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Abstract. There are many ways to give a rigorous meaning to the Feynman path
integral. In the present paper especially the method of the time-slicing approximation
determined through broken line paths is studied. It was proved that these time-slicing
approximate integrals of the Feynman path integral in configuration space and also in
phase space converge in L? space as the discretization parameter tends to zero. In the
present paper it is shown that these time-slicing approximate integrals converge in some
weighted Sobolev spaces as well. Next as an application of this convergence result in
the weighted Sobolev spaces, the path integral representation of correlation functions is
studied of the position and the momentum operators. We note that their path integral
representation is given in phase space. It is shown that the approximate integrals of
correlation functions converge or diverge as the discretization parameter tends to zero.
We note that the divergence of the approximate integrals reflects the uncertainty principle
in quantum mechanics.

1. Introduction.

It was an interested and important problem to give the description of quantization,
i.e. of passing from classical physical systems to the corresponding quantum ones, from
the moment that quantum mechanics came into existence. In the end Heisenberg and
Schrédinger succeeded in giving the description based on the notion of operators. On
the other hand in 1948 Feynman proposed an essentially new description in [6] based on
the notion of the so-called Feynman path integrals. His description is that the prob-
ability amplitudes can be constructed from the classical systems in a direct way with
the physical meaning. In 1951 Feynman himself gave the description reformulated by
means of the path integrals in phase space in [7]. Now we know that his description is
very useful and applied to wide areas in physics (cf. [14], [28]).

Since Feynman published his papers, many ways have been proposed and much
work has been done to give a rigorous meaning to the Feynman path integral: the
method of analytic continuation from Wiener integrals, the formulation by means of the
product formula of Kato and Trotter, the formulation by means of an improper integral
in the Hilbert manifold of paths, the formulation by means of pseudomeasures, the
method of the time-slicing approximation determined through piecewise classical paths

and so on. See [T]. [3]. [@]. [5]. [9) [10]. [11]. [12]. [13]. (20}, [21]. [23]. [Z9]. [32] and

their references.
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In the present paper we study especially the method of the time-slicing approxi-
mation determined through broken line paths of the Feynman path integral. This
method is very simple and very familiar in physics (cf. [8], [14], [28], [29]). Let
L?> = L*(R") be the space of all square integrable functions in R” with inner product
(-,-) and norm || -||. Truman in first studied this method, using an improper
integral in the Hilbert manifold of paths and proved that the time-slicing approximate
integrals converge in L? as the discretization parameter tends to zero. His result was
generalized by the author in [16], by means of the theory of the oscillatory integral
operators and the pseudo-differential operators. In addition, the author defined in [18],
the time-slicing approximate integrals in phase space that are proved to be equal to
the time-slicing approximate integrals in configuration space. Thus we know that the
time-slicing approximate integrals, determined through broken line paths in configura-
tion space and also in phase space, converge in L’ space as the discretization parameter
tends to zero.

One of our aims in the present paper is to show that the time-slicing approximate
integrals stated above, i.e. determined through broken line paths in configuration space
and also in phase space, converge in the weighted Sobolev spaces B := {f € L% | f|| g

= A+ Yea (XA +1105£1) < 00} (a=1,2,...) as well (Theorem 1 in the present

paper). Here for an x = (x1,...,x,) € R" and a multi-index o = (ay,...,,) we write
lof = Y07 0y, x* =x{"---xy and 0 = (0/dx))™ - (0/0x,)™. We write B® = L7
Next as an application of our we study the approximate integrals of

correlation functions of the position and the momentum operators. We note that these
approximate integrals are defined in phase space. As is well known, correlation func-
tions are some of the most important quantities in quantum mechanics and quantum
field theory (cf. [24], [28]). We prove the convergence or the divergence of the approx-
imate integrals of correlation functions as the discretization parameter tending to zero
(Theorem 2 in the present paper). The second aim in the present paper is to show
this. We note that the divergence of the approximate integrals of correlation functions
reflects the uncertainty principle in quantum mechanics.

The outline of the proof of our main theorems is as follows. The approximate
integral of the Feynman path integral is determined correspondingly to each subdivision
of the time interval. We consider the family of all approximate integrals. We first
show the uniform boundedness of the family of approximate integrals in B? (a =
0,1,...) (Theorem 3.3 in the present paper). This result is essential in our proof. By
means of this result of the boundedness we show the equicontinuity of the family of
approximate integrals in B on the finite time interval. Then, by applying the abstract
Ascoli-Arzela theorem we can prove our [Theorem 1, i.e. the convergence of the approx-
imate integrals of the Feynman path integral in BY. We note that our method of
proving convergence is direct, compared to that in [16]-{19], in the sense that we don’t
use the result of the corresponding Schrodinger equation. Our [Theorem 2, i.e. the
convergence or the divergence of the approximate integrals of correlation functions is
proved by means of and studying further the oscillatory integral operators in
phase space. We note that we use the results in the preceding papers by the author,

especially in [15], for the proof.
The plan of the present paper is as follows. In §2 we state the main results and
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some remarks. §3 and §4 are devoted to the proofs of the uniform boundedness and the
equicontinuity of the approximate integrals of the Feynman path integral in B“, respec-
tively. In §5 we prove [Theorem 1. [Theorem 2| is proved in §6.

2. Main Theorems.

We consider some charged non-relativistic particles in an electromagnetic field.
For the sake of simplicity we suppose the charge and the mass of every particle to
be one and m >0, respectively. We consider x e R" and ¢€[0,7]. Let E(z,x) =
(Ei,...,Ey) € R" and (Bu(t,x)) < jop<n € R""=D/2 denote electric strength and magnetic
strength tensor, respectively and (V(z,x),A4(t,x)) = (V,A,...,4,) € R™" an electro-
magnetic potential, i.e.

_ oAy
ot Ox’
d(ZAjde-): > Bjdxjndx; on R, (2.1)
j=1 1< j<k<n

where 0V /ox = (0V/oxy,...,0V /dx,). Then the Lagrangian function Z(f,x,x%)
(x e R") is given by

2Lt %, %) :%|x|2+x-,4 —y. (2.2)

The Hamiltonian function #(z,x,p) (p € R") is defined through the Legendre trans-
formation of ¥ by

1
H(t%,p) =5 -|p— AP+ V. (2.3)

Let T*R" =R} x R) denote the phase space, and (R"*" and (T*R™™" the
spaces of all paths ¢:[s,7] 20 — ¢(0) e R" and (q,p) : [s,t] 20 — (¢(0), p(0)) e T*R",
respectively. The classical actions S.(z,s;q) for g € (R”)[“" 1 in configuration space and
S(t,s;q,p) for (q,p) € (T*R")[S”] in phase space are given by

st = [ #0.q0.q0)d0. q0) =0 (2.4)
and
S(t53.) = | 2(0)-0(0) - #(0,0(0), p0) @0, 23)

respectively (cf. [2]).
Let 4:0=179<7 <---<7t,=T be a subdivision of the interval [0,7]. We set

4] =maxi<j<v(tj —7j-1). Let 0<s<t<T and f e Cy(R"), where C;°(R") is the
space of all infinitely differentiable functions in R"” with compact support. For A4 above



960 W. ICHINOSE

we define the time-slicing approximate integrals é,(z,s)f and G4(¢,s)f of the Feynman
path integrals in configuration space and in phase space respectively as follows.

