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Abstract. The Massera Theorem for almost periodic solutions of linear periodic

ordinary di¤erential equations of the form (*) x
0 ¼ AðtÞxþ f ðtÞ, where f is almost peri-

odic, is stated and proved. Furthermore, it is extended to abstract functional di¤erential

equations (**) x
0 ¼ Axþ FðtÞxt þ f ðtÞ, where A is the generator of a compact semigroup,

F is periodic and f is almost periodic. The main techniques used in the proofs involve a

new variation of constants formula in the phase space and a decomposition theorem for

almost periodic solutions.

1. Introduction and preliminaries.

Let us consider the following linear ordinary di¤erential equation

_xxðtÞ ¼ AðtÞxðtÞ þ f ðtÞ; tb 0; xðtÞ A C
n
;ð1Þ

where AðtÞ is a continuous matrix function which is periodic in t, f is an almost periodic

function. As is well known, a theorem of Massera’s [24] (which one often calls the

Massera Theorem) says that if f is periodic with the same period as A, then Equation

(1) has a periodic solution with the same period as f and A if and only if it has a

bounded solution on the positive half line ½0;þyÞ. This classical theorem has been

extended to various kinds of evolution equations (see, e.g, [4], [15], [38], [29], [27], . . .).

However, for the case of almost periodic A and f the Massera Theorem fails (see e.g.

[6], [19]). Recent studies show that for many classes of equations, namely for A peri-

odic and f almost periodic, if we assume a stronger assumption on the existence of a

bounded solution on the whole line, then Equation (1) has an almost periodic solution

with the same structure of spectrum as f (see [29], [7]). Technically, this assumption is

necessary for carrying the so-called ‘‘decomposition technique’’ of the bounded solution.

Furthermore, this technique can be directly applied to the infinite dimensional case.

Meanwhile, the Massera Theorem requires only the existence of a bounded solution on

the positive half line which appears to be a substantially weaker assumption. Hence,

the Massera Theorem in full for almost periodic solutions of Equation (1) is still open.

This paper is an attempt to resolve completely this problem. Moreover, we will extend
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it to several larger classes of equations in the infinite dimensional case including abstract

functional di¤erential equations

duðtÞ

dt
¼ AuðtÞ þ FðtÞut þ f ðtÞ;ð2Þ

where A is the generator of a compact semigroup of linear operators, F ðtÞ is a bounded

linear operator from a phase space B, which satisfies several axioms listed below, which

depends strongly continuously and periodically on t, and ut is an element of B which is

defined as utðyÞ ¼ uðtþ yÞ for ya 0. To this end, we will make use of a new variation

of constants formula in the phase space [17] combined with the decomposition technique

developed in [29], [7]. We emphasize that the variation of constants formula in the

phase space is established in Theorem 4.2 without assuming the Riesz representation for

F ðtÞ (cf. [17]).

We now give a brief outline of this paper. In the rest of this section we will

summarize several well known notions and results on almost periodic functions,

spectrum of a function as well as the naturally associated evolution semigroup of a given

strongly continuous semigroup and the relations between them. Section 2 is devoted

to the proof of the classical Massera Theorem for almost periodic solutions of linear

ordinary di¤erential equations (Theorem 2.1). A similar result holds for di¤erence

equations which will be the key tool to study the abstract functional di¤erential

equations with infinite delay in Section 4. The main part of the paper is Section 4

which begins by recalling the notion of a uniform fading memory phase space and a

variation of constants formula in such phase spaces. The main results of the papers are

stated for almost periodic solutions in Theorem 4.4 and for quasi periodic solutions in

Theorem 4.7.

1.1. Spectrum of a function.

Recall that the Beurling spectrum of a X-bounded uniformly continuous function u

is defined to be

spðuÞ :¼ fx A R : Ee > 0 bf A L1ðRÞ; supp ~ff H ðx� e; xþ eÞ; f � u0 0g

where ~ff ðsÞ :¼
Ðþy

�y
e�istf ðtÞ dt, f � uðsÞ :¼

Ðþy

�y
f ðs� tÞuðtÞ dt. The following theorem

will list some main properties of the spectrum of a bounded uniformly continuous

function.

Theorem 1.1. Let f ; gn A BUCðR;XÞ, n A N such that gn ! f as n ! y. Then

i) spð f Þ is closed,

ii) spð f ð� þ hÞÞ ¼ spð f Þ,

iii) If a A Cnf0g spðaf Þ ¼ spð f Þ,

iv) If spðgnÞHL for all n A N then spð f ÞHL,

v) If A is a closed operator, f ðtÞ A DðAÞ Et A R and Af ð�Þ A BUCðR;XÞ, then,

spðAf ÞH spð f Þ,

vi) spðc � f ÞH spð f ÞV supp ~cc, Ec A L1ðRÞ.

For the proof we refer the reader to [33, p. 20–21]. In this paper by almost peri-

odic functions we mean the almost periodic functions in the sense of Bohr (we refer the
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reader to [21] for the definition and basic properties of such almost periodic functions).

If f is an almost periodic function, the following limit

aðl; f Þ :¼ lim
T!y

1

2T

ðT

�T

f ðtÞe�ilt dt; El A Rð3Þ

exists and is called Bohr transform of f . As is known, there is an at most countable set

of reals l such that the above limit di¤ers from zero. This set will be denoted by sbð f Þ

and called Bohr spectrum of f . We will need the following lemma in the sequel.

Lemma 1.2. Let xð�Þ A APðXÞ, QðtÞ A LðXÞ be strongly continuous and 1-periodic in

t A R. Then, letting yðtÞ :¼ QðtÞxðtÞ, t A R we have that yð�Þ A APðXÞ and

e isbð yÞ H e isbðxÞ:ð4Þ

Proof. By the uniform boundedness principle we have

sup
t AR

kQðtÞk < y:

Next, using the Approximation Theorem for almost periodic functions we can easily

show that yð�Þ is approximated by a sequence of trigonometric polynomials of the form

ynðtÞ :¼ QnðtÞxnðtÞ; where

xnðtÞ ¼
X

NðnÞ

k¼1

ak;ne
ilk; nt; ak;n A X ; lk;n A sbðxÞ

QnðtÞ ¼
X

MðnÞ

k¼1

Bk;ne
imk; nt; Bk;n A LðXÞ; mk;n A 2pZ;

where xnð�Þ approximates xð�Þ. Let l A R such that e il B e isbðxÞ. We will show that

e il B e isbðyÞ. If this is the case, the above spectral estimate holds. For any positive e

there is (su‰ciently large) N A N such that supt ARkynðtÞ � yðtÞk< e for all nbN. On

the other hand, for any m A Z, letting lm :¼ lþ 2mp, we have

kaðlm; yÞk ¼ lim
T!y

1

2T

ðT

�T

e�iðlþ2mpÞtyðtÞ dt

�

�

�

�

�

�

�

�

a lim
T!y

1

2T

ðT

�T

e�iðlþ2mpÞtQnðtÞxnðtÞ dt

�

�

�

�

�

�

�

�

þ lim
T!y

1

2T

ðT

�T

e�iðlþ2mpÞtðyðtÞ �QnðtÞxnðtÞÞ dt

�

�

�

�

�

�

�

�

¼ lim
T!y

1

2T

ðT

�T

ke�iðlþ2mpÞtðyðtÞ �QnðtÞxnðtÞÞk dt

a e:

