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Abstract. For a Brownian motion with a constant drift X and its maximum process
M, M — X and 2M — X are diffusion processes by the extensions of Lévy’s and Pitman’s
theorems. We show that ¢M — X is not a Markov process if ¢ e R\{0,1,2}. We also
give other elementary proofs of Lévy’s and Pitman’s theorems.

1. Introduction.

Let B={B;,t =0} be a one-dimensional Brownian motion starting from 0 and,
for ue R, define BW = {Bﬁ” ),@0}, a Brownian motion with constant drift u, by
B" = B, +ut. We set

M, = max B, and M,(”) — max BW.

0<s<t 0<s<t

It is well known that M®W — B®W = {p™ — B >0} and 2MW — BW =
{2M,(” ) Bg" ), t =2 0} are diffusion processes, both starting from 0. When x4 = 0, these
facts are known as Lévy’s and Pitman’s theorems ([12], [17]) and, in this case, these
processes are identical in law, respectively, with a reflecting Brownian motion on [0, o0)
and with a three-dimensional Bessel process. See also Ikeda-Watanabe [9], Ito-McKean
and Revuz-Yor [18]. Also for the general case, some interesting properties, includ-
ing the explicit forms of the transition densities, are known. For details, see Bingham
[2], Fitzsimmons [6], Graversen-Shyriaev [7], Imhof [8], Rogers [19], Rogers-Pitman
and so on. Some of these results are further extended to other classes of stochastic pro-
cesses. For example, see Bertoin [I], Matsumoto-Yor [14], [15], [16], Saisho-Tanemura
21].

In this paper we consider a general linear combination Zéc”)) =cMW —BW, ceR,
for a Brownian motion B¥) with constant drift. The main purpose of this paper is
to show that Zgé‘))’s are Markov processes only in trivial, Lévy’s and Pitman’s cases
(¢ =0,1,2, respectively) and are not in any other cases. That is, the main theorem is
the following.

THEOREM 1.1.  For any ¢ e R\{0,1,2}, Z((f)) is not a Markov process.
The assertion of seems to have been a folklore to some people (see,

e.g., Yor [22]). In fact, Jeulin has shown that ZES)) =c¢M — B is not a time-
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homogeneous Markov process if ¢>1 and ¢ # 2. gives a complete
answer.

There is an important difference between Lévy’s and Pitman’s cases; the natural
filtration of M (¥ — B is identical to that of B¥ in the former case, while the natural
filtration of 2M (W — B ig strictly included in the latter case. It also seems to have
been a folklore that, for the natural filtration of Z((c”)), the strict inclusion holds if and
only if ¢ = 2. In fact, Mansuy recently answered this affirmatively. While we may
prove [Theorem 1.1 from his result, we do it in an elementary way.

Our method to prove is based on the expression for the probability
density of the joint distribution of (M,(” ) , BS” )) also due to Lévy and may be considered
as an extension of that of Imhof [8], who has considered Pitman’s case. Since some
modlﬁcatlons of our method lead to elementary proofs of the Markov properties of Z(( ))
and Z(z), and only a sketch is given in [8], we also spend some part of this paper to
them for completeness.

Finally, let {LE” 1> 0} be the local time of B at 0. Then the process
{cL* +|B¥|,t = 0} has the same law as ngll) and is called a perturbed Brownian
motion. We should note that this process has also been studied extensively by many
authors. See, e.g., Carmona-Petit-Yor [3], [4], Emery-Perkins [5] and so on. See also
for related topics.

This paper is organized as follows. In Section 2, we consider finite dimensional
joint distributions of (B, M(®)). The results play fundamental roles in the following
sections. In Section 3, we show explicit forms of the probability densities of ZEC) for
fixed > 0. In Sections 4 and 5, we consider M¥ — B(#) and 2MW — B(¥ respec-
tively, and give another understanding of Lévy’s and Pitman’s theorems. Sections 6
and 7 are devoted to a proof of Theorem 1.1.

Finally the authors would like to thank Professor Marc Yor for his valuable

discussions and suggestions.