At first we define %4(z,s)f. We set Gy(s,s)f =f. Let 0<s<t<T. We take
l<u' <p<vsuch that 7,1 <s<t, and 7,1 <t <7, For y,xV (j=p' p+1,
.., u—1) and x in R" let’s define g,(0; y,x*), ... x"=1 x)e (R")[S”] by the broken
line path joining points y at s, x/) at 7; (j =g/, 4’ +1,...,u—1) and x at ¢ in order.
We define 4,(t,s)f by

n u—1 m n m n
(Ga(t,5)f)(x) = 2mih(l — 1) (,-_111 \/Qnm(fj — 7 1) )\/2nih(rﬂ/ — )

X 08 — J = J (expih 'S, (t,5;9.4)) f () dydx*) ... dx!#=D), (2.6)

Here os—J---Jg(y,x(”,),...,x(”_l))dydx(“,)---dx(”_l) means the oscillatory integral
(cf. [22]).

We define Gy(t,s). For the sake of simplicity we set s =0. The general case
can be defined in the same way that %,(¢,s) was done. We set G4(0,0)f = f. For
0<t<Ttake a | <u<v such that t, | <t<7t, ForovWeR" (j=0,1,...,u—1)
in velocity space we define v, (0;0, ... v*"1) e (R”)[O’ 1 in velocity space by the piece-
wise constant path taking (¥ at § =0, v\/) for 7, <0<t (j=0,1,...,u—2) and
o) for 7, <0<t Let g20;x0, ... x* D x)e (R (x© = y) be the path in

configuration space defined above. Then we determine the path p,(0;x®), ... x(#1,
x, 00, v D) e (RN in momentum space by
0¥
Pa(0) := —=(0,44(0),v4(0)) = mv4(0) + A(0, 44 (0)). (2.7)

We define Gy4(¢,0)f by
(G4(1,0)f)(x) = (2zh/m) ™ 0s — J---J(exp ih™'S(t,0;44, pa))

In [16]{18] we proved the following.

THEOREM A. Let 07E;(t,x) (j=1,2,...,n), 0yBy(t,x) and 0,By(t,x) (1<j<
k < n) be continuous in [0,T] x R" for all . We suppose

0FE (1, )| < Coy ol = 1, [07Ba(t,%)] < G~ o] > 1 (2.9)

in [0,T] x R" for some constants 5 >0 and C,, where (x> =\/1+ |x|* and & is inde-
pendent of a. Then there exists a constant p* > 0 such that we have for an arbitrary
potential (V,A) with continuous V,0V [0x;,0A4;/0t and 0A;/0xx (j,k=1,2,...,n) in
[0,T] x R": (1) Let |A] < p*. Then both of 64(t,s) and G4(t,s) on Cy° are well-defined
and can be extended to bounded operators on L*>. They are equal to one another. (2)
Let |A| < p*. Then there exists a constant K >0 independent of A such that
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164 (t,5) [ < X9 f]l, 0<s<t<T (2.10)

forall feL? (3) As |A| — 0, G4(t,s)f for f € L? converges in L* uniformly in 0 < s <
t < T and this limit satisfies the Schrodinger equation

ih%u(t} = H(u(t), u(s)=f, (2.11)
where
1 (14 ’
H (1) :%;Ga_xf/l-") + V. (2.12)

We note that in fact the constant p* in Theorem A is defined from [Proposition 3.1|
stated later in the present paper. This constant p* > 0 is fixed throughout the present

paper. We write [(expih™'S.(1,5:4))/(q(s))Zq and [[(expih™'S(1,5:4, p))f(4(5)ZpZq
for the limit of €,(z,5)f and Gy(t,s)f as |4] — 0, respectively.

ReEMARK 2.1. In we make the change of variables: R™ 3 (v, ... v+=1)
— (pO,..., ple=y e R™ setting p\) = mv\/) + A(z;,x)). Then Gy(¢,0)f is written
(Ga(1,0)f)(x) = (2mh) " 0s — J---J(exp ih™'S(t,0; 4.4, pa))
in the form of an integral on the phase space as a product space.

REmMARK 2.2. In Theorem A only smooth electromagnetic fields are considered.
We can apply Theorem A as follows to the case that electromagnetic fields have
singularities. For example consider atomic Hamiltonians

7 & ~ n 1
H:_%;Af_;|x(j)|+ > X0 — x®)]’

1< j<k<n

where x(/) e R® and A; denotes the Laplacian in x(/). Let y, (/=1,2,...) be real
valued infinitely differentiable functions in R such that sup,_g:|0%z,(x)| < oo for |o| > 2
and

lim y,(x) = BRI L*(R*) + L (RY).
[— 0 |X’

We set

n n

12 . .
_ " ) Dy _ () _ (k)
H), = o j§1 Aj+ ;1 ny (x) E 1(x = x").
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We know that e~ (=)Hi converges to e (—9H gtrongly in L?> as / — oo. See

Example 2 of §X.2 in and Theorems VIII.21, VIIL25 in [25], and also see [31]. It
follows from Theorem A in the present paper that e~ (=9Hif for f e L2 can be written
in the form of our path integrals. So we see that e~ (=9 f can be written in the form
of the limit of our path integrals. The same argument can be applied to the general
case of electromagnetic fields having singularities.

The following is the first main theorem in the present paper.

THEOREM 1. Besides the assumptions of Theorem A we suppose
A< C =1, [0V < Gy, fr] 21 (2.13)

for j=1,2,....n in [0,T] x R". Let a=0,1,... and |4| < p*. Then we have: (1)
There exists a constant K, > 0 independent of A such that

164 (2,5) [ |

for all f e B®. In addition, €,(t,s)f for f € B* is continuous as a B*-valued function
in0<s<t<T. (2) As |4] — 0, G4(t,s)f for f € B converges to the solution of (2.11)
in B* uniformly in 0 <s<t<T.

pe <K fllpe, 0<s<t<T (2.14)

REMARK 2.3. Suppose that E; (j=1,2,...,n) and By (1 <j <k < n) satisty the
assumptions of [Theorem Al Then we can find a potential (¥, 4’) satisfying [2.13),
which is proved in [Lemma 6.1 of [T7]. We define %(z,5)" by (2.6) for these (V', 4’).
Let (V,A4) be an arbitrary potential such that V,0V/0x;,04;/0t and 0A4;/0x; (j,k =
1,2,...) are continuous in [0,7] x R". Then we have a continuously differentiable
function (¢, x) in [0,7] x R" such that

—V'di+> Aldx;=-Vdi+) Ajdx;+dy.
J=1 j=1

So we have from (2.6)
Ct,5)f = e VG (1,5) (V) (Al < pt, fe L

See the proof of Theorem in for details. Hence Theorem A follows from
1. That is, is a generalization of Theorem A.

REMARK 2.4. Let é()t?s([O, T];B“*z)ﬂcg’t}s([O, T); B) denote the space of all B2-
valued continuous and B“-valued continuously differentiable functions in 0 <s <t < T.
Suppose and consider the Schrédinger equation for fe|),_,B* Then the
uniqueness of the solutions in | )" (é”‘,?s([O, T); B“2)N 5;_9([0, T]; B%)) has been proved

0

in [15], where B¢ (a =1,2,...) denote the dual space of B*. So we write the solution

of as U(t,s)f hereafter.