Since e > 0 is arbitrary, this yields that aðlm; yÞ ¼ 0. Hence, ðlþ 2pZÞV sbðyÞ ¼v,

i.e., the above spectral estimate holds. r
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Throughout the paper we will use the relation spð f Þ ¼ sbð f Þ. The space of all X-

valued almost periodic functions will be denoted by APðXÞ. The set spð f Þ can char-

acterize the behavior of the function f . For example, f is t-periodic if and only if

etspð f Þ ¼ f1g, f is anti t-periodic if and only if etspð f Þ ¼ f�1g. If spð f Þ is countable

and X does not contain any subspaces isomorphic to c0 (the space of numerical se-

quences converging to 0), then f is almost periodic. An almost periodic function f is

called quasi periodic if sbð f Þ has an integer and finite basis (see [21, pp. 47–48]). If

spð f Þ ¼ sbð f Þ has an integer and finite basis, then, f is quasi periodic. Hence, if the

spectrum of f is good enough one can have relevant conclusions on its behavior. In

the rest of this paper we will prove the existence of an almost periodic solution with

spectrum similar to the one of the forcing term f . In this way, we can extend the

Massera Theorem to almost periodic solutions. For the sake of simplicity of notation

we will assume that the period of Að�Þ and F ð�Þ is 1, and would like to emphasize that

this assumption does not constitute any restrictions on the obtained results.

Unless otherwise stated, we will use the usual notation. For instance, N , R, C

denote the set of natural, real, complex numbers, respectively. G will stand for the unit

circle in C , i.e., G :¼ fz A C : jzj ¼ 1g. As usual, BUCðR;XÞ, BCðR;XÞ, CðR;XÞ

denote the spaces of all X-valued bounded uniformly continuous functions, bounded

continuous functions, continuous functions on R, respectively.

1.2. Evolution semigroups and decomposition theorems.

In this subsection, we will summarize several notions and results concerned with

evolution semigroups and decomposition theorems.

Definition 1.3. The following formal semigroup associated with a given strongly

continuous semigroup ðTðtÞÞtb0

ðT huÞðtÞ :¼ TðhÞuðt� hÞ; Et A R;ð5Þ

where u is an element of some function space, is called evolution semigroup associated

with the semigroup ðTðtÞÞtb0.

Below we are going to discuss the relation between this evolution semigroup and the

following inhomogeneous equation

xðtÞ ¼ Tðt� sÞxðsÞ þ

ð t

s

Tðt� xÞ f ðxÞ dx; Etb sð6Þ

associated with a strongly continuous ðTðtÞÞtb0. Let us define the operator L : DðLÞ

HBUCðR;XÞ ! BUCðR;XÞ, where DðLÞ consists of all solutions of Equation (6)

uð�Þ A BUCðR;XÞ with some f A BUCðR;XÞ, and in this case Luð�Þ :¼ f . This op-

erator L is well defined as a single-valued operator and is obviously an extension of the

di¤erential operator d=dt� A (see e.g. [25]). Below, by abuse of notation, we will use

the same notation L to designate its restriction to closed subspaces of BUCðR;XÞ if this

does not make any confusion.

Lemma 1.4. Let ðTðtÞÞtb0 be a strongly continuous semigroup. Then its associated

evolution semigroup ðT hÞhb0 is strongly continuous at every bounded uniformly continuous

solution of Equation (6) with almost periodic f , in particular at every element of APðXÞ.
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Moreover, the infinitesimal generator of ðT hÞhb0 in the space S of all elements of

BUCðR;XÞ at which ðT hÞhb0 is strongly continuous, is the restriction of the operator L

to S.

Lemma 1.5. If u A BUCðR;XÞ is a mild solution to Equation (2), then the evolution

semigroup ðT hÞhb0, associated with the semigroup ðTðtÞÞtb0, is strongly continuous at u.

We refer the reader to [3] and [31] and the references therein for more information

on the history and applications of evolution semigroups to the study of the stability and

exponential dichotomy of dynamical systems. In [18] the reader can find a systematic

presentation of new applications of evolution semigroups to the study of almost periodic

solutions of di¤erential equations in Banach spaces.

Assume that fgj
R

� : g A APðXÞgHB, where R
� ¼ ð�y; 0�. Obviously, in this case

F ð�Þv� will be almost periodic for every given almost periodic v. We will denote by F

the operator acting on APðXÞ defined by the formula

FvðxÞ :¼ FðxÞvx; Ev A APðXÞ:

Note that from the 1-periodicity of F ð�Þ

FSð1Þ ¼ Sð1ÞF;

where one denotes by ðSðtÞÞt AR the translation group on APðXÞ, i.e., SðtÞvðsÞ ¼ vðtþ sÞ,

Et; s A R. For an almost periodic function xð�Þ the following characterization is very

useful:

Theorem 1.6. xð�Þ is an almost periodic mild solution of Equation (2) with almost

periodic f if and only if ðL�FÞxð�Þ ¼ f .

Let us consider the subspace MHAPðXÞ consisting of all functions v A APðXÞ such

that e ispðvÞ ¼: sðvÞHS1 US2, where S1;S2 HS
1 are disjoint closed subsets of the unit

circle.

Theorem 1.7. Under the above notations and assumptions the function space M can

be split into a direct sum M ¼ M1 lM2 such that v A Mi if and only if sðvÞHSi for

i ¼ 1; 2. Moreover, the above defined linear operator F in APðXÞ leaves invariant M as

well as Mj, j ¼ 1; 2.

Proof. In view of [29] it su‰ces to show only the last assertion. To this end, we

can show that

e ispFv
H e ispðvÞ; Ev A APðXÞ:ð7Þ

In fact, since F is a bounded linear operator, by the Approximation Theorem of Almost

Periodic Functions, it su‰ces to prove the above estimate for trigonometric polynomials.

Suppose that

v ¼
XN

k¼1

ake
ilkt

; lk A R; ak A X ; t A R:

Then
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FvðtÞ ¼ FðtÞvt

¼
XN

k¼1

FðtÞake
ilk �e ilkt

¼
XN

k¼1

bkðtÞe
ilkt

;

where bkðtÞ :¼ FðtÞake
ilk �, e ilk � is a function defined on ð�y; 0�. Since F ð�Þ is 1 pe-

riodic, bkð�Þ is also 1-periodic. Thus, it can be seen that every term in the sum has its

spectrum satisfying the estimate (7). Finally, Fv satisfies (7), too. r

Corollary 1.8. Let u be an almost periodic mild solution of Equation (2) such

that e ispðuÞ H e ispð f Þ UK , where K has finitely many elements. Then, Equation (2) has an

almost periodic mild solution w such that e ispðwÞ H e ispð f Þ.

