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Abstract. Cone-parameter Lévy processes and convolution semigroups on R
d are

defined. Here, cone-parameter Lévy processes have stationary independent increments

along increasing sequences on the cone. This property ensures that subordination of a

cone-parameter Lévy process by an independent cone-valued cone-parameter Lévy process

yields a new cone-parameter Lévy process. It is shown that a cone-parameter Lévy

process induces a cone-parameter convolution semigroup. The converse statement, that

any convolution semigroup appears in this way, is however not true. In particular we

show that there is no Brownian motion with parameter in the set of nonnegative-definite

symmetric d � d matrices. The question when a given cone-parameter convolution semi-

group is generated by a Lévy process is studied. It is shown that this is the case if one of

the following three conditions is satisfied: d ¼ 1; the convolution semigroup is purely

non-Gaussian; or K is isomorphic to R
N
þ .

1. Introduction.

Recall that a Lévy process in law on R
d starts at 0, has stationary independent

increments and is continuous in probability; a Lévy process appears by assuming in

addition that the paths are cadlag. The following properties are fundamental. (i) If

fXt : tb 0g is a Lévy process in law then fmt : tb 0g defined by mt ¼ LðXtÞ is a

convolution semigroup; (ii) conversely, if fmt : tb 0g is a convolution semigroup then

there exists a Lévy process in law fXt : tb 0g with mt ¼ LðXtÞ for all t; (iii) the law

of fXt : tb 0g in (ii) is uniquely determined by fmt : tb 0g. In fact, if t0 > 0 then mt0

determines both fmt : tb 0g and the law of fXt : tb 0g; (iv) we have stability under

subordination, that is, if fTt : tb 0g is a subordinator, independent of a Lévy process

fXt : tb 0g, then fXTt
: tb 0g is a Lévy process.

Several papers discuss extensions of Lévy process to the case where the parameter

is multidimensional. Often the stationary independent increment property is replaced

by an assumption saying that a multiparameter Lévy process fXt : t A R
N
þ g on R

d has

stationary independent increments over half-open intervals of R
N
þ . (See e.g. Adler,

Monrad, Scissors and Wilson [1] for a precise formulation of this.) Examples include

the Brownian sheet (Orey and Pruitt [13], Talagrand [16], Khosnevisan and Shi [9]) and

processes considered by Ehm [5], Vares [17] and Lagaize [11]. In these papers the law
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of fXt : t A R
N
þ g is uniquely determined by the law of Xt0 , where t0 A R

N
þ has positive

coordinates. Moreover, whenever m0 is an infinitely divisible distribution on R
d there is

a multiparameter Lévy process fXt : t A R
N
þ g with LðXt0Þ ¼ m0. It is, however, readily

seen that subordination of multiparameter Lévy processes does not always result in a

new multiparameter Lévy process. That is, (i)–(iii) generalize to the multiparameter

case while (iv) does not. Let us also mention Lévy’s [12] multiparameter Brownian

motion as an example of a process with parameter in R
N , which has independent

increments only along straight lines in R
N .

In this paper processes have parameter s in a cone K . Besides the case K ¼ R
N
þ

we also consider interesting examples where K is the set S
þ
d of nonnegative-definite

symmetric d � d matrices. We consider another natural generalization of the stationary

independent increment property by assuming stationary independent increments along

K-increasing sequences. This leads to what we call K-parameter Lévy processes in law,

see Definition 3.1. We have the convenient property that subordination of K-parameter

Lévy processes in law results in a new K-parameter Lévy process in law. Moreover, it

is readily seen that a K-parameter Lévy process in law induces a K-parameter con-

volution semigroup fms : s A Kg by ms ¼ LðXsÞ. Here a convolution semigroup satisfies

ms1þs2 ¼ ms1 � ms2 and has a continuity property. A K-parameter convolution semigroup

fmsg is said to be generative if there is a K-parameter Lévy process in law satisfying

ms ¼ LðXsÞ for all s; otherwise fmsg is non-generative. We show that if K ¼ S
þ
d with

db 2 and ms ¼ Ndð0; sÞ then fms : s A Kg is non-generative. This can be rephrased as

the property that there is no Brownian motion with nonnegative-definite symmetric

matrix parameter. In particular we see that (ii) does not generalize to the K-parameter

case. A second purpose of the paper is to investigate the question when a given cone-

parameter convolution semigroup is generative. The main results are that fmsg is gen-

erative if one of the following three conditions is satisfied: d ¼ 1; the convolution

semigroup is purely non-Gaussian; or K is isomorphic to R
N
þ .

Even for a generative K-parameter convolution semigroup fmsg it is generally not

true that the law of an associated cone-parameter Lévy process in law is uniquely

determined. That is, neither (iii) generalizes. In the case where K is isomorphic to R
N
þ

we give conditions on fmsg under which the law of an associated cone-parameter

convolution semigroup is in fact unique.

The paper is organized as follows. In Section 3 cone-parameter Lévy processes

and convolution semigroups are defined and some properties are derived. In particular

we show stability under subordination as mentioned above. In Section 4 we construct

non-generative S
þ
d -parameter convolution semigroups and finally Section 5 contains an

analysis of generative convolution semigroups.

2. Preliminaries.

Throughout the paper let N;M and d be positive integers. Elements of R
d are

column vectors. We denote the coordinates of x A R
d by xj , and use either the nota-

tion x ¼ ðxjÞ1a jad or x ¼ ðx1; . . . ; xdÞ
>. The inner product on R

d is hx; yi and the

norm is jxj. When d1; . . . ; dn are positive integers and x j A R
dj for j ¼ 1; . . . ; n, then

ðx1
; . . . ; xnÞ> denotes the stacked vector
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ðx1
; . . . ; xnÞ> ¼

0

B

B

@

x1

.

.

.

xn

1

C

C

A

;

ð2:1Þ

which is an element of R
d1þ���þdn .

Let IDðRdÞ be the class of infinitely divisible distributions on R
d equipped with the

Borel s-algebra BðRdÞ. For m A IDðRdÞ and tb 0, denote m t ¼ m t�. The characteristic

function of m is m̂mðzÞ ¼
Ð

R
d e ihz;ximðdxÞ, z A R

d . Let LðX Þ be the distribution (law) of

a random variable X . By X ¼
d
Y we mean LðXÞ ¼ LðY Þ. Thus, by fXsg ¼

d
fYsg we

mean that the two stochastic processes fXsg and fYsg have an identical system of finite-

dimensional distributions. For probability measures mn ðn ¼ 1; 2; . . .Þ and m on R
d ,

mn ! m means weak convergence of mn to m. Let dc denote a distribution concentrated

at a point c. Such a distribution is called trivial. For z; x A R
d let gðz; xÞ be the func-

tion gðz; xÞ ¼ e ihz;xi � 1� ihz; xi1fjxja1gðxÞ. For m A IDðRdÞ and r A R, we define m̂mðzÞr,

z A R
d , as m̂mðzÞr ¼ e r log m̂mðzÞ, where log m̂mðzÞ is the distinguished logarithm of m̂mðzÞ in [15],

p. 33. In other words,

m̂mðzÞr ¼ exp r �
1

2
hz;Aziþ ihg; ziþ

ð

R
d

gðz; xÞnðdxÞ

� �� �

;

where ðA; n; gÞ is the triplet or the generating triplet of m in [15], p. 38. The matrix

A and the measure n are respectively the Gaussian covariance matrix and the Lévy

measure of m, and g A R
d .

Definition 2.1. A subset K of R
M is a cone if it is a non-empty closed convex

set closed under multiplication by nonnegative reals (s A K and ab 0 imply as A K)

and containing no straight line through 0 (s A K and �s A K imply s ¼ 0) and if

K 0 f0g.

Throughout this paper, K is a cone in R
M unless otherwise stated. Notice that K

is closed under addition. Therefore, if s1; . . . ; sn are in K, then t1s
1 þ � � � þ tns

n A K for

any nonnegative reals t1; . . . ; tn. Let L be the linear subspace generated by K, that is,

the smallest linear subspace of RM that contains K . If dimL ¼ N, then we say that K

is an N-dimensional cone. If dimL ¼ M, then K is said to be nondegenerate.