2. Joint distributions of (X, M).

As is mentioned in Introduction, we are concerned with a Brownian motion B(#
with constant drift. Denote by B(#:¥ = {BS” b > 0} the Brownian motion with con-
stant drift x4 defined on a usual ﬁltered probability space (2,7, P;(%,)), where x stands
for the starting point. We let M(# {M .t = 0} be its maximum process, that is,

M,(”)’x = max B>

0<s<t

When x =0, we simply denote as B and M
Throughout this paper, we set

2
(2.1) o(t, &) = : exp (— %)

and

2
22) K68 = exp<—%)=—i<p<z,f>.

0¢
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First we show the following.

LemMa 2.1. (i) For x e R and t > 0, the joint distribution of (BY""*, M"Y is given
by
(2.3) P(B~ € da, M € db) = 2e™ /2@ (£ 2b — 4 — x) da db

for b = avx = max(a,x).
(i) Omne has

(2.4) P(B"" e da, M < b) = pg”)(t, x,a)da,
for b= av x, where
(2.5) P (t,x,a) = e {10 — x) — p(t,2b — a — x)}.

ProoF. When u =0, formula is nothing else but the classical Lévy theorem
on the joint distribution of (B}, M;") (cf. [10]). The general result is obtained from the
Cameron-Martin theorem. Formula is easily obtained by integrating both hand
sides of in b. ]

Next, setting

9 (w),x (1), x () _ (&)
M = max B and ML= max B, s>t

we show the following.

PROPOSITION 2.2.  Consider a Brownian motion B"W):* with drift u starting from x.
Then, for any n=1,2,..., and {t;};_, with 0 =1y <t; <--- < t,, one has

(2.7) P(BY~ eday,...,BY" eday, MM < by, .., MM < b,)

n
- le()ﬁl)(fhai—l,ai) . dal .. .dan
i=1

n
—u2t, )2+ u(a,—x
= e 2T py (2,051, 40) - day - - - day,
i=1

where 1, = t; — t;_1, ap = x and pp(t,a,a’) = p,go)(r, a,a).

Proor. When n =1, we have shown the assertions in [Lemma 2.1. Assume that
(2.7), replaced n by n — 1, holds. Then the Markov property of B implies

P(B"* eda,... B eday, MV < by,... M

h—1,h =

< by)
— E[P(B\"" eday,..., B~ e day, M < by, ... M < b,| 7, )]

_ (1), a1 (u) a1
— E[P(B e da,, M, 0,7, < byl {B cday.. ,"ixedan N M/m<b ..... M <bn}]

n—2—1 =

= P(Bglﬂ)’x €day,... ,BE:?’X € dan,l,M,(l”)’X <bi... ,M('H)J;'H < bnfl)

1 th-2,

X Pg(,f)(fm an—laan) dana



522 H. Matsumoto and Y. OGURA

where we have used for the last equality. Now formula (2.7) follows from the

assumption of the induction. ]
Noting
0
(2.8) %pb(t, x,a) =2k(t,2b —a — x),
we obtam explicit expressions of the joint distribution of (B 51),...,355‘ ),M,(l” ),

Mt" ..1,,) by taking the differentials in b;. For example, we obtain
(2.9) P(B" € day, B € day, M{" € dby, M{"), < by)
= 287”212/2+'ua2k([1,2b1 — al)pbz (Tz,al,az) dayda,db,

P(B" € day, B e day, M{" € dby, M{"),  db,)
= 46—,u2t2/2+,ua2k([1, 2b; — al)k(‘[z, 2by —ay — az) dada>db,db,.

These formulae will be used in the sequel.

3. One-dimensional distributions.

In this section we give explicit expressions for the probability densities of Z((ff){t for

fixed 1 > 0. We proceed separately in the four cases of ¢ =1, c =2, ¢c>1and ¢ # 2,
and ¢ < 1. It is easy to see the ex1stence of the density of Z( )) = MM — B
xXeR, t>0, Wthh we denote by q l(t ).

By [Lemma 2.1, we have

0 b
31) E[f(Z")] = 2J de e e (1 2h — a — x) f(cb — a) da
— 0

(c),
X
for any non-negative Borel function f.

ProrosiTiON 3.1. When ¢ =1, one has for z =0
(3.2) 017 (0,2) = 2P | (e, 4 )
’ 0

and, in particular,

(3.3) a1 (:2) = 20(1,2).