Proof. It su‰ces to take S1 :¼ e ispð f Þ, S2 :¼ Kne ispð f Þ. Then Theorems 1.6 and

1.7 apply. r

2. Massera theorem for almost periodic solutions of linear ode.

In this section we will prove the Massera Theorem for almost periodic solutions of

linear periodic ordinary di¤erential equations. Namely, we will prove below Theorem

2.1 which extends the Massera Theorem (see [24]) to almost periodic solutions, and

improves [6, Theorem 5.8, p. 86]. The proof will be carried out in an elementary

manner, but the obtained results seem to be as sharpest as possible.

Theorem 2.1. Assume that the matrix function AðtÞ is continuous and 1-periodic,

and f is almost periodic. Then, (1) has an almost periodic solution uð�Þ with e isbðuÞ H

e isbð f Þ if and only if it has a bounded solution xð�Þ on the positive half line R
þ. In

particular if AðtÞ is independent of t, then the existence of a solution bounded on R
þ yields

the existence of an almost periodic solution uð�Þ such that sbðuÞH sbð f Þ, and hence if f is

quasi periodic, then u is quasi periodic.

Proof. Suppose first that AðtÞ is independent of t and that xð�Þ is a given solution

which is bounded on R
þ. As in [15] we will construct a solution bounded on the whole

line of Equation (1). Namely, let xnð�Þ :¼ xðnþ �Þ which is defined on ½�n;þyÞ for

every n A N as a solution of the equation

dxðtÞ

dt
¼ AxðtÞ þ f ðnþ tÞ; t A ½�n;þyÞ:

Since xnð0Þ, n A N is a bounded sequence in C
n it contains a subsequence xnpð0Þ which

is convergent to z A C
n. As the function f is almost periodic the sequence fnp should

contain a subsequence fmk
which converges uniformly to an almost periodic function fy.

Let us consider the solution yðtÞ of the equation

dyðtÞ

dt
¼ AyðtÞ þ fyðtÞð8Þ
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with yð0Þ ¼ z. We will show that for every fixed N A N the sequence fxnkg is con-

vergent uniformly to yð�Þ on ½�N;N�. In fact, by the variation of constants formula,

for nbN we have

sup
t A ½�N;N�

kxnk ðtÞ � yðtÞka sup
t A ½�N;N�

keAtk kxnk ð0Þ � zk

þN sup
t A ½�N;N�

keAtk sup
t A ½�N;N�

k fnk ðtÞ � fyðtÞk

aC1kxnk ð0Þ � zk þ C2 sup
t AR

k fnk ðtÞ � fyðtÞk;

where C1;C2 are positive constants independent of n. As a consequence of this we have

supt A ½�N;N�kyðtÞka supt A ½0;þyÞkxðtÞk, so, the solution yð�Þ is bounded on the whole line.

Since fy is almost periodic, the solution yð�Þ should be almost periodic (see [6, Theorem

5.8]). On the other hand, since fyð�nk þ �Þ is uniformly convergent to f , by the same

argument as above we can choose a subsequence np such that yð�np þ �Þ is convergent

to an almost periodic solution wðtÞ, t A R of Equation (1), i.e., Equation (1) has an

almost periodic solution wðtÞ on the whole line. Taking Bohr transform of aðl;wÞ :¼

limT!yð1=ð2TÞÞ
Ð T

�T
e�iltwðtÞ dt, l A R we have

aðl; _wwÞ ¼ ilaðl;wÞ ¼ Aaðl;wÞ þ aðl; f Þ:

Hence,

ðil� AÞaðl;wÞ ¼ aðl; f Þ.ð9Þ

It follows from this fact that

sbð f ÞH sbðwÞH sbð f ÞU siðAÞ;ð10Þ

where siðAÞ :¼ fx A R : ix A sðAÞg, and sðAÞ denotes the set of eigenvalues of the matrix

A. We set uðtÞ ¼ wðtÞ �
P

l AL aðl;wÞe
ilt, where L :¼ siðAÞnsbð f Þ. We will show that

u is an almost periodic solution of (1) with the required properties. In fact, by the

definition of L and (9), for every l A L, aðl; f Þ ¼ 0, so, ðil� AÞaðl;wÞ ¼ 0. Conse-

quently,

_uu ¼ _wwðtÞ �
X

l AL

ilaðl;wÞe ilt

¼ AwðtÞ þ f ðtÞ � A
X

l AL

aðl;wÞe ilt

¼ A wðtÞ �
X

l AL

aðl;wÞe ilt

 !

þ f ðtÞ

¼ AuðtÞ þ f ðtÞ:

Obviously, in view of (10) sbðuÞH sbð f Þ.

If AðtÞ depends on t, then we can transform the equation in question into an

autonomous one by a Floquet transformation, i.e., there is a 1-periodic continuous

nonsingular matrix QðtÞ such that by the change of variable yðtÞ ¼ QðtÞxðtÞ the equation
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(1) is transformed into the autonomous equation _yyðtÞ ¼ ByðtÞ þ gðtÞ, where gðtÞ ¼
QðtÞ f ðtÞ. Thus, by the above argument, there is an almost periodic solution v to this

equation such that sbðvÞH sbðgÞ. It can be shown easily that the function uðtÞ :¼
Q�1ðtÞvðtÞ is an almost periodic solution of equation (1) with desired properties as

e isbðQ
�1ð�Þvð�ÞÞ

H e isbð f Þ. r

Remark 2.2. i) In [26], [25], [37], in case AðtÞ depends 1-periodically on t, the

existence of a solution u with spectral estimate e ispðuÞ H e ispð f Þ has been proved

(of course, for the infinite dimensional equations). Since sbð f Þ ¼ spð f Þ, if f is
ffiffiffi

2
p

-periodic, then it is expected that possibly, e ispð f Þ fills the whole unit circle

G :¼ fz A C : jzj ¼ 1g. Hence, in this case one may get nothing new if spð f Þ
is a bit complicated. Meanwhile, our condition in the above theorem still

gives information on the solution u as a solution with minimal spectrum.

ii) If the equation in question is considered in the real space R
n rather than in

C
n, then the Floquet transform will have the double period (see e.g. [1]). In

general, the above results are valid with appropriate modifications of state-

ments.

iii) As shown in Example 5.1 in general, without additional conditions the Mas-

sera Theorem fails in the infinite dimensional case. In the above proof an

essential assumption is the compactness of bounded closed sets in the finite

dimensional Banach space. Hence, in the infinite dimensional case the above

result can be directly extended to the following equation

duðtÞ
dt

¼ AuðtÞ þ f ðtÞ; uðtÞ A X ; t A R;ð11Þ

where A is the generator of a compact semigroup of linear operators TðtÞ on a

given Bach space X . Using the integral

P :¼ 1

2pi

ð

g

Rðl;Tð1ÞÞ dl;ð12Þ

where gH rðTð1ÞÞ is a contour encirling the origin in C we can decompose the

phase space X into the direct sum X ¼ X1 lX2, where X1 :¼ ImP,

X2 :¼ KerP. Obviously, dimX1 < y. On the other hand, on X2 the

semigroup ðI � PÞTðtÞðI � PÞ, t A R is exponentially stable. Thus, the

problem is reduced to the consideration of the almost periodic solutions of the

other component on X1 which is of finite dimension. We will discuss more

general equations having such properties in Section 4.