If fe1; . . . ; eNg is a linearly independent system in K such that K ¼ fs1e
1 þ � � �

þ sNe
N
: s1; . . . ; sNb 0g then fe1; . . . ; eNg is called a strong basis of K . If fe1; . . . ; eNg is

a basis of L and e1; . . . ; eN are in K then fe1; . . . ; eNg is called a weak basis of K . For

example, a cone in R is either ½0;yÞ or ð�y; 0�, and has a strong basis. Any non-

degenerate cone in R
2 is a closed sector with angle < p and has a strong basis. A

nondegenerate cone in R
3 has a strong basis if and only if it is a triangular cone. For

any M, the nonnegative orthant R
M
þ is a cone with a strong basis. Any cone has a

weak basis.

Write s1aK s2 if s2 � s1 A K . A sequence fsngn¼1;2;... in R
M is K-increasing if

snaK snþ1 for each n; K-decreasing if snþ1
aK sn for each n. A mapping f from ½0;yÞ

into R
M is K-increasing if f ðt1ÞaK f ðt2Þ for t1a t2; K-decreasing if f ðt2ÞaK f ðt1Þ for

t1a t2.
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More generally, let K1 and K2 be cones in R
M1 and R

M2 , respectively. A mapping

f from K1 into R
M2 is ðK1;K2Þ-increasing if s1aK1

s2 implies f ðs1ÞaK2
f ðs2Þ; ðK1;K2Þ-

decreasing if s1aK1
s2 implies f ðs2ÞaK2

f ðs1Þ.

Let K 0 ¼ fu A R
M

: hu; sib 0 for all s A Kg. Then K 0 is again a cone in R
M . It

is called the dual cone of K . We have ðK 0Þ 0 ¼ K . If K ¼ R
M
þ , then K ¼ K 0. For two

cones K1;K2 in R
M , we have K1JK2 if and only if K 0

1KK 0
2.

Remark 2.2. Let K be an N-dimensional cone in R
M . Let L be the linear

subspace generated by K and let T be a linear transformation from L to R
~MM such that

dimðTLÞ ¼ N. Denote by T�1 the inverse of T defined on TL. Define ~KK ¼ TK , the

image of K by T . Then, ~KK is an N-dimensional cone in R
~MM . We have u1a ~KK u2 if

and only if T�1u1aK T�1u2. A system fu1; . . . ; uNg is a strong basis (resp. a weak

basis) of ~KK if and only if fT�1u1; . . . ;T�1uNg is a strong basis (resp. a weak basis) of K .

We say that K and ~KK are isomorphic cones. Any N-dimensional cone K with a strong

basis is isomorphic to R
N
þ . The isomorphism is given by a mapping between strong

bases. From this follows that a strong basis fe1; . . . ; eNg of K is unique up to permu-

tation and scaling, if it exists. Indeed, it is readily seen that up to scaling and permu-

tation the standard basis in R
N is the only strong basis of R

N
þ .

Definition 2.3. Let f be a mapping from a cone K in R
M into R

d .

(i) We say that f is K-right continuous at s0 A K , if, for every K-decreasing

sequence fsngn¼1;2;... in K with jsn � s0j ! 0, we have j f ðsnÞ � f ðs0Þj ! 0.

(ii) We say that f has K-left limits at s0 A Knf0g, if, for every K-increasing

sequence fsngn¼1;2;... in Knfs0g satisfying jsn � s0j ! 0, limn!y f ðsnÞ exists in R
d .

(iii) We say f is K-cadlag if it is K-right continuous at each s0 A K and has K-left

limits at each s0 A Knf0g.

When f : K ! R has K-left limits at s0 A K then limn!y f ðsnÞ may depend on

the choice of the K-increasing sequence fsng. But, we now show that if K is an

N-dimensional cone with a strong basis, then any mapping with K-left limits has at most

2N � 1 di¤erent left limits at each point. Let K be with a strong basis fe1; . . . ; eNg.

Let s0 A K and fsngn¼1;2;... be a sequence in K . Write s0 and sn as s0 ¼ s01e
1 þ � � �

þ s0Ne
N and sn ¼ sn1e

1 þ � � � þ snNe
N . Note that snaK snþ1 if and only if snj a snþ1

j for

all j ¼ 1; . . . ;N. Thus, fsngn¼1;2;... is K-increasing with jsn � s0j ! 0 if and only if

fsnj gn¼1;2;... is an increasing sequence in Rþ which tends to s0j for each j. Let a be

a nonempty subset of f1; . . . ;Ng. We use the notation sn "a s
0 if fsngn¼1;2;... is K-

increasing with jsn � s0j ! 0 such that snj < s0j for j A a and all n, and snj ¼ s0j for j B a

and n su‰ciently large. Let ps0 ¼ f j : s0j > 0g. We have the following easy result.

Lemma 2.4. Let K have a strong basis fe1; . . . ; eNg.

(i) Let fsngn¼1;2;... be K-increasing in Knfs0g with jsn � s0j ! 0. Then there is a

unique nonempty subset a of ps0 such that sn "a s
0. This particular a is given by a

¼ f j : snj < s0j for all ng.

(ii) Let f : K ! R
d have K-left limits at s0 A Knf0g. Then there is a family

f f aðs0Þ : aJ ps0 ; a nonemptyg in R
d such that if a is a nonempty subset of ps0 and

fsngn¼1;2;... is a sequence in K with sn "a s
0, then f ðsnÞ ! f aðs0Þ.
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3. Cone-parameter Lévy processes and convolution semigroups.

In this section we define cone-parameter Lévy processes and convolution semi-

groups. Some examples and properties will be discussed as well.

Definition 3.1. Let fXs : s A Kg be a collection of random variables on R
d defined

on a probability space ðW;F;PÞ. Then, fXs : s A Kg is a K-parameter Lévy process on

R
d if the following five conditions are satisfied.

(i) If nb 3 and fs jgj¼1;...;n is K-increasing in K, then Xs jþ1 � Xs j , j ¼ 1; . . . ; n� 1,

are independent.

(ii) If s1; . . . ; s4 A K and s2 � s1 ¼ s4 � s3 A K , then Xs2 � Xs1 ¼
d
Xs4 � Xs3 .

(iii) X0 ¼ 0 almost surely (a.s.).

(iv) XsðoÞ is K-cadlag in s for almost all o A W.

(v) If s0 A K and fsngn¼1;2;... is a sequence in K with jsn � s0j ! 0, then Xsn ! Xs0

in probability.

If fXs : s A Kg satisfies (i)–(iii) and (v), then fXs : s A Kg is called a K-parameter

Lévy process in law.

Remark 3.2. (i) Note that with K ¼ Rþ the definition of an Rþ-parameter Lévy

process reduces to the definition of a Lévy process in [15]. Similarly, an Rþ-parameter

Lévy process in law is a Lévy process in law, as defined in [15].

(ii) Recall that fXs : s A Kg is called measurable if the mapping XsðoÞ from

ðo; sÞ A W� K into R
d is measurable with respect to ðF�BðKÞ;BðRdÞÞ. A K-

parameter Lévy process is automatically measurable if condition (iv) of Definition 3.1

holds for all o (not only for almost all o), or if the underlying probability space is

complete. More generally, any K-parameter Lévy process in law has a measurable

modification. This follows from the fact that any process which is continuous in

probability has a measurable modification; see [3], Theorem 2.

Let us provide some examples of K-parameter Lévy processes.

Example 3.3. Let K be a cone in R
M and K 0 be the dual cone of K . Let u A K 0.

Let fVt : tb 0g be a Lévy process on R
d . Then, we get a K-parameter Lévy process

fXs : s A Kg on R
d by letting Xs ¼ Vhu; si.

Example 3.4. Let K have a strong basis fe1; . . . ; eNg. Then, in each of the fol-

lowing three constructions of Xs for s ¼ s1e
1 þ � � � þ sNe

N A K , we obtain a K-parameter

Lévy process fXs : s A Kg on R
d .

(i) Let fVt : tb 0g be a Lévy process on R
d . Fix ðcjÞ1a jaN with cjb 0 for

1a jaN. Define Xs ¼ Vc1s1þ���þcN sN .

(ii) Let fV j
t : tb 0g, j ¼ 1; . . . ;N, be independent Lévy processes on R

d . Define

Xs ¼ V 1
s1
þ � � � þ V N

sN
.

(iii) For each j ¼ 1; . . . ;N, let fU j
t : tb 0g be a Lévy process on R

dj . Assume

that they are independent. Let d ¼ d1 þ � � � þ dN . Define Xs ¼ ðU 1
s1
; . . . ;U N

sN
Þ>.

