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Abstract. In this paper we study the Cauchy problem to the linear damped wave
equation uy, — Au+ 2au, = 0 in (0,00) x R" (n>2). It has been asserted that the above
equation has the diffusive structure as t — c0. We give the precise interpolation of the
diffusive structure, which is shown by L?-L? estimates. We apply the above L?-L4
estimates to the Cauchy problem for the semilinear damped wave equation u, — Adu +
2au; = [u|’u in (0,00) x R" (2<n<5). If the power o is larger than the critical
exponent 2/n (Fujita critical exponent) and it satisfies ¢ < 2/(n — 2) when n > 3, then the
time global existence of small solution is proved, and the decay estimates of several norms
of the solution are derived.

1. Introduction.

Consider the Cauchy problem for the damped wave equation
0*u — Au+2adu =0, u(0,x) = py(x), 0u(0,x) =g (x) (1.1)

for (¢,x) € (0,00) x R", where a is a positive constant and 4 is the Laplace operator in
R". Here and after we denote 0, = (9/0t), 0% = (0/dx1)™" -...-(8/0x,)™ for a multi-
index of non-negative integers o = (o,...,0,) and || = o + -+ + a.

It has been indicated by several authors (Li [15], Bellout and Friedman [1]) that the
damped wave equation has the diffusive structures as ¢t — oo.

Recently, Nishihara has shown the L?”-L? estimates of the difference between
the solution of and the solution of the Cauchy problem to the corresponding heat
equation

0520 = 0. $(0.x) =5 (2apy(x) + p1(x)).  (1.x) € (0, 0) x R"
for 1 < ¢ < p < oo, when n=3. In the case where n = 1, Marcati and Nishihara
have obtained the same kind of estimates. The problem with n =1 is related to
the asymptotic behavior of solutions to the system of the compressible flow through
porous media (see Hsiao and Liu [9] and Nishihara [22], [23]).

To obtain the results, they and [24]) have used the explicit formula of solutions
for the damped wave equation [I.I]. Because the explicit formula is rather complicated,
it seems that their method does not work well when n # 1,3. In this paper we apply
Fourier analysis to avoid the above difficulties.
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The first aim in this paper is to give the precise interpretation of the diffusive
structure of the problem [I.T), which is shown by the L?-L? estimates. We estimate
separately the low frequency part and high frequency part of the solution to [I.I}. To
obtain the results, we use the method developed by Marshall, Strauss and Wainger [18],
Levandosky and Narazaki [21]. The second aim is to apply Theorems [L1 and
to Cauchy problem for the damped wave equation with power nonlinear term.

We use standard function spaces W7 (L? = W%?) and H; equipped with the
norms

1 llpmr = D UD s 1 iz = £ 1lsp = 17 (A1),
k=0

respectively, where [|f||, denotes the usual L?-norm, ||Dkf||p =2k 105 S s ZS =f
denotes the Fourier transformation of f with respect to x:

Ff(&) Ef(f) = (27'5)_”/2 Je_"x'éf(x) dx
and Z ! denotes the inverse Fourier transformation:
Ff(x) = (2m) " Je""fﬂé) dé.

A function fe L} (R") will be said to belong to BMO if and only if

loc
11 o = sup jQ () = fol dx < oo,

where supremum is taken over all balls in R", |Q| denotes the volume of the ball Q, and

_ L
19l

| f1lgmo 18 called BMO-norm of f, and it becomes a norm after dividing out the con-

stant functions (see e.g. [2], [3]).
Our first aim is represented in the following theorems.

fo ij<x> dx.

THEOREM 1.1. Let n>2. Let j>0 and k >0 be integers and 1 < q< p < .
Let y(&) be a compact supported radial function of class C*, and y =1 in a neighborhood
of 0. Assume that ¢; € LY for i =0,1. Then the solution u to (1.1) in the sense of
distributions satisfies the following LP-L9 estimate for any & > 0,

107 (=) F 7 {1(E) (@(1, &) — p(t,ENM,
< C(&, p.q, j, k) (1 + )R WEDTH (g0l o+ oy ]l,) (1.3)

for some positive constant C(g, p,q, j, k), where ¢ is the solution to the Cauchy problem
for the corresponding parabolic equation (1.2). Moreover, in the case where 1 < g <
p< oo, p=q=2or p=ow0, q=1, we may take ¢ =0 in the estimate (1.3).
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THEOREM 1.2. Let n>2. Let 1 <q<p < oo. Let y(&) be a compact supported
radial function of class C*, and y =1 in a neighborhood of 0. Assume that ¢; € L1 for
i=0,1. Then the solution u to (1.1) in the sense of distributions satisfies the following
LP-LY estimate

177 (1 = 2 () (e, ) — e (Mo (2, ) po () + Mi (2, )1 D,

< C(p, e (ol + o l,) (1.4)

for some constants 6 >0 and C(p,q) > 0, where

: i (_l)k 2k 2k
| €* — a? ( o£k<%:1)/4 (2k)!

0<k<(n-3)/4

k
—cosddl Y7 (2(k41r>1)!12k+18(é>2k+1>’

1)k
Mo(1,&) =costfe| > %ﬂk@(é)%
0<k<(n+1)/4 :

: (=D" i1 gy ey 2kt
+sinde] Y SO +aM(1,9),
0<k<(n—1)/4 (2k +1)!

and O(&) = |&| — \/|E]* — a2

It is well-known that the solution ¢ to (1.2) satisfies
1o/ D (e, )|, < Co- W2 YD R Dag, + gy, (1.5)

for 1 < ¢ < p < oo and non-negative integers j and k (see e.g. Ponce [25]). The esti-
mate (1.5) implies that

16/ D*$(1,-)I|, < C(B)(1 + 1)~ "W UPITEE 20, 4 gy |,

for 1 < ¢ < p < oo and non-negative integers j and k, provided that supp(2ag, + ¢,) <
{&:|&| < b} for some constant b > 0. Here and after ¢, ¢, C, Ci etc. denote generic
constants.

Theorems [LI-IL2 imply the properties of the damped wave equation, which are
summarized as follows.

(i) Let u be a solution of [I.I}], let ¢ be a solution of (1.2) and let v be the
solution of the following wave equation

8120_411):07 U(va) :(P()(x), atU<0>x) :(pl(x>7 (lax) 6(0700) X R".
Then,

it &) = $(1,¢) for small |&,
U e ®i(1,8)  for large |¢].
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(i) If the initial data are sufficiently smooth, then the damped wave equation may
have the same properties as those to the heat equation.
(i) If initial data have singularity, it propagates along the light cone, which is the
wave property, though its strength decays exponentially.
When n =3, [Theorem 1.2, [Proposition 4.4 (below) and the theory of Fourier
multiplier (see [2], e.g.) imply that the estimate

174 =@, ) — e (e, NI, < Ce (looll, + Nl ll,) (1.7)
holds for ¢ > 0, under the assumptions in [Theorem 1.2 where
. a’ \ sint . sin#|&] .
(0.9 = ( (a4 5 0) 4+ cosiel () + 23 g
2 14 ]
for (¢,&) e (0,00) x R>. and the estimates (1.5) and (1.7) show

lu(r, ) = p(1,-) — e “w(t,-)ll, < Cle, p,@)r > PHEV (gl + [lyll,) — (1.8)

for t >0 with 1 <¢ < p< oo and n =3, under the notations in Theorems [I-[L.2.
Moreover, in the estimate (1.8), we may set e=0 when l <g< p< oo or p=¢g=2.
Because Hormander’s multiplier theorem on L7 holds only when 1 < p < oo (see [8] and
[2]), it seems difficult to prove the estimate (1.8) when ¢ =1 or p = 0.

Nishihara has shown the estimate (1.8) for > 1 with | < ¢ < p < o0 and ¢ = 0.
But Theorems [.1 and hold for any n > 2, and it seems that these theorems represent

the diffusive structure of damped wave equation precisely.
Recently Ikehata and Nishihara have studied the problem in abstract
framework, and they have shown the estimate

lut,-) = $(2, )l < C(L+ 1) (log(2+ 1) 2 ([(1 = Dyl + VT = Aoy 1)
for any ¢ > 0. But the estimates in Theorems [L1 and L2 are sharper than theirs.
REMARK 1.1. Let u be a solution of [I.T}. Then, i(z,&) satisfies

sin 74/ &> — a2
i(t,&) = e [ costy/|€]* — a2py(&) + e (apo + ¢1) |- (1.9)

& — a?

Assume that a function y(-) € C;°(R") satisfies supp Y < {&;|¢] > b} for some constant
b > 0. Then the inequality

10/ (=) 7 (W (Ya(e, ), < Ce(llooll, + loull,)
holds for 1 < ¢ < p < oo and for integers j >0 and k > 0, where 6 > 0 depends only
on .
Our second aim is to apply Theorems [[LI and to the Cauchy problem for the
damped semilinear wave equation

OPu— Au+2adu = f(u), u(0,x)=gy(x), 06u(0,x)=p(x), (1.10)

for (z,x) € (0,00) x R", when 2 <n < 5. The typical examples of nonlinear terms f (u)
are |u|’u and |u|'"°. We study the time global existence of small solution to [T.10).
Our interest is focused on the critical exponent a.(n) = 2/n.
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For the Cauchy problem of the corresponding heat equation

_ 2apy(x) + 91 (x)
2a ’

b~ 4D =198, $(0.) (1.3) € (0,0) < R",  (L11)
the critical exponent is ¢ = 2/n. In fact, if 0 < ¢ < 2/n, then the solution blows up in a
finite time (Fujita [4], Hayakawa [7]) for certain small initial data, and if ¢ > 2/n, then
time global solution exists when the initial data is small.

Matsumura has shown the time global existence and the time decay estimate
of the solution of the problem [1.10}, provided that initial data is compact supported,
sufficiently smooth and small, and the nonlinear term f(u) is smooth and it satisfies

‘ (&)

where p >1+2/n, p>2 and N is a large integer. Many authors have studied the
problem (5], [6], [12], [13], [16], [20]). Our methods are related ones in [13].
Gallay and Raugel [5], [6] have studied the large time behavior of solutions to the
nonlinear damped wave equation introducing scaling variables.