PrOOF. On the right hand side of [3.1], we change the variables from a to z by
z=>b—a and then the order of integrations. Then we obtain
0

E[f(M"" — BW™)] = 2712 L e f (z )dzJ O f(1,b 4z — x) db

X

0

e 1 (z) dzJ eMPk(t,z + p)dp

— Qe K12 JOO
0

0

and formula [3.2). Formula follows from since we can carry out the in-
tegration in ¢ if u=0. O
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The next [Proposition 3.2 has been given in Imhof and is proven from (3.1).
Propositions 3.3 and B.4 below are also proven from and we omit the proofs.

A

ProposITION 3.2, When ¢ =2, one has for z = x

22 Sinh p(z — x)

(3.4) g1 (1,2) = 2e k(t,z — x),
and
(3.5) g5 1 (1,2) = 2(z — x)k(t,z — x).

PrOOF. On the right hand side of [3.T}, we change the variables by z = 2b — a and
then the order of integrations. Then we obtain

o0
(@M — B/)] = 2¢ #7112 j

X

£ (2)e k(1,2 — X) dzJ e db,

X

from which formulae and follow. O
ProposITION 3.3. When ¢ > 1 and ¢ # 2, one has for z = (¢ — 1)x
(). 2 z/(c-1) .
(3.6) Cl(f) T(tz) =2e7* 1/2-p(x+2) J ek(t,z— x+ (2 —c)b) db.

ProrosITION 3.4. When ¢ < 1, one has for ze R

(3.7) qg‘))’;‘(z, z) = 2e W1/ 2mulxts) JOO eMk(t,z—x+ (2 —c)b) db.
’ xVv(z/(e-1))

4. Markov property of M — X.

By using the equality for the filtrations U{Z((f’){s;s <t} =0{B;s<t} =% and
repeating similar computations to those in this section, we can show, for any s < ¢ and
A e Fy,

E[f(Z{}) ); ) = JO Ell;; Z)f) € dz] JO fE)p) (e = s,21,22) dos,

where the transition density pgf))(t,zl,zz) is given by

1
(4.1) pgf))(t,zl,zz) = exp (_iﬂZt —w(zy — 21))

o0
X |:2J k(Z,Zl +z> + b)e/‘b db + ¢(l, zZ1 — Zz) — (0(1,21 + Zz) .
0
Although we could obtain the desired results from this, we cannot apply this method for
Z((zﬂ)) =2MW — BW_ So, we choose the following way, which may be applied to the
study on Zg‘)) after some modification.

First we consider the two-dimensional distributions. For ¢ < f;, we denote by
qgf))’z(tl,zl,tz,zz) the density of the joint distribution of (ZE{‘){ Z],Zéf‘i ,) with respect to
the Lebesgue measure:

(1), 1 € le,Z(ﬂ) N € de) = q(ﬂ) (ll,Zl, 12,22) d21d22.

(1), 1 (1),2
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PropoSITION 4.1. For any t; < tp, z1,z5 > 0, one has

(4.2) qgf))72(11721, h,23) = ngt))(lhoaZl)pgf))(fzazl,zz),

where 10 =t — t1. Moreover one has

(43) P(Z(({l){tz € d22 |Zglﬂ)) f = Zl) = pgﬁ)(fz, 21,22) dZZ.

Proor. For non-negative Borel functions f; and f, on R, we write
E Z(ﬂ) Z(ﬂ) —E Z(ﬂ) Z(ﬂ) M(ﬂ) < M(ﬂ)
[.fl( (1)7“)]‘2( (1)’[2)] [fi( (1)711).f2( (1)712)’ N = ll,tz]
+EAZ) VA M > M,

where M&? is defined by (2.6). We compute the two terms on the right hand side
separately.

Noting that M,(Z” ) = M,(I” 32 on the set {Mt(lﬂ <M t(lﬂ 32}, we rewrite the first term with
the help of (2.10):

o0 by o by
ELAZY ) A2 ) MY gM,ﬁf‘L]:J dblj dalj dsz da

0 — 00 b1 — o0
X fl(bl — al)f2<b2 — Clz) . 4€—y2t2/2+,ua2k(t1’2b1 — Cl])k(fz,2b2 —ap — al).