The processes in the preceding example have been studied in the literature. Indeed,

Dynkin [4], Evans [6] and Fitzsimmons and Salisbury [7] worked on processes which

generalize (iii), while Hirsch [8] and Khoshnevisan, Xiao and Zhong [10] studied (ii).
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Related to Lévy processes is the notion of a convolution semigroup.

Definition 3.5. A family fms : s A Kg of probability measures on R
d is a K-

parameter convolution semigroup if

(i) ms1 � ms2 ¼ ms1þs2 for all s1; s2 A K ,

(ii) mts ! d0 for s A K as t # 0.

Example 3.6. Let db 2 and S
þ
d be the set of symmetric nonnegative-definite

d � d matrices. Let s ¼ ðsjkÞ
d
j;k¼1 A S

þ
d . The lower triangle, ðsjkÞka j with dðd þ 1Þ=2

entries, determines s. We identify S
þ
d with a subset of R

dðdþ1Þ=2, considering ðsjkÞka j

as a column vector. Then S
þ
d is a nondegenerate cone in R

dðdþ1Þ=2 and does not

have a strong basis. For s A S
þ
d let ms be the Gaussian measure on R

d , defined as

ms ¼ Ndð0; sÞ, the d-dimensional Gaussian distribution with mean zero and covariance

matrix s. Then, obviously, fms : s A S
þ
d g is an S

þ
d -parameter convolution semigroup

on R
d . We call it the canonical S

þ
d -parameter convolution semigroup.

We refer to Pedersen and Sato [14] for a detailed analysis of cone-parameter con-

volution semigroups. Here we just recall the following important result.

Remark 3.7. Let fms : s A Kg be a K-parameter convolution semigroup on R
d .

Then ms ¼ ðms=nÞ
n for all s A K and nb 1, which shows that ms A IDðRdÞ. Let

fe1; . . . ; eNg be a weak basis of K . For s ¼ s1e
1 þ � � � þ sNe

N A K we have

m̂msðzÞ ¼ m̂me1ðzÞ
s1 � � � m̂meN ðzÞ

sN ; z A R
d :ð3:1Þ

In particular, if fsng is a sequence in K with sn ! s then msn ! ms. This follows from

Theorem 2.8 and Corollary 2.9 in [14].

Lemma 3.8. Let fXs : s A Kg be a family of random variables satisfying (i)–(ii) of

Definition 3.1 together with the following condition (v) 0:

(v) 0 If s A K and if feng is a sequence of real numbers strictly decreasing to 0, then

Xens ! 0 in probability.

Then fXs : s A Kg is a K-parameter Lévy process in law and fms : s A Kg defined by

ms ¼ LðXsÞ is a K-parameter convolution semigroup.

In particular, if fXs : s A Kg satisfies (i)–(iv) of Definition 3.1 then it is a K-

parameter Lévy process.

Proof. It is readily seen that fms : s A Kg is a convolution semigroup. Since

m0 ¼ d0 it follows that X0 ¼ 0 almost surely. We verify Definition 3.1 (v). Let

fsngn¼1;2;...JK and s0 A K with jsn � s0j ! 0. Let fe1; . . . ; eNg be a weak basis of K

and decompose sn and s0 as sn ¼ sn1e
1 þ � � � þ snNe

N and s0 ¼ s01e
1 þ � � � þ s0Ne

N where

snj ; s
0
j A R for all j and n. Define un by un ¼ un

1e
1 þ � � � þ un

Ne
N , where un

j ¼ snj 4s0j for

j ¼ 1; . . . ;N. Since un
j � snj b 0 for all j we have un � sn A K , that is snaK un and

un A K . Similarly, s0aK un. Since Xsn � Xs0 ¼ ½Xu n � Xs0 � � ½Xu n � Xsn � it su‰ces to

prove that the two terms on the right-hand side converge to zero in probability. As

un � sn; un � s0 ! 0, the result follows from Definition 3.1 (ii) and Remark 3.7.

The last statement follows from the fact that Definition 3.1 (iii)–(iv) readily imply

(v) 0. r
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The preceding lemma shows that a K-parameter Lévy process in law fXs : s A Kg

induces a K-parameter convolution semigroup by ms ¼ LðXsÞ. The converse statement,

that any cone-parameter convolution semigroup appears in this way, is, however, not

true as we show in Section 4.

Let fms : s A Kg be a K-parameter convolution semigroup. We say that a K-

parameter Lévy process in law fXs : s A Kg is associated with fms : s A Kg if ms ¼ LðXsÞ

for all s A K . We say that fms : s A Kg is generative if there is a K-parameter Lévy

process in law associated with it; otherwise fms : s A Kg is non-generative.

If fms : s A Kg is generative and fXs : s A Kg is a K-parameter Lévy process in

law associated with it, then for any K-increasing sequence fs1; . . . ; sng the distribution

of ðXs1 ; . . . ;Xs nÞ
> is uniquely determined by fms : s A Kg. This fact is readily seen

from (i)–(iii) of Definition 3.1. But, generally the distribution of the entire process

fXs : s A Kg is not uniquely determined; see for example Remark 3.11. This was

essentially also recognized by Barndor¤-Nielsen, Pedersen and Sato [2]. We say that

fms : s A Kg is unique-generative if it is generative and any two K-parameter Lévy

processes in law fX 1
s : s A Kg and fX 2

s : s A Kg associated with it satisfy fX 1
s : s A Kg

¼
d
fX 2

s : s A Kg. If fms : s A Kg is generative but not unique-generative we say that it is

multiple-generative.

Let ðRdÞK be the set of mappings o ¼ ðoðsÞÞs AK from K into R
d and let BðRdÞK

be the s-algebra generated by the coordinate mappings xsðoÞ ¼ oðsÞ, s A K . If

fXs : s A Kg is a K-parameter Lévy process in law, then it induces a unique probability

measure Q on ððRdÞK ;BðRdÞKÞ such that fXs : s A Kg is identical in law with

fxs : s A Kg under Q. We call Q the distribution (or law) of fXs : s A Kg and denote

Q ¼ LðfXs : s A KgÞ. For a K-parameter convolution semigroup fms : s A Kg denote

the set of distributions of K-parameter Lévy processes in law associated with it by

Lðfms : s A KgÞ. Then, fms : s A Kg is generative (resp. multiple-generative, unique-

generative, non-generative) if and only if Lðfms : s A KgÞ is nonempty (resp. has more

than one element, is a singleton, is empty).

Let us give a method of constructing K-parameter Lévy processes in law.

Proposition 3.9. Let fms : s A Kg be a K-parameter convolution semigroup on R
d .

(i) Let nb 2. For each j ¼ 1; . . . ; n let fX j
s : s A Kg be a K-parameter Lévy

process (resp. Lévy process in law) associated with fms : s A Kg. Let Uj be non-

negative random variables such that 1 ¼ U1 þ � � � þUn almost surely. Suppose that

fX 1
s : s A Kg; . . . ; fX n

s : s A Kg and ðU1; . . . ;UnÞ
>

are independent. Define fXs : s A Kg

by Xs ¼ X 1
U1s

þ � � � þ X n
Uns

for s A K . Then fXs : s A Kg is a K-parameter Lévy process

(resp. Lévy process in law) associated with fms : s A Kg.

(ii) Let fms : s A Kg be a multiple-generative. Then Lðfms : s A KgÞ is a convex set

of probability measures.

Proof. (i) First assume that U1; . . . ;Un are nonrandom. Then fXsg is a K-

parameter Lévy process in law. Moreover, for s A K we have

LðXsÞ ¼ LðX 1
s Þ

U1 � � � � �LðX n
s Þ

Un ¼ mU1
s � � � � � mUn

s ¼ ms:

That is, fXsg is associated with fmsg.
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If U1; . . . ;Un are random we hence have that fXsg is a K-parameter Lévy process

in law associated with fmsg conditional on ðU1; . . . ;UnÞ. It is easily seen that the same

holds in the unconditional distribution.

If the paths of fX j
s g are K-cadlag almost surely, then the same holds for fXsg.

Thus, the property of being a K-parameter Lévy process is inherited from fX j
s g to fXsg.

