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Abstract. In this paper first we prove that if f and g are two permutable tran-
scendental entire functions satisfying f = fi(#) and g = ¢1(h), for some transcendental
entire function /4, rational function f; and a function g;, which is analytic in the
range of A, then F(g) < F(f). Then as an application of this result, we show that if
f(z) = p(z)e?® + ¢, where ¢ is a constant, p a nonzero polynomial and ¢ a nonconstant
polynomial, or f(z) = [~ p(z)e?) dz, where p,q are nonconstant polynomials, such that
f(g) =g(f) for a nonconstant entire function g, then J(f) = J(g).

1. Introduction.

Let f be a non-constant entire function, and denote by f” the n-th iterate of f.
The Fatou F(f) set of f is the set of z € C (the whole complex plane) where the family
{f"} is normal in a neighborhood of z. Denote by J(f) the complement of F(f),
which is called the Julia set of f. An obvious property of a Julia set for an entire
or rational function f is that J(f) =J(f"). If a meromorphic function F can be
expressed as F = fog, where f and g are meromorphic functions, then f and g are
called left and right factors of F, respectively. An entire or meromorphic function F
is called prime (pseudo-prime) if whenever F = f og for some meromorphic functions
f and g, then either f or g is linear (f rational or g polynomial). An entire or
meromorphic function F is called left-prime if and only if whenever F = f og with ¢
being transcendental then f must be linear. Moreover, we will say that a factorization
is in entire sense if only entire factors are to be considered in the compositions. For
more of the details, developments and related results of the factorization theory, we refer

the reader to or [8].

THEOREM A (Baker [1]). Let g be a nonlinear entire function permutable with f(z) =
ae’ +c¢, (ab #0,a,b,c e C), then g = f" for some ne N. Hence J(f)=J(g).

THEOREM B (Baker [2]). If f and g are transcendental entire functions and if oo is
neither a limit function of any subsequence of {f"} in a component of F(f), nor of any
subsequence of {g"} in a component of F(g), then J(f) = J(g).

THeOREM C (Bergweiler-Hinkkanen [7]). Let f and g be two permutable transcen-
dental entire functions. If both f and g have no wandering domains, then J(f) = J(g).

Recently Ng obtained some results, by imposing conditions on only one of the
two permutable functions.

THEOREM D ([14]). Let q be a nonconstant entire function and p be a polynomial
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with at least two distinct zeros. Suppose that f(z) = p(z)e?) is prime in entire sense.
Then any nonlinear entire function g which permutes with f is of the form ¢(z) =
af"(z) + b, where a is a k-th root of unity and b e C, and hence J(f) = J(g).

TueoreM E ([12)).  Let f(z) = p(z)e*® + a, where p(z) is a nonconstant polynomial
and not of the form [pi(2)|", where pi(z) a polynomial and n>?2, ae C and o(z) a
nonconstant entire function such that when p(z) is linear = A(z — a) then 1 + (z — a)a/(z2)
has at least one but finitely many zeros. Furthermore, assume that f(z) is pseudo-prime
in entire sense. Let g be a nonlinear entire function permutable with f, then ¢(z) =
ay f"(z) + by, where ay is a k-th root of unity and by € C, and hence J(f) = J(g).

Tueorem F ([12]). Let f(z) = p(2)e??) +a, where p,q are two nonconstant poly-
nomials, p(z) is not of the form pi(z)", pi(z) a polynomial, n>2, and ae C. If a
nonlinear entire function g is permutable with f, then g(z) = a;f"(z) + by, where a; is a
k-th root of unity and by € C, and hence J(f) = J(g).

In this paper, we shall derive several results which are complementary to [Theoreml
D, [Theoreml E and Theoreml F, and obtain a similar result for functions of the form

1(2) = 7 pl)e? dz.
2. Lemmas.

LemMa 1. Let f and g be two entire functions. If g(F(f)) < F(f), then
F(f) = F(g).

PrOOF. Let zpe F(f). Then there exists a neighbourhood U of zy such that
U c F(f). By the assumption of the lemma, we have ¢"(U) = F(f). Therefore ¢g"(z)
will not take any value of J(f) in U and hence {¢"},_, is normal in U. Thus
zo € F(g), the conclusion follows. [

LemMA 2 ([2]). Let f and g be two permutable transcendental entire functions. If
a€ F(f) and there is a subsequence f", with ny — oo, which has a finite limit in the
component of F(f) that contains o, then g(a) € F(f).