Recently, Todorova and Yordanov have studied the Cauchy problem for
following damped wave equation

< Clu|™ =50 (0 <k < N),

O — Au+2ad,u = [ul",  u(0,x) = y(x), u(0,x) = ¢, (x), (1.12)

for (¢,x) € (0,00) x R", and they have shown that the critical exponent is a.(n) =2/n
for compactly supported initial data. More precisely, if o.(n) <o <2/(n—2), they
have proved that the problem admits a unique time-global solution when the
compactly supported initial data (¢,, ;) are small in H) x L?. If 0 < ¢ < g.(n), they
have shown that the solutions of do not exist globally for certain initial data,
however small initial data are. Zhang have studied the critical case o = g.(n) and
he have shown the non-existence of time global solution to for certain small initial
data.

Ikehata, Miyaoka and Nakatake have shown the global existence of the weak
solution to and its decay order when 2 < 1+o<n/(n—2) (n=1,2,3). Also
they conjecture the global existence of the solution when 2>1+a¢>1+2/n (n=3).
In fact, our second goal is to give a positive answer to their conjecture in the case where
2 < n <5 without any assumptions on the support of initial data, under the following
hypothesis.

Hyporuesis H. Nonlinear term f(u) is a function of class C! and it satisfies
| ()] < Au|"°, |f"(u)] < Alu|° for u,ve R, where A4 and ¢ are positive constants.
Moreover it satisfies |f'(u) — f'(v)| < Aju—v|?, if 0 < 1.

Our second aim is represented in the following theorems.

THEOREM 1.3.  Assume that Hypothesis H holds. Let 4<n<5, 2/n<o<
2/(n=2), 0 <1 and

(¢ 1) € Zy = (H; NHY,, ,NH| NL") x (HyN\L""/7nL L"),
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If \lpos 01l 7, is sufficiently small, then the solution u to (1.10) uniquely exists in
C([0,00); HZN LYY N L* )N CY([0, 0); HY) N C%([0, 0); L?),
and it satisfies the following estimates for t > 0:
lu(t, )|, < C(L+ )2 gy o), for 1+o<p<1+1/o,
o/ DFu(z, I, < CA+ )" 2\l go il for j+k<2,j<1, and
17u(t, )|, < C(L+ 077 lgg, 01,
THEOREM 1.4. Assume that Hypothesis H holds. Let n=3, 2/3 <o <1 and
(po91) € Za = (H{, ,NH| ,NL") x (L"onL* LY.
Then, if ||y, 1, is sufficiently small, the solution u to (1.10) uniquely exists in
C([0, 0); HI N LYo n Loy n ([0, «0); L?),
and it satisfies the following estimates:
lu(®)ll, < CA+ 0~ gy o1, for 1+o<p<1+l/o, and
16/ D*u(t, )|, < CL+ 0T Py, g1, for j+k<1.

THEOREM 1.5.  Assume that Hypothesis H holds. Let 2<n<4, 2/n<o, 1 <o
and o <2/(n—2) when n>3. Let (py,0) €Z3=(HyNLY) x (L>NLY). Then, if
90, 911l £, is sufficiently small, the solution u to (1.10) uniquely exists in C([0, 0); Hy) N
C'([0,0); L?), and it satisfies the following estimates:

|6/ D u(r)ll, < CAL+ 07T Plgo, g1, for j+k<1. (1.13)

REMARK 1.2. Nishihara has shown the global existence of the small data
solution to for initial data (¢, ;) € (WITN WL ) x (L'NL*) when n = 3, and
he has shown the estimates in with 1 < p < 0.

REMARK 1.3. The decay estimates in Theorems [.3-1.5 imply the following energy
estimate

<C(1+0""* g o

. (1.14)

B(0] = |5 0wt 1B + [1Dute, ) - | Flute,))a

for i=1,2,3, where F'(s) = f(s) and F(0) =0. Kawashima, Nakao and Ono
have treated the Cauchy problem in R" (n>1) with |u|’u replaced by —|u|"u
and they have obtained the decay estimate (1.14) in the framework of higher power o.
Ikehata, Miyaoka and Nakatake have treated the problem with f(u) = |u|’u
under the assumptions in [Theorem 1.3 They have obtained the decay estimate (1.14),
and they have shown the following decay estimate |lu(?)|, < C(1 —|—t)7"/4H(p0,(p1HZ].
But they have not obtained a sharp decay estimate of |J.u()|,. See (1.13).
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2. Preliminaries.

In this section we state the preliminary results necessary for the proofs. J,(s) is the
Bessel function of order . We shall denote J,(s) = J,(s)/s*. Here and after we denote
g(s) = O(|s|”) when |g(s)| < C|s|” for a constant o.

LemMma 2.1 (see e.g. [14]). Assume that p is not a negative integer. Then, the
following equalities hold.

(1) s.];:(s) = .]Nﬂ:l(s) —2uJ,(s).

(2) J(s) = =51 (s).
(3) f_l/z(s) = \/gcoss.
(4) If Rep is fixed, then |J,(s)| < Ce™™H (|s] < 1),
Ju(s) = Cs~' /2 cos <s - gn - g) + O(eXmul|g| 2 (Is| = 1).

. o .
(5) r*pJuri(rp) = =gl
It is well-known that

LEMMA 2.2 (see e.g. [27]). Assume that f(&) e L? (1 < p <2) is a radial function.
Then the equality f(x) = [)" g(p)p" " Jujr—1(|xlp) dp holds, where g(|&|) = f(&).

LEmMMA 2.3. Let 1 <qg<p<oo satisfy 1 —1/r=1/q—1/p, then the inequality
1/ +gll, < ClIfIl,llgll, holds for any feL? and ge L" (see e.g. [27]).

LemmAa 2.4 (Hardy-Littlewood-Sobolev). Let 1 <g< p < oo satisfy 1—1/r=
1/qg—1/p. Assume that |g(x)| < A|x|™", where A is a constant. Then the inequality

£ *gll, < C(p,q)Al|lfl, holds for any f e L? (see e.g. [26]).

LEMMA 2.5. Assume that py # pi1, qo # q1 and that an operator T is bounded from
L?P0 to L9 with norm My, and that the operator T is bounded from LP' to LY with norm
M,. Then, the operator T is bounded from LP9 to L9 with norm M < MOI*HMIH,
provided that 0 < 0 <1 and

1 1-0 0 1 1-0 0

pO) po  pi’ q0) @ @
(see e.g. [27]).

LEMMA 2.6. Let S={z=x+iy;0<x<1,yeR} be a strip and let T. be an
analytic family of linear operators satisfying

1Ty hll,, < AoNoW)Allyys N Tl < AN (D)]A,,,  No(0) = Ni(0) =1

q0’ q1’

where 1 < pj,q; < oo for j=0,1 and sup_, . e " logN;(y) < oo for some b <.
Then, if 0 <0 <1, there is a constant C(0,b) so that ||Toh||,, < C(H,b)A(l)_OAl()Hth(O)
for

1 1-6 0 1 1-6 0

= y — _'_ —_
pO  po pi 90 g @
Furthermore we may replace py = oo with BMO, provided that py # 1 (see [27] and [28]).
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Lemma 2.7 (Gagliardo-Nirenberg). Let 1 <r<p<ow, 1<qg<p and m=0
satisfy 1/p =0(1/q —m/n) 4+ (1 — 0)/r, then the inequality

lell, < ClD™olglloll;™" for ve HyOL
holds with some C > 0, provided that 0 < 0 <1 (0<0<1if1<qg<ooandm—n/qisa
non-negative integer).
3. Proof of Theorem 1.1.
Choose and fix a radial function 0 < y,(£) <1 of class C* satisfying
1@ =1 (gl <a/2), 1(&)=0 (< =2a/3).

Occasionally, we write y,(¢) = x,(|¢]). Remark 1.1 shows that is a direct
consequence of the next theorem.

THEOREM 3.1. Let vi > 0 and v, > 0 be integers and let 1 < g < p < oo. Let u be
the solution of (1.1) and let ¢ be the solution of (1.2). Assume that ¢, € L9, ¢, € L.
Then, for any 0 < e, there exits a constant C(g, p,q,vi,v2) satisfying

107 (=) 7 {1, () @1, E) — (1, EN M,
< C(e, pog, vi,v2)(1+ o) AW D=t g l,)- (3.1)

Moreover, when 1 < g< p< oo, p=ow, g=1or p=qg=2, we may take ¢ =0 in the
estimate (3.1).

The solution u to satisfies that

agy () + ¢,(<)

|é|2t> 2ay(E) + 6, (€)

x1(Q)u(t, &) = (&) eXP(—
2a 2a \/;2—:75?
+exp<_ i <& apy(S) + ¢1(<)

2a ) Ja? — |62+ a? — &P 2a

+% exp(—at — t\/az—7IéIZ) 9(S) — Bole) + (pl(f)
Vat —[E

= 11(E)P(1, &) + Vi(1,8) + Val1, &) + V3(1, &), (3.2)

1
+ Eg(l’ 1)) | 90(&) +

where

2
g(t,p) = exp(—at + tn/a? — p*) — exp <— pz—at) (3.3)

We begin with the estimates of ||0;" (—4)"Va(t,-)|, and [|0;" (—4)"V3(t,-)]],-
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Lemma 3.1. Let vi >0 and vy >0 be integers. For 1 < q < p < o0, the estimate
10" (=)= Va(t, ), + 107 (=)= V3(2, ),
< C(1 4 o7 W2 gy ||+ )
holds.