Let 4:0=19<71<---<7,=T be a subdivision and (g4(0;x,... x0~V x),
pa(0;xO x0T x o @ y0-DY)) e (T*RMOT) the path determined before. Let
0<y<Hph<---<t;, <T. For z=g¢q or p we write
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|[(expintS(T,0: 1, )z () -+ 20, (1)1 020D ZpaZas

= 05 — J : -J(eXp in'S(T,0; qa,p))(24);, () -+ (z4);, (1)
x f(xN@nrk/m)™ dv®@dx O dpMdx) . .. dp =D gx =1 (2.15)

and

j(exp ST 0:00))(qa), () - (44);, (1)1 (44(0) 74

= 05 — j . j (exp i " Se(T,0:4.4))(qa);, (1) -+ - (qa);, (1) f (x*)

n

- m g3V . . gy =)
X ]11 \/27zih(rj —_— dx"" dx dx\"", (2.16)

(0,77

where (z); is the j-th component of z, € (R") We state the second main theorem.

THEOREM 2. Let 0<t1 <tr <--- <t <T,a=0,1,... and |4| < p*. Then under
the assumptions of Theorem 1 we have: (1) The operator (2.15) on Cg° is well-defined
and can be extended to a bounded operator from B** into B¢. In more detail, we have

H “(exp ih_lS(T’();quPA))(ZA)jk(tk) N

X (24);, (1)1 (44(0))ZpaZq4

< G| f]] gas s (2.17)
Ba
where C, is a constant independent of A, t,...,ty—1 and t,. (2) We assume
ti#t (i#j). Then as |4] — 0, (2.15) for f e BT converges in B¢, which we write
[[(expih™'S(T,0;q, )z, () - - z;, (1) £ ((0))ZpZq. This limit is equal to U(T,1;)%; -
U(ti, te—1) -+ 2;, U(11,0) f, where Z; denotes the multiplication operator x; when z = q and
denotes i 'ho,, when z=p. (3) Let t€[0,T) and f € B“*2.  We take a u for each A so
that ©,_1 <t <7ty When t=0, we take pu=1. Then we have

tim | [(exp 71 S(7,05..4))(02), (0 (P00 0400) TP,

— U(T, 0)§;p U(t,0)f + "5 tim (L> U(T,0)f (2.18)
I 40\ Ty — Tyu—1

in B®, where oy 1is the Kronecker delta. We note that the right-hand side above is

divergent if j =k and 0 <t <T. (4) Here we don’t assume t; #t; (i #j). Then the

operator (2.16) on C{° is well-defined and is equal to (2.15) where z = q. In addition, in

this case, i.e. in the case of all z = q the operator (2.15) for f € B“** converges in B as

|[4] — 0 and this limit is equal to U(T,t)q; Ulti, tk—1) -~ q;, U(11,0)f.

See Remark 6.1 for the other results related to [Theorem 2.
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We write [(expifi~'S.(T,0;¢))q; (t) - q;,(t1)f(q(0))Zq for the limit of as
|4] — 0. Let’s use the notations of the Heisenberg picture of quantum mechanics:
(1) = U(1,0)'2,U(1,0), |f,t) = U(t,0)"'f and (f,t] = |f,7>*, where g* is the com-
plex conjugate of g.

COROLLARY. Under the assumptions of Theorem 1 we have: (1) Let 0 <t <
th<---<t <T,geL?”and f € BX. Then we obtain the path integral representation of
correlation functions

g, T2 (te) - - 2, (t)1f, 0> (= (g, T, 2, (tk) - - - 2, (t1)| 5 0)))

_ (g, [Jtexpi (7,050, ()2, (tl)f(q(O))EZp@q> @)
We also have for 0 <t) <thb < ---<t;, <T

9, T1q;, (1) - - - g;, (1)1, 05

_ (97 [(expints.(7.0:0)45 ()45 1 >f<q<o>>9q). (2.20)

(2) Let 0<t' <t<T and f e B> Then we have for j k=12, ...,n

t'—t

lim j j (exp i S(T,0:q, ) (1 (D (t') — gD () £ (@(0))Zpg

= o [expin (7,02 s (0D 7074 .21
in L.
PrROOF. Since
U(T, t4)z, U(tk, ti1) -+ 2, U(11,0) f = U(T,0)Z;, (tx) - -~ 2;, (1) [, (2.22)

we can easily prove (2.19) and from the assertions (2) and (4) of Theorem 2. It
follows from the assertion (2) of that the left-hand side of is equal to

hm<U(T7 Z)ﬁjU<tv ll)ékU(tla O)f - U(T7 t)ékU(la t/)ﬁjU<t/7 O)f)

t'—t

Here let’s use the fact that ||U(t,s)g| g < eX=9||g|z. and U(t,s)g for g € B* is con-
tinuous as a B“valued function in 0 <s << T, which follows from [Theorem 1.
Then

1U(, )q U, 0)f = 4 UL, 0) f 1| p
< Mg (U, 0) = U 0)fllp + 1U(1 )gU(5,0)f = g U(1,0)/ |
and so lim,_, U(t,#)g, U(¢',0)f = q,U(t,0)f in B'. Consequently we have
lim U(T, 05,01, 1)3, U(,0)f = U(T, 1) ;4 U (1,0

in L?. In the same way we can prove [2.21). ]
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REMARK 2.5. (i) The path integral representation of correlation functions of
the position operators has been well known in physics, though it has not been rigorous
(cf. [24], [28]). We note that our result (2.19) gives a more general representation of
correlation functions including the momentum operators. (ii) It follows from
2 and (2.22) that the equation is equivalent to

lim (5,031 ()f — 4 (0)8,(1)1) = 2. (2.23)

1.e. the canonical commutation relations.

ExampLE 2.1. Let (V,A4) be an electromagnetic potential such that

02V + N 0t < Gy el =2, ) |0k0A < Gy o > 1
j=1 j=1

in [0,7] x R" for some constant 0 > 0. Then since we have E; = —04;/0t — 0V /0x;
and By = 0Ay/0x; — 0A;/0xy from (2.1), we can see that the assumptions of Theorems 1
and 2 are satisfied.

3. Uniform boundedness of the family of the approximate integrals.

Hereafter we set 7 =1 for the sake of simplicity. We set

0—s t—0
l_s(x—y):x—:(x—y), s<O<t. (3.1)

q:5(0) =y +

Let p(x,w) be an infinitely differentiable function in R*". We define the operator P(z, s)
on C;° by

(\/m/(2ni(t — s))n J(exp iSe(t,s; qisy))

P(I,S)f: xp(x, (x_y)/V I_S)f(y>dyv § <, (32)

m/(2ni) os — J(exp im|w|?/2)

x plox, w) diw (), s=1

\
as in [16]-[19]. In particular, when p(x,w) is identically one, we write P(¢,s) as €(t,s).

Let’s define B :={f e L ||fllzg. = |- DIl + |<- >*f]l < oo} for positive num-
bers a # 1,2,..., where f is the Fourier transform J"e*"x'éf (x)dx. We state the results

obtained in [17], which will be used in the present paper. See Lemma 2.1, Theorems
3.3 and 4.4 of [17] for their proofs.