(ii) Let Q0;Q1 A Lðfms : s A KgÞ and p A ½0; 1�. Let fX 0
s : s A Kg and fX 1

s : s A Kg

be K-parameter Lévy processes in law with Q j ¼ LðfX j
s : s A KgÞ for j ¼ 0; 1, and

U be a random variable such that fX 0
s : s A Kg, fX 1

s : s A Kg and U are independent

and p ¼ PðU ¼ 1Þ ¼ 1� PðU ¼ 0Þ. Define Xs ¼ X 0
Us þ X 1

ð1�UÞs for s A K . Then from

(i) it follows that fXs : s A Kg is a K-parameter Lévy process in law associated with

fms : s A Kg. Let Q ¼ LðfXs : s A KgÞ. For nb 1, s1; . . . ; sn A K and B1; . . . ;Bn

A BðRdÞ, we have

Qðxs1 A B1; . . . ; xs n A BnÞ ¼ PðXs1 A B1; . . . ;Xsn A BnÞ

¼ pPðX 0
s1 A B1; . . . ;X

0
sn A BnÞ þ ð1� pÞPðX 1

s1 A B1; . . . ;X
1
s n A BnÞ;

that is, pQ0 þ ð1� pÞQ1 ¼ Q A Lðfms : s A KgÞ, as desired. r

Remark 3.10. It is an interesting problem to characterize the extremal points of

the convex set Lðfms : s A KgÞ. At present we do not have any results in this direction.

Remark 3.11. In general the finite-dimensional marginals of a K-parameter Lévy

process in law are not infinitely divisible. To illustrate, let fms : s A R
2
þg be the con-

volution semigroup on R given by ms ¼ Nð0; s1 þ s2Þ for s ¼ ðs1; s2Þ
>
A R

2
þ. For

j ¼ 1; 2; 3, let fV j
t : tb 0g be independent standard Wiener processes on R. Define

fX 0
s : s A R

2
þg by X 0

s ¼ V 1
s1
þ V 2

s2
, and fX 1

s : s A R
2
þg by X 1

s ¼ V 3
s1þs2

. It is readily seen

that fX 0
s : s A R

2
þg and fX 1

s : s A R
2
þg are associated with fms : s A R

2
þg. Since these

two R
2
þ-parameter Lévy processes are not identical in law fms : s A R

2
þg is multiple-

generative. Let Xs ¼ X 0
Us þ X 1

ð1�UÞs where U , independent of ðfX 0
s : s A R

2
þg; fX

1
s : s

A R
2
þgÞ, is a random variable with 0 < p ¼ PðU ¼ 1Þ ¼ 1� PðU ¼ 0Þ < 1. By Propo-

sition 3.9 (i) fXs : s A Kg is an R
2
þ-parameter Lévy process associated with fms : s A R

2
þg.

The distribution m of ðXe1 ;Xe2Þ
> is not infinitely divisible, where e1 ¼ ð1; 0Þ> and

e2 ¼ ð0; 1Þ>.

The proof is as follows. For any B A BðR2Þ, mðBÞ ¼ pN2ð0; diagð1; 1ÞÞðBÞ

þ ð1� pÞrðBÞ, where r is a degenerate Gaussian concentrated on the line L1

¼ fðx1; x2Þ
>
A R

2
: x1 ¼ x2g. Suppose that m is infinitely divisible. Then the projection

s of m onto the line L2 ¼ fðx1; x2Þ
>
A R

2
: x1 ¼ �x2g has to be infinitely divisible by

Proposition 11.10 of [15]. But s is a mixture of a Gaussian distribution and a point

mass at the origin, which is not infinitely divisible by Remark 26.3 of [15].

Another way of constructing cone-parameter Lévy processes is by subordination, as

we discuss in the following. Let K1 be a cone in R
M1 and K2 be a cone in R

M2 .

If fZs : s A K1g is a K1-parameter Lévy process (resp. Lévy process in law) on R
M2

such that Zs A K2 almost surely for each s A K1, then we call it a K2-valued K1-parameter

Lévy process (resp. Lévy process in law). If fZs : s A K1g is a K1-parameter Lévy

process on R
M2 then it is a K2-valued K1-parameter Lévy process if and only if, almost
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surely, Zs is ðK1;K2Þ-increasing as a function of s. There is no analogous charac-

terization of the sample paths of a K2-valued K1-parameter Lévy process in law.

In order to define subordination we have to impose the regularity condition that the

processes involved (the subordinator and the subordinand) are measurable processes.

But this is essentially no restriction since any K-parameter Lévy process in law has a

measurable modification by Remark 3.2 (ii). Thus, we introduce subordination of a

measurable K2-parameter Lévy process in law by a measurable K2-valued K1-parameter

Lévy process in law. This is an extension of the multivariate subordination introduced

in [2].

Theorem 3.12. Let fZs : s A K1g be a measurable K2-valued K1-parameter Lévy

process in law and fXu : u A K2g a measurable K2-parameter Lévy process in law on

R
d . Suppose that they are independent. Define Ys ¼ XZ 0

s
, where Z 0

s ¼ Zs1K2
ðZsÞ. Then

fYs : s A K1g is a measurable K1-parameter Lévy process in law on R
d .

If in addition fZs : s A K1g is a measurable K2-valued K1-parameter Lévy process on

K2 and fXu : u A K2g a measurable K2-parameter Lévy process on R
d , then fYs : s A K1g

is a measurable K1-parameter Lévy process on R
d .

The processes fXu : u A K2g, fZs : s A K1g and fYs : s A K1g are subordinand, sub-

ordinator and subordinated, respectively.

Proof of the theorem. Since fYs : s A K1g appears by composition of two mea-

surable mappings, it is itself measurable. The other properties defining a cone-

parameter Lévy process in law are essentially verified as in the first part of the proof of

Theorem 3.3 of [2].

Assume that fZs : s A K1g is a K2-valued K1-parameter Lévy process and

fXu : u A K2g a K2-parameter Lévy process on R
d . Then, by ðK1;K2Þ-increasingness of

fZs : s A K1g, fYs : s A K1g is K1-cadlag almost surely and is hence a measurable K1-

parameter Lévy process on R
d . r

Related to subordination of cone-parameter Lévy processes in law is the notion of

subordination of cone-parameter convolution semigroups. The latter is treated in [14].

More precisely, since cone-parameter Lévy processes in law are associated with cone-

parameter convolution semigroups, the distribution LðYsÞ, s A K1, of the subordinated

process fYsg can be considered as a special case of subordination of cone-parameter

convolution semigroups. But, since there are non-generative convolution semigroups,

subordination of some convolution semigroups does not appear in this way.

4. Non-generativeness of the canonical S
þ
d -parameter convolution semigroup.

We say that a K-parameter convolution semigroup fms : s A Kg is trivial if ms is

trivial for all s A K . Our main result in this section reads as follows.

Theorem 4.1. Let K ¼ S
þ
d with db 2. Let fms : s A Kg be a nontrivial K-

parameter convolution semigroup on R
d such that

Ð
jxj2msðdxÞ < y and the covariance

matrix vs of ms satisfies vsaK s for all s A K . Then fmsg is non-generative. In par-

ticular, the canonical S
þ
d -parameter convolution semigroup is non-generative.
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For the proof of the main Theorem we need a result of independent interest.

Recall that a subset L of Rd is an additive subgroup if x� y A L whenever x and y are

in L. For instance, a linear subspace is an additive subgroup. As another example

note that Q is an additive subgroup of R; in particular we see that additive subgroups

need not be closed. The following result shows that when K has a strong basis any

convolution semigroup is generative, and it gives a characterization of the unique-

generative convolution semigroups.

Theorem 4.2. Let K have a strong basis fe1; . . . ; eNg and let fms : s A Kg be a K-

parameter convolution semigroup on Rd . Let Ys ¼ V 1
s1
þ � � � þ V N

sN
for s ¼ s1e

1 þ � � �

þ sNe
N A K , where fV j

t : tb 0g, j ¼ 1; . . . ;N, are independent Lévy processes satisfying

LðV j
1 Þ ¼ me j for j ¼ 1; . . . ;N.

(i) The semigroup fmsg is generative. In particular, fYs : s A Kg is a K-parameter

Lévy process associated with fmsg.

(ii) The following three statements (a)–(c) are equivalent:

(a) fmsg is unique-generative.

(b) Any K-parameter Lévy process in law fXs : s A Kg associated with

fms : s A Kg satisfies fXs : s A Kg ¼
d
fYs : s A Kg.

(c) For any K-parameter Lévy process in law fXs : s A Kg associated with

fms : s A Kg and any s ¼ s1e
1 þ � � � þ sNe

N A K we have Xs ¼ Xs1e1 þ � � �

þ XsNeN almost surely.

(iii) For j ¼ 1; . . . ;N let Lj be an additive subgroup of Rd such that Lj A BðRdÞ.

