complete base-point-free birationally very ample nets.

Lemma 2.3. Let C be a smooth algebraic curve of genus g =7 such that
dim W;]z_ (C) =g —"1. Suppose that every component of qu_ (C) of maximal dimension
is generically base-point-free. Assume further that for a general member & € X—where
X c %2_ \(C) is a component of maximal dimension—both & and wc ® & 1 are bira-
tionally very ample. Then the following statements hold.

(i) dim WgL3(C) >g—17.

(i) If dim ng_3(C) =g — 17, then there is a component T < %1_3(C) with dim T =

g — 7 such that every & € X is of the form

L =M 0(P+ Q)
for some M €T and some P,Q e C.

LemMA 2.4. Let C a smooth tetragonal curve of genus g > 7 with dim Wg% (C) =
g—71. We fix a gi on C. Suppose that h°(C,0c(2g})) =3. Let X < I/I{JZ_I(C) be a
component of maximal dimension and set

&y :={DeC, s||g; +D|leX}.
Then for any D € &y, |Kc —2g) — D| # & and

|Kc —2g;] = \J D+ |Kc—2g; — D,
DE(o(OX

where the locus D+ |Kc —2g} — D| = Cyy_19 is considered as a subset of |Kc — 2g}|.

Let’s briefly recall basic notions of scrollar invariants of an algebraic curve with a
pencil gﬂll. For a smooth algebraic curve C with a complete base-point-free pencil gc},
we set

F= H'(C,0c ® Oc(~ig))).
The vector spaces F; (i=1,2,...) give a filtration,
FooF,>---2F, >
and we define the scrollar invariants e; = e;(g)) (i=1,2,...,d — 1) by

ei=ei(g)) =#{je N;dm(F,_/F) =i} -1 (i=1,2,...,d-1).
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One can easily show that
e1+--+ei1=9g—d+1 and e; 1 <---<e

hold; cf. for further details.
The following lemma, which may seem to be a little bit technical, however plays
an important role as it did in [CKOJ; cf. [CKO; Lemma 3.4].

LemMA 2.5. Let C be a smooth tetragonal curve with a unique g of genus g > 8.
We assume that the following conditions hold on C:

) dimI/I{f_l(C):g—I
(i) C has no g}.

i) C is not a double covering of a curve of genus 2 in case g > 9.

) For a general ¥ € X—where X c Wgz_ (C) is a component of maximal
dimension—both & and wc @ L~ are base-point-free, birationally very ample
and | — g;| # &, |loc ® L7 —gi| # .

(v) For g=9, e3>1 and (ez,e3) # (1,1).

(vi) For g=38, e3> 1.
Let iy : C — Cy < P? be the morphism defined by ¥ € X and let P € Cy be the (g — 5)-
fold singular point corresponding to g, ie. the image of points in the support of
|L — g}|.  Then Pe Cy is an ordinary singular point if ¥ € X is general.

We close this section by recalling the well-known Riemann-Hurwitz relation for
double coverings. Let E be a curve of genus 4 and let n: C — E be a double
covering. Let R < E be a branch locus of n. Then we have

(2.A) 1.(0c) = 0p @Y and 9% =~ Op(—R).
Also the algebra structure of 7,(0¢) is given by the isomorphism

(2.B) Y S8~ Op(—R) < O.

3. Curves of genus ten.

In this section we mainly treat curves of genus g = 10 with dim Wfde) =g-—1T.
As was mentioned earlier in the introduction, we have new classes of curves in Theo-
rems I and II such as smooth plane sextics or some special tetragonal curves C with
dim W;ﬁ (C) =g — 7 besides double coverings of genus two curves or trigonal curves.
Specifically, some of these curves emerge fairly naturally in the course of the proofs
of the lemmas which describe the component of ng, ;(C) of maximal dimension on a
tetragonal curve of genus g =9, 10.

For trigonal curves or double covering of genus two curves, we already have
dim Wg{l(C) =g — 7; cf. Remark 2.1 (v) and (vi). For the other curves C which newly
appear in Theorems I and II, one can show easily that dim W!']z_l(C) =g — 7 as follows.

ProposiTiION 3.1. Let C be a smooth algebraic curve of genus g =T with a
birationally very ample g}. Then dim %Z_I(C) =g-1.

PrOOF. C always has a base-point-free and complete gi cut out by lines through
a general point of the plane model induced by g2. We note that {g2} + W, 7(C)
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is an irreducible subvariety of Wgﬂ 1(C), therefore dim Wg% (C) =g —"17. Suppose that
dim Wf_ (C)>g—17. By Remark 2.1 (i) and (ii), C must be either hyperelliptic or
bi-elliptic, in which cases C cannot have a base-point-free and complete gl by the
Castelnuovo-Severi inequality; cf. [A; Theorem 3.5]. ]

REMARK 3.2. (i) For a tetragonal curve C of genus g = 9 with a smooth model of
degree 8 in P*, the locus

{Oc(g3 — P+ Q1+ +0Qy3)|P,01,...,045 € C}

is an irreducible subvariety of VVg{l(C) of dimension g —7. Since C is an extremal
space curve of degree 8, C lies on a quadric surface S = P® and hence C is a complete
intersection of a quadric and a quartic. By using the adjunction formula for curves on
a smooth quadric surface (or on the ruled surface P(O¢c @ Oc(—2)) in case S is a quadric
cone), one can deduce that the canonical linear system |K¢| is cut out by quadrics. A
divisor D € g; must be collinear in P? since D fails to impose independent conditions
on |Kc| which is cut out by quadrics, whence a g} is cut out by the rulings of S and
dim W} (C) = 0; cf. [ACGH; Exercise F-2, page 199]. Thus C is not bi-elliptic and
hence dim W2, (C) =g —7 by Remark 2.1 (ii).

(i) For a tetragonal curve of genus g =9, it is easy to verify that there exists a
smooth model of degree 8 in P° if and only if either e3 = 0 (with a unique g4) or there
exist two g,’s.

(iii) It is worthwhile to note that curves which newly appeared in I
and [Theorem| IT—i.e. a smooth plane sextic, a curve with a plane model of degree 6 or
a tetragonal curve with a smooth space model of degree 8—are neither trigonal nor a
double covering of a curve of genus two. It is clear that a smooth plane sextic (or a
curve with a plane model of degree 6) is not a double covering of a curve of genus 2;
a plane sextic has a base-point-free gi, whereas a double covering of a curve of genus
2 does not have a base-point-free gl by Castelnuovo-Severi inequality.

Let 7: C — E be a double covering of a curve of genus 2 =2 and ¢g(C) =9. By
(2.A), deg¥ = —6 and

h°(C, Oc(2r*gy)) = h°(E, Op(29,)) + h°(E, O(29}) ® &) = 3,

which implies e3 # 0. Furthermore, C has only one g} = n*(g3) by Castelnuovo-Severi
inequality. Therefore it follows that C cannot have a smooth space model of degree 8
by (ii).

(iv) For the proofs of I and I, we will use
regarding a tetragonal curve having a plane model of degree g — 1 with an ordinary
singular point of high multiplicity. Recall that holds for a tetragonal curve
of genus g = 9 under the assumption (e, e3) # (1,1). For tetragonal of curve of genus
g =9 with (e,e3) = (1,1), we have the following result.

LeMMA 3.3. Let C be a tetragonal curve of genus g =9 with a unique g, such that
ey=ey=11ie h°(C,0c(2g9))) =3, h°(C,0c(3g))) = 6. Suppose that C does not have
a g} and dim VI/g%l(C) =g—"T7. Then C is a double covering of a curve of genus 2.
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PrOOF. We first claim that W (C) < {gl} + W4(C). For ¥ e W(C) which is of
the form % = 2g;, we clearly have % € {g}} + Wu(C). Therefore we assume ¥ # 2g,.
Note that we have the following exact sequence by the base-point-free pencil trick;

33.1) 0= HC,2®0(—g}))— H(C,2)QH"(C,0c(g))) — H(C, £ R Oc(g))).