ProrosiTiON 3.1. Let M >0 and suppose

10502 p(x, w)| < Cy v W)™ (3.3)

in R*" for all « and B, where {(x;w) = \/1 + |x|* +|w|>. Then we have under the
assumptions of Theorem 1: (1) Let f e C°. Then 0;(P(t,s)f) are continuous in 0 <
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s <t<T and x e R" for all o. (2) There exists a constant p* > 0 independent of M and
p(x,w) such that if 0 <t —s < p*, P(t,s) on C° can be extended to a bounded operator
from BM*¢ (¢ =0,1,...) into B*. In more detail, we have for constants C, independent

of t and s
1P(2,9)f lpe < Callfllpya; O<t—5<p". (34)

(3) There exists a constant K >0 such that

€@ Sl <e NSl 0<t—s<p* (3.5)

for feL? (4) Let |A| <p*. Then %,(t,s) on C given by (2.6) is well-defined and
can be extended to a bounded operator on L*>. In addition, for T, 1 <t <71, and 1,1 <
s < 1, we have

Cu(t,8)f = C(t, 7 1)C(Tu1,74-2) - C(Turi1,70)6(t,8)f, fel? (3.6)
We can write from (2.2), (2.4) and (3.1)

Dy M=yt
Se(t,83q5) = 20 —s) +(x—y) JOA(I O(t—s),x—0(x—y))do

—J:V(H,x—%(x—y)) do

1

—|—(x—y)-JOA(l—H(l—s),x—H(x—y))dH

2
mlx—y]
2(t—s)

1
—(t—y) Jo V(t—0(t—s),x—0(x—y))do. (3.7)

Making the change of variables: R">y —w= (x—y)/v/t—seR" in (3.2), we have

P(t,s)f = Zﬂ 0s — Je""j(t’s?x’w)p(x, w)f(x—+/pw)dw, s<t, (3.8)

1

where p=1¢—s and

(1, 85x,w) = % |w|2 + (2,8 x,\/pw)
" 1
= 5|w|2 +/pw- [ A(t — Op,x — 0,/pw) dO
0

- le V(t—0p,x— 0\/pw)do. (3.9)
0

The following lemma is fundamental.

Lemma 3.2. Assume (2.13) and let x = (ky,...,k,) be an arbitrary multi-index.
Let 0 <s<t<T. Then both of 0;,(6(t,s)f)—6(t,5)(0rf) and x"(€(t,s)f) — €(t,s)-
(x*f) for f e Cy are written in the form
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<r—s>Zﬁyu,sxa;f)::(r—wz\/;os_ e

M 7 < I
X (1533 /BW)(@LF) (X — pw) dw, (3.10)
where y are multi-indices and p,(t,s;x,() satisfy
10200y (1,55, 0)| < Cp e I (3.11)

for all o and p.
PrOOF. We note from 2.13) and |3.9)

0200y (1, 5,x,0)] < Copdx; O, o+ Bl > 1. (3.12)

We first consider 0% (%(¢,5)f) — %(¢,5)(0xf). We prove the assertion by induction
with respect to |«|. Let || =0. Then the assertion is clear. Suppose that the
assertion for |x| =/ is true. Let A be an arbitrary multi-index such that |1| = /. Then
0L(%(1,9)f) — 6(t,5)(0Lf) has the form [3.10). Consequently it follows from (3.12)
that 5x/(8i((€(t,s)f)—(g(t,s)(ﬁif)) is written in the form (3.10) where |x| =17+ 1.
Hence to complete the induction we will prove that 0, (%(¢, $)oLf) — 41, s)<ax_,.a§ f) can
be written in the form where |k| =7+ 1. We have from with p(x,w) =1

and
0y, (%(1,5)01f) = G(1,5)(05,01f)

n 1
= i\/ﬁ\/zzm 0s — J ew - J S—A (t— 0p, x — 0y/pw) dO(OLf) (x — \/pw) dw

0 0Xj
n 1
— ipy /ﬂ_ 0s — J ei¢J a—V(t — Op, x — 0/pw) dO(OLf)(x — \/pw) dw.
27i 0 0X;

We see from that the second term above is of the form (3.10). Making inte-
gration by parts in w, we can write the first term above as

\/ﬁ m” - J im|w|?/2 J ip(t,5;x,\/pw)
m \ 2mi ;OS ¢ owy, ¢

x J ‘;xj"( — Op,x — 0/pw) dO(3}f)(x — ﬁw)) dw,
which proves itself from and (3.12) to be of the form [3.10]. Thus we have
completed the induction.

We consider x"(€(t,s)f) — €(t,s)(x"f). The assertion for |x|=0 is clear.
Suppose that the assertion for || =/ is true. Let A be an arbitrary multi-index such
that |A| = /. Then since x*(%(t,s)f) — %(t,s)(x*f) has the form [3.10), x;(x*(4(t,5)f)
—%(t,5)(x*f)) has the form where |k| =7+ 1. Hence to complete the induction
we will show that x;(z,s)(x*f) — €(t,s)(x;x*f) is of the form where || =1+ 1.
We have from (3.8) and [3.9)
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X6 (t,5)(x"f) — €(t,5) (x;x’f)

=p % 0s — J ew;(x — \/ﬁw);“f(x —\/pw) dw

l\/‘ - 0s — 1m\w| /2 Y J ( i (t,85x,\/pw)
27i ow;
X (x — \/ﬁw)if(x —\/pw)) dw,

which proves itself from (3.12) to be of the form [3.10). Thus we have completed the
induction. 0

ExampLE 3.1. Let V=0 and 4 =0. Then

E(t,5) = 4 /% 0s — J e””'“"z/zf(x —\/pw) dw

for 0 <s<t<T. So, we have

0 (€(t,5)f) = €(1,5)(0: f)
and as in the proof of

(6(15)f) = 6(05)051) — L6(1,5)(0, /)

for j=1,2,...,n

Lemma 3.3, Let a>0 and I, = {x)“ + {(Dy>" denote the pseudo-differential oper-
ator with symbol {x)“ + {n)>" (c¢f [22]). Then we have: (1) There exist a constant
d, >0 and z,(x,n) such that

1050%za(x, )] < Cou (< + )™

for all o and f and Z,(x,Dy)(d, + 1,)f = (da + I,)Z4(x,Dx) f = f for f e Cy, where
Z,(x,Dy) is the pseudo-differential operator with symbol z,(x,n). (2) The norm || -|
is equivalent to ||(d, + I3)-||. (3) Let [ > 0. Then the operators (d, + I,) and Z, are
bounded from B™* into B' and from B' into B, respectively.