Change the variables by z; = by — a; and z; = b, — a,. Then, after changing the order
of integrations, we obtain

(4.4) ELAi(Z) VA2 )M < M)

Y 0
= J _f] (Zl) le J f2<22) de . 46—,“212/2—#22
0 0

0

X J V k(tl,Zl —|—b1)db1j e”bzk(rz,zl + 20+ by — b])dbz
0 by

0 0

><J e”blk(l‘l,Zl-i-bl)dle k(12,21 + 22+ B) dp.
0 0

On the other hand, by using (2.9) and noting that A Vs —Bg‘ ) if

(1),[2 - 1
M,(1” BN Mt(l" 32, we rewrite the second term:

0 b by
ELA(Z{, ) 52l )M > i) = | v | da | da
]

0 0
X fl(bl — al)fz(bl — Clz) . 287”2t2/2+ﬂa2k(l1, 2b; — Cl])pbl (Tz,al,az).

Now change the variables by z; = by — a;, i = 1,2, and the order of integrations. Then,
using (2.5), we obtain
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BLACZ{ MR, )M > i) = | i da [ ) de

« 2e—u2tz/2—uzzj ! k(t1, by + z1) dby - [p(12,21 — 22) — (12,21 + 22)],

0
which, combined with [4.4), yields [4.2).

Formula is a consequence of [3.2), (4.1) and [4.2). O
We proceed to a computation of the general finite dimensional distribution of Z&”)).
For this purpose fix a sequence 4 = {t;}/., with 0 =17 <1, <--- <t,. We introduce

the random numbers 7; by 7, =0, 7}, =1 and
Ty =min{i > T M) < M)} j 22,
and we set
(4.5) o0 =0(4) =max{j; T; < n}.
Note that ¢ = k means Mt(n”) = MW

Iy 1,01y,
Then we show the following.

ProposITION 4.2. (i) Let f;, i =1,...,n, be non-negative Borel functions on R, x R.
Then, under the notation above, one has

Hf(Z )0'—1]

o0 o0 n
= J dzy - - J dzy - eIk H[(P(Tiazi—l —zi) — (i, zie1 + zi)]
0 0

i=2
J Hf(z,, - 2k(t1, 21 + by )e” db;.
(i) For any k with 2 < k < n and any sequence 1 = j; < j, < --- < jx = n, one has

Hf YYo=k, Ty = j,1 i<k

o0 ee} )
frd J le e J dzn . e_lu t"/z_:uzn
0

X H [p(ti,zie1 — zi) — (T3, 2im1 + 21))]
fe{l,, np\{ 15 i}

o 1
<[ T At 2ktn. 2+ e apy
i=1

o Ji—l
J H /i <Z”Zﬁ/> 2k(Tie s Zje -1+ 2y + Broy)e P dpy

I=jj-1

J Hf <Zl72ﬁ/) 2k T/k’ZJk 1 +ij +ﬂk)eﬂﬁk dﬁk

I=jk



526 H. Matsumoto and Y. OGURA

ProoOF. (i) Since ¢ =1 means M,(,f?,, < MZ(I”) for every i =2,3,...,n, we deduce

from |Proposition 2.2

n o0 by by
E|[] sy, Mo = 1] :JO a’bIJ wdal---J det, - Hf —a;,by)
i=1 - -

X 271011, 2by — ay) pe, (T2, a1, @2) ++ P, (Tas An—t, @n).-

Changing the variables by z; = by —a;, i =1,2,...,n, and the order of integrations, we
obtain the assertion.
(ii) We prove by induction in k. When k =2, it is easy to show

Hf )i =12, Tz‘]z]
ZJfJ:E

o0 bl b] o0 b2 bz ,
:J dle dal"'J dajzlJ dsz dajz---J da, - e~ F 2

[1AZy), M) M € dby, MyY) | < by, M, e dby, MY, < by

0 —0 —o0 by —0 —o0
J—1 j—1

X 2k(t1,2by — ay) H Dy, (Ti, ai—1,a;) - H fi(b1 —ai,by)
i=2 i=1

sz(TJ2,2b2 aj,—1 — ajz H pbz Ti,di—1,d Hf a17b2

i=p+1 i=p

Change the variables by z;=b;y —a; for i=1,...,j,—1 and z;=by —a; for i=
J2,...,n and the order of integrations. Changing again the variables by f;, = b; and
B> = by — by, we obtain for k =2.