Recall that e; + e, + e3 = g — 3 and hence e; = 4, which in turn implies w¢ = (Oc(4gi).
If h°(C, 2 ® Oc(g))) = 6, then wc ® £ 7' ® Oc(—g)) = Oc(g)) by Riemann-Roch for-
mula and the uniqueness of g}, hence ¥ = 2¢g) which is a contradiction. Therefore we
have h°(C, % ® Oc(g))) < 5 which implies h1°(C, £ ® Oc(—g})) = 1 by (3.3.1), finishing
the claim.

From now on, we assume that C is not a double covering of a curve of genus 2.

(3.3.2) Claim: For any P+ Q € C,, there exists 4 + B e C, such that
Oc(gl +P+Q+ A+ B)e W2(C).

We consider the locus

2 :={(Z,0c(P+ Q))|P+ Q<D for some Del|ZL —gil} = WZ(C) x W,(C)

and the projection map X 4, W,(C) to the second factor. Take an element
Oc(P+ Q) € () = Wo(C). By the non-existence of g2, |Kc —g4| is very ample.
Suppose that |Kc —g) — P — Q| = gf’o is not base-point-free with a base point 7 € C.
Then |[Kc—g)—P—Q—T| =g and therefore |Kc—gi —P—Q—T —S|e Wg(C)
for general S e C. By the previous claim,

Kc—29, —P—Q—-T—S|=29, - P-Q0-T—-S|#.

Since Se C is general, 291 —P— Q—T| is a pencil of degree 5. Therefore, by
h°(C,0c(2g})) = 3, there exists Re C such that P+ Q+ T+ Reg). But then g2 =
lgs + P+ Q-+ T|=|2g) — R| and R is a base point of 2g} which is a contradiction.
Therefore |Kc — g4 — P — Q] must be base-point-free and birationally very ample since C
is not a double covering of a curve of genus 2. Note that Oc(g) + P+ Q+ A+ B) e
WE(C) for some A + Be C, if and only if 4 + B maps to a singular point of the model
induced by the birationally very ample base-point-free |Kc —gi — P — Q|. Therefore ¢
has a finite fiber over a general point in the image. Furthermore since dim2 =2, ¢ is
in fact surjective and this finishes the proof of (3.3.2).

We take general P; € C such that P; is contained in a reduced member P; + P, +
Py + Pyeyl.

(3.3.3) Claim: |3g} — P; — Pj| is base-point-free g3, for any i # je {1,2,3,4}.

Without loss of generality, we assume that i = 1, j = 2. Note that Bs|3g} — P| — P2| =
{Ps3, P4} since |3g) — Py — P2| =|2g; + P53+ P4|. Assume that the base locus is not
empty, say P;eBs|3gi — P; — P,|. Then h°(C,0c(3g) — P — P, — P3)) =4 and by
taking the dual series it follows that h°(C,Oc(gi + Pi + P2 + P3)) = 3, contradicting
2g}| being a base-point-free g3.

We now take Q) € C such that Q) ¢ Supp(P; + P> + P3 + P4) and let Q) + O» +
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Q3+ Qsegi. By Claim (3.3.2) we already know that Oc(gi+P1+ Q1+ A+ B)e
WE(C) for some A,Be C. By [Lemma 2.4,

|Kc—2g;—P1— Q1 —A—B|=|2g; — P\ — Q1 — A — B

4
= Z(Pi+Qi)—A—B #
i—2

and h°(C,0c(2g} — P1 — Q1)) =1 by the general choice of P; and Q; therefore
one finds that 4 + B < Zfzz(Pi + Q;). Assume that A, Be {P,, P3, P4}, say A= Py,
B = P; and hence h°(C,0c(gs + Py + P+ P3 + Q1)) = 3. But this is a contradiction;
since |2g; + Q1| is a g3 with the unique base point Q;, P4 cannot be a base point of
1294 + Q1. The case 4,Be {0, 03,04} does not occur by the same reason. There-
fore we must have 4 = P, B= 0, and h°(C,Oc(g} + Z,-z:l(Pi + Q;))) =3. By taking
the dual series,

n° (c, Oc (KC — g5 — i(P,- + QJ)) = h' (C, Oc (391 —~ i(P,- + Q,-))) =3.

i=1 i=1

As we vary Q) € C, it follows that the base-point-free g3, = [3g; — P1 — P»| induces a
degree 2 morphism onto a curve of degree 5 in P>. Therefore C becomes a double
covering of a curve of genus 2, contrary to the assumption which we made before

(3.3.2). O

For curves of genus g =9 or 10, we would like to have a proper description of
components of ng_S(C) of maximal dimension; cf. [CKO; Lemma 3.4| in higher genus
cases. For this purpose, we begin with the following which is due to M. Coppens.

LemmA 3.4. Let C be a smooth algebraic curve of genus g. If g=10 and
dim W} (C) =3, then dim W/ (C)=2. If g=9 and dim W' (C) =2, then dim WJ!(C)=1.

Proor. See [K; Lemma 2.6] or [C; Proposition 12 and Proposition 13]. ]
Lemma 3.5. (i) Let A < W/(C) be an irreducible closed subset satisfying

dimA4 >r+1.
Then for any Pe C,

dim[W} (C) ® Cc(P))NA > dimA — (r + 1).

ii) Let C be a tetragonal curve without g2. Then for a component A = W,'(C) of
6 6
dimension 2,

dim 4 N [W.(C) + W1 (C)] = 1.

(iii) Let C be a tetragonal curve with a unique g4 of genus g =9 or 10. Assume that
W2(C) = &, dim Wg1_3(C) =g—T7and Wg1_4(C) has only one component {g}} + W,_s(C)
of maximal dimension. Let A WgL3(C ) be a component of maximal dimension. If
A>T+ Wi(C) for some closed irreducible nonempty subset T — WgL4(C ), then A =

{94} + Wy=1(C).
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ProOF. (i) is also due to M. Coppens which follows easily from excess linear series
result of Fulton-Harris-Lazarsfeld [FHL]; cf. [C; Proposition 1].

(i) The proof is a minor modification of the proof of [C; Theorem 2]. We
consider the diagram:

Wi(C) <2 Z c W(C) x W1(C) > (&, 0c(P))

L

Ac wl(C) 5 7% ® Oc(P)

where Z = p;!(4) and p; is the projection map onto the second factor. By (i), p; is
surjective and hence there exists an irreducible component Z of Z dominating W;(C)
with dim(Z) > 1. If dim(p,(Z)) = dim(Z), then we are done. Suppose dim(p,(Z)) <
dim(Z). Note that p, is injective on the fibers of p;. Therefore it follows that
dim(p,(Z)) = dim(Z) — 1. Furthermore, for each % € p,(Z) and for each P e C there
exists .# € W (C) such that ¥ ~ .# ® Oc(P). Since there is no g2 this would imply
that every point in C is base point of ¥ which is an absurdity.

(iii) For 4 # {gi} + W,_7(C), a general element of 4 has no base point by the
assumption on WgL4(C). Suppose 4 o T+ W;(C). Since a general ¥ € A is base-
point-free, we have h°(C,wc ® £ %) >1 by the description of the Zariski tangent
spaces to the scheme ng_3(C) and by the base-point-free pencil trick; cf. [ACGH,;
Propostion 4.2, page 189]. Hence h°(C,0c ® %y ® Oc(—2P)) =1 for any Loe T
and for any P e C by semi-continuity. Therefore /°(C,wc ® %, 2) = 3 for %y e T and
lwc ® ;72| = g2, a contradiction. n

LemMMA 3.6. Let C be a tetragonal curve of genus g = 10 without g} and assume that
C is not a double covering of a curve of genus 2. If dim W7 (C) = 3, then {g}} + W3(C)
is the only component of W3 (C) of maximal dimension.