Assume that for all i0 j we have Li VLj ¼ f0g. Let mte j ðLjÞ ¼ 1 for tb 0 and

j ¼ 1; . . . ;N. Then fmsg is unique-generative.

Remark 4.3. From Theorem 4.2 (ii) it follows that if fms : s A Kg is unique-

generative and fXs : s A Kg is a K-parameter Lévy process in law associated with fmsg,

then the N processes fXte1 : tb 0g; . . . ; fXteN : tb 0g are independent.

Proof of Theorem 4.2. (i) It is easily verified that fYsg is a K-parameter Lévy

process in law. To see that it is associated with fmsg, note that for s ¼ s1e
1 þ � � �

þ sNe
N we have LðYsÞ ¼ LðV 1

s1
Þ � � � � �LðV N

sN
Þ ¼ m

s1
e1
� � � � � msN

eN
¼ ms by Remark 3.7.

(ii) It follows directly from (i) that (a) and (b) are equivalent. Assume that fmsg

is unique-generative. Let fXsg be a K-parameter Lévy process in law associated with

fmsg and let s ¼ s1e
1 þ � � � þ sNe

N A K . Then, from (b),

PðXs1e1þ���þsNeN ¼ Xs1e1 þ � � � þ XsNeN Þ ¼ PðYs1e1þ���þsNeN ¼ Ys1e1 þ � � � þ YsNeN Þ

and since this probability is trivially 1, we get (c).

Conversely, assume that (c) holds. Let fXsg be a K-parameter Lévy process in law

associated with fmsg. Let nb 1 and 0 ¼ s0a s1a � � �a sn. Define random vectors

Zi; j for i ¼ 1; . . . ;N, j ¼ 0; . . . ; n by

Zi; j ¼ Xsne1þ���þsne i�1þsje i :

Thus, Zi;0 ¼ Zi�1;n for ib 2 and Z1;0 ¼ 0. It follows from (i) of Definition 3.1 that

Zi; j � Zi; j�1 with i ¼ 1; . . . ;N and j ¼ 1; . . . ; n are independent. Since
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Zi; j ¼ Xsne1 þ � � � þ Xsne i�1 þ Xsje i almost surely

by (c), we see that Xsje i � Xsj�1e i with i ¼ 1; . . . ;N and j ¼ 1; . . . ; n are independent.

Since this holds for arbitrary nb 1 and 0a s1a � � �a sn, fXte1 : tb 0g; . . . ; fXteN :

tb 0g are independent Lévy processes in law with LðXe j Þ ¼ me j for all j. Choosing

their modifications which are Lévy processes we now see that (b) holds.

(iii) We use induction in N. In the case N ¼ 1 the theorem is trivially true.

Assume that the theorem holds for N � 1 in place of N. Let fXs : s A Kg be a K-

parameter Lévy process in law associated with fmsg. By (ii) it is enough to verify

condition (c). Consider the ðN � 1Þ-dimensional cones K1 and K2 generated by

fe2; . . . ; eNg and by fe1; e3; . . . ; eNg, respectively. Then, by the induction hypothesis,

both fms : s A K1g and fms : s A K2g are unique-generative. The restrictions fXs : s A K1g
and fXs : s A K2g are associated with fms : s A K1g and fms : s A K2g, respectively. Let

s ¼ s1e
1 þ � � � þ sNe

N A K and define s1 ¼ s� s1e
1 A K1 and s2 ¼ s� s2e

2 A K2. Using

condition (c) for the two restrictions, we decompose Xs as

Xs ¼ Xs1 þ ðXs � Xs1Þ ¼a:s: Xs2e2 þ � � � þ XsNeN þ ðXs � Xs1Þ;ð4:1Þ

Xs ¼ Xs2 þ ðXs � Xs2Þ ¼a:s: Xs1e1 þ Xs3e3 þ � � � þ XsNeN þ ðXs � Xs2Þ:ð4:2Þ

By equating (4.1) and (4.2) it follows that ðXs � Xs1Þ � Xs1e1 ¼a:s: ðXs � Xs2Þ � Xs2e2 . The

left-hand side is concentrated on L1 and the right-hand side on L2. Hence they are zero

almost surely. Therefore, Xs � Xs1 ¼ Xs1e1 almost surely. Inserting this in (4.1) we get

the almost surely identity in (c) for fXs : s A Kg. r

Example 4.4. In the case N ¼ 2 the additive subgroups L1 ¼ Qd and L2 ¼ ðcQÞd
with c A RnQ satisfy the condition L1 VL2 ¼ f0g. We can make examples of (iii) with

these L1 and L2, using compound Poisson convolution semigroups with Lévy measures

restricted to Qd or ðcQÞd .

We can now prove the main Theorem.

Proof of Theorem 4.1. We may and do assume that ms has zero mean for all s.

The covariance matrix satisfies vs1þs2 ¼ vs1 þ vs2 and vts ¼ tvs.

Step 1. Proof in the case d ¼ 2. Suppose there exists a K-parameter Lévy process

in law fXs : s A Kg on R2 associated with fmsg. Let

e1 ¼ 1
ffiffiffi

2
p

ffiffiffi

2
p

2

� �

; e2 ¼ 2
ffiffiffi

2
p

ffiffiffi

2
p

1

� �

; e3 ¼ 2
ffiffiffi

2
p

ffiffiffi

2
p

2

� �

:

Let K0 ¼ fs1e1 þ s2e
2
: s1; s2b 0g be the least cone containing fe1; e2g. Since e1 and e2

have rank one, there are t1; t2 A ½0; 1� such that ve1 ¼ t1e
1 and ve2 ¼ t2e

2. This is easily

seen using diagonalization by orthogonal matrices. It follows that for any tb 0, mte1

and mte2 are concentrated on L1 and L2, respectively, where L1 ¼ fða;
ffiffiffi

2
p

aÞ : a A Rg and

L2 ¼ fð
ffiffiffi

2
p

a; aÞ : a A Rg. Hence, by Theorem 4.2 (iii), the restriction fms : s A K0g is

unique-generative. Since fXs : s A K0g is a K0-parameter Lévy process in law asso-

ciated with fms : s A K0g, it follows from Remark 4.3 that Xe1 and Xe2 are independent.

Let ðXsÞj denote the jth coordinate of Xs. Since ve3�e1aK e3 � e1 ¼ diagð1; 0Þ and
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since Xe3 � Xe1 ¼
d
Xe3�e1 , we have ðXe3 � Xe1Þ2 ¼ 0 almost surely. Similarly,

ðXe3 � Xe2Þ1 ¼ 0 almost surely. Now, using Xe3 ¼ Xe j þ ðXe3 � Xe j Þ for j ¼ 1; 2, we get

ðXe3Þ1 ¼ ðXe2Þ1 and ðXe3Þ2 ¼ ðXe1Þ2 almost surely. Hence ðXe3Þ2 and ðXe3Þ1 are in-

dependent. It follows that ve3 is diagonal, say, ve3 ¼ diagða1; a2Þ with a1; a2b 0. We

have ve3�e1 ¼ diagðt; 0Þ with tb 0 since ve3�e1aK e3 � e1. Now, looking at non-

diagonal entries of ve1 ¼ ve3 � ve3�e1 and ve1 ¼ t1e
1, we conclude that t1 ¼ 0. Thus

ve1 ¼ 0. Hence ve3 ¼ ve3�e1aK e3 � e1, which shows that a2 ¼ 0. The same kind of

argument gives a1 ¼ 0 and ve2 ¼ ve3 ¼ 0. It follows that me1 ¼ me2 ¼ me3 ¼ d0. Since

the system fe1; e2; e3g is linearly independent, it is a weak basis of K . Hence, by

Remark 3.7 ms ¼ d0 for all s A K , contradicting the assumption of nontriviality.

Therefore, the associated Lévy process in law does not exist.

Step 2. Proof in the case db 2. Suppose that we can find a K-parameter Lévy

process in law fXs : s A Kg on R
d associated with fms : s A Kg. Since fmsg is nontrivial,

there is s0 A K such that vs0 0 0. Let p ¼ rankðs0Þ. Then pb 1. Using diagonal-

ization, we can decompose s0 as s0 ¼ s1 þ � � � þ sp, where, for each jb 1, s j A K and

rankðs jÞ ¼ 1. Since vs0 ¼ vs1 þ � � � þ vs p , we have vs j 0 0 for some jb 1. Thus we

may and do assume that rankðs0Þ ¼ 1 and vs0 0 0. There is a d � d orthogonal

matrix r such that rs0r 0 ¼ diagða; 0; . . . ; 0Þ with a > 0, where r 0 is the transpose of r.