LemmMma 3 ([7]). Let f and g be two permutable transcendental entire functions. If f
does not have any wandering domains, then F(f) < F(g).

LemMa 4 ([3]). Let f be a transcendental entire function such that sing(f~"), the set
of singularities of f~', is a finite set. Then F(f) does not have any wandering domain.

DEFINITION AND NOTATION. Let F(z) be a nonconstant entire function. An entire
function ¢g(z) is called as a generalized right factor of F (denote by g < F) if there exists
a function f, which is analytic on the range of g, such that F = fog. Moreover if
h<f and h <g, then h is called a common generalized right factor of f and g.

By essentially adopting the arguments used by Eremenko-Rubel ([9], Theorem 1.1)
in their investigations of the existence of possible common generalized right factors of
two transcendental entire functions, Ng [14] obtained the following two results.

LemmA 5 ([14], p. 133). Let f and g be two entire functions and z, ... ,zy be k > 2
distinct complex numbers such that
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{f(Zl) =f(z2) == f(zax) = 4,
Suppose that there exist nonconstant functions f, and g such that fiof =g og on
Ule U;, where U; is some open neighborhood containing z;. If fi is analytic in a neigh-
borhood of A and the order of fi at A is K < k, then there exists an entire function h
(which only depends on f and g and is independent of k and z;) with h< f, h <g.
Moreover, among the z;s, there exist at least m= [(k—1)/K|+ 1 distinct points
Znly ooy Zym Such that h(zy) = = h(zuyy,).

Lemma 6 ([14], p. 133). Let f and g be two entire functions and {z;}, _n be an
infinite sequence of distinct complex numbers such that f(zx) = A and g(z;.) = B for all
ke N. Suppose that there exist nonconstant functions fi and g, such that fio f =giog
on Uil U;, where U; is some open neighborhood containing z;. If fi is analytic in a
neighborhood of A, then there exists a transcendental entire function h with h < f, h < g.

Lemma 7 (Ng [14]). Let h,k be two transcendental entire functions. Suppose that h
has infinitely many zeros. Then for each ne€ N, there exists a zero a, of h such that
k(z) = ay has at least n distinct roots which are not zeros of h.

LeEmMA 8. Let f,g be two permutable transcendental entire functions. If there exist
a nonconstant polynomial p and an entire function k such that p(g(z)) = k(f(z)), then

f(F(g)) = F(g), and hence F(g) < F(f).

Proor. Let a e F(g). Then there exists a neighbourhood U of o such that
Uc F(g). By [Lemma 2, we only need to consider the case g" — oo in U. Let
M = maxj,—i|k(w)|. Since p is nonconstant polynomial, there exists a positive constant
K such that |p(z)| > M + 1 when |z| > K. Since g” — oo in U as n — oo, there exists
no such that |g"(z)| > K for n>ng and ze U. Thus, |g(z)| > K for all ze g"(U)
(n>ngp). If f(«) is not in F(g), then, for arbitrarily large n, {g"} takes all values in
f(U), with at most one exception. Thus there exists t = f({), with { € U, such that for
some m > n

1> [g"(@0)] = g™ (SO = 1f(g"(D)I-
Thus 6 = g"({) € g”"(U), which implies |g(d)| > K, and |f(d)| < 1. Hence, we have

M +1<[p(g(9))] = [k(f(9))] < M,

which is a contradiction. Thus we have that f(a) € F(g). Hence f(F(g)) < F(g) and
F(g) = F(f). O

Lemma 9 (Bergweiler [S)). If f and g are transcendental entire functions, h is a
nonconstant polynomial, then f(g) —h has infinitely many zeros.