Assume that [4.6) holds and consider the case where k is replaced by k£ + 1. Then
the Markov property of B yields

Hf )J(tn) k+1aT2:j2a---»Tk+1:jk+1]

Jk
=F Hﬁ(zgﬁ),zf’Mz(fﬂ)) : g(Zéfl)),z,kaMz(fﬂ))Qa(tfk) =k,Tr=jr,....,TH = jk],

where, denoting by E,[ | the expectation with respect to a Brownian motion with drift
A starting from a,

e 0]
9(zj., bk) = J Ep, 2, H iz M;~ t]k) Mtjkﬂ,l—zjk < bx,
i=jk+1
(w) (1)
lek+1*1*’/k7t/k+1*z/k dbk+1’ g1 "l n =l = bk“ ’

We can simplify g(zj,,br) in a similar way to the case of k =2 and we obtain
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0

o0
g(zj,, by) = J dzj, ., - J dz, - o1 (=) 2= n(z0—2;,)
0 0

Jiar—1
x T fitzibe) - 11 [p(zis 21 = 2i) — (i, 201 + 21)]
i=ji+1 i€ {jetL o n\ {1 }

o0 n
X J H fi(zia bk + ﬁk+l) ' 2k(fjk+1 y Zjpg1—1 + Zjks + ﬁk+1)eﬂﬁk+l dﬂkJrl'

0 i=jr1

Now, using the assumption of the induction and inserting this integral representation for
9(z;,, br), we obtain with &k replaced by k + 1. O

Taking simpler generic functions f;(z;) which depend only on z; in [Proposition 4.2}
we can sum up both hand sides of in k and {Ji,...,jk} and obtain the following
theorem. It shows that ZE{‘)) = MW — B is a Markov process whose transition prob-
ability density with respect to the Lebesgue measure is given by pgf))(t,z,z’ ).

THEOREM 4.3.  For any sequence {t;}!_, with 0 =ty < t; < --- < t, and non-negative
Borel functions f; on R., it holds that

Hﬁ(Zﬁf‘)),,,.)] = J dzy - J dzy - Hﬁ(Zi)pEf))(Ti,Zf—l,Zi)a
i=1 i=1

0 0

E

with convention zo = 0.

5. Markov property of 2M — X.

In this section we show the Markov property of Zé;‘)) =2M® — B and an explicit
expression of the transition probability. We proceed in a similar way to the previous
section.

First we consider the two-dimensional distribution. For ¢ < t,, we denote by
qg){z(tl,zl,tz,zz) the density of the joint distribution of (ZE;){ znZ((;)), ,) with respect to
the Lebesgue measure:

P<ZE;)),I1 € dZI’Zgg))Jz € dzz) = qgg))72(ll,21, 12,22) d21d22.

Then, by a similar way to that in the proof of [Proposition 4.1, we can show the
following:

ProposITION 5.1. For any t; < tp, z1,z5 > 0, one has

(5.1) qgg)),z(tl,zl, h,z2) = pgg))(h,O, Z1)pgg))(1'2,21,22),
where pgg))(t, z1,22) is given by

(52) 8t 21,) = R 0,2y — ) plr 4 22)
and

(5.3) pgg))(t,o,zz) = 267/12[/2Mk(17 Z).

U
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Moreover, one has
(1)
(5.4) P(Z(z),
For a computation of the general dimensional distribution of th)), we show the

following companion to [Proposition 4.2 Since we can prove it by a similar induction,
we omit the proof.

h € de | ZE;))JI = Zl) = pg;;(fz,Z],Zz) de.

PROPOSITION 5.2. (i) For any sequence {t;};_, with 0 =1ty < t; < --- <t, and any
non-negative Borel functions f;, i=1,...,n, on Ry X R, one has

E

Hﬁ(z((éu)) [-aMt(iﬂ));O- = 1] = J le T J dzn : eiﬂ%n/zzk(tlazl)
i1 - 0 0

0

ZIAAZy n n
X J et =) Hfi(ziabl) ' 1_[191;1 (ti,zio1,2i) dby.
i=1 i=2
(i) For any k with 2 < k < n and any sequence 1 = j| < j, < --- < jx = n, one has
(5.5) E|[]5zs), Mo =k Ty=j,.... Tk = jk]
i=1

0 0 )

0 0
ZiA-AzZ, 21 J—1
xzk(thl)J H phl(Tth'*laZi) Hﬁ(zi7bl)dbl
0 i=ji+1 =i
>< o o e
Zj A Az N
X 2k<Tjk’ij—1 +zZ, — 2bk—1> J H pbk(fh Zi—1, Zi)
bt i=ji+1

5 H(2bi=1) Hﬁ(zi’ by.) b,

=Jk
where Hiegpb(ri,zi,l,zi) =1 by convention.
Next we show the following.

