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Abstract. In this paper we investigate the structure of the subsemigroup generated
by the inner automorphisms in Ext(2,K). As an application, we give a new point of
view to the example of J. Plastiras, which are two C*-algebras U and B satisfying U % B
and M2®Q[§M2®%

0. Introduction.

J. Plastiras exhibited an example which is a pair of C*-algebras such that 2 % B
and M, @ A =~ M, ® B ([5], [6]). They are constructed as extensions of 2 by K, where
K is the C*-algebra of compact operators and 2 is the quotient C*-algebra of all the
bounded linear operators B by K. So they are not nuclear. For a class of nuclear C*-
algebras, we can construct such a pair of C*-algebras using the classification result for
them by K-theory ([2], [3]). In [7], T. Sakamoto constructs such a pair of non-nuclear
C*-algebras.

In this paper, we consider the family of special extensions of 2 by K which contains
Plastiras’ examples. Our aim is to investigate their semigroup structure and to show
that the datum for this semigroup is the useful invariant for them as like as K-theoretic
datum for some nuclear C*-algebras.

1. Preliminaries and Main result.

Here we give fundamental facts of extension theory along [1] and [8]. Let # be a
separable infinite dimensional Hilbert space. We denote by B (resp. K) a C*-algebra
B(#) (resp. K(#')) of bounded linear operators (resp. compact operators) on J#. We
also denote by 2 a C*-algebra B(#)/K(#). Let A,B and C be C*-algebras and o
(resp. f) a *-homomorphism from A to B (resp. from B to C). We call a short exact
sequence E as below an extension of C by A4:

E:0o—a5BLcoo

that is, « is injective, f is surjective and Imo = Kerf. Then there exists a *-
homomorphism ¢ from B to the multiplier C*-algebra M(A) of A with goo =1, ie.,
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A ——— B
A —— M(A)

where 1 is the canonical inclusion map from A4 to M(A). The Busby invariant for this
extension E is defined as the *-homomorphism 7z from C to M(A4)/A given by

15(c) = moa(b),

where b is a lift of ¢ through £ and =z is the quotient map from M(A) to M(A)/A. Itis
known that 7z is characterized by the following commutative diagram:

0 4. B L. ¢ o
|
0 A — M) —— M(4)/4 —— 0

We remark that, if we define the pull-back C*-algebra PB and the map  as follows:
PB = {(x,c) e M(4) ® C|n(x) = 7£(c)}
Y :Bsb— (a(b),f(b)) € PB,

then B is isomorphic to PB for the isomorphism iy making the following diagram
commutative:

Let
E,:0—A4A—-B —-—C—0
E,:0-A4— B —C—0

be extensions and 7; the Busby invariant for E; (i =1,2). We call E; and E, strongly
equivalent when there is a unitary ue M(A4) such that 75(c) = n(u)t1(c)n(u)” for all
c € C, equivalently there are a unitary v e M(A4) and a *-isomorphism p such that the
diagram

0 A B C 0
o ||
0 A B> C 0

is commutative. Then we denote E| ~ E; or 7 ~75. Let Ext(C, 4) be a set of exten-
sions of C by A. We denote by Ext(C,A) the set Ext(C, A)/~ of strongly equiva-
lent classes of Ext(C, 4). When A satisfies 4 >~ M,(A4), Ext(C, A) becomes an abelian
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semigroup. The addition of [E;| and [E;] € Ext(C, A) is defined by the equivalent class
of the extension which is corresponding to the Busby invariant

U@t C— M(A)/A® M(A))A— M(M>(A))/M>(4) = M(A)/A.

In this paper, we consider the extension semigroup Ext(2, K). We denote by 7 the
canonical quotient map from B onto 2. Let o be an inner *-automorphism of 2.
Then we can see that « is the Busby invariant for an extension E € Ext(2,K). We
denote by ¥ a subsemigroup of Ext(2, K) generated by extensions corresponding to all
the inner *-automorphisms of 2.