Define

K0 ¼ fs ¼ ðsjkÞ
d
j;k¼1 A K : sjk ¼ 0 except for j; k A f1; 2gg;

K1 ¼ fr 0sr : s A K0g:

Then K1 is a cone and s0 A K1.

Notice that covðrXsÞ ¼ rvsr
0 for s A K , since covðXsÞ ¼ vs. If s A K1, then rvsr

0
aK

rsr 0 A K0 and hence rvsr
0 A K0. Therefore, if s A K1, then ðrXsÞj ¼ 0 almost surely for

j0 1; 2.

For u A S
þ
2 let T0u A K0 be the natural extension of u and let Tu ¼ r 0ðT0uÞr. Then

T is an isomorphism from S
þ
2 to K1. Define X 0

u ¼ ððrXTuÞ1; ðrXTuÞ2Þ
> for u A S

þ
2 .

Then fXTu : u A S
þ
2 g is an S

þ
2 -parameter Lévy process in law on R

d , and such is

frXTu : u A S
þ
2 g. It follows that fX 0

u : u A S
þ
2 g is an S

þ
2 -parameter Lévy process in law

on R
2. Let m0

u ¼ LðX 0
u Þ. Then fm0

u : u A S
þ
2 g is an S

þ
2 -parameter convolution semi-

group on R
2 and covðm0

uÞ equals the restriction of rvTur
0 to the first 2� 2 block. Since

rvTur
0
aK rðTuÞr 0 ¼ T0u A K0, we see that covðm0

uÞaS
þ
2
u. We have covðm0

u0Þ0 0, where

u0 is chosen so that Tu0 ¼ s0. But this is impossible in view of Step 1. Hence,

fXs : s A Kg does not exist. r

The main Theorem 4.1 shows that there does not exist a Brownian motion with

parameter in S
þ
d . We can refine this by showing that there is no Brownian motion with

parameter in the set S
þþ
d of positive-definite symmetric d � d matrices.

Proposition 4.5. Let db 2. There is no family fXs : s A S
þþ
d g of random vari-

ables on R
d satisfying the following two conditions (i)–(ii).

(i) If s1; . . . ; sn A S
þþ
d with nb 2 and s j � s j�1 A S

þþ
d for j ¼ 2; . . . ; n, then Xs2

� Xs1 ; . . . ;Xsn � Xs n�1 are independent.

(ii) If s2; s1 A S
þþ
d with s2 � s1 A S

þþ
d , then LðXs2 � Xs1Þ ¼ Ndð0; s

2 � s1Þ.
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Proof. Assume that fXs : s A Sþþ
d g satisfies (i)–(ii). We show that there exists an

Sþ
d -parameter Lévy process in law f ~XXs : s A Sþ

d g associated with the canonical Sþ
d -

parameter convolution semigroup, whereby we get a contradiction by Theorem 4.1.

Let fekg
y

k¼1 be a sequence of positive numbers strictly decreasing to 0 and I denote

the d � d identity matrix. Let s A Sþ
d . By (ii), LðXsþekI � XsþelI Þ ¼ Ndð0; ðek � elÞIÞ

for k < l. Hence ~XXs :¼ limk!y XsþekI exists in probability.

Let s1; s2 A Sþ
d with s1aSþ

d
s2. Then LðXs2þekI � Xs1þekþ1I Þ ! Lð ~XXs2 � ~XXs1Þ as

k ! y by construction of ~XXs2 and ~XXs1 , and LðXs2þekI � Xs1þekþ1I Þ ¼ Ndð0; s
2 � s1

þ ðek � ekþ1ÞIÞ ! Ndð0; s
2 � s1Þ by (ii). That is, Lð ~XXs2 � ~XXs1Þ ¼ Ndð0; s

2 � s1Þ. In

particular Lð ~XXsÞ ¼ Ndð0; sÞ and the family f ~XXs : s A Sþ
d g satisfies Definition 3.1 (ii) and

Lemma 3.8 (v) 0. Let fs jgj¼1;...;n be Sþ
d -increasing. Since Xs jþ1þekþjI � Xs jþekþjþ1I , j

¼ 1; . . . ; n� 1, are independent by (i) it follows by letting k ! y that ~XXs jþ1 � ~XXs j ,

j ¼ 1; . . . ; n� 1, are independent. Thus f ~XXs : s A Sþ
d g satisfies Definition 3.1 (i). By

Lemma 3.8 it follows that f ~XXs : s A Sþ
d g is an Sþ

d -parameter Lévy process in law asso-

ciated with the canonical Sþ
d -parameter convolution semigroup. r

5. Generative convolution semigroups.

In this section the main results are concerned with the problem whether a given

cone-parameter is generative. We have already seen that if K has a strong basis then

any K-parameter Lévy process is generative. Next we consider the case where ms is

purely non-Gaussian.

Lemma 5.1. Let fe1; . . . ; eNg be a weak basis of K and fms : s A Kg be a convolu-

tion semigroup such that ms has triplet ð0; ns; 0Þ for s A K . Let n ¼ ne1 þ � � � þ neN . Then,

for each s A K , ns is absolutely continuous with respect to n. Moreover, the family

ffs : s A Kg of densities fs of ns with respect to n can be chosen such that

(i) fe1ðxÞ þ � � � þ feN ðxÞa 1 for x A Rd ,

(ii) fsðxÞ ¼ s1fe1ðxÞ þ � � � þ sNfeN ðxÞ for s ¼ s1e
1 þ � � � þ sNe

N A K and x A Rd ,

(iii) sn ! s implies fsnðxÞ ! fsðxÞ for x A Rd ,

(iv) fsðxÞb 0 for s A K and x A Rd .

Proof. Let s ¼ s1e
1 þ � � � þ sNe

N and let K0 ¼ fs A K : s1; . . . ; sN A Qg. Note that

e1; . . . ; eN A K0. Since ns ¼ s1ne1 þ � � � þ sNneN by Remark 3.7 it follows that ns is

absolutely continuous with respect to n. Fix a density f0
s of ns with respect to n for

s A K0. Then

f0
e1ðxÞ þ � � � þ f0

eN ðxÞ ¼ 1; f0
s ðxÞ ¼ s1f

0
e1ðxÞ þ � � � þ sNf

0
eN ðxÞ; f0

s ðxÞb 0;ð5:1Þ

each holding for n-almost every x. Let B ¼ fx A Rd : ð5:1Þ holds for all s A K0g. Then

nðRdnBÞ ¼ 0. Define

fsðxÞ ¼ f0
s ðxÞ for s A K0 and x A B;

fsðxÞ ¼ s1f
0
e1ðxÞ þ � � � þ sNf

0
eN ðxÞ for s A KnK0 and x A B;

fsðxÞ ¼ 0 for s A K and x A RdnB:
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Then, fs is a desired density of ns with respect to n; (i) and (ii) are from the definition of

fs; (iii) is from (ii) since sn ! s if and only if snj ! s for j ¼ 1; . . . ;N; (iv) is from the

definition for s A K0 and by approximation using (iii) for s A KnK0. r

Consider the family ffs : s A Kg of densities of Lemma 5.1 and define, for s A K ,

Ds ¼ fðt; xÞ A Rþ � R
d
: 0a ta fsðxÞg:ð5:2Þ

Theorem 5.2. Let K be an arbitrary cone with a weak basis fe1; . . . ; eNg. Let

fms : s A Kg be a K-parameter convolution semigroup on R
d such that ms is purely non-

Gaussian for all s, that is, ms has triplet ð0; ns; gsÞ. Then fmsg is generative.

To construct an associated K-parameter Lévy process in law, let fJðAÞ : A

A BðRþ � R
dÞg, defined on a probability space ðW;F;PÞ, be a Poisson random measure

with intensity measure lðdðt; xÞÞ ¼ dtnðdxÞ, where n ¼ ne1 þ � � � þ neN . For s A K define

Xs ¼

ð
Ds

x1fjxja1gðxÞðJðdðt; xÞÞ � lðdðt; xÞÞÞ þ

ð
Ds

x1fjxj>1gðxÞJðdðt; xÞÞ þ gs:ð5:3Þ

Then fXs : s A Kg is a K-parameter Lévy process in law associated with fmsg.