Proor. The assertions (1) and (2) follow from Lemmas 2.3 and 2.4 of
respectively, where we take s =1 and a =b. We see from the assertions (1) and (2)
that ||(d, + 1) f||g 1is equivalent to ||(d;+ I})(ds+ 1) f|| = |(di + 171)(da + I0) Z )44 -
(diva + Iita) f]]. It follows from Lemmas 2.1 and 2.5 of [1I5], where we take a =
b =1, that (d;+ I})(d, + I,)Z14, is bounded on L?. So we have ||(d,+ I,)f]l 5 <
Const.||(djsq + I144) f|| < Const.||f] ga. In the same way we can prove the bound-
edness of Z,. ]

ProrosITION 3.4.  Under the assumptions of Theorem 1 there exist constants K, > 0
for a=0,1,... such that

1% (1,5)f || ga < X9 f

g, 0=<t—s<p". (3.13)
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Proor. Let || =a and 0 <7—s5<p*. We have from

105(& (1, 5) Nl < 1%(1, ) ()| + (1 =) D |1Py(1,5)(3L)].

7| <a

Noting [3.11), we apply the assertions (2) and (3) in [Proposition 3.1 to the right-hand
side above. Then

105 (@ (6 )N < KNS N + Calt =) Y 10Lf o

lyl<a

< K=t 1|+ Cole = )£l e

Here we used
103 | patn < Comst.||(dy—py + Lopp)0Lf || < Const.|| f1| 5o, (3.14)
which can be proved as in the proof of (3) in Lemma 3.3. In the same way we have
I ((1,5) )| < XS]]+ €Lt = 5)]1f o

Since ||€(1,5) [ g = [|€(t,5) 11| + 2 —a (X" (€ (1, 5) /)] + (|05 (% (2,5) /)]]), we have for a
constant K, >0

16 (t,5) fll e < XS]

which proves [Proposition 3.4| ]

g < | fl g,

e+ Gt = 9IS

THEOREM 3.5. Let |4] < p*. Then under the assumptions of Theorem 1 we have
(2.14).

ProorF. We can easily prove by applying [Proposition 3.4 to (3.6). O

4. Equicontinuity of the family of the approximate integrals.
Let H(¢) be the Hamiltonian operator defined by [2.12).

LemMA 4.1. Suppose that there exists a constant M' > 0 satisfying

03V I+ 1% +
=1

10%0,4;] < C,(xp™
j =1

J

in [0,T] x R" for all «. Then there exist continuous functions r(t,s;x,w) and r'(t,s;x,w)
in 0<s<t<T and x,we R" satisfying (3.3) for an M >0 such that

i%%(l, s)f —H()E(t,s)f

=t —5R(t,s)f

Vi o Jewissar(nsx 22 iay @
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and
—G(t,s)f +C(t,9)H(s)f =Vt—sR'(t,s)f (4.2)

for feCy and s < t.

REMARK 4.1. In [16], [T7], supposing |0%8,V| < C,<(x>M" for all « besides the
assumptions of [Lemma 4.1, we proved (4.1).

Proor. In this proof we write Sc(7,s;¢y5) as S(gy3) for simplicity. Direct cal-
culations show from (2.12) and (3.2)

0 L
S 5) ]~ He(5)f = - %_S) Je’S%)
< (s + 5l f0)d (43
, 1 & ,
n=AS(al) 5 D (0 S(ks) = A1)+ V(1,%), (4.4)
=1
= = AL + D0y A) (1), (4.5)

Set p =t —s. Under the assumptions we can easily prove from the first equation

of [37)

2
m|x — y|

_W_V(t x)~|—\/_p1<tsx\/t__:)is>

where pi(t,s;x,w) satisfies for an M. It has been proved in (2.23) of
that

6[S(q§’7}) =

RS (2 = M=l 516,
o Zaijq\y ](t’ )) _2(1‘— ) —|—\/_pz<t \/Zi—s)

Hence we have r| = \/pp3(t,s;x, (x — p)/+/t — 5) from [4.4]. It has also been proved in
(2.25) of that

] dm
AxS(qu:‘y) —+ Z@YJA (t,x) + \/ppa <t 53X, \/%>

Hence r, = \/pps(t,s;x,(x — y)//t —s) follows from [4.5]. Hence we can prove (4.1)
from (4.3).
We consider {4.2). We also have by direct calculations
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0 veo
= (15)f + € H(s)f = _\/% Jelsw

X (ri(t, 83X, Y) +ﬁré(ns; X, y))f(y) dy,  (4.6)

1 n

I’{ = aSS(q)tc’,}) - %Z(%’,S(q;}) + Aj(s7 y>)2 - V(S, y)> (47)
=
nm S -
ry=— T AyS(ql5) + ) (04,4))(s, ¥). (4.8)
=
From (4.6)—(4.8) we can prove as in the proof of (4.1). |

THEOREM 4.2. Under the assumptions of Theorem 1 we can find an integer M > 2
such that

1€a(2,9)f = Ca(t',8") [Nl o < Callt = 2| + |5 = SIS | g (4.9)
for 0<s<t<T,0<s<t/'<T, |4 <p* and a=0,1,....
ProoF. We have 04/0t = E — 0V /dx from (2.1) and so

> lozaA;] < Culx) (4.10)

J=1

for all « from the assumptions. Consequently [Lemma 4.1 holds. Let’s take an integer
M >2 in and fix it. It is clear from the assumption [2.13) that we
have

I1H (1)

by using and its proof. Let /€ B™™ and t,¢' > s. Then we have from (2)
of [Proposition 3.1 and [Cemma 4.1

g« < Const.|| f]

g2 < Const. || f]

po, 1€0,T] (4.11)

i(G(t,8)f — (1) f) = Ji (H(0)%(0,5)f + 0 —sR(0,s)f)dO (4.1)

t

in B*. It follows from (1) of [Proposition 3.1 that (4.1)" is valid for ¢, >s. In the
same way we have

i(C(t,5)f —€(t,s)f) = — J ((t,0)H(0)f —vi— OR'(1,0)f) dO (4.2)'

S/
in B¢ for t,t' > s.
We first consider in the case of s'=s. We may assume ¢/ <7 Let 7; <

t <7tjy1 and 1 <t <1y for some j and k. Suppose j=k and s <7;. Then we
have from (3.6) and (4.1)’
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i((gA([, S) — (gA(Z,,S))
=i(%(1,7)) = (1", 7)) (1), 5)

Jl H(0)%,(0,5)d0 + JZ 0 — R0, 1) dOGy(7;, ). (4.12)

t! t

Suppose j > k and s < 7. Then

(gA([, S) — (gA(l,, S)

j—k—1

= C(1,5) = Ca(1,9) + Y (Gu(ti11,5) — Gul(T7-1,9))
=1

+ (gA(Tk+1,S) — (gA(ll,S).

The same proof as of (4.12) shows

)
- J[ H(0)%,(0,5)d0 + JI 0 — R0, 7)) d0% (7}, )

T

J—k=1 Tj—i+1
+ J VO = 1RO, 71) dO%4(5j-1, 9)

Ti-1

Th+1
+ J 0 — 1 R(0, 1) dOC (1, 5). (4.13)

Apply (2) in [Proposition 3.1, Theorem 3.5 and (4.11) to the right-hand side of (4.13).
Then

iH%(l,S)f— (gﬁ(tlas)f“B“

Ba+Md0+ \ |A J dQH(gA Tj, S )f

Bat+M

< Const.(J |64(0, s)

J—k—1 Tj—1+1 Thk+1
s MJ 40|%1(5-1.5)f | goor + /14 j 40|24, 5) |

Bu+M>
=1 5ot

< Const. eXvT (1 4\ /p9)|t = 1| || f
which shows [4.9). In the same way we can prove generally in the case of s’ = s.