PrOOF. We first note that there is a unique g and 4°(C,0c(2g})) = 3. Other-
wise there exists a base-point-free g3 which is either birationally very ample or com-
pounded inducing a morphism of degree two onto a curve of degree 4 in P>; but both
cases cannot occur by Castelnuovo genus bound or C not being bi-elliptic (by the non-
existence of g2). Note that dim W' (C) = 2 by [Lemma 3.4, and hence dim W:!(C) = 1.
We further remark that a component of WJ!(C) of dimension one is of the form
WL (C) + W1 (C). If not, there is a component of W (C) of dimension one whose
general element is base-point-free, and by the same argument as in [K}—especially [K;
Theorem 2.3 and the case (a) in the proof]—one concludes that C is a smooth plane
sextic contrary to the hypothesis.

(3.6.1) Claim: W,!(C) + W,(C) is the only component of W (C) of maximal di-
mension.

Suppose that a general element of a component Y < W/ (C) of maximal dimension
has a base point. Then it follows that Y = Z + W;(C)—where Z = W/ (C) is a
component of dimension one—hence Z = W,'(C) + W(C) and Y = W,'(C) + W,(C).
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Suppose that a general element of a component ¥ = W;!(C) of maximal dimension is
base-point-free. By (i), we have

dim(Y N[WS(C) + w1 (C))) = 1.

Assume that ¥ > Z + W;(C) where Z = Wi!(C) is a closed subset. By the description
of the Zariski tangent space to the scheme W,!(C), h°(C,wc ® £ %) = 2 for a general
% €Y and hence h°(C,c ® #72) > 2 for any £ € Y by semi-continuity. Therefore
h(C,0c ® %y? ® Oc(—2P)) > 2 for any choices of £y e Z and P e C, which implies
" (C,0c ® %5?) =4 and hence |Kc —2%| =g3. Since C is a curve without g2, g3
must be base-point-free. By Castelnuovo genus bound, g3 cannot be birationally very
ample and therefore induces a morphism of degree 2 onto an elliptic curve or a rational
curve. This is again a contradiction to the fact that C is a curve without gZ.
Therefore we have Y % Z + W;(C) for any closed subset Z = W (C) and hence

dim(Y N [W(C) + W, (C)]) > 1.

Let X be a one-dimensional component of Y N [W,!(C) + W,(C)] and let ¢ = W>(C) be
a one-dimensional locus such that

Z={0c(gy + P+ Q)| Oc(P+ Q) e}

For Oc(P+ Q)ea, Oc(gs+P+Q)e YN[WLC)+ Wr(C)] = W)(C) is a singular
point and hence h°(C,Oc(Kc —2gi — P— Q)) =3 by the description of the Zariski
tangent space to the scheme W/'(C). Assume that Bs|Kc —2gi| = . Recalling
h°(C,Oc(Kc —2g4)) = 4, we see that Oc(P+ Q) € ¢ maps to one point by the mor-
phism induced by |Kc — 2¢g}|. Therefore |Kc — 2g}| is not birationally very ample and
C should be a double covering of a curve of genus & <2 contrary to the hypothesis.
Assume Bs|Kc —2g;| =4 # &, say Ry € Bs|Kc —2g}|, then Ry £ P+ Q for general
Oc(P+ Q) €a; for if 0= {0c(Ry+ P)|PeC} then {Oc(g9) + Ro)} + Wi(C) = Y, which
we avoided already. Therefore |Kc — 2g; — 4| is not birationally very ample. Hence
C is either hyperelliptic, bi-elliptic or trigonal and this finishes the proof of Claim (3.6.1).

(3.6.2) Claim: For a component 4 = W} (C) of maximal dimension,
dim[4 N (W' (C) + W1 (C)] = 2.

The proof for this claim is very much similar to the proof of (ii). We again
consider the diagram:

Wi(C) <2— Z c W(C) x W1 (C) 3 (&, 0c(P))

L

Ac wl(C) > % ® Oc(P)

where Z = p;1(4) and p; is a projection map. By (i), pi is surjective
and each fiber of p; contains an irreducible component of dimension at least 1. Hence
there exists an irreducible component Z of Z dominating W;(C) with dim(Z) > 2. If
dim(p2(Z)) = dim(Z), then we are done. Suppose dim(ps(Z)) < dim(Z). Note that
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p> is injective on the fibers of p;. Therefore it follows that dim(p,(Z)) = dim(Z) — 1.
Furthermore for each % € py(Z) and for each P e C there exists .4 € W' (C) such that
L =M@ Oc(P). If ¢ W3C), then every point Pe C would be a base point of
%. This is a contradiction. Hence p,(Z) =« W7(C). By the non-existence of g2, £ €
p2(Z) € W?(C) is base-point-free and birationally very ample. Therefore it follows
that py(Z) — Wi(C) = W' (C) is a component of dimension 2 with a base-point-free
general element, contradicting (3.6.1) and this finishes the proof of (3.6.2).

We now suppose that there is a component 4 = W, (C) of dimension 3 other than
W,(C) + W3(C). By (3.6.1), a general element of 4 is base-point-free. We also have
the inequality

dim AN[W,'(C) + W3(C)] = 2,

by (3.6.2) and (iii). Let X be a component of AN[W,'(C)+ W3(C)]
of dimension two and consider the morphism 7 : X — W3(C) where n(¥) = |L — gl
and put o¢:=mn(2), which is a two dimensional family of effective divisor classes
Oc(P+ Q + R) such that Oc(g) + P+ Q + R) are also contained in the component A.
Therefore Oc(g) + P+ Q + R) is a singular point of W] (C) for every Oc(P+ Q+ R) €
o. Hence by the description of the Zariski tangent spaces to the scheme W.(C) and
by the base-point-free pencil trick, one has

(3.6.3) h°(C,0c(Kc—2g3 —P—Q—R)) =2 for every Oc(P+ Q+ R) eo.

We remark that dim|Kc —2g;| =3 and the morphism defined by |Kc¢ —2g}| is bi-
rationally very ample (even when it has a base point) by the hypothesis that C is not
a double covering of a curve of genus 4 <2. Let ¢: C — P> be the morphism defined
by |Kc —2¢gi| and we consider the following two possibilities.

(a) Suppose |Kc—2gi| is base-point-free. For every Oc(P+ Q+ R)ea,
Oc(P + Q + R) fails to impose independent conditions on the linear system |K¢ — 2g4]
by (3.6.3), and hence the linear span of the image ¢(P + Q + R) is a trisecant line to
¢(C). Therefore the non-degenerate curve ¢(C)  P® has a two dimensional family of
tri-secant lines which contradicts the general position theorem; [ACGH, page 109].

(b) Suppose |Kc — 2g4| has nonempty base locus. We remark that there is only
one base point, otherwise there exists g3 which would imply g <9 by Castelnuovo
bound or C is bi-elliptic. Let Rye C be the base point and consider the morphism
¢: C — P> defined by |Kc—2g) — Ro| =¢3. In case Ry ¢ SuppOc(P+ Q+ R) for
general Oc(P+ Q+ R) € 0, the same argument as in (a) applies to get a contradic-
tion. We now suppose that Ry e Supp Oc(P + Q + R) for general Oc(P+ Q+ R) € a.
Since Ry € Supp Oc(P+ Q+ R) is a closed condition and ¢ is irreducible, we have
Ry e Supp Oc(P + Q+ R) for all Oc(P+ Q+ R)eo. Consider the morphism o : g —
W, (C), where a(Oc(P+ Q+ R)) = Oc(P+ Q+ R— Ry). Again by the irreducibility of
g, a(o) = W»(C) which in turn implies

U:{@C(P—I—Q—FR()):P—I—QGCQ}.

Therefore X = {g}} + 0 = Oc(gl + Ro) + W>(C) = A and 4 = {g}} + W3(C) by [Lemmal
3.5 (iii). O
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THEOREM 3.7. Let C be a tetragonal curve of genus g = 10 which is not a double
covering of a curve of genus h <2. Then

dim W2 (C) 59 -17.