3. Almost periodic solutions of di¤erence equations.

In this section we will prove the Massera Theorem for almost periodic solutions of

di¤erence equations as a preparatory step for functional di¤erential equations which will

be considered in the next section. Let us consider the di¤erence equation

xðnþ 1Þ ¼ BxðnÞ þ cðnÞ; n A Z;ð13Þ
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where B A LðXÞ is a bounded linear operator such that reðBÞ < 1 (reðBÞ denotes the

essential spectral radius of B) and cðnÞ is an almost periodic sequence in X . Let us

denote sGðBÞ :¼ G V sðBÞ. The reader is referred to the Appendix at the end of this

paper for analogs of notion of spectrum of a sequence and related results. We will

prove the Massera Theorem for Equation (13), i.e., the following

Theorem 3.1. Let Equation (13) have a bounded solution xðnÞ, n A N . Then it has

an almost periodic solution y on Z such that sbðyÞH sbðcÞ.

Proof. We will use the reduction principle to prove the theorem. In fact, let

reðBÞ < r < 1 such that the circle of radius r, centered at the origin does not contain any

point of sðBÞ. This is possible in view of our assumption that reðBÞ < 1. Hence, the

integral

J :¼
1

2pi

ð
Cr

Rðl;BÞ dl

is the projection. Moreover, note that dimKerðJÞ is finite. Thus, the Banach space

X can be split into a direct sum X1 lX2 where X1 ¼ KerðJÞ, X2 ¼ ImðJÞ. Using this

decomposition, the problem of finding almost periodic solutions to Equation (13) is

trivially reduced to finding almost periodic solutions to the following equation

x1ðnÞ ¼ B1x1ðn� 1Þ þ c1ðn� 1Þ;ð14Þ

where x1ðnÞ :¼ ðI � JÞxðnÞ, B1 :¼ ðI � JÞBðI � JÞ, c1ðnÞ :¼ ðI � JÞcðnÞ. In fact, for the

other component, in view of the exponential stability of the equation in X2, the existence

and uniqueness of an almost periodic solution is well-known. Indeed, let us denote by

SðkÞ the translation ½SðkÞx�ðnÞ :¼ xðk þ nÞ and by B2 the multiplication by B2 :¼ JBJ in

the space of all almost periodic two-sided sequences. Then, obviously, rsðB2Sð�1ÞÞ < 1

because of the exponential stability. Hence, the unique almost periodic solution is x2 ¼

ðI �B2Sð�1ÞÞ�1
Sð�1Þc2. Thus, it su‰ces now to deal with the first component equa-

tion. We consider the sequence x1ðpþ �Þ, where p A N . Every term of this sequence is

a bounded solution to the Equation (13) with the right hand side c1ðpþ �Þ. Since the

sequence c1 is an almost periodic two-sided sequence, there exists a sequence pk such

that c1ðpk þ �Þ is convergent uniformly to c on Z. On the other hand, since x1ðpkÞ is a

bounded sequence in a finite dimensional space, it contains a convergent subsequence.

Thus, without loss of generality, we can assume that this sequence is convergent, itself.

This procedure leads to the existence of a bounded two-sided sequence y1 which is a

solution of the equation

yðnÞ ¼ B1 yðn� 1Þ þ cðn� 1Þ; n A Z:

In the same way as in [6, Theorem 5.8], we can show that y1 is an almost periodic

sequence. Therefore (14) has an almost periodic solution y1 which is the limit of

some subsequence of y1ð�pk þ �Þ. Now using the elementary decomposition technique

developed in the above section we can decompose from the two sided sequence y1
(which is obviously almost periodic) an almost periodic component d with spectrum

sbðdÞH sbðcÞ. This proves the theorem. r
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4. Abstract functional di¤erential equations.

We consider in this section the abstract functional di¤erential equation

duðtÞ

dt
¼ AuðtÞ þ FðtÞut þ f ðtÞ;ð15Þ

where A is the generator of a semigroup of linear operators on a Banach space X , F ðtÞ

is a bounded linear operator from B into X which is periodic in t with period 1, where

B is a uniform fading memory phase space of Equation (2) with infinite delay satisfying

the axioms listed below and f A BCðR;XÞ. We will impose conditions on Equation (2)

so that the monodromy operator, which we will denote by B, satisfies the assumptions

listed in Theorem 3.1.

4.1. Uniform fading memory phase spaces.

We will give a precise definition of the notion of uniform fading memory space

for Equation (2) in this subsection. Let us denote the norm of X by k � k
X
. For any

function x : ð�y; aÞ ! X and t < a, we define a function xt : R
�
:¼ ð�y; 0� ! X by

xtðsÞ ¼ xðtþ sÞ for s A R
�. Let ðB; k � k

B
Þ be a Banach space, consisting of functions

c : ð�y; 0� ! X such that

(A1) There exist a positive constant N and locally bounded functions Kð�Þ and

Mð�Þ on R
þ with the property that if x : ð�y; aÞ 7! X is continuous on ½s; aÞ

with xs A B for some s < a, then for all t A ½s; aÞ,

(i) xt A B,

(ii) xt is continuous in t (w.r.t. k � k
B
),

(iii) NkxðtÞk
X
a kxtkBaKðt� sÞ supsasatkxðsÞkX þMðt� sÞkxskB,

(A2) If ffkg, fk
A B, converges to f uniformly on any compact set in R

� and if

ffkg is a Cauchy sequence in B, then f A B and fk ! f in B.

The space B is called a uniform fading memory space, if it satisfies (A1) and (A2) with

Kð�Þ1K (a constant) and MðbÞ ! 0 as b ! y in (A1). A typical example of uniform

fading memory spaces is the following one:

Cg :¼ CgðXÞ ¼ f A CðR�
;XÞ : lim

y!�y

kfðyÞk
X

egy
¼ 0

� �

which is equipped with norm kfkCg
¼ supya0kfðyÞkX=e

gy, where g is a negative constant.

It is known [11, Lemma 3.2] that if B is a uniform fading memory space, then

BC :¼ BCðR�
;XÞHB and the inclusion map from BC into B is continuous. For

other properties of uniform fading memory spaces, we refer the reader to the book [16].