The inner *-automorphism o has the form «(-) = «* - u for some unitary u € 2. Let
V € B be a lift of u, that is, n(V) =u. Then V is a Fredholm operator, and we put
n=Index Ve Z. Let S(e B) be a unilateral shift. We remark IndexS = —1. We
define a *-automorphism 7(n) of 2 by

t(n)(x) = n(S)"xn(S*)", xe2.

Then there exists a unitary U € B such that VS" = U|VS"|, i.e., un(S)" = zn(U). So we
have that « is strongly equivalent to (n), that is, [o] = [t(n)].
Let G be a restricted direct product of non-negative integers Z- except 0, i.e.,

G =[] Z=0\{0}
VA

= {9 = (mk))rezIm(k) € Z>9,0 <#{k € Z|m(k) # 0} < 0},

where # denotes the cardinal number of set. By the above fact, we can define the
surjective semigroup homomorphism 7 from G to ¥ as follows:

w(9) = [@ S T(k)] =Y m(k)[z(k)],

keZ m(k) keZ

where g = (m(k)),., € G.
We define a map ¢ from G to N and a map ¢ from G to Z as follows: for

g=(m(k));.z€G,
w(g) = m(k),

keZ

Wig) =) km(k).

keZ

We introduce two notations as follows: for /€ Z and g = (m(k)),., € G,
l-g=(l-9)(k))iez€G
I+9=(m(l+ K)oz € G,

where

m(s) k=Is
0 otherwise

10 = {
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Then we can easily get

o(l-g) =0(9), V(l-g9)=0NWg),
o(l+g)=0(g) and Y(I+g) =Y(g) + lp(g).

For g = (m(k)), ., € G, we define a C*-subalgebra .«/(g) of B((—Dq)
follows:

9) %) = M,p(g) (B) as

m(k)

o (g) = @(B’kTS*k@---@S"TS*EHTeB +K(@%>,

keZ o(g)

where S* (resp. (S*)*) means (S*)7* (resp. S7%) for a negative integer k. Let 1(g) be
a injective *-homomorphism from K to .o/(g) which is obtained by a composition of
a natural isomorphism of K to K (@(p(g) ) and the canonical inclusion map of
K (@w(g) ) into </(g). We define a surjective *-homomorphism 7(g) from .<Z(g) to 2
as follows:

m(k)

A

2(g)| DS TS @@ S TS™) + K | = n(T),
keZ

where K € K (El—)w(g) #). Then we have the following extension:

E(g):0— K% 7(9) ™% 2 0,

and its Busby invariant coincides with

D D (k).

keZ m(k)
Then we have the following statement and this is our main result:

THEOREM 1.1. For g,he G and ne N, we have the following:
(1) (g) =1(h) < ¢(g) = ¢(h) and Y(g) =Y (h), that is,

Y31(9) — (p(9),¥(9) eNx Z

gives a semigroup isomorphism from 4 onto N x Z.

(2) A(g) = A (h) = 9(g) = (h) and Y(g) = y(h) mod ¢(g).
(3) Ag) @M, =.A(n-g).

We give the proof of theorem in the next section.

COROLLARY 1.2.  For any ne€ N and n > 2, there exist g,h € G such that </(g) @ M
is not isomorphic to o/ (h) @ My for any 1 <k <n—1 and </(g) ® M,, is isomorphic to
o (h) @ M,,.

Proor. We choose g and /4 such that

p(g) =) =n, Y(g)=0 and y(h) =1
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Then we have Y(k-g)=0<y(k-h)=k <n for any k=1,2,...,n—1 and ¢(n-g) =
p(n-h)=n, y(n-g) =yY(n-h) =0 modn. This implies that .</(g) and .o/(h) satisfy the
required property. ]

For g = (m(k));cz, h= (n(k));c, € G with

m = {3 K0 and g = {3 0
0 otherwise 0 otherwise

we have ¢(g) =¢(h) =2, Y(g) =0, y(h) =1. It follows that .«/(9) @ M, = .o/ (h) ®
M, but /(g) is not isomorphic to .«/(h). This example is the same one given by
J. Plastiras.