PrOOF. We assume that there is a component X < Wg2_1(C) with dimX =g — 7.
By exactly the same argument as in the proof of [CKO; Theorem 1.6], one can easily
show that a general element of X is base-point-free. Therefore can apply as
well as to our present situation. Recall the following diagram encountered
in the proof of [CKO; Lemma 2.6|;

Wl

L3(C) x WH(C) 2 ¢7H(X) —— X = W2,(C)

|

WL5(0).
Let
¢ ' (X)=2ZyU---UZ,UY,U---U Yy,
where Z,...,Z, are components of ¢~!'(X) dominating X and Yi,..., Yy are those

which do not dominate X. Since dim p(Z;) = g — 7 for every i by [Lemma 2.3 (ii) (more
precisely by the proof of [CKO; Lemma 2.6 (ii)]), we apply to have

(3.7.1) P(Zi) = g4 + Wy 1(C)

for every component Z; = ¢~!'(X) dominating X.

We take a general ¥ e X\(q(Y1)U---Ugq(Yy)) and let (#,0c(A+ B)) e g~ (&)
and fix i, say i = 0 such that ¢~'(#)NZy # . Since £ is base-point-free, .# € p(Zy)
is a complete pencil of degree g — 3 and hence .# = Oc(g} + P + -+ + P,_7) by [3.7.1).
Since & = Oc(gs + Py + -+ P,_7 + A+ B) is birationally very ample, the plane curve
Cy—the image of the morphism /, induced by ¥—has an ordinary singular point of
multiplicity g — 5 corresponding to the divisor Py +---+ P,_7 + A+ B by [Lemma 2.5.
Since

(9—2)(g—3) (g —35)(g —6)

Pa<c=9’) = 5

it follows that there exists at least one extra singular point on the curve Ceg.
Let u be the multiplicity of an extra singular point of the plane curve Cy. Then it
follows that there is a complete base-point-free pencil /), _, such that & =h, |  ®
Oc(Q1 + -+ Q) for some Qi,...,0,€C; h;_l_ﬂ is cut out by lines through extra
singular point. On the other hand, by the choice of ¥ e X\(q(Y1)U---Ugq(Yp)), we

have

(hy 1 ® Oc(Q1+ -+ + Qu2), Oc(Qu1 + Q) g~ (L)NZ,

for some component Z; = ¢~!(X) dominating X.
If u<g—5(ie. u—2<g—"7), then this leads to a contradiction to the assertion
(3.7.1) that every complete pencil of degree g — 3 in W;;(C) which is in p(Z;), must
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have g — 7 base points. Therefore © = ¢ — 5 and we have at least two singular points
on Cg with multiplicities g — 5, hence

7. 9=5(g-6)_(g-2)(9-3) , (9-5(g-96)
2 2 2 '

g < pa(Co) —

But this is impossible for g = 10. ]

Proor oF THEOREM I. For a trigonal curve, a double covering of a curve of genus
2 or a smooth plane sextic, dim Wﬁl =g —7 by Remark 2.1 (v), Remark 2.1 (vi) and
[Proposition 3.1. The converse holds by [CKO; Theorem 1.4] and Theorem 3.7. [J

4. Curves of genus nine.

For curves of genus g =9, we also need to describe precisely the component
of W!;(C) of maximal dimension as we did in for curves of genus g = 10.
Unfortunately, in the course of the proof of Lemma 4.1, there emerges another class
of curves of genus g =9 which needs to be examined carefully; namely, the double
coverings of a smooth plane quartic. In fact, it turns out that such a curve C does not
satisfy dim VI/QEI(C) = g — 7, whose proof is rather lengthy and technical. Therefore we
provide a proof of the result regarding double coverings of a smooth plane quartic in the
Appendix.

Lemma 4.1. Let C be a tetragonal curve of genus g =9 without gg. We assume
that dim Wgz_ (C) =g —1 and that C is neither a double covering of a curve of genus 2
nor a curve with a smooth model of degree 8 in P>; hence C has only one gi and
h°(C,0c(29})) = 3. We assume further that (ey,e3) # (1,1), ie. h°(C,0c(3g})) <5.
If dim Wq1_3(C) =g —7, then {g}} + Wa(C) is the only component of W,'(C) of maximal
dimension.

PrOOF. Note that C is not bi-elliptic by the non-existence of g2 and dim W, (C) =
1 by Lemma 3.4.

(4.1.1) Claim: W,'(C) + W,(C) is the only component of W{(C) of maximal di-
mension; this follows easily from [K; Theorem 2.3 and the case (b) in the proof].

We suppose that there is a component 4 = W!(C) of dimension 2 other than
W, (C)+ W,(C). Then a general element of A is base-point-free by (4.1.1). By
Lemma 3.3 (i), we have

(4.1.2) dim AN[W(C) + W1 (C)] = 1.

Since W,!(C) + W;(C) is the only component of W' (C) of maximal dimension, we
have the following inequality by and (iii),

(4.1.3) dim AN[W,'(C) + W1 (C)] = 1.

Let X be a component of AN[W,(C)+ W1(C)] of dimension one and consider
the morphism 7 :X — W)(C) where n(¥)=|% —gl|. Put o:=n(X). Note that
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Oc(gi + P+ Q) is a singular point of W/ (C) for every Oc(P+ Q) e 5. Hence by the
description of the Zariski tangent spaces to the scheme W'(C) and by the base-point-
free pencil trick, one has

(4.1.4) " (C,0c(Ke —2gy — P — Q) =2 for all Oc(P+ Q) eo.

Let ¢: C — P? be the morphism induced by |Kc —2g)| = g? and we consider the
following two cases.

(a) Suppose |Kc — 2g}| has a nonempty base locus. We note that there is only
one base point, otherwise there exists gZ?. Let Rpe C be the base point. Then
morphism ¢ : C — P? is indeed induced by |K¢ —2g) — Ro| = g5 which must be bira-
tionally very ample. If Ry ¢ Supp Oc(P + Q) for general Oc(P + Q) € g, (4.1.4) implies
deg¢ > 2 which is a contradiction. We now suppose that Ry € Supp Oc(P + Q) for
general Oc(P+ Q) ea. Since Ry € Supp Oc(P + Q) is a closed condition and o is irre-
ducible, we have Ry € Supp Oc(P + Q) for all Oc(P+ Q)€ g. Consider a morphism
a:0— Wi(C), where a(Oc(P+ Q)) = Oc(P+ Q— Rp). By the irreducibility of o,
a(o) = Wi(C) which in turn implies

(4.1.5) g={0c(P+ Ry) : Pe C}.

Therefore
2= {gj}+0: @c(gi—FR())-i- W, c A

and hence 4 = {g,} + W>(C) by (iii).

(b) Suppose |Kc —2¢gi| is base-point-free. If degg =4, then |Kc —2gi| = |29
and hence 1°(C, Oc(3g})) > 6, contrary to the hypothesis (e2,e3) # (1,1). We also note
that deg¢ # 1 by (4.1.4); for one dimensional family of effective divisors Oc(P + Q) € o,
P and Q have the same image under ¢.

Finally we assume deg¢ =2 and let ¢(C) = E which is a plane curve of degree
4. If E is singular, then E is a curve of genus /4 <2, contrary to the hypothesis.
Hence E is a smooth non-hyperelliptic curve of genus 3 and |K¢ —2g}| = [#*Kg|. Let
1: C — C be an involution induced by the double covering ¢. By Riemann-Hurwitz
relation (2.A), ¢,0c = Op @ & and deg.¥ ! =4. Hence

S > Op(Kg) or S = Op(hy)
where h} is a complete pencil of degree 4 on E. Assume 9!~ 0p(Kg). Then
HY(C, Oc(Kc = 294)) = H(C, Oc(¢"KE))
~ H(E,Ux(Kg)) ® H(E, ¥ ® Op(KE)),

hence h°(C,0c(Kc —2¢g4)) =4, contrary to the assumption h°(C,0c(2g})) = 3.
Therefore we have &' =~ Og(h}). Since g} is unique, 1*g) = g} and it follows that
Oc(2g}) = ¢* M for some line bundle .# of degree 4 on E. Therefore

H'(C,0c(29})) = HY(E, /) ® H(E, Op(—h}) ® ).

