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Every Stieltjes moment problem has a solution in Gel’fand-Shilov spaces
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Abstract. We prove that every Stieltjes problem has a solution in Gel’fand-Shilov
spaces .## for every f > 1. In other words, for an arbitrary sequence {x,} there exists a
function ¢ in the Gel’fand-Shilov space %’# with support in the positive real line whose
moment fgf“ x"p(x)dx = p, for every nonnegative integer n.

This improves the result of A. J. Duran in 1989 very much who showed that every
Stieltjes moment problem has a solution in the Schwartz space ¥, since the Gel’fand-
Shilov space is much a smaller subspace of the Schwartz space. Duran’s result already
improved the result of R. P. Boas in 1939 who showed that every Stieltjes moment
problem has a solution in the class of functions of bounded variation. Our result is
optimal in a sense that if f <1 we cannot find a solution of the Stieltjes problem for a
given sequence.

§1. Introduction.

If a sequence {u,} and a function ¢ can be written as

©¢]
(1.1) J x"p(x)dx =p,, forn=0,1,2,...,
0

then y, is called the n-th moment of ¢, the sequence {u,} is called the moment sequence
of ¢ and the function ¢ is called the moment function of the sequence {u,}.

The moment problem asks mainly when a sequence {x,} is the moment sequence of
a function ¢ defined on I. The Stieltjes moment problem which treats the case of I =
[0, 00) was proposed and solved completely for the case of positive measures du(x) by
Stieltjes in his classical paper “Recherches sur les fraction continue” in 1894-95, where
the Stieltjes integral was introduced. In 1939 Boas proved that every Stieltjes
moment problem has a solution in the space of functions of bounded variation, 1.e., for
an arbitrarily given sequence {x,} of real numbers there exists a function ¢ of bounded
variation satisfying (1.1). Quite recently, Duran [D] showed an improved result that
every Stieltjes problem has a solution in the Schwartz space of rapidly decreasing
functions. In 1994, Duran and Estrada made, as a part of their paper, a different
proof based on the asymptotic analysis. It is natural to ask what is the smallest
function space which ensures the existence of the moment function for an arbitrarily
given sequence.

In this paper we will show that every Stieltjes problem has a solution in the
Gel’fand-Shilov space S#(0,00), > 1 which is a subspace of the Schwartz space.
Furthermore, one cannot find a moment function in S#(0, ), # < 1 for some sequences.
In this sense our result is optimal and S#(0,0), > 1 is the smallest Gel fand-Shilov
spaces in which the Stieltjes problem has a solution.
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§2. Gel’fand-Shilov spaces on the right half line.

We introduce Gel’'fand-Shilov spaces and their modifications for the Stieltjes
moment problem and refer to for the definition of the Schwartz space and other
function spaces in the distribution theory.

For « >0 and f >0 we define function spaces S,,S”, and Sf by

= {¢ e C*(R)| sup |x" ¢ (x)| < C,h"p!* 3C, h > 0},

XeR

Sk = {¢ e C*(R)| sup |x"¢9 (x)| < C,h?q!* 3C,, h > o},
xeR

= {(,/5 e C*(R) | sup IXP¢ 9 (x)] < ChPHpl*glP 3C, h > o}

Modifying the above ordinary Gel’fand-Shilov spaces we introduce S,(0, ), S?(0, »0),
and S#(0,0) by

S,(0,00) ={gpeS,|¢(x) =0, for x <0},
§P(0,0) = {peS?|p(x) =0, for x <0},
SE(0,00) = {¢p e SP|p(x) =0, for x <0}.

Throughout this paper the Fourier-Laplace transform ¢ of a function ¢ is defined
by

$(&) = J $(x)e™ dx.
—0
It is well known in [GS] that S, = §*, S/ = Sy and S/ = S} where S,,$” and S/
are the Fourier transforms of functions of S,,SP and S? respectlvely
Now we state the Paley-Wiener type theorem for Sﬁ (0, 00).

ProrosITION 2.1. A4 function \ defined on R is the Fourier transform of a function ¢
of class SP(0,0) if and only if
(i)  is of class Sg.
(i) W can be extended to a continuous function ¥ in the closed upper half plane
Imz >0 and analytic in Imz > 0.
(i)  vanishes as z — oo in Imz > 0.

ProOF. The facts (i) and (iii) are immediate frorn S# =Sy and the Lebesgue
dominated convergence theorem. To prove (ii) let (z fo e'$(t)dt. Then Y(z)
is well defined in the closed upper half plane Imz > 0 By the 51mple inequality
le”1 — e2| < |z; — z5] in the closed upper half plane we can apply the Lebesgue domi-
nated convergence theorem for the Newton quotient

(2.1) lﬁ(z+h})l—¢(z)zjoc <&
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Letting # — 0 in we have
Y'(z) = J ite™ (1) dt

which proves (ii).