2. Proof of Theorem.
LemMA 2.1. The Ko-group Ko(</(g)) for </(g) is isomorphic to Z/p(g)Z.
Proor. Let g = (m(k)),., € G. From the short exact sequence of C*-algebras

OﬁKﬂ%(g)Mﬂ—ﬂ),

we can get the exact sequence of K-groups of C*-algebras as follows:

Ko(K) 25 Ko(#(g) =25 Ko(2)

o |

K1 (2) W Ky (< (9)) ‘W K (K)

Since Ky(2) = {0}, we have
Ko(/(9)) = Ko(K)/01(K1(2)).

It is known that Ky(K) = K;(2) =~ Z and the class of P (resp. n(S)) is a generator of
Ko(K) (resp. K;(2)), where P € B is a projection of rank one and S € B is a unilateral
shift.

We put P, =1—-S"S" (n=1,2,...) and define a unitary W (k) e M,(B) as fol-
lows: for k>0,

Wi — (SA-P0 Pen >

—P (1= PS*

(S 0\ /s P\/S* 0 k+ 0 P
~\o s/\o s/ 0 s ~Py 0 )
and for k <0,

=3 8)=0 5@ 80 )0 )

Then we have
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m(k)

A

W=@PwWke- --®wk)
keZ

is unitary in M»(.</(g)) and

n(g) ®ida (W) = (”(S) 0 )

0 x(S¥)
By the definition of d;, we have

O1([n(S)]) = W (Lg) @ 0.s(g)) W] = [Lisg) @ Or(g)-

By the calculation
(Y <1fl;,f>s*>*((l> ) e 1o
R
(o 5) (o 0)(o )16 o)
1y p J1-1(y o =11

o ([7(S)]) = v(g)[P].

and

it follows that

This means that
Ko((9)) = Z/9p(9)Z.
For g = (m(k)),.,, we can choose integers k; < k» < --- < k; such that
{keZ|m(k) #0} ={ki,ky,... ki}.

We remark that, if we put

my = =My =ki, Mpi)s1 == M) 4mk) = K2y -+,
Myl )+l ) +1 = * 0 = My(g) = K,
then we have y(g) = jf’i‘?) m; and
m(k)
A(g) ={ DSTS* @ @ S TS™) | T e B +K<@ Jf)
kez ¢(9)

_ {%) S™T(SH)™ | T e B} + K(@ %)
=1

9(9)
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LemMA 2.2. For any ne Z and g € G, we have
A(g) = A(n+g).

Proor. It is sufficient to show that ./(g) = /(1 +¢g). Using the above notation
and ¢(g9) = ¢(1+¢g) and ¥ (1 +g) = ¥(g) + ¢(g), we have

@

A1+ g) = {égsmf'“T(S*)mf'“ ITe B} +K<@ Jf)

Jj=1 »(9)

- {%)S’”’STS*(S*)”” T e B} + K(@ Jf)

J=1 »(9)

Clearly /(14 ¢g) = «/(g). Remarking the fact B < SBS* + K, we have /(1 + g)
A (9).

LemMA 2.3.  The class of the unit of .</(g) is equal to Y(g)[P] in Ko(<Z(g)), where
is a minimal projection of </(g).

~

Proor. By the above lemma, we can see

»(9)

oA(g) = {%8 S™T(SY)" | T e B} + K(@ %)
=1

9(9)
= {@Sn+ij(S*)n+n7j | T e B} —|—K<6—> %),

Jj=1 o(g)

for ne N with n+m; > 0. Since 1 € B is equivalent to some orthogonal projections

01,03,...,0y such that 1 =0y + Qs+ -+ Q). S*S*™ is equivalent to S¥Q;S*
for positive integer k. So we have

(L)) € Ko(#(g))

9(9)

+ ) (n+my)[P]

9(9)
— @ Sn+mj (S*)n+m,~
J=1 j=1

»(9)

= ¢(9) [@ SIS+ (np(g) +(9))[P].