Since h°(C,0c(2g))) =3, we have either # =~ Ogp(h}) or M = Op(Kg). If M =
Op(Kg), then the fact Oc(2g)) = ¢*. 4 together with |Kc —2g}| = |¢*Kg| imply
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|Kc| = |4g| which is contradictory to the hypothesis (ea,e3) # (1,1). Therefore we
have reached to the following special situation:

((i) There is a degree two map ¢: C — E,
E is a non-hyperelliptic curve of genus 3.
(i) Kc~ ¢"(Kg)+ 29,
(i) A°(C,0c(29))) = 3
(iv) 2g; = ¢*(h}) for some hj on E
(V) Ogp(hy) # Ox(Kg)
(Vi) $,0c = O & Op(—hy)
| (vi)) C is not a double covering of a curve of genus h <2.

(4.1.6)

By [Proposition AlO in the Appendix, for a curve C of genus g =9 satisfying the
conditions (4.1.6), one has dim Wg(C) <2 and this finishes the proof. O

We are now ready to prove the following theorem which is a genus nine version of

eorem 3.7

THEOREM 4.2. Let C be a tetragonal curve of genus g =9 without g2 which is
neither a double covering of a curve of genus h < 2 nor a curve with a smooth model of
degree 8 in P>, then

dim W2 (C) 59 -7.

Proor. By Remark 3.2 (ii), we may assume that C is a tetragonal curve with a
unique gi. By [Cemma 3.3, we may further assume that (ey,e3) # (1,1). In order to
save ink, we avoid repeating same argument which already appeared in the proof of
MTheorem 3.7. Since we now have [Lemma 4.1 for g = 9 which is a variation of [Lemmal
3.6, one can argue as in the proof of that a plane model Cy defined by a
general ¥ € X has at least two singular points of multiplicities 4; at least one of them
being an ordinary 4-fold point by [Lemma 2.3. Accordingly

(9=50(-6) _,,

> 2.
=>4g+ 5

and hence Cy — P? has exactly two singular points of multiplicities 4 as its only
singularities, contrary to the assumption for g} being unique. ]

Proor oF THeEOREM II. If C is either trigonal, a double covering of a curve of
genus 2, a tetragonal curve with a smooth model of degree 8 in P or a curve with a
plane model of degree 6, then dim Wﬁl (C) =g —7 by Remark 2.1 (v), Remark 2.1 (vi),
Remark 3.2 (i) and [Proposition 3.1. The converse holds by [CKO; Theorem 1.4] and
Theorem 4.2 O

5. Curves of genus seven and eight.

In this section, we prove III.  We also estimate the dimension of W, (C)
for a double covering of a curve of genus 2 which was left out in [CKO; Corollary 2.3]
for the cases g =7,8; cf. [CKO; Remarks 2.4 (i)].
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Proor oF THEOREM III. Suppose C is either trigonal or has a birationally very
ample g¢. Then dim W2 (C) =g —7 by Remark 2.1 (v) and [Proposition 3.1

If dim W2 (C)=g—7 and g =7, then g¢e WZ(C) must be either birationally
very ample or of the form g2 =2¢g} by Remark 2.1 (ii).

Suppose dim W? (C)=g—7 and g=8. If there exists g7 e W7(C) with
nonempty base locus, then C must be either trigonal or a curve with a birationally
very ample g2. Therefore we may assume that every g7 € W?(C) is base-point-free,
birationally very ample and that C is neither trigonal nor a curve with a birationally
very ample g2. From [Cemma 2.3, Theorem 1.2l and Remark 2.1, it follows that
dim W, (C) = 1. Therefore by [BKMO; Theorem 1], C must be a tetragonal curve.
Furthermore every component of dim Wi!(C) of maximal dimension is of the form

(5.1.1) {94} + W1(C)

by [BKMO; (3.2.1) Corollary 2]. Note that C has only one g;; otherwise we have a g3
which is birationally very ample but not very ample, in which case there exists a gZ cut
out by hyperplanes through a singular point. Since every element of W3(C) is base-
point-free and birationally very ample, C has a plane model Cy of degree 7 with an
ordinary triple point by [Lemma 2.5. Since g =8 < p,(Cy) — 3, there exists another
singular point on Cy whose multiplicity must be 3 by (5.1.1) inducing another base-
point-free g}; the arguments in these lines are almost parallel to the latter part of the
proof of I or II. And this is contradictory to the uniqueness of
9i- O

For the rest of this section, we would like to concentrate on the dimension estimate

of Wg{ ,(C) for curves of genus g = 7,8 which are double coverings of a curve of genus
2. As we saw in II1, the necessary and sufficient conditions for W2 (C) being

of dimension g — 7 for these low genus curves are slightly different from those of higher
genus; doubling coverings of curves of genus 2 suddenly disappear from the list of curves
with dim W2 (C) =g —7. Since IIT does not provide any direct information
on the dimension of VI/g%l(C ) for double coverings of curves of genus 2, it seems to be
worthwhile to estimate the dimension of Wgz_ (C).

ProposITION 5.1. Let C be curve of genus g =8 which is a double covering of a
curve of genus 2. Then C does not have a birationally very ample g and dim Wg2—1 (C) <
g— 8.

Proor. For a double cover 7: C — E of a curve of genus 2, one notes that

gs =n*(g}) is a unique base-point-free g; by Castelnuovo-Severi inequality.

Claim: |K¢ — g}| = g, is very ample.

Let P, Q € C and consider Oc(g; + P+ Q). Recall that 7. (Oc) =~ O ® &, deg & = -5
by the Riemann-Hurwitz relation (2.A). If P+ Q =n*(p) for some p e E, then

h’(C,0c(gy + P+ Q) = h°(E,m.Oc(n* (g3 + p)))
= h°(E, Og(g; +p)) + h°(E, Og(g; +p) @ F)

= h°(E, U(gs +p)) = 2.
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If P+ Q#n*(p) for any pe E, we take P’,Q’ e C which are conjugate points of
P, QO with respect to n. Set p =n(P), ¢g==n(Q). Again by (2.A) and the projection
formula, we have

h(C,0c(gy+P+P' + 0+ Q") =h"(C,0c(n* (g3 +p+4q)))
=h*(E,n.0c(n* (g3 +p+q)))
=h°(E,Og(gy +p+q) + h°(E,Op(gs +p+q) ® )
— 3.

Since n*(g) + p + q) is base-point-free, h°(C,Oc(gl + P+ Q)) =2 and this finishes the
proof of the claim.

Now we assume that C has a birationally very ample ¥ = g} with the induced
plane model Cy, which must be singular since g = 8 < p,(Cy) = 10. Since C cannot be
trigonal by Castelnuovo-Severi inequality, Cy» has only double points and hence there
exist P, Q € C (corresponding to a double point) such that | £ — P — Q| = n*(g1). On
the other hand, it follows from the Claim that

h(C,wc ® Oc(—gy — P — Q) = h’(C,oc ® £71) = h’(C,0c ® Oc(—gy)) —2=3

which in turn implies 4°(C,.#) =2 by the Riemann-Roch formula and this is a con-
tradiction. Therefore C cannot have a birationally very ample g? and dim W3(C) <0

by [Mheoren 111 0

For a curve of genus g = 7 which is a double covering of a curve of genus 2, it may
happen that dim W?2,(C) =g —7 or W2 ,(C) = .

ProrosITION 5.2. For g =1,
(i) there exists a double covering C of a curve of genus 2 such that diim W2 (C) = 0.
(i) There also exists a double covering C of a curve of genus 2 such that WZ(C) =

.

A proof of |Proposition 5.2 requires several supplementary lemmas.

LemmA 5.3. For a tetragonal curve C of genus g="7, C has a birationally
very ample g} if and only if either 2 < Card W}'(C) < w0 or Card W}!(C) =1 and
h°(C,0c(29})) = 4.