In connection with the almost periodic functions taking values in a uniform fading

memory space B we have the following.

Lemma 4.1. Let B be a uniform fading memory space and u is an almost periodic

function taking values in X . Denoting vðtÞ :¼ ut we have

i) v is a B-valued almost periodic function,

ii) sbðuÞ ¼ sbðvÞ.

Proof. By the Approximation Theorem of almost periodic functions, there is a

sequence of trigonometric polynomials PnðtÞ ¼
PNðnÞ

k¼1 an;ke
iln; kt with ln;k A sbðuÞ, which is
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convergent uniformly to uðtÞ. Now using the axiom (A1) (iii) of the uniform fading

memory space, we can easily construct a sequence of trigonometric polynomials in B

with Bohr exponents in sbðuÞ which uniformly approximates vðtÞ :¼ ut. Obviously, v is

almost periodic. Now we prove the spectral estimate by using again the axiom A1

(iii). In fact, under the standing assumption there are positive constants N;K (which

are independent of u) such that

NkuðtÞk
X
a kutkBaK sup

t AR

kuðtÞk
X
:ð16Þ

Hence, for l A R the following

lim
T!y

1

2T

ðT

�T

e�iltuðtÞ dt ¼ 0

holds if

lim
T!y

1

2T

ðT

�T

e�iltut dt ¼ 0;

i.e., sbðuÞH sbðvÞ. Conversely, by the basic properties of almost periodic functions (see

e.g. [21, pp. 22–23]) if l A RnsbðuÞ the limit

lim
T!y

1

2T

ðTþa

�Tþa

e�iltuðtÞ dt ¼ 0

exists uniformly in a A R. Thus using (16) we can conclude that l A RnsbðvÞ, i.e.,

sbðvÞH sbðuÞ, proving the lemma. r

4.2. A variation of constants formula for FDE.

We consider now the abstract functional di¤erential equation (2) with the uniform

fading memory phase space B. Throughout the paper we shall assume that FðtÞf is

continuous in ðt; fÞ A R�B and linear in f A B, and it is periodic in t with period 1.

For any ðs; fÞ A R�B, there exists a (unique) function u : R 7! X such that us ¼ f, u is

continuous on ½s;yÞ and the following relation holds:

uðtÞ ¼ Tðt� sÞfð0Þ þ

ð t

s

Tðt� sÞfF ðsÞus þ f ðsÞg ds; tb s;

(cf. [13, Theorem 1]). The function u is called a (mild ) solution of (2) through ðs; fÞ on

½s;yÞ, and denoted by uð� ; s; f; f Þ. Also, a function v A CðR;XÞ is called a (mild )

solution of Equation (2) on R, if vt A B for all t A R and it satisfies uðt; s; vs; f Þ ¼ vðtÞ for

all t and s with tb s. For any tb s, we define an operator Uðt; sÞ on B by

Uðt; sÞf ¼ utðs; f; 0Þ; f A B:

We can easily see that under the assumption on the strong continuity and periodicity of

F ðtÞ, the two-parameter family ðUðt; sÞÞtbs is a strongly continuous evolutionary process

on B, which is called the solution process of (2). By a strongly continuous evolutionary

process in a Banach space Y we mean a two-parameter family of bounded linear oper-

ators ðVðt; sÞÞtbs, ð�y < sa t < yÞ from Y to Y such that the following conditions

are satisfied:

Massera’s theorem for almost periodic solutions 257



i) Vðt; tÞ ¼ I , Et A R,

ii) Vðt; sÞVðs; rÞ ¼ Vðt; rÞ, Etb sb r,

iii) For every fixed y A Y the following map is continuous:

fðh; xÞ A R
2
: hb xg C ðt; sÞ ! Vðt; sÞy;

iv) There exist positive constants N;o such that

kVðt; sÞkaNeoðt�sÞ; Etb s; t; s A R:

By the principle of superposition, we get the relation

utðs; f; f Þ ¼ utðs; f; 0Þ þ utðs; 0; f Þ

¼ Uðt; sÞfþ utðs; 0; f Þ:ð17Þ

In what follows, we shall give a representation of utðs; 0; f Þ in terms of f and the

solution process ðUðt; sÞÞtbs. To this end, we introduce a function G n defined by

G nðyÞ ¼
ðnyþ 1ÞI ; �1=na ya 0

0; y < �1=n;

�

where n is any positive integer and I is the identity operator on X . It follows from

(A1) that if x A X , then G nx A B with kG nxk
B
aKð1Þkxk

X
. Moreover, since the pro-

cess ðUðt; sÞÞtbs is strongly continuous, the B-valued function Uðt; sÞG nf ðsÞ is continu-

ous in s A ð�y; t� whenever f A BCðR;XÞ.

The following theorem yields a representation formula for solutions of (2) in the

phase space:

Theorem 4.2. The segment utðs; f; f Þ of solution uð� ; s; f; f Þ of (2) satisfies the

following relation in B:

utðs; f; f Þ ¼ Uðt; sÞfþ lim
n!y

ð t

s

Uðt; sÞG nf ðsÞ ds; tb s:ð18Þ

Moreover, the above limit exists uniformly for bounded jt� sj.

Proof. It su‰ces to show that the following limit

lim
n!y

ð t

s

Uðt; sÞG nf ðsÞ ds� utðs; 0; f Þ

�

�

�

�

�

�

�

�

B

¼ 0

exists uniformly in ðt; sÞ such that tb s and t� s is bounded. The integral
Ð t

s
Uðt; sÞG nf ðsÞ ds is understood as the limit of a Riemann sum of the form fD

:¼
P

k Uðt; skÞG
nf ðskÞDsk in B. Observe that fDðyÞ ¼

P

k uðtþ y; sk;G
nf ðskÞ; 0ÞDsk is a

Riemann sum of the integral
ð t

s

uðtþ y; s;G nf ðsÞ; 0Þ ds ¼: xnðt; sÞðyÞ;

and that it converges to the above integral uniformly on any compact set in R
� because

of the uniform continuity of uðtþ y; s;G nf ðsÞ; 0Þ as a function of ðy; sÞ on R
� � ½s; t�.