This implies [1.,)] = ¥(9)[P] in Ko((g)). [
Before to prove theorem 1.1, we note that
2®1,)N20M,=1,M,.

Indeed, it is known that a unital simple C*-algebra has a trivial center and the Calkin
algebra 2 is simple. This implies the above fact.

Proor oF THEOREM 1.1. (1) First we assume that 7, = 7;,. Then the fact .o/(g) =
</ (h) implies ¢(g) = ¢(h) by lemma 2.1. We use the notation 7(g) = [P, . D, l;
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t(h) = [Dyez @n(k) o] and S; =D, @m(k) n(S)", Sy = Dz @n(k) () e2®
M Then 7(g) = t(h) means that there exist a unitary U in B® M, such that

Sy(x ® 1y(g))Sy = (@ idy(g) (U))"Si(x ® () (m @ id () (V)

for all xe 2. Since S;(n®id,,(U))S, € (2® l,)", we have S;(r ®id,,(U))S, €
1o ® M,y,. So S;(n®id,,(U))S, have a unitary lift in 1 ® M. This means
0 = Index(P, ., Doy ") U, ., Doy S*) = —U(h) + (g), that is, (g) = ().
Conversely we assume that ¢(9) =¢(h) and (g) =¥ (h). Then we have
Index(D, . , D, Sk)(@keZ@m(k) SKY*=0. So there exists a unitary U in
B® M, such that S;,S; =7 ®id,)(U). This implies that t(g) = t(h).

(2) First we assume that .o/, =~ .o/,. By lemma 2.1 and lemma 2.3, it is imme-
diately found that ¢(g) = ¢(h) and Y(g) = Y(h) modp(g). Conversely we assume that
¢(g) = ¢(h) and ¥(g) = Y(h) + np(g) for ne Z. Then we have t(g) = 7(n+g). This
implies ./(g) =~ .o/ (n+g) = o/(h) by lemma 2.2.

(3) Suppose that .«/(g) is the following form:

A(g) = {@ @S"TS*"|TGB}+K(E|—)%).

keZ m(k) ?(9)

9(9)-

Therefore we can regard .<7(g) ® M, as the following:
A (g) @M, = { D P RL)T'(S*@1,)| T’ eB(@%) } +K<@ %)
keZ m(k) n np(g)
This means that «/(g) @ M, = .o/ (n- g). O
For g € G, we define the C*-algebra
oA (g) = {@ @D SFTS*| TeB(%)} +K(<—B%).
keZ m(k) ?(9)

Then we can see that the essential commutant EC(.«/(g)) of .<Z(g) becomes an AF-
algebra and 7 ® id,,)(EC(.(g))) is isomorphic to M) (C). Since .«/(g) and ./ (h)
contain the algebra of compact operators, the isomorphism from .o/(g) to .o/(h) deduces
the isomorphism from EC(./(g)) to EC(./(h)). It is known that isomorphism classes
of AF-algebras are classified up by the K-theoretic datum. In this case, we can see

(Ko(EC(#(9))), Ko(EC(#(9))) ., 1]k,)
=(Z®Z,({0} ® Z=0)U(Z>0 ® Z), (9(9),¥(9)))-

We remark that, for any integer k € Z, the following groups are order isomorphic (and
preserving the order unit):

(Z®Z, ({0} ®Z-0)U(Z50® Z),(9(9),¥(9))),
(Z@Z, ({0} @ Z>0)U(Z-0® Z), (0(9),¥(9) + ko(g)))-

This means that the K-theoretic datum is a complete invariant for the family
{<(g) |g € G} of non-nuclear C*-algebras.
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