3. Main results and their proofs.

THEOREM 1. Let f and g be two permutable transcendental entire functions. If
there exist a transcendental entire functions h, a rational function f, and a function g,
that is analytic in the range of h, such that f(z) = fi(h(z)) and g(z) = g1(h(z)), then
F(g) = F(f).
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Proor. By [Lemma 1, we only need to prove that f(F(g)) = F(g). Let o€ F(g),
then there exists a neighborhood U of « such that U = F(g). By [Lemma 2, we need to
consider only the case that ¢” — oo in U. By the assumption that f = fi(h), g = g1(h),
/1 has at most one pole and g; has at most one singular point in C. Choose a € C such
that D(a,1) = {w:|w—a| <1} does not contain fi(oo). Denote E the bounded set
/7Y (D(a,1)) ={z: fi(z) e D(a,1)}. Furthermore, g; has at most one singular point
in C, therefore, a can be so chosen that E does not contain any singular point of
g1. Let M =max_z|gi(w)|. Since g” — oo in U as n — oo, there exists ng such that
lg"(z)| > M + 1 for n > ng and ze U. Thus, |g(z)| > M + 1 for all ze g"(U) (n > ny).
If f(«) is not in F(g), then for sufficiently large n, {g"} takes all values in f(U), with at
most one exception. Thus there exists = f({), with { € U, such that for some m > ng

J(g"™(0) =9¢"(f(0) = 9¢" (1) € D(a,1).
Thus 6 = ¢g"({) e g™ (U) and f(J) € D(a,1), which implies that Ah(6) € E. Hence
M +1 < |g(0)| = 191(h(0))| < M,

which is a contradiction, and hence f(x) € F(g). It follows that f(F(g)) < F(g) and
F(g) = F(f) O

Combining [Theorem 1 and a result of Ng ([13], Theoreml A), we have

COROLLARY 1. Let f(z) and g(z) be two permutable transcendental entire func-
tions. If there exists a nonconstant polynomial ®(x,y) in both x and y such that

P(f(2),9(2)) =0, then J(f) = J(g).

REMARK. This result generalizes the results of Baker [2], Poon-Yang and
Wang [18], where @(x,y) is chosen respectively to be x—y—b, x—ay—b and

p(x) —q(y).

COROLLARY 2. Let f and g be two permutable transcendental entire functions with
F(f) < F(g). Assume further that f is pseudo-prime. If there exists a transcendental
entire functions h such that h < f and h < g, then J(f) = J(g).

Proor. By the assumption that 2 < f and & < g, there exist functions f; and g,
which are analytic in the range of 4, such that

J=h0), g=a(h).

However, since f is pseudo-prime, f; must be a rational function with at most one pole.
Hence, by [Theorem 1, the conclusion follows. n

COROLLARY 3. Let f be a transcendental entire function such that F(f) has no
wandering domain. Assume further that f is pseudo-prime. Let g be a nonlinear entire

function permutable with f. If there exists a transcendental entire function h such that
h<f and h<g, then J(f)=J(g).

COROLLARY 4. Let [ and g be two permutable transcendental entire functions.

Assume further that both f and g are pseudo-prime. If there exists a transcendental
entire function h such that h < f and h < g, then J(f) = J(g).
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THEOREM 2. Let f(z) = p(z)e?®) + ¢, where p(z) is a nonzero polynomial and q(z)
a nonconstant polynomial. If g is a nonlinear entire function permutable with f, then

J(f) = J(9).

Proor. By Lemmas 3 and 4, we have F(f) < F(g9). Now we prove that
F(g) < F(f). There we have two cases to be dealt with.

Case 1. p(z) is a constant. If g(z) is linear, then f(z) = e“** +¢. Thus we are
done by Theorem A. Now we assume that ¢(z) a nonlinear polynomial. Then f(z) =
e 4 ¢, where ¢(z) = q(z) +constant. (f —c)og= (g —c)o f implies that either
giz) =e" ¢ or g(z)=(z—¢c)"e") ¢ with n>1. If g(z) =e) 4 ¢, then
q1(g(z)) = k1(f(z)), where kj(z) = k(z) 4 constant is an entire function. Hence, the
conclusion follows from Lemma 8. Now we consider the case that g(z) = (z —¢)"-
e*? 4 ¢, n>1. Since degg > 2, f’ has at least one zero. If f’ has a zero # ¢, then
f'(9)g" =4g'(f)f' implies that ¢g'(f) has infinitely many zeros. If g’ has only finitely
many zeros, then it follows that there exist a zero B of f’ and a zero A of g’ such that
f — A and g — B has infinitely many common zeros. By Lemma 6, it follows that there
exists a transcendental entire function 4 such that 7 < f and & <g. Thus the con-
clusion follows from Corollary 2. If ¢’ has infinitely many zeros, by Lemma 7, for
arbitrary large N, there exist a zero ay of ¢’ and a zero B of f’ such that f — ay and
g — B has at least N distinct common zeros. It follows from Lemma 5 that there exists
an entire function / such that # < f and 4 < g. Furthermore, / takes some fixed value
at least [N/degg| distinct points. Since N can be arbitrarily large, so is [NV /deggq], and
hence 4 must be transcendental. By Corollary 2, the conclusion follows. If f’ has
only one zero c, then f(z) = e4C=9"+B L ¢ Noting g(z) = (z — ¢)"eF?) + ¢ with n > 1,
by calculating the multiplicities of the zero point ¢ of f'(g)g’ and ¢g'(f)f’, we conclude
immediately that n=1. Then ¢'(z) = (1 + (z — ¢)k’(2))e*®) and all its zero must be
different from ¢. Thus, if 1+ (z —¢)k’(z) has a zero, then ¢’(f) has infinitely many
zeros, so does ¢g’. Again, according to Lemma 7, this will lead to a contradiction.
Finally we need to show that f and g are not permutable if 1 + (z — ¢)k’(z) has no zero.
Set 1+ (z— ¢)k’(z) = /9, where B(z) is non-constant entire function. If f and g are
permutable, then we have