PrOOF. Let C be a curve with a birationally very ample ¥ =g2. We note
that C is not bi-elliptic; a curve with a birationally very ample g7 has a base-point-
free gl whereas a bi-elliptic curve cannot have a base-point-free gl by Castelnuovo-
Severi inequality. Therefore dim W,'(C) = 0 by Theorem 1.2. Let iy, : C — P? be the
morphism induced by % and assume Card W,!(C) = 1. Since g = 7 < p.((C)) = 10,
the unique g} on C is induced by a unique double point P e, (C). Moreover we
have two infinitely near singular points Q and R. Considering the linear system on C
induced by the linear system |Up>(3) — P — Q — R| of cubics in P? with assigned base
points P, Q and R, one has

h(C,0c(39))) = h°(P*, 0p2(3) —P— Q — R) > 7.
Therefore Oc(3g}) = wc and hence h°(C,0c(2¢g))) = 4.
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Assume that either 2 < Card W' (C) < oo or Card W,'(C) =1 and h°(C,0(2g})) =
4 holds. In both cases, we have a base-point-free & = g3 which is of the form
lgs +hil, g #h) or |2g)|. We note that C cannot be bi-elliptic; for a bi-elliptic
curve C, dim W,!(C) = 1. Therefore 2 induces a birational morphism v, onto Cy =
¥, (C) = P> which lies either on a smooth quadric if & = |g} + /h}| or on a quadric
cone if 7 = [2g}|. Since p,(Co) =9, Cp has a singular point P with multp(Cy) = 2 and
hence hyperplanes through P cut out a birationally very ample g2. O

Let C 5 E be a double covering of a curve E with g(E) =2 and g(C) =7. Let
R < E be the branch locus of n. By (2.A) and base-point-free pencil trick, we have
S = Op(—gi —p—q). Let se H(E,0p(2g) +2p +2q)) be a section with the zero
locus (s), = R. Let V be a subspace of H(E, Ox(2g3 + 2p + 2¢)) which is the image of
the cup product map

HO(E, Cp(g} + p + q)®* > H°(E, Cp(2g} + 2p + 20))
and consider a natural morphism
H(C,n"Cg(gy +p+¢)%* = H(C,n" 0529} + 2 + 20)).
Using the identifications
H°(C,0c(n" (g3 +p +q))) = H*(E,mn Op(gy +p + q))
=~ H(E,O(gy +p +q)) @ H'(E, S ® Op(gy +p +q))

~ H(E,Ur(g5 +p +q)) ® H(E, OF)

(5.A) H'(C,Oc(n"(29; +2p +29)))
= H'(E, Og(2g; +2p +29)) ® H°(E, (g, +p +q)),
we see that the morphism « induces the map
Y HY(E,0p) ® H (E,Op) =k ® k — H°(E, Ox(2g5 + 2p +2q))
with (1) = s by the algebra structure of n.(0¢). We also see that
(5.B) Ima = Span{V,s} ® H(E,Op(g5 +p + q)),
under the identification (5.A).

LEMMA 54. Let C 5 E be a double covering with g(E) =2 and g(C) =7. We
assume that C is not bi-elliptic and put g} = n*(g3).
i) h%(C,0c(29})) =4 if and only if & = Op(—2g3).
(i) Suppose & % Op(—2g}). Then C has at least two complete pencil of degree 4
if and only if se V.

Proof. (i) follows directly from the following equality;
h*(C, 0c(2g,)) = h°(C, Oc(n*(29;))) = h°(E, 7.0c(n"(293)))

= h°(E, 0x(29y)) + h°(E, 0£(29)) ® ¥).
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(i) Since & % Op(—2¢1), & = Op(—gi —p—¢q) for p+q¢ gl and hence the mor-
phism E — P? induced by lgy +p +q| is birationally very ample. Thus we have an
exact sequence

0 — Sym? HO(E, Op(g) + p + q)) > HO(E, O(2g) + 2p + 29)),
and we see that
dim ¥V = dimImé = dim Imd = dim Sym? H(E, Oz (g} + p + q)) = 6.

Therefore it follows that o is surjective if and only if s¢ V' by (5.B).

Assume that C has a pencil i} # g4 and put k; := |[Kc — g4 — h;|. Since C is not
bi-elliptic, the morphism {: C — P* induced by |K¢ — g}| = |h} + kj| birational onto
its image and {(C) < P? lies on a quadric surface. By the Riemann-Hurwitz relation
|Kc| = |n*(Kg + %7")|, we have |7n*(g) +p+q)| = |h} + k}|. Since

dim Sym®> H%(C, 7" 0g(g3 + p + q)) = h°(C,n" Og(295 + 2p + 29)) = 10,
it follows that the map
Sym® H'(C,n*0x(g3 + p + q)) — H(C,n*0x(29) + 2p + 2q))

is not surjective. Hence the map o is not surjective and we have se V.

Conversely, assume that se V. Then the morphism o is not surjective and
hence the image of the morphism C — P?® induced by the birationally very ample
|n*(g) + p + ¢)| is contained in a quadric surface S = P>. In case S is a cone, there
is a pencil /) such that h°(C,0c(2h})) =4. From the assumption & % Op(—2g1), it
follows that h°(C,0c(2¢g))) = 3 by (i) and hence g} # h}. In case S is a non-singular
quadric, we also have two pencils of degree 4 corresponding to the rulings of S. []

A curve C of genus g < 7 which is a double covering of a curve of genus 2 may be
also bi-elliptic, whereas a curve of genus g > 8 cannot be both bi-elliptic and a double
covering of a curve of genus 2 by Castelnuovo-Severi inequality. The following lemma
provides a simple criteria for a double covering of a curve of genus 2 being bi-elliptic.

LemMA 5.5. Let C be a curve of genus g =7 which is a double covering of a curve
of genus 2 with an involution 1 induced by the covering. If C is also bi-elliptic, then the
bi-elliptic involution t commutes with 1; i.e., 1T = 71.

Proor. Let 7 : C — E; be a double covering, where E is an elliptic curve and let
7 be the involution induced by 7z;. Consider the double covering 7, : C — E; induced
by 17!z, We remark that Q € C is invariant under 1!z if and only if 7(Q) is invariant
under 7. Thus, if R is the ramification locus of 7; then (R) is the ramification locus of
my. It follows that :~!77 is also a bi-elliptic involution by the Riemann-Hurwitz for-
mula. By Castelnuovo-Severi inequality, bi-elliptic involution of C is unique and hence
IT = 11 (]

REMARK 5.6. From [Cemma 3.3, it follows easily that if a double covering C = E
is also bi-elliptic then there is an automorphism on E which lifts to the bi-elliptic
involution 7 via 7.
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PrROOF OF PROPOSITION 5.2. We take a curve E of genus 2 such that Aut(E) =
{o,1g} where ¢ is the hyperelliptic involution on E. Let

C = Spec(Vr ® Op(—g, —p — q))

with p+¢q ¢ gl where p,qe E are not fixed points of ¢. If C is bi-elliptic with a
bi-elliptic involution 7z, then o lifts to ¢ by Remark 5.6; note that 1z does not lift to
t via n. Then it follows that ¢*Op(—gi —p —q) = Op(—g3 — p — q), which implies
a(p) +0(q) =p+q and hence o(p) =p, a(q) = q contrary to the choice of p,qe E
as non-fixed points of g. Therefore C cannot be bi-elliptic.

We now prove (i) and use the same notations we used in [Lemma 5.4. Choose
h,h e H'(E,O(g) + p+q)) such that (11),, (f2), are reduced and (11),N(2), =
. Then R = (s),, where s=tit,, is also reduced. We note that se V. There-
fore the curve C = Spec(Or ® Op(—g) —p—¢q)) with the branch locus R is non-
singular, which has g by and [Lemma 54 For (ii), recall that V <
H(E,0p(2g1 +2p +2q)) and take s¢ V' such that R= (s), is reduced. Then the
curve C with branch locus R has no g2 by [Lemma 5.3 and [Cemma 3.4. ]

Appendix.