Since xnðt; sÞðyÞ is continuous in ya 0 with xnðt; sÞðyÞ ¼ 0 for ya s� t� 1=n, it

follows from (A1)-(i) that xnðt; sÞ A B. Moreover, we get
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kxnðt; sÞ � fDk
B
aK1 � sup

s�t�1=naya0

kxnðt; sÞðyÞ � fDðyÞk
X

by (A1)-(iii), where K1 ¼ Kðt� sþ 1Þ. Thus fD converges to xnðt; sÞ in B, and hence

ð t

s

Uðt; sÞG nf ðsÞ ds� xnðt; sÞ

�

�

�

�

�

�

�

�

B

¼ 0:

Given n A N , and sa sa t, let us
n :¼ uð� ; s;G nf ðsÞ; 0Þ. Invoking the definitions of

G n; us
n and xnðt; sÞ, and denoting JðtÞ :¼ minðt; tþ yþ 1=nÞ by a simple computation

one can show that for �ðt� sÞ < ya 0

xnðt; sÞðyÞ ¼

ðJðtÞ

yþt

fðtþ y� sÞnþ 1g f ðsÞ dsþ

ð tþy

s

Tðtþ y� sÞ f ðsÞ ds

þ

ð tþy

s

ð tþy

s

Tðtþ y� rÞF ðrÞðu s
nÞr dr

� �

ds

¼

ð JðtÞ

yþt

fðtþ y� sÞnþ 1g f ðsÞ dsþ

ð tþy

s

Tðtþ y� sÞ f ðsÞ ds

þ

ð tþy

s

ð r

s

Tðtþ y� rÞFðrÞðu s
nÞr ds

� �

dr

¼

ð JðtÞ

yþt

fðtþ y� sÞnþ 1g f ðsÞ dsþ

ð tþy

s

Tðtþ y� sÞ f ðsÞ ds

þ

ð tþy

s

Tðtþ y� rÞFðrÞ

ð r

s

Uðr; sÞG nf ðsÞ ds

� �

dr

¼

ð JðtÞ

yþt

fðtþ y� sÞnþ 1g f ðsÞ dsþ

ð tþy

s

Tðtþ y� sÞ f ðsÞ ds

þ

ð tþy

s

Tðtþ y� sÞFðsÞxnðs; sÞ ds:

Hence, one has the following formula:

xnðt; sÞðyÞ ¼

0 if y < �ðt� sÞ �
1

n
;

ð JðtÞ

s

fðtþ y� sÞnþ 1g f ðsÞ ds if �ðt� sÞ �
1

n
a ya�ðt� sÞ;

ð JðtÞ

yþt

fðtþ y� sÞnþ 1g f ðsÞ ds

þ

ð tþy

s

Tðtþ y� sÞ f ðsÞ ds

þ

ð tþy

s

Tðtþ y� sÞFðsÞxnðs; sÞ ds if �ðt� sÞ < ya 0:

8
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We now consider kxnðt; sÞðyÞ � xmðt; sÞðyÞk. Recall that B is a uniform fading memory

space. Thus, the above calculations lead to the inequality

kxnðt; sÞ � xmðt; sÞk
B
aK

1

n
þ

1

m

� �

sup
sasat

k f ðsÞk
X

� �

þMK

ð t

s

ejojðt�sÞkFðsÞk kxnðs; sÞ � xmðs; sÞk
B
ds:

(Here, M > 0 and o A R are such that kTðrÞkaMeor.) An application of Gronwall’s

Lemma leads to

kxnðt; sÞ � xmðt; sÞk
B
aCðs; tÞK

1

n
þ

1

m

� �

;

with a constant Cðs; tÞ > 0 depending only on the length ðt� sÞ. This shows that

fxnðt; sÞgn is a Cauchy sequence in B, uniformly over tb s with length ðt� sÞ bounded.

Given tb s, let xðt; sÞ be the limit of xnðt; sÞ in B as n ! y. Then, by the above

calculations for xnðt; sÞðyÞ, we see that xnðt; sÞðyÞ converges to the following function

hðyÞ ¼
0; for y A ð�y;�ðt� sÞ�
Ð tþy

s
Tðtþ y� sÞf f ðsÞ þ F ðsÞxðs; sÞg ds for y A ½�ðt� sÞ; 0�;

�

uniformly for y in each compact subset of R
�. Hence it follows from (A2) that

xðt; sÞðyÞ ¼ hðyÞ. Thus, for s A R, if we define us
: R 7! X by usðtÞ ¼ 0 for ta s, and

usðtÞ ¼ xðt; sÞð0Þ for tb s, then we have ðusÞs ¼ 0 and ðusÞs ¼ xðs; sÞ for sb s. Not-

ing that for tb s,

usðtÞ ¼ xðt; sÞð0Þ

¼

ð t

s

Tðt� sÞf f ðsÞ þ F ðsÞxðs; sÞg ds

¼

ð t

s

Tðt� sÞf f ðsÞ þ F ðsÞðusÞsg ds;

we finally conclude that us ¼ uð� ; s; 0; f Þ. Thus

lim
n!y

ð t

s

Uðt; sÞG nf ðsÞ ds ¼ lim
n!y

xnðt; sÞ ¼ xðt; sÞ ¼ ðusÞt ¼ utðs; 0; f Þ

uniformly over tb s with length t� s bounded. This completes the proof of the

theorem. r

Throughout this paper we will make as a standing assumption that B is a uniform

fading memory space, A is the generator of a compact semigroup ðTðtÞÞtb0 and FðtÞf

is continuous in ðt; fÞ A R�B, linear in f A B and periodic in t with period 1.

Under the standing assumption the following assertion holds:

Theorem 4.3. Let B be the monodromy operator of the corresponding homogeneous

equation of (2), i.e. B ¼ Uð1; 0Þ. Then reðBÞ < 1.
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Proof. For the proof we refer the reader to [38, Theorem 4.8]. r

We now consider the following discrete equation in the phase space B associated

with Equation (2)

unþ1 ¼ Bun þ gn; n A Zð19Þ

where gn :¼ unþ1ð0; n; f Þ. Under the standing assumption we have reðBÞ < 1. Hence,

if we assume that there is a function u defined on R which is a mild solution of (2)

bounded on the half line R
þ, then Theorem 3.1 is applicable. As a result we have

shown that in the phase space B there exists an almost periodic two sided sequence zn,

n A Z which is a solution of (19). However, our aim is to prove the existence of an

almost periodic solution on the whole line w of Equation (2) such that e ispðwÞ H e ispð f Þ.

This can be done by using the variation of constants formula presented in Theorem 4.2.

The main result of this section will be the following.

Theorem 4.4. Let the standing assumption be met. Moreover, let Equation (2)

have a mild solution bounded on R
þ. Then there exists an almost periodic mild solution w

to Equation (2) on the whole line R such that e isbðwÞ H e ispð f Þ.