A(z — ¢)"e" ) = A(z — )" + ky (e4C7)"HE 4 ¢), (1)

where ki(z) =k(z) +d, d is a constant. Noting that 1+ (z — ¢)k’(z) has no zero, we
have that k(z) must be a transcendental entire function, so does k;(z). But by Lemma
9, this is impossible.

CaSE 2. p(z) is a nonconstant polynomial. We discuss two subcases. If p(z) has
at least two distinct zeros, then p(g(z)) has infinitely many zeros. It follows from
p(g(2))ed¥@) = (g —¢) o f(z) that (g — ¢) o f(2) has infinitely many zeros. Thus there
exist a zero A of p(z) and a zero B of g — ¢ such that f(z) — B and ¢(z) — 4 have
infinitely many common zeros. Again by Lemma 6, there exists a transcendental
entire function /4 such that 7 < f and 7 <g. If p(z) has only one zero, then f(z) =
(z—b)"e??) + ¢ and (g — b)"e?9) = (g —c)o f. Now if g — ¢ has at least two distinct
zeros, by applying the same arguments as above, we conclude that there exists a
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transcendental entire function / such that # < f and 4 <g. If g — ¢ has only one zero,
say a, then g(z) = (z — a)"'e*®) + ¢, where k(z) is a nonconstant entire function. Thus,
fog=gof implies that (g—5b)"e?9) = (f —a)"e*/). If b+#c, then g(z) —b has
infinitely many zeros which are also the zeros of f(z) —a. Hence there exists a tran-
scendental entire function 4 such that 4 < f and & < g, by Lemma 6. If ¢ # a, we will
arrive at the same conclusion. If a =b = ¢, then

f(2)= (=" +c (2)
9(z) = (z = )" 1 ¢, (3)

where n > 1, m > 1 and ¢(z) is a nonconstant polynomial. Thus f’ has at least one
and only finitely many zeros, which are different from ¢ (a Picard exceptional value of
g). Thus, f'(9)9' =g'(f)f’ implies that g'(f) has infinitely many zeros. If g’ has
only finitely many zeros, it is easy to derive that there exists a transcendental entire
function /4 such that # < f and & < g. If ¢’ has infinitely many zeros, by lemma 7, for
any N >n+ 2, there exists a zero ay of g’ such that f(z) =ax and g(z) = 4 has at
least N common roots zy,2z,,...,zy, where 4 is a zero of f’/. Thus, by lemma 5, there
exists an entire function 4 (which depends on f and ¢ only) with 4 < f, h < g. More-
over, among zj,z,...,Zy, there exist at least m = [N/(n+ 1)] distinct points at which
h takes the same value. Since N as well as m can be arbitrarily large, 4 must be trans-
cendental. Hence, again by [Corollary 2, the conclusion follows. This also completes
the proof of the theorem. ]

TueorREM 3. Let f(z) = [*p(z)ed©) dz, where p(z) and q(z) are nonconstant poly-
nomials. If g is a nonlinear entire function permutable with f, then J(f) = J(g).