ProorF. We begin with the estimate of ||0;" (—4)"Va(t,-)||,- We define the func-
tions ,(x) and ¢,(¢,x) by

V(<)

P (L "2 21(¢) e S (R,
(2”> Va2 — 1@+ Ja2 - &)

2 ~ ~
ht,8) = 1) : exp<_ 4 ,) (100 62
)

[2 |f|2(a n 2a 2a

respectively. Since ¢,(z,x) is the smooth solution to the following problem

1 apy + ¢
01y — %4’9’52 =0, ¢,(0,) =y, <%) e W4,
(1.6) shows that
18)" (—4)2 Va(t, ), = 116, (—=4)"> (1, )],
< C(1+ 0 MR 16,(0,]),
< C(1+ o) AW D=2 g0l 4oy l,)-

We have obtained the desired estimate of ||Va(z,)]],.
Now we estimate |0, (—4)"V3(t,-)||,- Choose and fix a radial function y;; of class
C* satisfying;

11 Ox11(8) = x1(E), suppyy; = {&[E] < 3a/4}.

Then easy calculations show that

Va(t,x) = e 7 'S y1(&) exp(—ty/a? — ‘é|2)% 60(E) = 111(&) agy (&) + ¢:1(<)

Va?— g

Let 1 —1/r=1/q—1/p. Easy calculations show that

17~ {2 (8)]E17 0% exp(—1y/ a2 — |¢]%)
< |17 {1 ()€ % exp(—1\/a® — 1) pinr-
Z X217 ()€1 0 exp(—1y/a? — |E17)} ] .-

+ 17 o (9)1E120f exp(—ty/a? — €] . < C(1+ )"
for 0 <k <v;. Hence shows that
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17 {1 (©)1€1* 0 exp(—1y/a? — |E*)AY ], < C(1+ 0" Al (3.4)
for 1 < ¢ < p<oo. Similar calculations as show that the operator B defined by
Bh = 7! x1(&)h

Va2 — ¢

is bounded from L7 to L? for 1 < g < p < oo. Therefore, we see that

107 (=) V3 (2, ),
< Ce ™ 21: 17 00 (OIEP0f exp(—1y/ a — €1)(90(¢) — 7 (Blagy + 1))},
k=0

< Ce (1 4+ 0" (loll, + llgnll,) < CC1+ 1)@= gy,
Thus we have obtained the desired estimate of [|0;" (—4)"V3(z,-)||,- O

For the estimate of |(—4)"V(t,-)
FZ 1 (0(9g(1,1€)).

Then we see that

|, we introduce a function I(z,x)=

A = W((—Nuz, )) % (9o + Blagy + 9,). (3.5)

shows that

0

(=A)"1(1,x) = JO x(P)g(t,p)p" 22T 01 (plx]) dp. (3.6)

The estimate of |[(—=4)"Vi|, is implied by the following proposition.

ProrosiTioN 3.1. Let v, >0 be an integer. Then, for any t >0, the following
estimates hold.

(1) sup,|(=)"1(t,x)] < C(1+ =",

2) When n=2m+1, |(=4)1(t,x)| < C(1 + |x|)™" (1 + ) /2™,

(3) When n=2m, |(—4)1(t,x)| < C(1 + |x|) ™" "2(1 + 1) 3/*.

Proor. Hereafter in the proof we may assume that p < 2a/3.
(1) The equality shows that

2
9(0.0)] < Cp“zexp(—’;—a). (3.7

By Cemma 2.1(4), (3.6) and (3.7), we claim that

2a/3 2
al tpn+3+2vz eXp<_p_t> dp

(—d)"1(1,x)| < CL

© /g n/24+1+v, s
< in| 1 - ——)d
< Cmm( ,JO (t) exp< Za) s

< C(1+0) "I (3.8)
In the integral we have used the changes of the variables s = p21.

2a
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(2) In the proof of |Proposition 3.1(2)—(3), we may restrict ourselves to the case
|x| > 1. Introduce the differential operator X by

Xolep) =5 (500,

Then, the equality

X p(p)p") chkﬂﬂ plHt (3.9)

holds for p # 0 and for integers k >0 and /> 0. [Cemma 2.1(5) and integration by
parts show that

J: X0 (p)g(t, p)p™ ) i1 2(plx]) dp

1 1 0 -

= _WL X Ga(pg(t,p)p™ 2 2 Tt (pll) dp

0

1 my Lz
:—’—|X"(X1(p)g(t PP ks 1)
0

1 n— vV
ﬂqj X (09t )" ) i aa(plx]) dp

for 0<k<m-—1.
Lemma 2.1(4), {3.9) and the definition of the function y; show that the term

0

1 n— V
/;X"(xl(/))g(t,p)p B2y g ks (plX])

0
o0
Z C]kzap)m pg(I,P)sz RN T 3 (plx])
JH <k 0
vanishes for 0 <k <m — 1.
Therefore the equality
o0
|, Xt i alobel dp
1 n— v
- J X5 (gt P23 (pl) dp (3.10)

holds for 0 <k <m — 1. Repeat the integration of (3.6) by parts m times, then the
equality (3.10) gives

(—d)"I(1,x) = \/§ m%f X" (gt p)p" ) cos(plxl) dp, (311

where we have used [Lemma 2.1(3).
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Since ¢(z,0) = d,9(¢,0) =0 and y,(p) =0 for p > 2a/3, (3.7) and show that

© 0
X"(a(pg(tsp)p™22)| = > el (p)ag(t,p)p” 2] =0
0 jtk<m 0
and
O N | o
X" )| = 3T G (p)dge(np)p I =0, (3.12)
P 0 JHk<m+1 0

where we have used cgo =0 in (3.12) when v, = 0.
Since

2

COSp|X| = ———= — COS
plal = =5 5z cosplal

integration of (3.11) by parts and show that
V2 n 1 “(0 ’ m n—142v,
(=4)721(1,x) = — 2007 )y \3p X" (1 (p)g(t,p)p ) cos(plx[) dp
Cik

o + .
- ¥ O L 1 ()8 (1, p)p 42 cos(p|x]) dp
Jtk<m+2

= Z L i, (3.13)

Jjtk<m+2

where [; =0 for j+k <1 when v, =0.
(3.3) gives |8/]fg(t, p)| < Cfort<1andp<2a/3. Hence, the equality (3.13) shows
that

C C

(=)= x)| < —7 < z
el (1 )™

(3.14)

for 0 <7 <1, where we have used the inequality 1/|x|] <2/(1+ |x|) for |x| > 1.
Hereafter in the proof of [Proposition 3.1(2), we restrict ourselves to the case where
t>1. We define the function @, by

_ P!
@l(p) - 261(61 + /—a2 _pz)z
for 0 < p < 2a/3. Then,
2
o(t.9) = (expl-161 ) = Dexp( ) (3.15)

and
109 (p)| < Cep**.

Therefore, the inequality
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<Cc Y |re(p)--- 0" exp(~101(p))]

[21, ji++ji=k

(%)k exp(—101 (1))

< CZtl =k exp(—10,(p)) (3.16)
holds for k£ > 1. Easy calculations show
o\ 2
<%) p( ) <cZz’ 2~ kexp(—/;—a) (3.17)
for k> 1. By (3.7) and |3.15)-(3.17), we see that, for k > 1,
g 1 4l—k i 2 P °1
Fr g(t,p)| < Cth th exp (3.18)
By (3.13) and (3.18) we obtain the desired estimate as follows,
C P& 1w 2 p’t 2
+ +2v P20 —
e MHJ > i 2§rp exp( -0 ) o (5=

C  [© Ko g2+i/2=3/24m kK i )
< |x|—n+1J0 Zlmz()s exp( —5- ds

< C
- |x|”+1t1/2+v2

C
<
(1 + ’x’)n+1(l _'_l)1/2+v2

for k > 1. When k =0, the estimate (3.7) shows that

|10 < M—nHJO it eXp(—/;—) dp

C ([ (1+)/24n s p

T Jo fTEZ EXp{ —5,)
C C

= n+l 1/24y = n+1 1/24v; °
e T2 (L X)) (1 4 1)

_|x

Thus we have obtained the desired estimate in the case where n = 2m + 1.
(3) Now we consider the case where n = 2m. Repeat integration of (3.6) by parts
(m — 1)-times, then (3.10) shows that

0

(—a)"1(1,) :M%JO X" (0)g(t ™ 2 (plxl) dp. (3.19)
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shows that

m—1 n—1+2v k+I+142v 0 g
X" (gt )" = 3 cuphty <p>(p) gtp).  (3.20)

k+l<m—1

Hence p X" '(y,(p)g(t,p)p"~'+2) vanishes at p =0 and p > 2a/3.
Since (see [Lemma 2.1/(1))

Jolplx]) = 271 (plx) +p%f1 (plx1). (3.21)

the equality (3.19) shows that

(—4)21(1,x) =

| G i) dp
| x| 0

* m— n— V a T
n_zj X" a (p)g(t )" 220 L Ty (plad) dp
| x| 0 op

N L X" (gt p)p" = 22) Ty (plx]) dp

_M%J:;pap{ X" (gt p)p" 22} (plx]) dp

zll(t,x)+12(t,x). (322)

4 * m— n— V. — 3
0. = | X Gttt cos((plad - 37 ) dy

Jm X" (p)g(t, p)p" 1 22)0((p|x]) ") dp

= I}y (¢, x) + Lo (4, x). (3.23)

(3.20) and the estimate (3.18) show that

3

k
m— n— vV l 1 v pt
X" G (p)g(t,p)p" ) < CY Y t/)““*“i t'p¥ exp< ) (3.24)

0 i=1 - 2a

T

By and the estimate (3.24), we obtain the following estimates

C - C
|x|n+1/2 - (1 +|x|)n+1/2

[12(2, x)| <

for 0 <tr<1, and
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|112([ X <

m—1 m—=1 r2a/3
n+1/2
1

2
Z tlp4l 3/2+2V2tjp CXp( /;al) dp

1100

C m—1m—1 po0

n+1/2 2a

|x] i=1 j=0 70
C

= |x’n+l/2t3/4+‘,2

C

<
(1+|x|)n+1/2(1+[)3/4+v2

for t > 1. Therefore we claim that

C )73/471127

_ 0<t.
(1 + |x|)n+1/2(

|112(l, X)| <

Now we will estimate 7;;(z, x).
(3.7), [3.18) and [3.20) show that X"~ 1(y,(p)g(t, p)p"1+22)p~3/2
and p > 2a/3. Hence, integration of (3.23) by parts shows that

599

(s =p*1)

(3.25)

vanishes at p =0

__ ¢ “ et n—142v\ —3/2 J . 3
I”O’x)_Wuo X" (a(pg(t,p)p 2)p 7y S0 p|x|—1n dp
¢ “ 0 3
— v mel t n—142vy\ ,—3/2\ ; 7 d
el 5y X" Lalplelt p)p )p~"7)sin{ plx| — g | dp
= [ L gt e ) sin plx| — 2 ) dp
|x|}’l+1/2 0 ap 1 ’ 4

c

L sy pe L2y 3
T n+1/zj P PX" a(p)g (e, p)p 1+22)Sln(p\x\——n) dp
x| 0 4

=L + L.
By the same calculations as ones in (3.25) we see that

1Lo(,x)] < C(1+ |x]) ™21 4 1) 734,

By (3.7), [3.18) and [3.20) we see that

a m— n— Vv V:
P "Ga(p)g(t,p)p ) ‘<Czt’ 4’*“Zt"p2"e><p

Therefore, by and (3.28), we obtain

C —3/4—v
—(1 +\x\)"+1/2 1+1) 2

and the estimates (3.27)-(3.29) show that

|1111(I,X)| <

(3.26)

(3.27)

( Pt ) (3.28)

(3.29)
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¢
(1 + |x|)n+l/2
By (3.23), (3.25) and (3.30), we obtain

111 (2, x)| < (147) 34, (3.30)

¢
(1 + |x|>n+l/2

By the similar arguments as ones in the estimate of /;(z,x), we obtain the estimate of
L(t,x) as follows.