We consider the case of ' =+ We may assume s’ <s. Let 7; <s< 7 and
Tx <8 < tk41. Suppose j=k and ¢ >7;;. Then we have from (3.6) and [4.2)

BatM

i(Ca(t,s) — 64(t,5"))

\/ Tj+] — QR/(Tj+] s 9) deo (414)

- _ J Gu(t,0)H (0) dO + 4(t,7,41) J

s’ K
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as in the proof of (4.12). Supposing j >k and 7> 7;;;, we have
i((gﬁ(l‘a S) - (gA([asl))

J—k—1

= i(G(t,5) =G, 7)) +i Y (Gult,t101) — Cu(t,751)
=1

+ (G (t, Tis1) — Cu(t, "))

= —J %A(Z,Q)H< )d@—i-(gd l Titl J A/ Tj+l — OR’ (‘C]_H,
Tj—I+1
(gA 1, Ti—t1 J Ti | 1—0R/(‘L'~,1 1,(9)61’(9
1+ ; \/ Ti-i+ I+

Tk+1

—i—(@(t, ‘L'k+1)J V Th+1 _QR/(T](+1,0) do (4.15)

S/

Jj 1

5>

I=1

as in the proof of (4.14). Hence we can prove from (4.14) and (4.15) as in the
proof of the case of s’ = 5. In the same way we can prove generally in the case of
t' =t We can easily complete the proof of from the results above.

[

5. Proof of Theorem 1.
Let M >2 be the integer in [Theorem 4.2. We fix M through this section.

Lemma 5.1, Let {4;};2, be a family of subdivisions of [0,T] such that |4;| < p*
and lim;_,,|4;/ =0. Let a=0,1,... and [ € B**. Then under the assumptions of
Theorem 1 we can find a subsequence {A; },_,, which may depend on f, such that: (1)
As k— o, by, (1,5)f converges in BM uniformly in 0 <s<t<T. (2) The limit
of bu,(t,s)f belongs to é‘} ([0, T7T; B“*M)ﬂ(o@l ([0, T); B*) and satisfies the Schridinger
equatton (2.11).

Proor. It is proved from the Rellich criterion (cf. Theorem XIIL. 65 in [27]) that
the embedding map from BY into L? is compact. Consequently we can easily see
from that the embedding map from B*"*M into B“*™ is compact as well.
Since f e B“**M it follows from that {%,(z,5)/},2, is uniformly bounded
as a family of B“"?M-valued functions in 0 <s <¢<T. Consequently {%(,s)/ Ho
for each ¢ and s makes a relatively compact set in B“*™. We also know from
Mheorem 4.2 that {%y,(z,5)f},2, makes a equicontinuous family of B*""-valued func-
tions in 0 <s <t < 7. Hence applying the Ascoli-Arzela theorem, we can find a sub-
sequence {4}~ such that % (z,s)f converges in B*™ yniformly in 0 <s <7< T as
k — oo.

We set W (t,s)f :=limg_ %jk(t,s)f. Let’s apply [Proposition 3.1 and
3.5 to where ¢/ =s. Then we have from (4.11)

t

(W(t,s)f —f) = J HO)W(0,s)f dO (5.1)

N
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in B?, which shows that W(z,s)f belongs to @@gs([O, T]; BY) and satisfies (2.11). Thus
we could complete the proof. ]

REMARK 5.1. Let fe B*?M and W(t,s)f the function defined in the proof of
[Lemma 5.1, ie. W(ts)f =limko 6y, (¢,5)f. Then, using (4.15) where s =1, we can
prove

t

i(f—Wi(ts)f) = —J W(t,0)H(0)f do

N

in B“. Consequently we have

i% W(t,s)f = —W(t,s)H(s)f. (5.2)

PROPOSITION 5.2. Let a=0,1,... and f € B**_  Then under the assumptions of
Theorem 1 we see that as |A| — 0, €4(t,s)f converges in B**M uniformly in 0 <s <
t < T. In addition, this limit belongs to co"’t?s([O, T); B4TM) ﬂéatfs([O, T1; B*) and satisfies
(2.11).

ProOF. We can easily prove by means of the energy method that the solutions of
in @@I?S([O, T]; B4tM) ﬂ@@t}s([O, T]; B*) are unique. [Proposition 5.2 can be shown

from this uniqueness result and Lemma 3.1. ]
Proor oF THEOREM 1. Let a =0,1,.... The inequality has been already

proved in [Theorem 3.5. Let |4| < p* and f e B*. Then for any ¢ >0 we can find
a ge B“™M such that ||g — f]|z. <& We have from

164(,5)f — G, L e < 164(2,5)g — G(t',5 )gll o + 25T,
Hence we have from [Theorem 4.2
imy || Ga(t,s) f — Cu(t',s') [l g < 2e%Te,

which shows @,(¢,s)f € é”‘f?s([o7 T]; BY).

We show the assertion (2). Let f e B. For any ¢ > 0 we take a g € B“**™ such
that ||g —f|/z« <& Let 4 and A’ be subdivisions such that |4]|,|4'| < p*. Then we
have from (2.14)

H(gﬁ(tv S)f - (gA’(lvs)fHB“ < ||(gA(l7S)g - %/([,S}Q

< ||(€A<t,S)g - (gA'(Z7 s)g||Bu+M + 2€K“T8,

pa +2e%Te

IProposition 5.2| gives

im0, max [ €u(t,s)f = €p(t,5)f | go < 257,

<s<t<T

which shows that as |4| — 0, %,(z,s)f converges in B¢ uniformly in 0 <s<r<T.
In the same way we can easily complete the proof of Theorem 1.
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6. Proof of Theorem 2.
Let x,» and v be in R". Using the path ¢ € (R”)[S’t] defined by (3.1), we set

085,00 = (550,55 0,050 ) e (RN (61)
Then we have from (2.5)

.
7é>

(1)

(ZSCQ;L):_

1

(1=l + v =)ot (=) - | (= 0p,x = 00— ) do

N|§ | 3

1
—(t—s)JO V(t—0p,x—0(x—y)d0, p=t—s (6.2)

(cf. Corollary 3.4 in [18]). Let ¢>0 and set for f e Cy

G,(1.5)f = {(27z/m)”JJ(exp iS(1,s; C;’j,v))x(ev)f(y) dvdy, s<t, (63)
fv §=1,

where y € C°(R") such that x(0) =1.