Proof. The proof is divided into several steps.

a) Existence of an almost periodic solution on the whole line. First of all, by the

above argument there exists an almost periodic solution xðnÞ, n A Z to the discrete equa-

tion (19). We now construct an almost periodic solution to Equation (2) by solving the

Cauchy problem on every interval ½n� 1; nÞ, n A Z, i.e., the following equation

_uuðtÞ ¼ AuðtÞ þ Fut þ f ðtÞ; t A ðn� 1; nÞ

un�1 ¼ xðn� 1Þ:

�

ð20Þ

Since xðnÞ, n A Z is a solution of Equation (19) the solution u defined above is well

defined on the whole line R and is a bounded continuous mild solution of Equation

(2). Now, as in [6, Chapter 9] we will show that the solution u is an almost periodic

mild function. To this end, let us extend the sequence xðnÞ, n A Z to the whole real line

as follows xðtÞ :¼ ð½t� þ 1� tÞxð½t�Þ þ ðt� ½t�Þxð½t� þ 1Þ, t A R, where ½t� denotes the in-

teger p such that pa t < pþ 1. As is well-known (see e.g. [6, pp. 163–164]), the func-

tion xð�Þ, defined in this way, is almost periodic. As xð�Þ and f are almost periodic, so

is the function g : R C t 7! ðxðtÞ; f ðtÞÞ A B� X (see [21, p. 6]). Obviously, the sequence

fgðnÞg ¼ fðxðnÞ; f ðnÞÞg is almost periodic. Hence, for every positive e the following set

is relatively dense (see [6, p. 163–164])

T :¼ Z VTðg; eÞ;ð21Þ

where

Tðg; eÞ :¼ t A R : sup
t AR

kgðtþ tÞ � gðtÞk< e

� �

;

i.e., the set of e periods of g. Hence, for every m A T we have

k f ðtþmÞ � f ðtÞk
X
< e; Et A R;ð22Þ

kxðnþmÞ � xðnÞk
B
< e; En A Z:ð23Þ
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By the uniform boundedness principle obviously supt A ½0;1�kFðtÞk < y. Since u is a mild

solution to Equation (2), for 0a s < 1 and all n A N , we have

kuðnþmþ sÞ � uðnþ sÞk
X

a kTðsÞk kxðnþmÞ � xðnÞk
B
þ

ð s

0

kTðs� xÞk

�

�

sup
0aha1

kFðhÞk kunþmþx � unþxkB þ k f ðnþmþ xÞ � f ðnþ xÞk
X

�

dx

aCeokxðnþmÞ � xðnÞk
B
þ Ceo

ð s

0

�

sup
0aha1

kFðhÞk

� kunþmþx � unþxkB þ k f ðnþmþ xÞ � f ðnþ xÞk
X

�

dx;

where C and o are constants satisfying kTðtÞkaCeot. Hence

kunþmþs � unþskBaCeokxðnþmÞ � xðnÞk
B
þ Ceo sup

0aha1

kFðhÞk

ð s

0

ðkunþmþx � unþxkB

þ k f ðnþmþ xÞ � f ðnþ xÞk
X
Þ dx:

Using the Gronwall inequality we can show that

Nkuðnþmþ sÞ � uðnþ sÞk
X
a kunþmþs � unþskBa eM;ð24Þ

where M is a constant which depends only on sup0aha1kFðhÞk;C;o. This shows that

m is a ðeM=NÞ-period of the function uð�Þ. Finally, since T is relatively dense for every

e, we see that uð�Þ is an almost periodic mild solution of Equation (2).

b) Spectral estimate of the solution u. We now prove the following estimate

Lemma 4.5.

e isbðuÞ H sGðBÞU e isbð f Þ:ð25Þ

Proof. First, it may be noted that for every fixed n A N the function h : t 7!

G nf ðtÞ is almost periodic and sbðhÞH sbð f Þ. Next, let us consider the function

pnðtÞ :¼

ð t

t�1

Uðt; sÞG nf ðsÞ ds:

We will show that pn is almost periodic and e isbðpnÞ H e isbð f Þ. In fact, since h is almost

periodic with sbðhÞH sbð f Þ, there is a sequence of trigonometric polynomials hmðtÞ ¼
PNðmÞ

k¼1 ak;me
ilk;mt with lk;m A sbð f Þ approximating h. Thus, for every l A R such that

e il B e isbð f Þ, since

e�ilk;mt

ð t

t�1

Uðt; sÞak;me
ilk;ms ds

is a function of t with period one, we have
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kaðl; pnÞkB :¼ lim
T!y

1

2T

ðT

�T

e�iltpnðtÞ dt

�

�

�

�

�

�

�

�

B

¼ lim
T!y

1

2T

ðT

�T

e�ilt

ð t

t�1

Uðt; sÞhðsÞ dsdt

�

�

�

�

�

�

�

�

B

a lim
T!y

1

2T

ðT

�T

e�ilt

ð t

t�1

Uðt; sÞhmðsÞ dsdt

�

�

�

�

�

�

�

�

B

þ lim
T!y

1

2T

ðT

�T

e�ilt

ð t

t�1

Uðt; sÞðhðsÞ � hmðsÞÞ dsdt

�

�

�

�

�

�

�

�

B

a lim
T!y

1

2T

ðT

�T

ð t

t�1

Uðt; sÞðhðsÞ � hmðsÞÞ ds

�

�

�

�

�

�

�

�

B

dt

a lim
T!y

1

2T

ðT

�T

Neo sup
s AR

khðsÞ � hmðsÞkB dt

aNeo sup
s AR

khðsÞ � hmðsÞkB;

where N;o are determined from the growth bound of the process ðUðt; sÞÞtbs. Hence

when hm approaches h we can see that aðl; pnÞ ¼ 0, and hence, e isbðpnÞ H e isbð f Þ. Simi-

larly, since the limit

pðtÞ :¼ lim
n!y

ð t

t�1

Uðt; sÞG nf ðsÞ ds

is uniform in t we can show that p is almost periodic and e isbðpÞ H e isbð f Þ. Since the

function u, constructed as above, is almost periodic, by Lemma 4.1 the map t 7! ut is

also almost periodic, sbðuÞ ¼ sbðu�Þ, and satisfies the equation

ut ¼ Uðt; t� 1Þut�1 þ pðtÞ; t A R:ð26Þ

Using the 1-periodicity of Uðt; t� 1Þ, almost periodicity of ut and pðtÞ, and this

equation, we are going to prove the spectral estimate of the lemma. For simplicity, put

vðtÞ :¼ ut, PðtÞ :¼ Uðt; t� 1Þ and

GB; f :¼ fm A G : m B ðsGðBÞU e isbð f ÞÞg:

To prove (25) it su‰ces to show that GB; f V e isbðuÞ ¼v. Now suppose that l A R such

that e il A GB; f . Then lm :¼ lþ 2mp B sbð f Þ and hence lm B sbðpÞ for any m A Z.