11 (2,x)| < (1+47)74, (3.31)

¢ 34
|I2(I,X)’ < W(l + l) 3/4—w, (332)

We omit the estimate of I,(z, x), because it’s proof is very similar to ones in the previous
part. By (3.22), (3.31) and (3.32), we have obtained the desired result. ]

ProoF OF THEOREM 3.1. First we consider the case where v; = 0.
3.1(1) shows

((=4)"21(1,x)| < C(1 +¢) "> 172, (3.33)
(3.5) and (3.33) show
(=) V1t < CA+ 07" (llgolly + llenlly). (3.34)
When p=gq=2, (1.6), and (3.7) show

: : kg
=4y Vie, )l < €167 | Wfl—
@ -1e) |,
< C(1+07" (gl + i) (339)

Lemma 3.1 and the estimates (3.34)—{3.35) give the desired estimate with p = o0, ¢ =1
or p=g¢g =2 when v; =0.
Let 1 <¢g < p < oo. [Proposition 3.1(2), (3) shows

I(=a)"1(z, )], = C(1 + l)lvmj(l +Ix) " dy < Ce) (107 (3.36)

for 0 <e<1/4. By (3.33)-(3.36), we see that the constant re[l,oc0] defined by
1—1/r=1/q—1/p satisfies
(=)= 1(2, ), < (=) 2 (8 (=) ()
< C(1 + 1)” WA Wa=lp=l=nte (3.37)

The estimates (3.5), and show that |[(=4)"Vi(t,-)||, satisfies the
desired estimate of [Theorem 3.1. Hence, by [Lemma 3.1, we have obtained the desired
result of Theorem 3.1 with ¢ > 0, when v; = 0.
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Let ] <¢g< p < oo. |Proposition 3.1(2) shows

[(=A)"1(1,%)] = [(=A) (1, )" "D | (=)0 (2, %)) O
< C(L+x)"A+0)~' 7, (3.38)

in the case where n = 2m + 1. Replacing n/(n+ 1) by 2n/(2n+ 1) in [3.38), we see that
the estimate is also valid in the case where n = 2m. The estimates (3.33)—(3.38)
show that the positive constant r defined by 1 —1/r =1/ — 1/p satisfies

(=)L (1, x)| = |(=A)" 1 (2, %)) (= 4)21 (2, x)| "
< C(l + t)—(n/Z)(l/q—l/p)—l—vz(l + |x|)—”/"‘ (3.39)

By the estimate (3.39), the equality (3.5) and [Lemma 2.4, we see that [(—4)"Vi(z,-)||,
satisfies the desired estimate of with e=0 and 1 < ¢ < p < .

Hence, by [Lemma 3.1, we have obtained the desired result of [Theorem 3.1 with
& =0 when v{ =0.

Now we consider the case where vi > 1. For a integer v; > 1, there exist functions
By, 1(8), Ty, 2(s) € C*([0,a?)) satisfying

2
vV v Vv p t
0/'g(t,p) = p*" by 1 (p7)g(t,p) + p*" P hy, 2(p) exp (_ ﬂ).

Hence, we see that

2

ORI (00) = b (PN 00.0) + o 2PN 2 2 @ exp (-5 ). (340

We define the operators B; and B, by
Bif =7 (1 Oh 1 (IEDF(9), Bof = 7 (11(Ohn 2111 ()
respectively, then they are bounded from L7 to L? (1 < g < o). By (3.40), we see that

11\
Ay i) =5 (5) (A7 100) 5 Biloy + Blagy + 1)

+ (=) Y, (1)),

where W, (#,x) is a smooth solution of the heat equation (1.2) with initial data
(apy + ¢,)/(2a) replaced by By (¢, + B(apy + ¢;)). Therefore, by (3.5) and the estimates

(1.6) and [3.37}-(3.39), we see that
10 (=) Vit ), < Cle)(1+ o) WV gy | - lpy,) - (3.41)

for 0<eand 1 <¢g<p< oo, and
107 (=4)* Vi (1, ), < C(1+ )" WU g lgy]l,) (3.42)

forl<g<p<oworg=1, p=oo.
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The estimates (1.6), and the equality (3.40) show that the estimate (3.42) also
holds when p=¢=2. and the estimates (3.41)-(3.42) give the desired
estimate of [Theorem 3.1. ]

4. Proof of Theorem 1.2.
Choose and fix a radial function 0 < y,(¢) <1 of class C* satisfying

10(6) =0 ([<[<24), x()=1 ([ =3aq).

Sometimes we denote x,(|¢|) = x»(£). Remark 1.1 shows that Theorem 1.2 is a direct
consequence of the next theorem.

THEOREM 4.1. Letn>2,1<q < p < oo. Assume that p; € L for i =0,1. Then,
under the same notations on My and M, in Theorem 1.2, the solution u to (1.1) in the
sense of distributions satisfies the following LP-LY estimates.

17~ o () (@, ) — e (Mo(t,)po () + M (2, )1 (D))},
< Ce"(L+ 0" (ol + e l,)-

In this section we will prove [Theorem 4.1. The explicit formula (1.9) to the prob-
lem gives
u(t, &) = e~ (Mo (1, &)@y (&) + Mi(1,8) (), (4.1)
where
~ 1
M(1,¢) = i (sin#|&| cos t® — cos t|&| sin 1O),
My (1, &) = cos t|¢] cos tO + sin #|¢| sin tO + aM (t, &),
Mo =\IE —a?
and

aZ

&+ 1P — a2

For large [&], @(&) = a?/(2|¢]). Occasionally we denote O(|¢]) = O(¢).
In this section we may assume that supp ¢, Usupp ¢, < {&; |&] > 3a/2}.
We define the functions 4.(y) and hy(y) by

he(y) = cos _i(_l)k 2k hy(y) = sin _iﬂ 2k+1
c\y y 2 (2k)! yo, sy y 2 2k + 1)!)/

0(<) = & - AS) =

respectively. Then
KO ) < Cly 7 IO ()] < (4.2)
for 0 <k <2(n+1). We define functions I7*(¢,x) and II*(z,x) by
I (1, x) = 7 (1(Oh(10(£)e™ ), I (1,x) = 7 (12(Ohs(10(&))e ™)
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respectively. Then, shows that

IT4(1,x) = j o (P(10(p)eE 5" T, o1 (pl) dp,
(1, x) = L (DI (10(p)) e " T, (plx]) dp.

By (4.2) we see that the following estimates hold.

Lemma 4.1, (1) sup, ([ILE(z, x)| + [IIX(2,x)]) < C(1 4 1)*"*,
(@) MLE@ L+ )l < O+ 0™,

Proor. (1) Since |@(p)| < a*/p, [Lemma 2.1(4) and (4.2) show that

0
HE0 0] < C [ 200 + 72000 ) dp

0
<C Jz pn—l <l2n+2p—(2n+2) + l2n+3p—(2n+3)) dp
a

< C(Z2n+2 + [2n+3) < C(l + l)2n+3.

We have obtained the desired result.
(2) Here we may restrict ourselves to the case where p > 3a/2. Since

(5o

the following estimates hold for k& <2(n+1).

‘ (a—i)khcu@(p»

< Cep 1,

<C Y 110W(p) 0N (ph{)(16(p))

Jittii=k

< A0 k=2t ) (4.3)

and

<c S 16U (p)--- 09 (p)n (10(p))|

Jittii=k

(%)khsa@(p))

< O3 ke (nt3), (4.4)
Hence, and the estimates (4.3)-{4.4] show that the terms

/
<ﬁ> X O (p)he(10(p))et P pnt)

and

o\ |
(%) Xk(X2(p)hs(t@(p))eiltppn_l)

vanish at p=0,00 for 0 </ <2, 0 <k <m, where n=2m+1 or n=2m.



604 T. NARAZAKI

We begin with the case where n = 2m + 1. and the similar calculations
to ones in (3.9)-(3.13) give

¢ ” 62 m itp ,n—
HZ (1, x) = M—HJ PR (x2(p)he(10(p))e™™ p"~") cos p|x| dp
c 0 @k [ +itp
=, 2w | ) 18 (ki)'e
2<j+k+H<m+2
x p/HH=2 cos plx| dp. (4.5)
(4.3) and show that
o0
115 (2, x)| < HL“J 2D (14 )2 dp < P (140", (4.6)
X 2a
and the similar equality to show that
HE(tx)| < —— | 2P0+ 2)pPdp < — (140, (4.7)
X[ J2a |X]

By the estimates [4.6)-(4.7) and the estimate in [Lemma 4.1, we see that

3n+3
(L2, )|+ M (2 x)| < )"

—n(
(1+ |x)™!
We have obtained the desired estimate when n =2m + 1. Consider the case where
n =2m. Repeat the similar calculations to ones in (3.19)—{3.32) to obtain the following
estimate

C
HE(8, X)) + [HTE(1 X)) € —————— (1 + 1),
[11=(2,x)| + 11 (¢, x)| (1+|x|)”“/2( )
when n = 2m. We have obtained the desired estimate. ]

LemMA 4.2. For 1 < q < p < oo, the estimate
17~ (&) (2, €) — e “o(1, ), < Ce (140" (|l goll, + ll )
holds, where
0(1,&) = No(1,£)o (&) + Ni(1,£) ¢ (£),

k

no k n .
Ni(1,8) = %@ (sint\él ; <(2}C;! *0(&)* — cos1|¢] ;%ﬂw@(g)%‘)

and

k

No(t,&) = cost|g] Z 2"@ (&) + sin 1]¢| Z 2k+ 0] A eE) M L aN (1, ¢).