We prove the following proposition which was left out in the proof of
4.1. Throughout we assume that C is a tetragonal curve of genus g =9 with a unique
g4 satisfying the condition (4.1.6). In particular, C admits a degree 2 morphism
¢ : C — E induced by |Kc — 2g}|, where E is a smooth plane quartic. We also assume
that C has no g¢¢.

ProposITION A.0. dim Wg(C) £ 2.
LemMA A.l. C does not have a base-point-free g..

PrOOF. Assume that there is a base-point-free gl. By the base-point-free
pencil trick, we have 4°(C,Oc(¢*Kg —gi)) > 1 and hence |[¢*Kg| = |D + g}| for some
effective divisor D of degree 3. Since ¢ is a morphism of degree 2, this is a con-
tradiction. ]

LemMAa A.2. Let g} € W'(C) be a base-point-free pencil. Then |Kc — g) — g is
a pencil of degree 6. Moreover |Kc — g4 — gi| is base-poini-free if and only if g¢ ¢
¢ W5 (E).

PrROOF. Since there is no g2, a base-point-free gé is complete and Ah°(C,
O(g)+g¢)) =4 by the base-point-free pencil trick. Therefore h°(C, Oc(Kc—gi—g¢)) >
2 and hence |Kc—g) —gi| is a pencil of degree 6. Put h}:=|Kc—gi—gl| and
assume Bs/! # . Then hl = |g} + P + Q| for some P,Q € C by Lemma A.l. There-
fore g, = |Kc —2g) — P— Q| =|¢*(Kg) — P— Q|. Since

h(C,0c($"(Kp) — P~ Q)) = h°(C, Oc(g)) = 2,

we have P+ Q=¢*(r) for some re E and therefore g} e ¢*W](E). Conversely,
assume that g} € ¢*WJ(E). Then g = ¢*(g}) = ¢*(|Kg — r|) for some re E. Hence
hi = |Kc — g4 — gl = |9} + ¢*(r)] has non-empty base locus. O
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From now on, we assume dim W¢(C) =2 and let 4 = W¢(C) be a component of
dimension 2.

LemMMA A.3. For a general ¥ € A, ¥ and |Kc — &| are base-point-free and bira-
tionally very ample.

PrOOF. Assume that a general ¥ € 4 has a base point. Then there is a com-
ponent B = W3(C) such that 4 = B+ W;(C) and dimB = 1. Since C does not have
a g2, every element .# € B is base-point-free. We put

Z=B—W(C)={l ®Oc(—P)|.4M eB,PeC}c W (C),

which is a component of dimension 2. Note that W3 (E) = {Op(Kg —r)|re E} and
hence dim¢*(W3(E)) =1. We take a general

gy = M ® Oc(—P) € Z\$" (W3 (E)),

which may be assumed to be base-point-free; recall .# € B is base-point-free. Therefore
|Kc — g4 — gl| = h¢ is base-point-free by Lemma A.2 and hence |K¢ — gl| = |k} + gl
is also base-point-free. On the other hand, |g} + P| = |.#| = g2 which implies that P
is a base point of |[Kc —g}]. And this contradiction shows that a general % € A has
no base point. In the same way, one can easily check that |[K¢ — | has no base
point. Finally both ¥ and |K¢ — | are birationally very ample for a general ¥ € 4
by Lemma 2.2 m

LEMMA A4. For every ¥ e A, | L —ygl| # & and |[Kc — L —gl| # &.
Proor. This is clear by the base-point-free pencil trick. ]

Let Y, : C — Cy c P> be the morphism defined by a general ¥ e A. By
Lemma A.3, Lemma A .4, and the condition (4.1.6) on C, every assump-
tion in [Lemma 2.3 is satisfied and hence there is an ordinary 4-fold singular point
Py e Cy. Since p,(Cy) =21 >9+ (4—1)(4—2)/2, Cy has another singular point Q.
If multy Cy > 4, then C has two g;’s, contrary to the uniqueness of gj. If multy Cy =
3, then C has a base-point-free gg, contradicting Lemma A.1. Therefore multy Cy = 2
for any singular point Q € Cy other than P;. Since p,(Cy) — (94 (4—1)(4—2)/2) =
6, Cy has 6 double points P», ..., P; where some of P,,..., P; may possibly be infinitely
near singular points, i.e. singular points appearing in the blowing-ups of P?.

Let 7 : Sy — P? be the blowing-up at Py,..., P; and let ¢; be the total transform of
the exceptional divisor corresponding to P;. Then

PiC(Sg):Zl@Zel@-”@Z€7 and C~8l—4€1—2€2—”-—2€7

where [ = n*0p2(1).

We put Sy = P2, S; = a blowing-up of Sy at P; and let E; = S; be the exceptional
divisor. Let C; < ) be the proper transform of Cy,. Since P; is an ordinary singular
point, any singular point of Cj lies outside E;. Let P, be one of singular points of C
and let S, be the blowing up at P, with the exceptional divisor E, = S, corresponding
to P,. Let C; < S, be the proper transform of C;. If all the singular points of C, lie
outside E,, then we take P; as one of singular points of C,. In case a singular point
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of C, is in E,, we remark that such a singular point is unique: If there were more than
one singular points of C, in E;, we have (E,.C;) > 4. On the other hand, since any
singular point of C; is a double point we also have (E;.C,) =2, a contradiction.
Therefore, if a singular point of C; lies on E,, we take P; as the unique singular point
lying on E,. We continue this process and finally we get P> =Sy, S1,S>,...,Sy =
S7, PieSy, P,eS,...,P;e€Ss and E; = S; (i=1,...,7) which are the exceptional
divisors corresponding to P;. In our situation, we always regard e;, which is the total
transform of E;, sitting inside Sy = S;7. By [De; page 36, (1)], an irreducible component
of a support of e; +---+e7 1s one of the following form:

(A4.1) €1,€1,...,e7 Or e —ey— - -—e (2<Li<i).

We denote by E; the proper transform of E; = S; in each steps, i.e. in Si1, Siio,... and
let X ={Py,...,P}; r=71n our situation. We use the following notion and result due
to Demazure; cf. [De; pp. 38-39, p. 38 a) and p. 39 Définition 1].

DerINITION A.5. We say that X is in almost general position if:
(1) For any i=1,...,r, Pi¢E,... E_,.

(2) There is no line which pass through 4 points of X.

(3) There is no conic which pass through all the points of X.

By definition, the condition (1) is equivalent to the following condition.
(1) For any i=1,...,r, E; =e¢; —ee;y; where ¢ =1 or 0.

LemMMA A.6 (Demazure; [De, Théoréme 1]). If X' is in almost general position, then
—Ks, is nef.

We also use the following result which is called Reider’s method.

Lemma A.7 (Reider; [R, Theorem 1 (i)]). Let S be a smooth algebraic surface over
C and let & be a nef line bundle. If (¥*)>5 and p is a base point of |Ks + Z|, then
there exists an effective divisor E passing through p such that

either (Z.E)=0,(E*)=—-1 or (Z.E)=1,(E*) =0.

Now we consider linear systems |/ — e;| and |3/ —e; — ey — - -+ — e7] on the smooth
rational surface Sg.

Lemva A8, dim|l —e| =1, dim[3/ —e; —ey —--- —e7| =2, |l — e1l|c = |g,| and
|3l—el—ez—---—e7|‘C:|Kc—2gj|.

Proor. It is clear that dim[/ —ei| =1, [/ — el = lgi| and Bs|/ —e)| = &J. We
note that

KSg, ~—-3/+e+---+e; and K5y+C—2(l—e1) ~3l—e—e— - —e7,
therefore it follows that

(9@(31—61 —62—“'—67) E@C(Kc—zgi).
Since
3l—eg—ey—--—e7—C~=5l+3e;+er+---+¢7
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and
hO(Sg, (Osf(SI — 361 — €y — - — €7>> > 0,

we have h°(Sg,0s,(31 —ej —ey—---—e;— C)) =0. Therefore, from the exact
sequence
O—>(05y,(3l—€1 — o — €7 — C) — @52,(3l—e1 —-“—87) —>(Qc(3l—€1 —'“—67) —>0,
we deduce that

h°(Sg, Os, (31 —e; —e3 — -+~ —e7)) < h°(C,0c(Kc — 2¢3)) = 3.
On the other hand, h°(Sy,0s, (31 —e; —ey — -+ —e7)) = h®(P?, 0p2(3)) — 7 =3, and
hence dim|3/ —e; —e; — - —e7] = 2. O

Lemma A9. —Ks, is nef.