Taking the Bohr transforms of both sides of Equation (26) we arrive at

aðlm; vÞ ¼ lim
T!y

1

2T

ðT

�T

e�ilmtPðtÞvðt� 1Þ dtþ aðlm; pÞ

¼ e�ilm lim
T!y

1

2T

ðT

�T

e�ilmtPðtÞvðtÞ dt

¼ e�il lim
T!y

1

2T

ðT

�T

e�ilmtPðtÞvðtÞ dt:ð27Þ
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Thus,

0 ¼ lim
T!y

1

2T

ðT

�T

e�ilmtðI � e�ilPðtÞÞvðtÞ dt:ð28Þ

Applying Lemma 1.2 to the functions vðtÞ and wðtÞ :¼ QðtÞvðtÞ, where QðtÞ :¼

ðe il � PðtÞÞ, and since ðe il � PðtÞÞ�1 exists and is strongly continuous in t (see e.g. [26,

Lemma 1] or the references therein), we get e isbðvÞ ¼ e isbðwÞ. On the other hand, (28)

yields aðlm;wÞ ¼ 0 for any m A Z, and so, e il B e isbðwÞ ¼ e isbðvÞ. Thus, GB; f V e isbðvÞ¼v,

and so by Lemma 4.1 GB; f V e isbðuÞ ¼v. This finishes the proof of the lemma. r

c) Decomposition of an almost periodic solution. From Lemma 4.5 it follows in

particular that e ispðuÞ H sGðBÞU e ispð f Þ. Obviously, sGðBÞ is finite. Thus, setting L1 :¼

e ispð f Þ, L2 :¼ sGðBÞne ispð f Þ we are in a position to apply Corollary 1.8 to finish the proof

of the theorem. r

4.3. Autonomous case and quasi periodic solutions.

In the case where FðtÞ does not depend on t we can refine the above technique

to prove the existence of quasi periodic solutions. Let us consider the autonomous

equation

u 0ðtÞ ¼ AuðtÞ þ Fut þ f ðtÞ; t A R:ð29Þ

Lemma 4.6. Let the standing assumption be fulfilled. Then for any almost periodic

mild solution u of Equation (29) the following spectral estimate holds

sbðuÞH siðDÞU sbð f Þ;ð30Þ

where

siðDÞ :¼ fx A R : ix� A� Fe ix� is not invertible in LðXÞg.

Proof. As is known (see e.g. [17]), under the standing assumption, siðDÞ coincides

with siðGÞ :¼ fx A R : ix A sðGÞg, where G denotes the generator of the solution semi-

group associated with (29) on the phase space B. By [17, Proposition 4.2 and Theorem

4.3] the above estimate is reduced to that of an ordinary di¤erential equation. Hence,

as in the Section 3 this estimate holds. r

Thus (30) can be used to study the existence of quasi periodic mild solutions to Equation

(29). Finally, we have

Theorem 4.7. Under the standing assumption, if Equation (29) has a bounded mild

solution on the positive half line and f is quasi periodic function, then there exists a quasi

periodic mild solution on the whole line w to Equation (29) such that sbðwÞH sbð f Þ.

Proof. The assumption yields in particular the existence of an almost periodic

mild solution u of Equation (29) on the whole line. Since siðDÞ consists of finitely

elements, the following function is well defined

wðtÞ :¼ uðtÞ �
X

l A siðDÞ

aðl; uÞe ilt:ð31Þ
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We now show that w is the desired mild solution. We again use the decomposition

of the variation of constants formula in the phase space (see [17, Proposition 4.2 and

Theorem 4.3]) to reduce the problem to the finite dimensional case. The next step of

the proof can be taken from the one of Theorem 2.1. Using (30) one can decompose

the above-mentioned almost periodic mild solution to get a component which is again

an almost periodic mild solution w of (29) satisfying sbðwÞH sbð f Þ. Since f is quasi

periodic if and only if the spectrum sbð f Þ has an integer and finite basis. This charac-

terization of quasi periodicity of f is inherited by w. r

5. Discussion and examples.

In this paper the assumption on the compactness of the semigroup generated by the

operator A in Equation (2) is essential which guarantees the existence of a bounded mild

solution on the whole line to Equation (2) as well as the one of an almost periodic

solution if we know beforehand the existence of a bounded mild solution on the positive

half line. Without the above mentioned assumption the Massera Theorem fails even for

the simplest equation as in the example below.

Example 5.1. In the infinite dimensional case even the following simplest equation

_uuðtÞ ¼ f ðtÞð32Þ

may have a bounded solution, but does not accept any almost periodic solution. In fact

in the space c0 of numerical sequences converging to 0, let us consider the function

f ðtÞ :¼ fð1=nÞ cosðt=nÞg. The function f is almost periodic, but its integral F ðtÞ :¼Ð t

0 f ðxÞ dx ¼ fsinðt=nÞg, which is bounded, is not almost periodic. Of course, every

solution of the equation (32) is of the form cþ FðtÞ. Hence, all solutions of this equa-

tion are not almost periodic. This is because of the geometric structure of the Banach

space X on which the equation is defined (see a counter-example in [21, Chapter 6] on

the condition that X does not contain c0).

In this paper we have used the compactness assumption to get Theorem 4.3 and the

fact that siðDÞ coincides with siðGÞ. Without the compactness assumption, further

assumptions should be made, for instance, the assumption that a bounded uniformly

continuous solution on the whole line exists, siðDÞnspð f Þ is closed, spð f Þ is countable,

and X does not contain c0. For more details in this direction we refer the reader to [7]

with notice that for the uniform fading memory space B similar computations can be

made for the infinite delay case.

6. Appendix: Almost periodic two sided sequences.

In this appendix we will state several results which are discrete analogs of well-

known results on almost periodic functions. We will denote by BðZ;XÞ the space of all

bounded two-sided sequences x : Z ! X , where X is a Banach space. In this space we

consider the translation operators SðkÞ, k A Z, defined as

½SðkÞx�ðnÞ :¼ xðk þ nÞ; En A Z; x A BðZ;XÞ:
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Definition 6.1. A bounded two-sided sequence fxn; n A Zg is said to be almost

periodic if the orbit fSðkÞx; k A Zg is relatively compact in BðZ;XÞ.

Next, we define the Bohr transform of an almost periodic two-sided sequence x by

the formula

x̂xl :¼ lim
N!y

1

2N

XN

k¼�N

l
�kxðkÞ; l A G ;ð33Þ

where G :¼ fz A C : jzj ¼ 1g. As for almost periodic functions, the Bohr transform of

a two-sided sequence exists and the set sbðxÞ :¼ fl A G : x̂xl 0 0g is countable. In this

appendix we will state the following result, the proof of which is a straightforward

verification of [6, Theorem 5.8]. Let us consider the equation

xðk þ 1Þ ¼ AxðkÞ þ gðkÞ; xk A C
N
; k A Z;ð34Þ

where fgðkÞ; k A Zg is an almost periodic two-sided sequence.

Theorem 6.2. If x is a bounded solution of (34), then x is almost periodic.
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[31] N. V. Minh, F. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness, and

exponential dichotomy of evolution equations on the half-line, Integral Equations Operator Theory, 32

(1998), 332–353.

[32] A. Pazy, Semigroups of Linear Operators and Applications to Partial Di¤erential Equations, Appl.

Math. Sci., 44, Spriger-Verlag, Berlin-New York, 1983.

[33] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel, 1993.
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