PrOOF. (4.1) shows that
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1(E) (a1, ) — e (1, €))
= ¢ () (cos 1|E]hc(10()) + sin 1|¢|A(10(S)) + sin1[E|he(10(C))(a/2)
— cos 1|&[hs(10(S)(a/2)))@o + (sin#[E]he(10(E)) — cos t[c|hs(10()))(a/A)po}-  (4.8)
The operator B, defined by

Bof =7 | L e

& - a?

satisfies ||Bof |, < C(p)||f1l,, provided that supp f < {& |¢] = 3a/2}.

Since
eitp + e—itp ] eitp _ e—ilp
costp=————, sintp=——1—,
and (4.8) show the desired result. O

Here and after we denote a function that belongs to L*((0,00) x R") by O(1), and
log® x = max(logx,0). The function L,(¢,x) defined by

0

l - )
Ly(1,%) = | ~JtplsDexplitp) dp

satisfies the following equality.

LemmA 4.3. Let —1/2 <u<n/2—1, then,

L,(t,x) = J,(0) min <logJr (%) ,log* (%M)) +0(1) for t>0.

Proor. We begin with the case where 3a|x| > 1. [Lemma 2.1(4) shows that

0 1 1 C
|Ly(1,x)| < CLa prt3/2 |x|ﬂ+1/2 dp < ’x|u+l/2 =C

Now we consider the case where 3a|x| < 1. [Lemma 2.1(4) also shows that

S | - | s -
[\ Sewtimioap) = || e (i) i | 5= plx)

/x| P 1S x|

©1 /1 u+1/2
< CJ - <—) ds < C.
1 SA\S
Hence
L
L,(t,x) = L p exp(itp)Ju(plx|) dp + O(1). (4.9)

In the case where 0 < ¢ < |x|, easy calculations show us that
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1l
| explitp) il dp

:Jl lexp<i£)fﬂ(s)ds (s = plx|)

3a)x| § x|
_ J;M (350 +2 00~ 300 +1 (exp() = 1) 69 ) s

The equalities (4.9) and (4.10) show that

~ 1
= l— 1), fi < |x|.
L,(t,x) = J,(0)log (3a\x|) +0(1), for 0<t<|x|

In the case where |x| <t and 3a|x| < 1, it follows that

1/ i
| explitp) i)y dp
3¢ P
1/1x| ) B 1/]x]| 1 ‘ ) i
= L /—) exp(itp)J,(0) dp + L /—) exp(itp)(Ju(p|x]) — J,(0)) dp
/1l q

= j“(())J g exp(itp) dp + O(1).
3a
In the equality (4.12) we have used the estimate

3a 3alx]

(4.10)

(4.11)

(4.12)

1/lx] N 5 Vo Tus) = J s
[ explinGutpls) ~ duonap = [ HIZHO expie L) a5 = 011,

In the case where 3ar > 1, the first term of the right-hand side of (4.12) satisfies the

following estimate

<C.

/|
= J Eexp(is) ds

3at

1/l
J — exp(itp) dp
3a P

In the case where 3ar < 1 and |x| < ¢, the easy calculations show that

1/1x1 t/1x1q
J —exp(itp) dp = — exp(is) ds
3¢ P 3at S
1 t/lxl 1
= | —exp(is)ds+ J — exp(is) ds
J3ar S 1S
1
1
= | —exp(is)ds+ O(1)
3at S

= log" <ﬁ) + O(1).
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Hence we obtain

- 1
L,(t,x) = J,(0)log™ (%) +0(1), for 0<|x| <t (4.13)
By (4.11) and (4.13), we have obtained the desired result. O
[Cemma 2.2 shows that the function K,(¢,x) defined by
K\ (t,x) = 7 (1()[¢] "e™) (4.14)
satisfies
K1) = | alphp e s (ol dp. (4.15)

PROPOSITION 4.1. Let ve[(n+1)/2,n] be an integer, and let K, be the function
defined by (4.14). Then, the following equalities hold.
(1) If (n+1)/2<v<n, then,

K (t,x) = IL_ {min (1og+ (ﬁ) Jlog" <%’x’)) + 0(1)}

for t >0 and xe R", |x| #0.
2) If v=(m+1)/2, then n=2m+1 and v=m+ 1, and

C1 1 !
K, =—dlogt | —— log™ ( 5=
+1(2,x) e { o8 <3a(t+ !x’)) o (3a|t — |x] ‘)

+ ¢, min <logJr (ﬁ) ,log® (%M)) + 0(1)}

Sfor t >0 and x e R" with |x| #0 and t — |x| # 0.
Proor. [Lemma 2.1(2) shows that

k

0 ‘ n—l-v7y n—1—v+k-2j - ¥
(%) T (o) = 3 gp™ RPN Tl
j=0

Hence, if v >n/2,

k
(%) a0 a1 (1))

vanishes at p=0 and p=o for 0 <k <n—v—1. Since

) 1 n—y anfv )
explitp) = (1) e explin)

integration of (4.15) by parts gives

k0 -(3) [(5) @ i s, (@10
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(1) shows that

£ plxl) = 7 Ga(pll) = 20, (1)),

Then we claim that

ap =

for 0 <k < (n—1)/2. Therefore (4.16) shows that

k=0 [=0

In (4.17) we have used the inequalities

JSa l
2a |P

and

0

when n—v—k > 0.

(1) We begin with the case where (n+1)/2 <v <n.

1
Kv(t7 X) = v <Z Cn—v,an/Z—l—l(t7 X) + 0(1)

=0

By and [Lemma 4.3, we have obtained the desired result.
(2) By (4.17), (4.18), Lemmas 2.1(3) and 4.3, we see that

¢ m—1 ©
Km+1 (Z7 )C) = IT” (Z Cm,an/Z—l—/(t7 X) + Cm,m J
1=0 3a

RN a L1
=imemn (e (3) oo ()

“1
+ ch P cos p|x|expitpdp + 0(1)}.

3a

The equality

[ omtion)y, _ | e_dpzlog+(L)+0<1>, (s
3a

3a|o]|

3dlo| §

oN - ST
(—) O T (Pl = 3 g

n—v k 0
= - VZZC J 0, " “a(p)p" kJn/2 1—1

= (ch sz Juj2-1-1(plx]) exp(itp) dp+0(1))

D)1l explin) | dp < €

(plxl)

J 0y (p)p" T i (plx]) explitp) dp‘ =C

(plx]) exp(itp) dp

1
5 cos p|x|expitpdp + 0(1))

ap)

(4.17)

By (4.17), we see that

(4.18)

(4.19)
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holds for a real constant ¢ % 0. Therefore we claim that

J 1 cos p|x|e™ dp = J exp(ip(t + |x[)) + exp(ip(z — |x])) dp

3a P 3a 2p
1 lo _ +1lo 1 +0(1). (4.20)
—21 %% Ga(t + v E\3alr — x| SR
By (4.19) and (4.20) we have obtained the desired estimates. O

It is well-known that the functions

1 1 1 1
: 1 + - 1 + 1 + 1 +
mm((’g (3ar)’ o8 <3a|x|))’ o8 <3a<r+|x|>) loe (3a\z—\x| |>

belong to BMO, and their BMO-norms are uniformly bounded for ¢ > 0 (see e.g. [28]).
Then we obtain the next proposition by [Lemma 4.3.

PROPOSITION 4.2.  Let ve [(n+1)/2,n] be an integer, then, K,(t,-) € BMO for t > 0,
and it satisfies ||K,(¢,-)| gpro < Ct'".

The next lemma is a direct consequence of [Lemma 2.1(4).
LEmmA 44. Let v>n+1, then K, e L*((0,00) x R").
The operators 7,(¢) defined by
T.(t)h = K, (t,-) = h (4.21)
satisfies the following estimate.

PROPOSITION 4.3. When v > m, the operator T,(t) defined by (4.21) satisfies the
estimate

1T (@0)Al, < C(1+ 17)]|Al], (4.22)
for 1 < p< oo and t >0, where n=2m or n=2m+ 1.
Proor. Consider the wave equation.
v —Av=0, v(0,x)=f(x), dw(0,x)=g(x), t>0,xeR" (4.23)

In the case where n =2m + 1, m > 1, the solution formula takes the form

= d\* m-1 N
_ k(4 e (d
v= ;akt <dt> Jw_l f(x + tw) do + ; byt (dz) le_l g(x + tw) dw

=T.f+ Ty, (4.24)

where dw is the surface measure on the (n — 1)-sphere and ay, b, are constants. The
linear operators 7.(¢) and T,(¢) defined by the equality (4.24) are bounded from W™?
to L?” and W1 to L? for 1 < p < oo respectively, and they satisfy the following
estimates.