To prove the converse, in view of the Fourier inversion formula it suffices to show
that ¢(x) = (1/(2n)) [~ e ™ (1) dt belongs to S#(0,0). Since ¢ belongs to S# by (i)
it remains to prove that ¢(x) =0 for x < 0. By the condition (ii) we can write

#(x) = lim ijr e (2) dz

R—w 27T

where I' is the contour I'(f) = Re”, 0 <t <= By the condition (iii) and a usual
calculation it is easy to see that ¢(x) =0 for x <O. ]

§3. Main Theorem.

Before proving the main theorem we need the following lemma based on Ritt’s
theorem. This lemma describes the existence of a bounded analytic function which has
an arbitrarily given asymptotic power series whose proof can be found in [DE].

Lemma 3.1. Let {a,} be an arbitrary sequence of complex numbers. Then there
exists a bounded analytic function F defined in the sector S = {re®|r > 0,0, < 0 < 0,}
such that

F(Z) ~a0—|—a12—|—a222—|—---
as z— 0 in S.
In other words, |F(z) — (ap+ a1z + axz> + -+ + a,z")| = 0(z"*") as z— 0 in S.
We are now ready to state and prove the main theorem.

THEOREM 3.2.  For any sequence {u,} of complex numbers there exists ¢ € S#(0, c0)
such that

(3.1) ,un:JOOx”qﬁ(x)dx for n=0,1,2,....
0

Proor. Let y be the Fourier transform of the function ¢ in (3.1). Then the
equation (3.1) is equivalent to the following Borel type theorem

o0

(3.2) " (0) = J i"X"p(x) dx = i"pu,,.

0

Thus it suffices to find a function ¥ € S#(0, c0) satisfying and then the moment
function ¢ for the sequence {u,} can be obtained by

p(x) = - Jw (e de.

To construct such a function we first employ the function
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Gy(z) = exp(e™! A (z 4 ) )
which is analytic in the region {z|—-n/2 < arg(z+1i) < 37/2}.
Since 1/Gp is analytic in the same region it can be written as
1/Gy(2) = ap + a1z + az* + - --

for |z] < 1.
Secondly, by [Lemma 3.1 there exists F(z) which is bounded analytic in the sector
S={zeC|—n/4 <argz < 5n/4} with its asymptotic power series

F(z) ~by+biz+byzP+--, asz—01in S
where
n_ ik
b, = kzoﬁ,ukan,k.

Now we want to show that the function y/(z) = F(z)Gg(z) satisfies the conditions
(i), (i) and (iii) in [Proposition 2.1 and the equation 3.2}, which will complete the proof
in view of [Proposition 2.1

Note that by the construction of F, y/(z) = F(z)Gg(z) has an asymptotic power
series

Y(z) ~ Zlnﬁ:”z", as z— 0 in S.

Therefore, if we define (0) = u, we have

‘W(Z) —y(0)

z

0(z?)

as z— 0 in S

— | =

which means that y/'(0) = iy,;. Also, since ¥/'(z) has the asymptotic expansion

a0
~Z Pt 271 asz—01in S
(n—1)!

n:1
we can repeat the same process and the equation is satisfied.

The condition (ii) of [Proposition 2.1 is obvious by defining (0) = x,. Now the
image of the region D := {z|Imz > —1} under hg(z) := ™=V (z 4 i)"/F is contained
in the sector 7 — n/(2f) < argz < n+ n/(2f). Thus it follows that cos(arg/p(z)) < —kg
where kg = cosn/(2f) > 0. From these properties we may decide the behavior of Gy at
infinity in the domain D. Indeed, if ze D and |z+i| > r we have

|Gﬁ<2)| = exp Re(e”i(l_l/(zﬂ)) (Z + l)l/ﬁ>
< exp(—kpr'/P).

This implies Gg(z) — 0 as z — oo in D.
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Finally we prove y(x) € Sf. If |x| < 1, ¥ (x) is bounded by some constant which
depends only on ¢g. For |x| > 1, by the Cauchy integral formula we have

W(q)(xﬂ < q_'J M,dz‘

T 27 )12 |2 — x|

<29 sup [y(2)]
|z—x|=1/2

< C2%! sup |Gp(z)|
z—x|=1/2

N/
< C2iglexp —k/g(]x] — 5)

< C, exp(—kg|x|'")

for some positive constants C, which depend only on ¢ and f. Multiplying |x|” on
both sides of the above inequality and taking supremum for x we complete the proof.
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