LEmMA 6.1. Let 0<t—s<p* and s<t <t. We consider an infinitely differ-
entiable function b(x) such that

10%h(x)| < COM | > 1,

where M >0 is a constant independent of «. Then we have under the assumptions of
Theorem 1: (1) Let y be an arbitrary multi-index. Then we have for f e C{(R")

(2n/m)™" ”(exp iS(t,5: 0% ))ev) (mo)B(g" (¢)) £ () dudy

m n . x—y
Y- Se(t, 8,43 LSy, ——==
27'Ci<t—S) J(eXpl ( S Qx,y ) Z (pV ( 5 X m)

0<y' <y
X—y /
+ p”//,l;‘(l’ [,’S; _X'7 ﬁ))@jﬁf(V) dy, (64)
10208 i (1,1, 53, w)| < Cy poc; wHMHA=DT (6.5)
(050 o o(1,1' 5.3, w)] < ) p<o WM, (6.6)
hm 0, 8ﬁp .1, s;x,w) =0, pointwisely 6.7
7

Jor all o and B, where C, g are independent of t,1" and s and C, p are independent of
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0 <e&<1, but dependent on t—s. The notation y' <y means y; <y, (j=1,2,...,n).
(2) We study the case of y =0 in (1) in more detail. We have for f e Cy

(27 /m)~" ”(exp iS(1, 5105 )x(e0)b(q" (1)) £ () dudy

= %(t,5)(bf) + exp iSc(t,5;4,)) (\/l -5

i

X=) X—=)
X Po (t» t', 85X, \/ﬁ) + Po,e (% 1,85 x, ﬁ))f(ﬁ dy, (6.8)

where pi(t,t',s;x,w) satisfies the same estimates as of (6.5) with y=y'=0. (3) We
study the case of |y| =1 in (1) in more detail. We have for f e C

(2/m)™" ”(exp iS(t,5: ¢ )z(evymush(g™S (¢)) £ () dody

b 0 t—t b m_ "
. S>( 6xj_Aj(s)b+i(t—s) 5—x])f+ 27i(t — s)

. ! X =Yy
x |(expiSq(t,s;q ) Vi—s pl|t,1, s x,——=
J( p ( qA,y)) ( Po ( m)

x_
+Vi—s pg (t, ' s; x’\/T—ys> 0y,

v, e 85X, ok dy, 6.9
£ (zz ¢_) )f(y)y (6.9)

where e; = (0,...,0,1,0,...,0) and p(’)/(t t',s;x,w) and p, (1,1, s;x,w) satisfy the same
estimates as of (6.5) with |y| =1, y' =0 and with |y| = \y | = 1, respectively.

Proor. (1) We first consider the case of y = 0. Then we can prove from (3.1) and
(6.2) that the left-hand side of [6.4), i.e. is equal to

/

/)" [(expis.tussals b v+

i —y)>f(y) dy

X J(exp —i% (t— s)‘v - %‘2)){@1)) dv
- o [ewisiasaip(r+ 4=
« \i2n" J(exp—i\z\2/2)x <g<, /m(tl_ 7 +’;:f>) dz

t—
t—s

(x— y>)f<y> dy

m

- Y Se £, s; )L
s st (v

(x - y>)f(y> dy
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sy |Epissasm(y+ = w0 10

X \/i/2nn J(exp—i|z|2/2){x<g< m(zl— s)Z+);:~):)> - l}dz. (6.10)

Writing y + (¢ —s)(x = »)/(t —s) =x— (t — ') (x — p) /(t — 5), we get [6.4]-(6.7). Next
we consider the case of |y| =1, i.e. v” =v;. Then we can prove from (6.2) that the left-
hand side of [(6.4), i.e. (6.9) is equal to

(27 /m)™" JJ (exp —i% (t—s)|v]* +i(x—y)- mv)x(ev)

x%aiyj{(expi(x—y)-J;A(t—ﬁp,x—ﬁ(x—y))dﬁ

/

—i(i—s) J; V(- 0p,x—0(x—y))d9>b(y+tt

(r-0) ) £0) fdody. (611

— S

Consequently, noting the assumption [2.13), we can easily prove [(6.4)-(6.7) as in the
proof of the case of y=0. In the same way we can prove (1) generally.
(2) We can write

t—s
t—s

" )n J(exp iSc(t, s %tcsy))b(y + (x —y))f(y) y

2ni(t — s

=G + [ [xiSesaly)

<((r+ =S 0) 000 )£

t—s

Consequently we can prove from (6.10). In the same way (6.9) can be proved

from (6.11). O
LeMMA 6.2 Let 0 <t—s<p*, 0< M and {p.(x,w)}o .o a family satisfying
sup [07,07pa(x, w)| < CoplxswH™, (6.12)
0<e<l
lgi_r% 0208 p,(x,w) =0, pointwisely (6.13)

for all o and . We define the operator P(t,s) by (3.2) for p.(x,w). Let a=0,1,....
Then under the assumptions of Theorem 1 we have

tim [1P,(t,5) /5. = 0

for all fe B+,

ProoF. Reviewing the proof of [3.4), i.e. the proof of Theorem 4.4 of [17], we
prove this lemma. At first we see from Lemmas 4.1 and 4.2 of that P,(z,s)"Py(t,s)
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can be written in the form of the pseudo-differential operator Q.(t,s;x,D.) with
properties

sup [0;00q.(t,5,x,1)| < Cp y<x; ™M,

O<e<l1

Pi% 82‘8fq5(t, s;x,1) = 0, pointwisely

for all  and . Let dy; + I')y and Z,; be the pseudo-differential operators in
3.3. Then we can easily see lim, .o||ZyQ:(t,s)f|| =0 for fe Cy (cf. Lemma 2.2
of [15]) and || Zy Q.f|| = 1(ZmQeZm)(dy + I'ma) f1| < C||f | g With a constant C >0
independent of ¢ as in the proof of [Lemma 3.3, which show lim, .¢||Z/Q.(t,s)f|| =0
for fe BM. Since (Py(t,s)f,P.(t,5)f) = (ZyQ:(t,5)f, (dr + Tnr) f), we have

lim||(1,5)/]| = 0 (6.14)
for f e BM.
Let |¢| =a and f e BM™4. We can prove from (6.14)
lir%||x°‘ :(1,8)f]] = 0. (6.15)

As was shown in the proof of Theorem 4.4 of [17], we have from

OX(P1,8)1) =Y Pp.ult,8)(027Pf),

p<a

where {pg .(x, W)}y, satisfies (6.12) having M replaced with M + || and (6.13).
Since 0*f € BM+IFl follows from [3.14), we have from (6.14)

lim || Py, (1, $)(07 /)|l = 0

and so
lim |02 (P.(1,5))| = 0. (6.16)
Hence we can complete the proof together with (6.14) and (6.15). O
LemMA 6.3. Let 0<t—s<p* and a=0,1,.... Then under the assumptions of

Theorem 1 we have

lim G,(t,5)f = €(t,5)f in BY,  sup ||Gy(t,5)f —6(t,5)f

O<e<1

eniva

B4

for f € B where the constant C, may depend on t — s.

Proor. We have from (6.3), (6.10) and (1) of

Gt.5)f = 6(0.9)f + [ [(expisi(t.siais)

<o (1sx 522 ) 1) .
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Here po .(t,s;x,w) satisfies [6.12) with M =0 and (6.13), where the constants C, s in
(6.12) may depend on ¢t —s. Consequently the assertion follows from [Proposition 3.1

and Lemma 6.2. O

ProoF OF THEOREM 2. For the sake of simplicity we prove (1) and (2) of
2inthecase of 0 < t; <t <7, z;; = ¢q; and z;, = pr. The general case can be proved
in the same way. We write for s <t <t

Gy (1,0 )f = (2n/m)™" “(exp iS(t,5: 0 Nen)(gs),(¢) () dody,  (6.17)

G~278(l, t',8)f = (2n/m)™" JJ(exp iS(t,s; 5;’7;70)))((81))
- (mo + A2, 4,5, (8) f (») dvdy, (6.18)
QS = GG1) = | [5ms [(xPiS(e.5 g2 () (6.19)

L

- (y)dy. (6.20)
1 OXf

%207 S)f = (g(t7 s)(f)kf) = % J(exp iSC(l7 3 q}{,’j}))

We note [4.10). Then we have the following from [6.8), (6.9) and [Lemma 6.2. There
exist py(t,t',s;x,w) (N =1,2) satisfying with M +|y| =1 and y’ =0 such that

lim |Gy o (1,8 ,8) f — Gn(t,8)f — 1 —sPy(t,t',5)f]lga =0 (6.21)
E—

for f e B!