1Te(@)nll, < C(L+ ) Al N To@A, < C(e+ ")l et (4.25)

The estimates (4.25) hold also when n = 2m.
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Hence, the operator

T,(0)h = T.(0) 7! (ﬁgﬂ? /%<f>) LT (7! (fz(f)l E(é))

is bounded from L? to L? and it satisfies the estimate

1T (@)hl, < C(1+ 27)]|Al], (4.26)

for v>=m, 1 < p < oo. In the estimate we have used the well-known estimate;

2\ 1/2 )
7 (m@ %h(é))

for 1 < p<ooand p<v (see e.g. [26]). Thus we have obtained the desired estimates.
[

< Clall,

PrOPOSITION 4.4. Let T,(t) be the operator defined by (4.21).
(1) Letve[n+1,00) be an integer. Then, the operator T,(t) is bounded from L4
to L? for 1 <q<p< oo and t >0, and it satisfies

ITu(0)hll, < C(1+ ) PO

(2) Let ve[(n+1)/2,n] be an integer. Then, the operator T,(t) is bounded from
L7 to L? for 1 <q<p< oo and t >0, and it satisfies

ITs (D), < C(1+ ™)L )
where [2/q — 1], = max(2/q—1,0).

Proor. (1) We may assume that 0 < 1/p<1/g<1. Sets=1/q—1/p and p =
(1 —s)p>1. [Lemma 4.4 and Proposition 4.3 show that

1T (DAl < CliAll;, (4.27)
1T (DA, < C(T+ ") |[A]],,- (4.28)

We use the interpolation theory (Lemma 2.6) between inequalities (4.27) and (4.28) to
obtain that
T(1)e L(LY,L7), | Tu(0)hll, < C(1+ ") |lAl,,

where 1/p=(1—-1s)/p1, 1/¢g =5+ (1 —5)/p1. Thus we have obtained the desired esti-
mate.
(2) For 0 <Rez <1, we define the operator T,(#;z) by

T,(t;2)h = T,(0)F (1 + |€]2)"*h(€)).
For Rez =1, the inequality
| 7(2; 2)h, < CllAl], (4.29)

holds. |Proposition 4.2] shows that
173(5;0)hllgmo = 1T (D) llgmo < Cr""|[2]];.-

(see [3], [18)).
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The operator M defined by M(y)h = Z (1 + |€]*)™/*h(&)) is a bounded operator
on BMO with norm (1 + |y|)* where k is a smallest integer > n/2 ([3], [18]). Hence for

complex z such that Rez = 0, it follows that the operator T,(;z) is bounded from L' to
BMO and

|75 2)h g < C(1+ [Imz|) 2" ]}, (4.30)
We use Stein interpolation theorem (Lemma 2.6) between and (4.30) to obtain
1Tl gy, < CITu(551 = O], < L"),

where 1/p=(1-0)/2, 1/g=(1+0)/2 and 0 <0 < 1. By Sobolev embedding theo-
rem, H,El_e)v — L? for p < p’ < oo with continuous injection (see [26], e.g.).
Therefore we obtain

I Tu(0)h]|, < Ct(z/’f’l)(“”)Hth (4.31)

for 1<g<2 0<1/p<1-1/q. By interpolation between the estimates (4.31) and
(4.22), we see that T,(¢) e L (L7 L?) for 1 < g < p < oo with norm

[2/g-1], (v—n) m
| T3()h]|, < Cr=1 (L+™)[|All,- (4.32)
By the estimate [4.32) we obtain the desired result. O

PrROOF OF THEOREM 4.1. For 1 < ¢ < oo, set L] = {he L4 supph < [3a/2,0)}. It
is well known that the operators U; and U, defined by

Uh =7 Y0&)|Eh(E)), Ush=F"" (%iz(g))

are bounded from L{ to L (see e.g. [26]). Now we may assume that supp¢, c

[3a/2,00) for j=0,]1.
For 0<k<2n+1,1=0,1, j=0,1, the equality

7! <X2(P)

holds. When k+/>n+1, k <2n-+ 1, by [Proposition 4.4(1), we see that

k k
H‘% (wf s ¢>

tk@ é , itp »
/I(l ) e'r (pj) = t* T () U U,

Pl i< c+ 0" gl (4.33)

p
for l<g<p<oo. When (n+1)/2<k+1<n, [=0,1 and j=0,1, we see that

k@ k )
7! <X2(P)7t () e””fﬁ,-)

il < C(l + Z)mt[Z/qflh(kJrlfn)tk||(pj||q,

p

for 1 < g < p < oo, and that
2
0< [——1} (k+1—n)+k<n.
4q +

Therefore we see that
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k@ k )
)

By [4.33)}-(4.34), we see that
17~ () (Mo (2, ) + Mi(1,E)py — 0(1,€))} I,

< C(L+ 0" llgoll, + llonll,). (4.35)

< C(1L+0""gll,- (4.34)

P

By Lemma 4.2 and the estimate (4.35), we obtain the desired estimate. O

For the application to the nonlinear problem [1.10), we will rewrite Theorems [.1-
1.2 (more precisely Theorems B.1 and K.1).
Choose and fix radial functions 0 < y(&), x3(&) <1 of class C* satisfying

2 =1 (] <3a), 2(&) =0 ([ =4a)

and

60 =1 (<[ <4a), x(Q)=0 (<= 5a).

Then the following equalities hold.

1)) = x(&), (1= x(€)xa(&) =1 —x(S),

where y, is the cut-off function in [Theorem 4.1. To derive a priori estimate of the
solution to we consider linear damped wave equation

02w — Aw+2a0w =g, w(0,%) = gy(x),  dw(0,%) = 9, (x)

for (#,x) € (0,00) x R". The Duhanmel principle shows that the problem (4.36) is equiv-
alent to the following integral equation

() = (08() + 2480y + (0, + [ S(u=s)a(5) s,

where

S(h=e 7! Sm\;____vfa ) | (4.37)
&]" —a?

By Theorems B.1 and 4.1, we see that following estimates hold.

PROPOSITION 4.5.  The operator S(t) defined by (4.37) satisfies the following esti-
mates.
(1) Let 1 <gq<p<oo and j and k be non-negative integers, then,

| (~) ()7 (xh)l,
< C(p,q, J,R) (14 o) TR 77 G |

(2) Assume that n=2,3. Then, the inequality
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ISOF (1 = k), < Cpe™(L+ )™ |77 (1= ph)ll,

holds for 1 < p < o0.
(3) Assume that n=4,5. Then, the inequality
ISO)F (1 = 2 O)ll, < e (L+ )™ |71 (1 = 1)),
holds for 4/3 < p < 4.
REMARK 4.1. Kawashima, Nakao and Ono obtained the similar L?-L7 esti-
mates to ones in [Proposition 4.5 Especially they obtained the estimate (4.38) with

1<¢g<2 2<p<o. In the next section we use the estimate (4.38) also in the case
where p=¢q = 1.

For the proof of [Proposition 4.5(3), we consider the following Cauchy problem

v —Av=0, 0(0,x)=0, v,(0,x)=h(x), >0, xeR" (4.39)

for n=4,5. By (4.25) we claim that the operator 7i(¢) is bounded from H, to L?, and
it satisfies

ITs(0)h|l, < Cp(¢+ )||All,, for 1 < p< o0,
The operator TS(Z) defined by T, (Oh=T,(t)F _I(Xzﬁ) is bounded from le to L? for
1 < p < oo, and it satisfies T,(£)Z (1 — x)h) = Ty(t)Z ' ((1 — x)h) and

ITs(0)All, < Cp(z+ )R]y, (1< p < o0), (4.40)

because the operator defined by / — 7 ~I(yh) is bounded from L” to L? (1 < p < w0).
It is well-known that (1 + |¢|*)” is a Fourier multiplier on L? (1 < p < c0) and it
satisfies

171 (L + 1E%) R, < Cp)(1+ ) ™Al (4.41)

where N is a positive constant that is determined by space dimension n (see e.g. [2]).
Introduce the analytic family of operators U(z;¢) as follows

U(z; 0)h = Ty() 7 (1 + €)' 2h).

Fix sufficiently small positive constant ¢, then the estimates (4.40) and [4.41) show

1U (s Al < Co(1 4 2™ (04 ) Al (4.42)
1U@@y; 0)hl]y )0y < C(1+ N+ )Nl s (4.43)
On the other hand, Ti(¢) is a bounded operator from L? to H, and it satisfies
IZ5(0hlly 5 < [12]]-
Therefore we see that
U+ iy; Al < [IA]],- (4.44)

We may use interpolation theory (Lemma 2.6) between (4.42)—(4.43) and (4.44) with
0 =1/2 to obtain that
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IT5(0)hll, = 11U(1/2;0hl, < Cle)(1 + )|l (4.45)

where 1/p=(1+2¢)/4 or 1/p=(3—2¢)/4. Therefore we have obtained the next
lemma.

LemMMA 4.5. Let n=4 or 5, and let 1/4 < 1/p < 3/4. Then, the operator Ti(t) is
bounded from L? to L?, and it satisfies

IT5(0)hll, < Cl@)(1+ )],

Moreover, the operator T.(1) defined by T.(1)h = T.(1)Z (1 — )h) is bounded from le
to L?, and it satisfies

IT(0)All, < C(p)(1 + )l -

PrROOF OF PrROPOSITION 4.5.  Let u(t,-) = S(¢1)h. Then u(t,-) is a solution of (4.36)
with ¢ =0, ¢, =0 and ¢, = /.
(1) By with ¢ =1/4 and y = y;, we see that

10] (~2)* 7 () ie, ) = G, N, = 10 (~ ) 7 (s zO) atr, ) = $(t, D,
< C(1 4 1) PV DS 1

for 1 < g < p < oo, where ¢ is the solution of the heat equation

1 h . "
8,¢—%A¢:0, #(0,-) =5, I (0,00) x R".

The estimate (1.6) shows that
171 0] (=) (3 ()x ()1, D), < C(1+ o) VDT 771 Gy |

for 1 < ¢ < p < oo. Therefore we have obtained the desired result.
(2) When n=2,3, shows that

_singlg]  [¢]
Ml(nf) - |é| |é|2

_ g2
The function v(¢,-) defined by

6(1,€) = (M (1, E) (1 — (E)A()
is a solution to the wave equation with replaced / by

-

—=L_hE) |eL”.
V1€ — a?