If, in addition,
Ð
R

d ð15jxjÞnsðdxÞ < y for all s A K , then fXs : s A Kg is a K-parameter

Lévy process.

The first integral on the right-hand side of (5.3) is a stochastic integral only deter-

mined up to null sets. Hence, we may change XsðoÞ on a null set of o’s while (5.3)

remains true. Thus, the last statement says that it is possible to choose XsðoÞ for o A W

and s A K such that all paths are K-cadlag.

Proof of the theorem. We may and do assume gs ¼ 0 for all s. Let D1
s

¼ Ds V fðt; xÞ : jxja 1g, D2
s ¼ Ds V fðt; xÞ : jxj > 1g, f 1

s ðt; xÞ ¼ x1D1
s
ðt; xÞ and f 2s ðt; xÞ

¼ x1D2
s
ðt; xÞ. Let U 1

s ¼
Ð
f 1s ðt; xÞðJðdðt; xÞÞ � lðdðt; xÞÞÞ and U 2

s ¼
Ð
f 2s ðt; xÞJðdðt; xÞÞ.

That is, U j
s is the jth term on the right-hand side of (5.3) for j ¼ 1; 2. Using

dns ¼ fs dn it follows that

lðD2
s Þ ¼ nsðfx : jxj > 1gÞ < y;

ð
j f 1

s j
2ðt; xÞlðdðt; xÞÞ ¼

ð
jxja1

jxj2nsðdxÞ < y:

Hence, U 2
s exists as Lebesgue-Stieltjes integral with respect to Jðdðt; xÞÞ while U 1

s exists

as stochastic integral with respect to the compensated measure Jðdðt; xÞÞ � lðdðt; xÞÞ.

Moreover, it is well-known that for s1; s2 A K and z A R
d we have

Ee
ihz;U 1

s2
�U 1

s1
i
¼ exp

ð
ðe

ihz; ð f 1

s2
� f 1

s1
Þðt;xÞi

� 1� ihz; ð f 1
s2 � f 1s1Þðt; xÞiÞlðdðt; xÞÞ;ð5:4Þ

Ee
ihz;U 2

s2
�U 2

s1
i
¼ exp

ð
ðe

ihz; ð f 2

s2
� f 2

s1
Þðt;xÞi

� 1Þlðdðt; xÞÞ:ð5:5Þ

Step 1. Let s1; s2 A K with s1aK s2. Then, Ds1JDs2 and
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ð f 1
s2 � f 1s1Þðt; xÞ ¼ x1D1

s2
nD1

s1
ðt; xÞ ¼

x1fjxja1gðxÞ if fs1ðxÞ < ta fs2ðxÞ

0 otherwise.

�

ð5:6Þ

Therefore, using fs2 � fs1 ¼ fs2�s1 and ns2�s1ðdxÞ ¼ fs2�s1ðxÞnðdxÞ, we find that
ð

ðe
ihz; ð f 1

s2
� f 1

s1
Þðt;xÞi

� 1� ihz; ð f 1
s2 � f 1s1Þðt; xÞiÞlðdðt; xÞÞ

¼

ð

R
d

x1fjxja1gðxÞðe
ihz;xi � 1� ihz; xiÞns2�s1ðdxÞ:

Inserting this in (5.4) we find that LðU 1
s2
�U 1

s1
Þ has triplet ð0; 1fjxja1gðxÞns2�s1ðdxÞ; 0Þ.

Similar arguments show that LðU 2
s2
�U 2

s1
Þ has triplet ð0; 1fjxj>1gðxÞns2�s1ðdxÞ; 0Þ.

Step 2. Let nb 2 and fs jgj¼1;...;n be K-increasing. Then D
j

sk�1JD
j

sk
and

ð f j

s k
� f

j

sk�1Þðt; xÞ ¼ x1
D

j

s k
nD j

s k�1
ðt; xÞ for j ¼ 1; 2 and k ¼ 2; . . . ; n. Hence, since the

sets D1
s2
nD1

s1
; . . . ;D1

s nnD
1
sn�1 ;D

2
s2
nD2

s1
; . . . ;D2

snnD
2
sn�1 are disjoint, U

j

sk
�U

j

sk�1 , j ¼ 1; 2, k

¼ 2; . . . ; n, are independent; consequently also Xsk � Xsk�1 ¼ ðU 1
sk
�U 1

sk�1Þ þ ðU 2
sk
�U 2

sk�1Þ,

k ¼ 2; . . . ; n, are independent. Moreover, by Step 1, LðXs k � Xsk�1Þ ¼ msk�sk�1 .

Step 3. Let sn; s A K with sn ! s. By Lemma 5.1 (iii) we have fsnðxÞ ! fsðxÞ for

all x A R
d . Hence, 1Ds n

ðt; xÞ ! 1Ds
ðt; xÞ for l-a.e. ðt; xÞ. Moreover, by Lemma 5.1 (i),

(ii), (iv) it follows that

0a frðxÞa jr1j þ � � � þ jrN j for r ¼ r1e
1 þ � � � þ rNe

N A K :ð5:7Þ

Decompose sn and s as sn ¼ sn1e
1 þ � � � þ snNe

N and s ¼ s1e
1 þ � � � þ sNe

N . Since

snj ! sj for all j ¼ 1; . . . ;N, (5.7) shows that there exists a constant c > 0 such that

1Ds
ðt; xÞ; 1Ds n

ðt; xÞa 1½0; c�ðtÞ. Since

je ihz; ð f
1
s n
� f 1

s Þðt;xÞi � 1� ihz; ð f 1
sn � f 1

s Þðt; xÞija
1

2
jhz; ð f 1

s n � f 1
s Þðt; xÞij

2

a
1

2
jzj2jð f 1sn � f 1s Þðt; xÞj

2
a

1

2
jzj2jxj21fjxja1gðxÞ1½0; c�ðtÞ;

je ihz; ð fs n� fsÞðt;xÞi � 1ja 2 1fjxj>1gðxÞ1½0; c�ðtÞ;

it follows from (5.4)–(5.5) that LðU j
s n �U j

s Þ ! d0 for j ¼ 1; 2.

Step 4. Note that by Step 2 fXs : s A Kg satisfies (i)–(ii) of Definition 3.1. It

is immediate that X0 ¼ 0 almost surely. Since Xs ¼ U 1
s þU 2

s it follows from Step 3

that fXs : s A Kg is continuous in probability. Thus, we have shown that fXs : s A Kg is

a K-parameter Lévy process in law. Moreover, it is associated with fms : s A Kg since

we have LðXsÞ ¼ ms for s A K by Step 2.

Step 5. Now assume in addition that
Ð

R
d ð15jxjÞnsðdxÞ < y for all s. Let

ðT1;Y1Þ; ðT2;Y2Þ; . . . ; be a random sequence such that Jðdðt; xÞÞ ¼
P

m dðTm;YmÞðdðt; xÞÞ

almost surely. Then, using (5.3) we have that

Xs ¼
X

m:TmafsðYmÞ

Ym �

ð

jxja1

xfsðxÞnðdxÞ almost surely:ð5:8Þ
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where
P

m:TmafsðYmÞ
jYmj < y almost surely. We stress that Xs is only determined

up to null sets by (5.8). Let us define XsðoÞ such that all paths are K-cadlag.

Let p A N and define up ¼ pðe1 þ � � � þ eNÞ A K . Choose a null set N A F such that
P

m:TmðoÞafup ðYmðoÞÞ
YmðoÞ is absolutely convergent for all p A N and o A N c. Note

that if s A K then there is some p A N such that saK up. Hence, since fsðxÞa fu pðxÞ

by Lemma 5.1 (ii) and (iv), the series
P

m:TmðoÞafsðTmðoÞÞ
YmðoÞ is absolutely convergent

for all s A K and all o A N c. For s A K let

XsðoÞ ¼

P

m:TmðoÞafsðYmðoÞÞ
YmðoÞ �

Ð

jxja1 xfsðxÞnðdxÞ if o A N c

0 if o A N:

�

Note that s1aK s2 implies fs1a fs2 . Using this it follows that all paths of fXs : s A Kg

are K-cadlag. In fact, the K-left limits can be calculated as follows. Let fsng in Knfsg

be K-increasing with sn ! s. Then

Xsn !
X

m:Tmafs n ðYmÞ for some n

Ym �

ð

jxja1

xfsðxÞnðdxÞ

pointwise on N c. Thus, fXs : s A Kg is a K-parameter Lévy process. r

In the next result we specialize to the case d ¼ 1.