Let 4 be a subdivision such that |4| < p* and fix such a 4 for a while. We take u
and p' for 4 so that 7, <t <t,and 7,1 <t <7,. Suppose u < u'. Then we can
write from (2.7), (2.15) and (6.3)

”<exp iS(T,0: 44, pa)) (pa)(12)(@), (1) f (44(0) Zp 2T

= 181_1)% GS(T7 val)X(8'>Gs(Tv717Tv72> e 'X(3'>Gs(fu'+l7 Tu’)

'X(g‘)éle(fﬂ’a 1, Tw-1) (&) Ge(Tp—1, Tw—2) - - - x(&) Ge(Tp1, T)

()G oG 1, T 1) Galum, Tud) - 2(@)Galm, 0)f. (622

Here we note

) < Call /]

5o G e, t2, T 1) f

sup (||Gr,o(tus 11, Tut) f

O<e<l1

Batly

where the constant C4 may depend on 4. This inequality can be proved as in the proof
of Lemma 6.3. Then applying the equality
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KVX(8'>KV—1X<8') ( )Klf Kv v—1" Kl/f

= ZKvX(g‘) (e Kix(e) (K — I<j,)l<j/—1 - K{f

v—1
+ > Kor(e) - x(e) Ky (x(e) = DK} - K{f (6.23)
J=1
o (6.22), we can prove from (6.21) together with (3.6) and
|[xpiS(T.0: 1, PP} 12} @) (1) 010 Zps70.

= 6u(T, Tﬂ’)((%(fu’a Tw—1) + T — T Pa(Tw s 02y T 1)) 6a (T -1, T)
(G (T Tut) + VT = Tt Pty 11, 7e1)) € (71, 0) f (6.24)

in B* for f € B“"2. Hence we can prove the assertion (1) from [2.14) of Theorem 1 and
(3.4) of [Proposition 3.1. In the same way we can prove (1) in the case of u' = u as
well.  See also the proof of the assertion (3) below.

We consider the assertion (2). Let #; < f,. We may assume u < ¢’. So we have
6.24). It is proved from and (6.19) that

14 (101, Tu) G1 (T, Tt )64 (41, 0) f — U(t2,11)§;U(11,0) f
< | (-1, Tu-1)4;(Ca(Tp-1,0) — U(tu-1,0)) f | pas:
+ |64 (T -1, Tu-1)4;(U(74-1,0) — U(t1,0)) f | par
+ [1(Ca(Tpr—1, 1) — Utw—1,7u-1))4; U (81, 0) f1
+ [(U(tw—1,7-1) = Ul12,11))q; U (11, 0) 1] g
< " T|g;(E4(tu-1,0) — U(tu-1,0)) f | garr + 51715 (U (-1, 0)
— U(t1,0)) fll ot + [[(Ca(tpr—1, Tum1) — Ulr—1,7u-1))4; U (21, 0) f || s
+ [(U(tw—1, 1) = U(t2,11))q;U (11, 0) f|

Hence it follows from the uniform convergence of %,(¢,s)f to U(t,s)f as |4] — 0 and

Ba+l

Ba+l

Batl-

the continuity of U(¢,s)f in 0 <s <t < T, proved in [Theorem 1, that
|}11‘m0||(gA(Tﬂ’ laTﬂ)(gl(TﬂaTﬂ D (1u-1,0)f = U(t2,11)§;U(11,0) f || ger =0 (6.25)

for f e B2, In the same way we can prove the assertion (2) from [6.24).

The proof of the assertion (3) is almost the same as of the assertion (2) above.
Let’s use

Go(1.0'.)f = Q2nfm)”" “(exp it 5015, )(en) (1) (1)

- (mo + Akt q.5,(¢) f () dvdy
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in place of Gy.(t,¢',s)f (N =1,2). Then we have as in the proof of
| []x0iS(7,0: 0. 20 @, 0P (030D 2700 — (T,

. 1 T,—t
-G (T Tu1) <quk + =0k Tﬂi) Ca(tu-1,0)f

u— Tu—l

< C'VIA £l o2

B

which completes the proof of (3).

We study the assertion (4). Let b(x) be a function in Lemma 6.1 and s < ¢ <1t.
Then it follows from (6.10) and [Lemma 6.2 that

lim (27 /m)™" J(exp iS(t, 8005, Dx(e0)b(q (1) f (v) dody

&e—0
= \/% J(exp iSe(t,5.073,))b(a (1) f () dy (6.26)

in B“ for f e B4*™, Consider (2.15) where all z are q. Then we can prove from (6.26)

as in the proof of that (2.15) is equal to (2.16). In addition, the convergence of
(2.15) as |4] — 0 can be proved as in the proof of the assertions (2) and (3). Thus we
could complete the proof of [Theorem 2.

REMARK 6.1. We state the other results related to under the assump-
tions of [Theorem 1. Let 0<ti <tr < - <t <T, j1,j2,---,jx=1,2,...,n and f €
Bk We define

JJ(exp iS(T,0; 44, pa))(palte) — At ga(1))), -+

X (pa(tr) = A(t1,94(11)));,1 (44(0)) ZpaZ 4. (6.27)

in the similar way to (2.15). We note p,(¢) — A(t,q4(t)) = mvy(t) from (2.7). Then we
can prove as in the proof of (2) and (4) of Theorem 2 that (6.27) converges in B* as
4] — 0.

Next we consider for 0 <¢< T

jj(exp iS(T,0; 4.4, pa)) (P () (p2); (0 (44(0) ZpaTq, (6.28)

which is equal to

”<exp iS(T,0: ¢, pa)){ (mva) (1) (m0.), (1)
AL qa (D) At 44(0)}/ (04(0) Zpa@a
+ ”(exp iS(T,0: ¢, p.a){ (mua) (1) A5 (2, 44(1))

+ (mua); (1) Ai(2,44(1)) 1/ (44(0)) Zp 4% q4-
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Let f € B2, Then it is proved from the result above and the similar result to (4) of
that the first term above converges in B“ as |4| — 0. On the other hand we
can prove from (6.9) as in the proof of (3) of that the limit of the second
term in B* as |4| — 0 is equal to

U(T, 0)(A4;(1) (b — Ak(1)) + Ar(0)(p; — 4;(1))) U(1,0).f

1 . T, — 1t 0A; 0Ay
— lim —*——U(T — —_— 2
w4 fim v (S0 + S0 U0 629)
where we take a u for ¢ and 4 as in (3) of Theorem 2. These imply that (6.28) does
not converge in general as |4| — 0.
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