Iq

\VIE? =

is a Fourier-multiplier on L? (1 < p < ) (see e.g. [2]), Proposition 4.3 shows that
oz, )ll, < C(1+ )] (1 = 2)h)

B PAGIE(S)

N

Since

72(&)

I,
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for 1 < p< o0. with ¢, =0, ¢, = Z ' ((1 — y)h) gives
IS()F (1 = )h) — e “v(1,)], < Ce™'(1+ 0" |7 (1 = 0)h)ll,
for 1 < p < . Hence
IS@Z (1= 0h), < ISO)F (1= 0)h) — e “o(, )], + e “[lo(z, )],
< Ce“(1+ 0|7 (1= 0h)l,

for 1 < p < oo. Thus we have obtained the desired result.
(3) When n=4,5, Theorem 1.2 shows that

sinfle] |4 __mmﬂag_ £

<] \f|2—a2 19 | «/|f|2—a2

Define the functions v; and v, by

sinz|¢]  [¢]

Mi(t,&) =

£le(S).

02(2,8) = 12(¢) (1= 2(ENA(E),

— a2

moxw=m@NmﬂaJ— €

<& VIEPR - a2

Then v; (i =1,2) are solutions of wave equation with initial data

[ElOE)(1 = 2(€)h(&).

) H ,

01(07') :07 811)1(0,') =7 : X (é)i(l _X<é)>h ELP’

-
00,) =7 @) = Lo |e 2 am0.) =0
<l - a2
shows that
loi(@)l, < G+ NF (1= i), (4/3<p<4). (4.46)

with ¢, =0, ¢, = Z ' ((1 — y)h) gives

IS@)7 (1 = )h) — e “(01(t,-) = ta(1)], < Ce (1 + " N F (1= h)ll, (447)
for 1 < p< co. The estimates [4.46] and (4.47) show
IS0 71 (1= 0h),
< [IS()F (1 = 0)h) — e “(01(t,) = a(D) ]|, + € i (1,-) = w2(D)]],
< Ce (140" 71 ((1 = 0h)ll,

for 4/3 < p<4. Thus we have obtained the desired estimate. O
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5. Application to the semi-linear problem.

We now apply [Proposition 4.5 to the Cauchy problem for the semilinear damped
wave equation [(1.10). The local well-posedness of the problem is well known. The
following classical result can be found in Strauss for example.

LEmMMA 5.1.  Assume that Hypothesis H holds and assume that o <2/(n —2) when
n>3. Let pye Hy, ¢, € L>. Then the problem (1.10) possesses a unique local solution
u such that

ue CY([0,T); LN C([0,T); H)).

Here the solution can be continued beyond the interval [0,T) if supy_,r||u(f)|; , < .
Moreover, if ¢, € H}, ¢, € Hy, then

ue C2([0, 7): L) N C\ ([0, T); HY) N C([0, T); H3).

In view of this result, global existence of a solution follows from the boundedness of

its H, norm.
Now we will prove Theorem 1.3. Here and after we fix g=1+1/cand ¢’ =1 + 0.
The assumptions in imply that

4 , 1 1
- 4, —+—=1.
3<q <q<4, q+q’

We construct the approximate solutions {u;};_o; to the Cauchy problem as
follows.
Let u_; =0, and let uj;; be a solution of the following Cauchy problem

Ghuyer — Aoy + 200 = [(0), 1(0,) = go(x), Qa1 (0,%) =y (x) (5.1)

for (¢,x) € (0,00) x R" for j > —1. Then (5.1) is equivalent to the following system of
the integral equations:

) = (e, + | S(= o e, ) (52)

() =ud(e) + | 8- 0 (e ) dr (53)
for j >0, where
Wt (1) = F (@i (1)), 1y(6) = FH (1 = 2O (1),
FU() = F @), L2 n) = (1 = 2D F(t, )

and y denotes the cut-off function in [Proposition 4.5

PROPOSITION 5.1.  Assume that Hypothesis H holds. Let 4 <n<5, 2/n<o<
2/(n—2), o <1 and

(90, 01) € Z1 = (szmHllJrl/o-mHl

LoNLY x (HynL*enLtenpt!).



L?-L1? estimates for damped wave equations 617

If ||y, 11l 5, is sufficiently small, then there exists a small positive constant n such that

Cillpg, p1llz, <1 < Collog, 01l 4,

and the approximate solutions {u;};_, |  constructed in (5.1) exist for t € [0,c0) and they
satisfy that

ul € C([0,00); L*NL"), wu}eC([0,00); H; NLINLY), (5.4)
hence
uy € C(10, 50): H2) N C1([0, o0); 1) N C2([0, 00); L2) (5.5)
for j=0,1,.... Moreover, they satisfy the following estimates,

(1) e} (2o < 20(14+ )72, |lu) (2,) ]|, < 27.
() (e ), <201 +0)77, HM_( Mo < 20(1+ 1), where

1 1
l—i-a——), by = (l—l—a——> 5.6
(140-2). B- y (5.6
(3) H@tleujl(t, I < 29(1 + t)_v(k’l) for k+1<2, where
k no
v(k,l) = Z—l—z—l—mm(l 2).

(4) [/ D ud(t, )l < (1 + 1) AT o e 1 <2,

b =

NI:

The |Proposition 5.1 is a consequence of the following lemmas.
The next lemma is a direct consequence of [Proposition 4.5.

LEMMA 5.2.  Under the same assumptions and notations as ones in Proposition 5.1,
the solution ugy of (4.36) with g =0 satisfies

ub e C([0,00); L'NL*), ule C([0,0); LINLY N H3),
hence
ug € C([0, 00); H) N C1([0, 0); Hy) N C*([0, 0); L?).
Moreover, there exists a small positive constant n such that
Cillpo, o1llz, <71 < Callgg, ¢1llz,

and the following estimates hold.

(1) (2, )] < m(1+ )", b, >u <.

(2) g2, ), <1407, [, My < n(1+ 07", where py and p, are defined
by (5.6).

(3) ||511Dk”(1)(ta)||2 < ;7(1 +l)—n/4—k/2—l’ ||atleu(2)(t,_)||2’2 < ;7(1 +t)—(n/2)(6+1/2)—1/2
for k+1<2.

If u} € C([0,00); L NL') and u? € C([0,00); Hf N LI N LY"), then
i =u} +u? e C([0,0); LY!NLY N HS).

This implies that;
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LemMMA 5.3.  Assume that u; = ujl —l—ujz (j = 0) satisfies (5.4)—(5.5) and decay esti-
mates in Proposition 5.1. Then,

flw) e C(0,00); HINLINLY NLY)

under the same assumptions and notations as ones in Proposition 5.1. Moreover, the
following estimates hold,

() ), < Cnp'to(1 + 1t )*/31

@ NGt ), < Cptto(1+ 07

(3) 1D (w1, ), < Cplto(1 + o) @WETUDHR2 f g g,
@) 1 e,y < Cptro(1+ 07",

Proor. Hypothesis H gives
1/ (w12, ) Duy(t2, ) — f"(u;(t1, ) Dy (11, )15
< A(| (22, -) = w01, )" Duy(t2, )y + [y (01, )|* (D (22, -) — Du (11, -))1,)
< C(lluj(t2, ) a2 + Nl (t1, )l ) (22, ) — w13, - (5.7)
The estimate shows that
S (e, ) D1, € C([0, 0); L2).
Similar calculations to ones in show that
fui(t,-)) e C([0,00); L*NLINLY).

We will estimate several norms of f(u;(z,-)).
(1) By Hypothesis H and assumptions of the lemma, we see that

1 Gy (8, D), < Allas () 115
< Cllu (1)1 + 1067 (1))
< g a0 2 )N+ N (1)1
<Cp'tr(1 407,
where we have used Sobolev’s lemma, H; < L91+9) because

1 2 1

<Lt I
2 g(14+0) = 2

for n <5. Thus we have obtained the desired estimate.
(2) By Hypothesis H and the assumptions of the lemma, we see that

17 it Dy < CAQ (@7l 1) + 12 ) g agy)s (58)
and
et} (£, 1S (1, < O+ 0 (5.9)
If ¢(14+0)=(140)*>2, then
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[ (2, )1y < Cll (1, )1y < Cp' (14 1)7, (5.10)

140)

where we have used H3 = L7(%9) because

1 1
< <.
q'(1+0) = 2

If ¢'(1+0) <2, Holder’s inequality shows that
1 (1, )iy < Cll? (65 (1,107 < ep'*o(r+ 072, (5.10)

140)

S

1
2

where 6 € (0,1) is determined by

o 1-6 1
2 140 q'(l+o)

The estimates (5.8)—(5.11) show the desired result.
(3) Since

I 1/2 1/2
112 1
2 9 ¢
the estimates in [Lemma 3.1(1)—(2) and Hélder’s inequality show that
L e, ) = CILF e, DI e, DI < Coto(n 4 oo/,

Hence it is sufficient to estimate ||f’(u;(¢,-))Du;(t,-)||, for the proof of [Lemma 5.3(3)
with £k = 1. By the estimates in [Proposition 5.1, we see that

bl

1D (1, ), < Cy(1 + 1) /4402
for 0 <k <2 Let 0=n/2—1/ce(0,1]. Then, [Cemma 2.7 shows that
1D (£, )2y < CIDu5(2, ), (5.12)
122, Yl < ClIDs (8, )12l (2, )15~ (5.13)

Hypothesis H, Holder’s inequality and the estimates (5.12)—(5.13) show that

I1f" (i (2, ) Dy (2, ), < CANluy (2, ) || 1 D2t (2, )21 (12
o(1-0,)
< Cllagy(t, 15" Dy (2, )15 1D (1, )
< C;?1+a(1 I t)—(n/2)(a+l/2)—1/2'

Therefore we have obtained the desired result.
(4) Hypothesis H and the assumptions in the lemma give

1/ (2, Ny < CAfw] (1, ) Te + 1] (2, )17
g I+o
< C(llu (6, MM (2, )y + N (1))
< Cp'*(1 4102

Thus we have obtained the desired estimate. O]
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PrOOF OF PROPOSITION 5.1. We prove the proposition by induction. [Lemma 5.2
shows that u and uj satisfy the results of the proposition. Assume that u/ and u}
satisfy the results of the proposition for some j > 0. Then, shows that

f(u) e C(0,00); HINLINLY NLY).
Hence, by (5.2)—(5.3), we claim that
ul,; € C([0,00); L*NL"), u? e C(0,00); HNLINLT).
This implies that
w1 € C(10, 00); H2) N CL([0, o0); HY) N C2([0, 0); L2).