Proor. By Lemma A.6, we only need to check that X is in almost general
position. Note that (C?) >0 since C ~ 8/ —4e; —2e; —--- —2e;. Hence C is nef
by the irreducibility of C. Let F be an irreducible component of e; + - - - + e; which
should be of the form

er,...,e7 or ¢g—---—e¢, where 2<i<t

by (A.4.1). Since C is nef, (C.F) > 0 which in turn implies t =i+ 1. Therefore, on
S¢, the condition (1)* of the Definition A.5 is satisfied.

We now check the condition (2). Assume that (2) does not hold, then /-
ei, — -+ — e;, 1s linearly equivalent to an effective divisor G for some four distinct indices
igy...,i7€{l,...;7y ={i,...,iz}. Since C is nef, (C.G) >0 and we have iy,...,i7; €
{2,...,7}. From the exact sequence

O—>(95y(2l—e,-] —e,-z—e,-_,)—>(95y(3l—el—---—e7)—>(06(3l—el—---—e7)—>0,
and
(G3l—ey—--—e7)=(—e;,— - —e; 3l —e; —---—e7) = —1 <0,
we have H°(G,0g(3] —ej —---—e7)) =0. Therefore G is in a fixed component of
|3/ —ep — -+ —e7].

A divisor D € |2/ —e;, — e;, — e;,| corresponds a conic in P? which passes through
P;,P,,P,. If D is irreducible, then |2/ —e; —e;, —e;| is fixed component free and
it follows that |2/ —e; — e;, — e;| is base-point-free. Since ((2/ —e;, — e, —e;,)*) = 1,
2/ — e;, — e;, — e;,| defines a birational morphism Sy — P? which is bijective outside
the locus 7" of (—1)-curves or total transform of (—1)-curves. Hence T » C implies
that the linear system [3/—ej —ex— - —e7— G| c = (2l —e; —e;, — e;]|c defines a
birational morphism on C which is contradictory to the fact that

27 - € — € — ei3||C = [Kc - 2gi|

is not birationally very ample. If any member of |2/ —¢; — e, — e;| is a union of two
lines, then moving part should be |/| and / — e;, — e;, — ¢;, is linearly equivalent to some
effective divisor F’. This implies 7 points are in a conic (i.e. union of two lines), which
will be considered in the next case.
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Finally we check the condition (3). If the condition (3) does not hold, then
|2 —ey — -+ —e7] # &, which implies 2/ —e; —--- —e; should be a fixed part of
3/ —e1 — -+ — ¢7| whereas |/| is the moving part. As [3/ —e —--- —e7]| = |Kc — 294
1s not birationally very ample and |l|‘C i1s birationally very ample, this is a contra-
diction. ]

Lemma A.10. |—Ks,| = |3/ —e; — -+ —eq| is base-point-free.

Proor. We apply Reider’s method (Lemma A.7) to —2Ks,. Note that
—2Kg, is also nef by Lemma A9 and ((—2Ks,)>)=8>5. Let E ~al —bje; —
.-+ —be; be an effective divisor such that (—2Ks,.E) =0 and (E?)= —1. Then

we have a®> — b7 —---—b3=—1 and 3a— by —--- — b7 =0. By Schwartz’s inequality
(by +---+b7)> <T(b} +---+b2), it follows that (3a)*> <7(a*+1) and hence a=
0,1,—1. But for these values of a, the equations a®> —b? —--- — b3 = —1 and 3a—
by —---— b7 =0 have no integral solutions. Therefore there is no effective divisor E

such that (—2Ks,.E) =0 and (E?)= —1. Since it is clear that there is no effective
divisor E such that (—2Kgs,.E) = 1 and (E?) = 0, we conclude that |-Kg, | is base-point-
free by Lemma A.7. (]

Let f:C— P'xP? be the morphism defined by (|gi|,|K —2gi]). By
Lemmas A.8 and A.10, the morphism fy:Sy — P' x P? induced by (|/— ey,
|3/ —e; — e, — - -+ —e7]) is an extension of the morphism f for a general ¥ € A.

LemMa A1l fo(S¢) ~ 2{pt} x P>+ 2P' x H where H is a hyperplane in P>.
PrOOF. Let fy(S¢) ~ a{pt} x P>+ bP' x H. Then

2=(Bl—e1— - —e1)?) = (f3(P" x H)?)

=deg fo - (P' x H)*.f¢(Se)) = a- deg fo,
and
2=(—-er.3l—e; — - —e7) = (fo({pt} x P?).f5(P' x H))
=deg fo - ({pt} x P2.P' x H.f(S¢)) = b - deg fo.

If degfy =2, then fy(Sy) ~ {pt} x P>+ P! x H. Therefore fy(S¢) is in a hyper-
plane in P> by the Segre map P' x P?> < P> and hence C also lies on a hyperplane
in P°. But the morphism C — P> which is defined by |K¢ —2g} + gi| = |Kc — g4 is
non-degenerate. This contradiction shows that deg f» = 1, and hence a =b=2. []

LEMMA A.12. For a general ¥ € A, {# € A| fo(S¢) = fu(S4)} is a finite set.

ProorF. By a simple computation using Schwartz inequality, one finds easily
that (E4l —2e; —ey —---—e7) #0 for any (—1)-curve E on S¢ Therefore Sy is
the minimal resolution of the normalization of f#(S¢). Hence f#(S¢)= fi(Su)
implies S¢ = S . We note that the composition morphism 7o : Sy 5 Sy 5 p?
is completely determined by 7 divisors ¢j,...,&7 < S¢ such that (Ks, + &.¢;) = —2,
(¢2) = —1; here n is the blowing up of P? at the singular points of ¢,(C) < P2

1
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Since Sy is a 7-points blowing-up of P2, there exist only finitely many divisors &
such that (Ks, +¢.e) = —2, (¢2) = —1. Hence we have only finitely many possibilities
of such morphisms S¢ — S, — P? and therefore finitely many possibilities for .# with

fo(Se) = fu(Su)- O

PrOOF OF PrROPOSITION A.0. Consider the following exact sequence coming from
the morphism f : C — P' x P? induced by (|gi|, |K — 2g1));

(A.0.1) 0—J — Opi p»— Oc — 0.

We put Opi, p2(n) = Upi p2({pt} x P>+ P' x H)®" and J(n) =.# ® Up1 p:(n). By
Lemma A.11,
f2(Sy) e PH(P! x P?,.7(2))

and by Lemma A.12 we have a generically finite morphism
n:A— PH'(P' x P?, 7(2))

defined by n(¥) = f#(S¢). From the long exact sequence on cohomology induced by
the short exact sequence (A.0.1), we have

(P x P?,.7(2)) > 2.
Let Q1, 0, € H'(P' x P?,.#(2)) be two independent quadrics. Since
(01.02.{pt} x P> + P' x H)p1 p> = 12,
the scheme theoretic intersection Q; N Q> = P! x P? = P> has degree 12. Note that
deg(C) = deg(K¢c —gj) =12 and hence C= Q;NQ,.

Therefore the ideal of C (cUpi, p2) is generated by the two quadrics Q) and O, in
P! x P? ie. h°(P! x P?,7(2)) =2. Since

fo(S¢) e PH(P' x P?,.7(2)) and dimPH°(P! x P?,.7(2)) =1,

n:A— PHO(P' x P? #(2)) being a generically finite morphism is contradictory to the
assumption dim 4 = 2. ]
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