Theorem 5.3. Let K be an arbitrary cone. Let fms : s A Kg be a K-parameter

convolution semigroup on R. Then fmsg is generative.

Proof. Let ðAs; ns; gsÞ be the triplet of ms. Here As is a nonnegative number. By

the previous theorem there exists a K-parameter Lévy process in law fX 1
s g associated

with the convolution semigroup f~mmsg, where ~mms is the distribution with triplet ð0; ns; gsÞ.

Let fVt : tb 0g be a standard Wiener process, independent of fX 1
s : s A Kg. If s1aK s2,

then As1aAs2 . Hence, fX 2
s : s A Kg defined by X 2

s ¼ VAs
is a K-parameter Lévy pro-

cess in law such that LðX 2
s Þ has triplet ðAs; 0; 0Þ. Hence, fXsg defined by Xs ¼ X 1

s þ X 2
s

is a K-parameter Lévy process in law associated with fmsg. r

The following fact on S
þ
d -parameter convolution semigroups is a consequence of

Theorem 5.2 combined with Theorem 4.1.

Proposition 5.4. Let K ¼ S
þ
d with db 2. Let fms : s A Kg be a K-parameter

convolution semigroup on R
d such that

Ð

jxj2msðdxÞ < y and vsaK s for all s A K , where

vs is the covariance matrix of ms. Then ms is Gaussian, that is, the Lévy measure ns of ms
is zero.

Proof. Let ðAs; ns; gsÞ be the triplet of ms. Decompose ms as ms ¼ m 0
s � m

00
s , where m 0

s

and m 00
s are infinitely divisible with triplets ð0; ns; gsÞ and ðAs; 0; 0Þ, respectively. Then m 0

s

and m 00
s have finite second moments and the covariance matrices v 0s and v 00s of m 0

s; m
00
s

satisfy vs ¼ v 0s þ v 00s . Hence, v 0s; v
00
s aK s. Since fm 0

sg is a K-parameter convolution semi-

group there is a K-parameter Lévy process associated with it by Theorem 5.2. But

Theorem 4.1 says that this is impossible if fm 0
sg is nontrivial. It follows that ns ¼ 0.

That is, ms is Gaussian. r
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Remark 5.5. Let db 1 and consider the problem of constructing a family of

probability measures fms : s A S
þ
d g on R

d which is closed under convolution and satisfies

that s is the covariance matrix of ms. In the case d ¼ 1 let Sþ
d ¼ Rþ. Then the latter

condition is that s A Rþ is the variance of ms. In this case there are many such families.

In fact, any infinitely divisible distribution on R with unit variance corresponds to a

family with the desired properties.

Let db 2. It is remarkable that, up to a change of drift, the canonical S
þ
d -

parameter convolution semigroup is the only family with the desired properties. Pre-

cisely, if fms : s A S
þ
d g satisfies the conditions stated above, then ms ¼ m#

s � dms
, where ms

is the mean of ms and fm#
s : s A S

þ
d g is the canonical S

þ
d -parameter convolution semi-

group. This follows since fms � d�ms
: s A S

þ
d g is a convolution semigroup on R

d

satisfying the assumptions of the preceding proposition.

Let K have a strong basis. As stated in Theorem 4.2, any convolution semigroup

is generative. We consider the following question: When is a K-parameter convolution

semigroup unique-generative?

Theorem 5.6. Let Nb 2 and K have a strong basis fe1; . . . ; eNg. Let fms : s A Kg

be a K-parameter convolution semigroup on R
d with triplet ðAs; ns; gsÞ.

(i) Assume that for some i and k with i0 k we have either (a) or (b), where

(a) Ae iðR
dÞVAek ðR

dÞ0 f0g;

(b) ne i and nek are not mutually singular.

Then fms : s A Kg is multiple-generative.

(ii) Assume that fmsg is Gaussian, that is, ns ¼ 0 for all s A K . Then fmsg is

unique-generative if and only if Ae iðR
dÞVAek ðR

dÞ ¼ f0g for all i0 j.

(iii) If fmsg is unique-generative, then any K-parameter Lévy process in law

fXs : s A Kg associated with fmsg has a K-parameter Lévy process modification.

Remark 5.7. We do not know whether every K-parameter Lévy process in law has

a K-parameter Lévy process modification.

Proof of Theorem 5.6. (i) Let us for simplicity assume that either (a) or (b) holds

with i ¼ 1 and k ¼ 2. Then there are three generating triplets ðA j
; n j

; g jÞ, j ¼ 0; 1; 2,

such that A0 or n0 is non-zero and such that ðAe j ; ne j ; ge j Þ ¼ ðA0 þ A j
; n0 þ n j

; g0 þ g jÞ

for j ¼ 1; 2. Let fV j
t : tb 0g, j ¼ 0; . . . ;N, be independent Lévy processes on R

d such

that LðV j
1 Þ has triplet ðA j

; n j
; g jÞ for j ¼ 0; 1; 2 and LðV j

1 Þ has triplet ðAe j ; ne j ; ge j Þ for

j ¼ 3; . . . ;N. Define fXs : s A Kg by Xs ¼ V 0
s1þs2

þ V 1
s1
þ � � � þ V N

sN
for s ¼ s1e

1 þ � � �

þ sNe
N A K . Then fXsg is a K-parameter Lévy process and it is associated with fmsg.

Since fV 0
t g is a non-trivial Lévy process, fXte1g and fXte2g are not independent. Thus,

by Theorem 4.2 (ii) fms : s A Kg is multiple-generative.

(ii) If for some i0 j we have Ae iðR
dÞVAe j ðRdÞ0 f0g then by (i) fmsg is multiple-

generative. Conversely assume that Ae iðR
dÞVAe j ðRdÞ ¼ f0g for all i0 j. Let Lj

¼ Ae j ðRdÞ for j ¼ 1; . . . ;N. Let m#
s ¼ ms � d�gs . Then m#

te j ðLjÞ ¼ 1 for every tb 0

and j. By Theorem 4.2 the convolution semigroup fm#
s g is unique-generative.

(iii) Let fmsg be unique-generative. Let fXsg be a K-parameter Lévy process

in law associated with fmsg. Since fXte j : tb 0g is a Lévy process in law it has a

Lévy process modification fU j
t : tb 0g. For simplicity let fU j

t : tb 0g be chosen
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such that all paths are cadlag. For s ¼ s1e
1 þ � � � þ sNe

N A K define X 0
s as X 0

s

¼ U 1
s1
þ � � � þU N

sN
. Then fX 0

s : s A Kg is a modification of fXs : s A Kg by (c) of Theorem

4.2. We claim that all paths of fX 0
s : s A Kg are K-cadlag. Indeed, K-right con-

tinuity follows from right continuity of U
j
t . If sn ¼ sn1e

1 þ � � � þ snNe
N is K-increasing,

sn A Knfs0g and sn ! s0 ¼ s01e
1 þ � � � þ s0Ne

N , then, by Lemma 2.4, there exists a

unique nonempty subset a of f1; . . . ;Ng such that sn "a s
0. Therefore, limn!y X 0

sn

¼
P

j B a U
j

s0
j

þ
P

j A a limn!y U
j

s n
j
exists. r

Example 5.8. Let K ¼ S
þ
2 and ms ¼ N2ð0; sÞ. Note that S

þ
2 has a weak basis

fe1; e2; e3g, where

e1 ¼
1 0

0 0

� �

; e2 ¼
0 0

0 1

� �

; e3 ¼
1 1

1 1

� �

:

Let K0 ¼ fs1e
1 þ s2e

2 þ s3e
3
: s1; s2; s3b 0g be the least cone containing fe1; e2; e3g.

Then, from Theorem 5.6 it follows that fms : s A K0g is a unique-generative K0-parameter

convolution semigroup. Note also that, by Theorem 4.2 (ii), any K0-parameter Lévy

process in law associated with fms : s A K0g is identical in law with

fðV 1
s1
; 0Þ> þ ð0;V 2

s2
Þ> þ ðV 3

s3
;V 3

s3
Þ> : s ¼ s1e

1 þ s2e
2 þ s3e

3 A K0g;

where fV 1
t : tb 0g, fV 2

t : tb 0g and fV 3
t : tb 0g are independent standard Wiener pro-

cesses on R. In particular, it follows that any K0-parameter Lévy process in law asso-

ciated with fms : s A K0g has a continuous modification.
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