Now we proceed with further estimates.
(1) The equation (5.2) gives

t
a1 (2, ) o < Haag (2, )], + Jo I1S(t = )./ (w(z, )|, de. (5.14)
[Proposition 4.5(1) with p = 0, ¢ =1 and [Cemma 5.3(4) show that
t/2 . t/2 P
Jo 1St =) f (7, )]l d7 < CJ() (L+t =) " f (w(2)ll, d=

t/2

< C’71+UJ (1 4 T)fn/Z(l + ,L_)fna/Z dt
0

<Ccp'tr (14072, (5.15)

where we have used the inequalities no >2 and (1+¢—17)"' <2(1+¢) "' for 0 <7<
t/2. [Proposition 4.5(1) with p = o0, ¢ = (1 +0)/c and [Lemma 5.3(1) show that

t

LZ I1S(t — 7)./ wi(z, )|, dr < CLZ(I + 1= 7)) £ (e, )|, de

< Cn1+aJt (1 +r— T)fno/(Z(lJra))(l +T)f(n/2)-(1+ofa/(l+a)) dt
t/2

t

e [)—n/zj/z(l bt — gy elCUR (] | )=/ -0/ (140) g
t
t

< 't + z)"/2J/2(1 +t—1) "4y
t

<t (14072, (5.16)

where we have used the inequalities (1 +7)' <2(1+¢) " and (147" ' <(14r—1)"
for 7 >1/2, and no > 2. By the estimates [5.14}-(5.16) and [Lemma 5.2, we see that

—n/2 —n/2

sy (£ ) < (7 4+ Cp ) (1 +0)7"% < 29(1 + 1)

for sufficiently small constant # > 0.
[Proposition 4.3(1) with p = ¢ =1 and [Lemma 5.3(1) show that
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H%ﬁ4(h-)H1féHué(h-)Hl+—J1H51t—-flflﬁﬁ(fw))ﬂldf

0

t

<n+ CW”J (1+17)""de
0

< 27.

Hence we have obtained the desired estimates.
(2) The equality (5.3), [Proposition 4.5(3) and [Lemma 5.3(1)-(2) show that

t
ey (1,11, < Nlug (2, ), + JO Ce™ @20 f(wy(x, )|, de

t
<n(l+ t)fﬂ‘ + C771+JJ e’(“/z)(”f)(l + 1)75‘ dt
0

<+ Cpty (140

<2(1 407,

and

t
s (), < () + J Ce @0 £z, ) e

t

<n(1+0)P+ C171+”J e W21 4 1) P2 gr
0

<21+,

Hence we have obtained the desired estimates.
(3) |Proposition 4.j(1) with p =2, ¢ =1 and [Lemma 5.3(4) show that

1/2 12
JO |ra£DkS<z—r>f1<uj<r,->>||2drscjo (14 1 — )P £ (2, ) de

t/2
< C771+”J (141—1) 21 40y gr
0

< Cp" (1 4 ¢) AR (5.17)

for k+1/<2.
[Proposition 4.3 with p = ¢ =2 and [Lemma 5.3(3) show that

t t
J/Z 678t =) (s, )l dr < CJ/Z(I + 1= 1) IS (g (z, ) de
t t
t
< cn“ffj (14 1= (1 +7) W22 ge
t/2

t
= cﬁﬂj I+r—0)" A+ 1 +0) " gz
t/2

< Cp'to(1 4 1) A (5.18)
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for / <1, and

‘[:/2 Ha;leS(t — T)fl(uj(T’ ))Hz dt

t
SCJHU%%—ﬂ)IMIVﬂDﬂwﬁwDMdT
t

t

< C’?””I (1 41— ) 002 L gy 2es1/2-172 4
t/2
t

_ C’71+JJ (141 T)fl—(k—l)/z(l +T)fn/4flfk/2<l +T)fna/2+l+(k71)/2 Je

12
< Cp' (1 4 1) AR (5.19)
for k+/<2 and k> 1. By the estimates [(5.17}-(5.19) and [Lemma 3.2, we see that
01D ul,, (1, ), < 291 + £) 1402 (5.20)

for k+71<2, and / < 1.
By (5.2), we see that

GBua (1) = Bt + £ (60) + || 2500 = 00 (e )

then, by [Proposition 4.5(1) with p = ¢ =2, Lemmas B5.2-5.3 and [5.17), we see that

t/2
107 uf 1 (2, )1y < 1107 ug (. -)Hﬁl!f(uj(t,-))llﬁjo 1078t =)/ (w;(z, )l de

+j|w$wwﬂw@»mm
t/2

<n(l+ l)_n/4_2 + C”H-a(l + Z)—(n/Z)-(a+l/2) i C771+G(1 4 t)_,,/4_2

t
+ C771+JJ (1 4t T)—z(l + _L_)—(n/Z)(O'+1/2) dt
t/2
< 2p(1 + )72 (5.21)

for sufficiently small # > 0. By and (5.21), we have obtained the desired estimate.

(4) Since
y1+1er
(I =x(8)eL”

14

Y

Lemma 5.3(3) shows that
172wt D2 < CUDS (wi(t, )l < Cp*o(1 4 ¢~ Rt
for j >0. (5.3) gives

ol (1) = 0d(t,) + JO 31S(1 — 7 f2(u(z, ) d,
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for 0</<1, and

i1 (1) = 20 ) + F2u1,) + J(:@?S(t—r)fz(uj(fw))df

Hence, easy calculation gives

t
10 D%uf, 1 (2, )1y < 107D ug (2, )1 + CILf 2 (g2 )l 2 + CJO N 2wz, )y 2 d
< (1 + 1)1 2-112

for k 4+ / < 2 and for sufficiently small # > 0. We have obtained the desired result by
induction. (]

Lemma 5.4.  Under the notations and assumptions as in Proposition 5.1, the estimate

1
sup [|uj1(2,-) — w(t, )||1 ) = 2 SUP””/( ) — (1, )H] 2

0<t

holds for j > 1.

PRrROOF. [Proposition 5.1/(4) shows that

7 (2, )l 5 < Cop(1 4 o)~ 22T,

Hence, by easy calculations and the estimates in |[Proposition 5.1, we see that
1 (e (2,-)) = f uima (2, D)2 < Clllag (1M, A Nty (8 )15 + g (2, )15 + iy (2)]13 )
X Nl (t, ) = w1 (8)

< Cn”(L+ 07" luy(1,) = w1 (8, )|]. (5.22)

for j > 1. By the iteration scheme (5.1), w = u;;1 — u; is the solution of the problem

OPw — Aw 4 2ad,w = f () — f(wi—1), w(0) = d,w(0) = 0.

Hence, by [Proposition 4.3 and [5.22), we see that

sup IIUJ+1(I,-)—W(%-)||1,2SCJ 1F (2, ) = f (-1 (2, ) |

0<t<T

< Cp® sup Ilu(t,”) — (1 >||12j (1+ 07" dy

0<t<T

< Cn? sup |lu(t,-) —w-1(2,-)[l

0<t<T

1
<5 sup fu(t,) —ui-1(t,)]l1 5
0<t<T

for any T > 0, provided that # > 0 is sufficiently small. Therefore we have obtained the
desired result. ]
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PrOOF OF THEOREM 1.3. By |Proposition 5.1 and [Lemma 5.4, there is the function

ue C([0,00); HY)NL*(0,00; LINLY N HE)
satisfying
u, — u in C([0, 0); H,), (5.23)
ul —u' weak® in L*(0,00;L"), (1< p< )
u? — u* weak” in L*(0,00; LIN LY N H3).

Moreover, the following estimates hold.
lu' (2.1l < n(1+ 07207 (1< p < o),
22 (2, )|, < (140”2 EEVD 2 (1) < (14 gy~
and
|07 D*u(z, )| < 2n(1 +2)"""

for k+1<2.

Hence we see that |ju(t,-)], < |lu'(t,)]|, + [[u®(%, )|, < 4n(1 + )"0 for
l+o<p<1+1/a. By (5.23) we see that f(u,) — f(u) in C([0,00);L?).

Note that u e C(0,c0; H,) is a solution of [1.10). [Cemma 3.1 shows that

we C([0,00); H2) N C1((0, 00); HY) N1 C([0, 20); L2).
Then we claim that

f(u) e C([0,0); Lo n L1+,

Hence, [Proposition 4.5 shows that

ue C([0,00); L'*Von L),
Thus we have obtained the desired result. O

To prove Theorems [L.4-1.5, we construct approximate solutions of the problem
by (5.1). For the proofs of these theorems, we need the following lemmas. Note
that the proofs of the decay estimate to ||0,u(t,-)|, and ||Du(t,-)||, are same as one of

Mheorem 1.3, replaced Z; by Z; or Zs.

LEMMA 5.5. Under the assumptions and notations as ones in Theorem 1.4, the
approximate solution u; constructed by (5.1) inductively satisfies

ul € C([0,00);L'NL”), ufeC([0,00); HyNLINLT).

Moreover, following estimates hold:
(1)l (8o < 20004+, Jluf (1,11, < 20,
(2) ||uj2(t, M, < 2n(1 + 0", ||u]2(t, My <2n(1 + 0y, where B, and B, are de-
fined by (5.6).
(3) N/ ul (1, )1, < 2n(1 + )27 o] DR (1)1, 5 < 20(1 + 1) VD2 for
k+1<1.
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LemMma 5.6. Under the assumptions and notations as ones in Theorem 1.5, the
approximate solution u; constructed by (5.1) inductively satisfies

ujl e C([0,0); L' NL™), uj2 e C([0, c0); H,).

Moreover, the following estimates hold:
(D) N (4 < 20(1+ 072, flul (2, < 21,
() [101D uf (1,)]ly < 20(1+ 07" 0lD R (1, )|y o < 20(1 4+ )7 for
k+1<1.

Since the proof of Lemmas 5.5-5.6 and Theorems [L3-1.4 is very similar to one of
Mheorem 1.2, we omit it.
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