Proor. By [Lemma 4, we conclude that f has no wandering domain. It follows
from [Lemma 3, that F(f) = F(g). Now we prove that F(g) = F(f). Tt is obviously
that f(z) is pseudo-prime. Thus by [Lemma 1, we only need to prove that there exists a
transcendental entire function /4 such that 7 < f and 7 <g. We need to discuss two
cases.

Case 1. p(z) has two distinct zeros. Then f’(g(z)) has infinitely many zeros. It
follows from f'(g)g’ = ¢'(f)f’ that ¢’(f) has infinitely many zeros and g’ has at least
one zero. If ¢’ has only finitely many zeros, then there exist a zero 4 of g’ and a zero
B of f’ such that f(z) — A4 and g(z) — B have infinitely many zeros. It follows from
that there exists a transcendental entire function 4 such that 42 < f and
h <g. 1If ¢’ has infinitely many zeros, it follows from f'(g)g’ = ¢’(f)f’ and [Lemma 7
that for each n e N, there exist a zero a, of ¢’ and a zero B of f’ such that f(z) — a,
and g(z) — B has at least n distinct common zeros. It follows from that there
exists an entire function /4 such that 27 < f and 7 < ¢g. Furthermore, / takes some fixed
value at least [n/deg(p+ 1)] distinct points. Since n can be arbitrarily large, so is
[n/deg (p + 1)], and hence /& must be transcendental.

CaSE 2. p(z) has only one zero, thus p(z) = A(z—¢)", (n>1). If g(z) — ¢ has
infinitely many zeros, it follows from A(g(z) — ¢)"e?9@)g'(z) = Ag'(f(2))(z — ¢)"e?
that ¢’ has at least one zero. If ¢’ has only one zero, say a, then f(z) —a and g(z) — ¢
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has infinitely many common zeros. It follows that there exists a transcendental entire
function / such that 27 < f and h <g. If ¢’ has at least two distinct zeros, it follows
from A(g(z) — ¢)"e?9C) g’ (z) = Ag'(f(2))(z — ¢)"e?) that g’ has infinitely many zeros.
Thus by Lemmas 7 and 5, we have that there exists a transcendental entire function /
such that 4 < f and 7 <g. 1If g(z) — ¢ has only finite many zeros, then we discuss the
following three subcases.

SUBCASE 1. ¢’ has at least two distinct zeros. It follows from A(g(z) — ¢)"e?9).
g'(z) = Ag'(f(2))(z — ¢)"e?) that there exists a zero a of g’ such that f(z) —a and
g(z) — ¢ has infinitely many common zeros. Then by Lemma 6 again, there exists a
transcendental entire function / such that 27 < f and h <g.

SUBCASE 2. ¢’ has only one zero, say b, then ¢'(z) = (z b)"e*?) . Tt follows that
b is a Picard exceptional value. Thus f(z) = b + pa(z)e®(), where pi(z) and ga(z) are
polynomials. It follows from Theorem 2 that J(f) = J(yg )

SUBCASE 3. ¢’ has no zero, then ¢’(z) = e*®), where a(z) is an entire function.
It follows from (g(z) — c)"e99@)e*) = 2/ ) (z — ¢)"e?) that g(z) — ¢ = (z — c)eP?),
where f(z) is a nonconstant entire function. Thus

(f—c)og=1(g—c)of=(f—c)eV).

It follows from this and Lemma 7 that f(z) — ¢ has only finitely many zeros. Thus
f(z) = ¢+ pa(z)e®F), where py(z) and ¢,(z) are polynomials. Again by Theorem 2, we
have that J(f) = J(g). (]

CONJECTURE. Theorem 3 remains to be valid when p is a constant.

THEOREM 4. Let f(z) = [~ e? @) dz, where q(z ) z's a nonconstant polynomial. If g is
a nonlinear entire function and not the form f ) dz, where o is a nonconstant entire
function, then [ and g are not permutable.

PrROOF. Assume that f and g are permutable. Then it follows from e99()g’(z) =
g'(f(z))e?? that g’ has at most one zero. By assumption of Theorem, g’ has one zero,
hence g'(z) = (z — ¢)"e*?. Tt follows from this and e?9G)g'(z) = g'(f(z))e??) that
f(z) —c=(z—c)e®), where ¢(z) is a non-constant polynomial. Thus one can con-
clude that 1+ (z — ¢)g{(z) has no zero at all. This is false which also completes the
proof. ]
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