PROPOSITION 5.3.  For any sequence 1 = j; < j» < --- < ji = n and any non-negative
Borel functions f;, i=1,...,n, on R., one has

n
> E
=k

ZiA-AzZy J2—1

= mdz JOO dz, 2(z;) - eI D (1 2 J (ziyzic1,zi) db
JO e Hf() (11)0 I1 2o (zinzion,z0) dby

i:j1+1

Hﬁ(zgél))t'%()- = /a T2 = jZa SRR Tk = ]k]
i=1

A AZy

Zik-1
X o0 X 2k(t/'k71 s Zje—1 T Zjpy — 2bk—2) J H Pbi_y (Tl" Zi=1s Zi) dbjc—
b2 i€ {je-1+ 1 n\{i}

Z

X 2k(Tjk;ij71 + Zj, — 2bk,1) J €2ﬂbk dbk
bi—1
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Proor. Replace the functions fi(z;,b;) in by fi(z;). Then we have

(56) E|[[A(Z% )io=kTo=jo...,Tc = jk]
i=1
= J le T J dZn Hﬁ(zl) . efﬂztn/zfﬂzn
0 0 i=1

ZiA-AzZy J2—1

H Pb, (Ti7zi—l7zi) db; x ---
i=j1+1

X 2k(t1,zl)J

0

Zjp_y N N Ji—1

H Do (Tiyzie1, 2i) dbj—y

X 2/{(‘5le sy Zja—1 T Zj — 2bk—2) J
i=jk-1+1

bk—Z

Zj A AZy
X 2k<fjk7zjk*1 +Zj — Zbkfl) J

n
2uby
A T pocrinzir, z) dbx.
b1

i=jr+1
Using this formula, we prove the assertion by a (reverse) induction in k. When

k = n, every product in pp(7;,z;—1,z;) is equal to 1 by our convention and the assertion is
trivial.

Assume that we have the assertion for k. Note that

n

Y E

{=k—1

n

i=

ﬁ(zgl))7zl)7 g = /7 T2 = j27 RS Tk—l = jk—l]
1

=F Hﬁ(ZE;‘))m);o-:k— I,Tz :jZ;---ka—l :jk_1]

i=1

n

+ > M E Hﬁ(ZE$)7t[);a:/,T2:jz,...,Tk:jk].

Jk=ik—1+1 {=k

i=1

We apply (5.6) to the first term on the right hand side and use the assumption of the

induction for the second term, replacing 4 in by the partition 4’ = {£,}/%,. Then
we obtain

n n

Z E Hﬁ(zgél)).,,);d =0, Th=jy....T1 = jk—l]
(=k—1 Li=1 '
(00 o n s 2y A Az, J2—]
— | e j de [] fizi) - 7m0 2k<z1,zl>J oy (5is 211, 23) by
JO 0 i=1

0 i=ji+1

Zip g A Azy Jioi=l

X X Q’k(?ik—z?ij—Z*l 1y Zfa T 2bk*3> J

pbk,z (Ti7 Zi—1, Zi) dbk*Z
bi—3

i=jp_2+1

Zjp_ N A

X 2k(Tjk—1 y Zjga—1 7+ Zjpy — 2bk—2) J F(bk—l) dbj_1,

b2
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where F(by_;) is given by

2y
F(bk-1) H Do (Tiy zie1, Zi) - @K
i=jr_1+1

Zn

+ Z H Pbi_, (Th Zi—1, Zi) : Zk(Tjk7ij_1 +2zj, _2bk—1) J ezﬂbk dby.
Je=Jk-1tlie{jioi+1,..,n\{jk} Pt

Moreover, in view of the formula

F(bk71> Db TiyZi—15Z )J ' zﬂbk dbk
dbkl z]}:Il Alll lbkl
and
n
H ijk—l/\“-Azn(TaZi—l?Zi) = 0’
=Jj—1
we obtain

Zj_ A AZ n Zn
J Fbr)dber = [ pos(zinzion,zi) - J ™% dby,.
br—

br-2 i=ji1+1
Now we have shown

n

ZEHf );o =1, TZ—]27~~7Tk1:jk1]

(=k—1
0 ZiAAzZy J2—1
2ty /2—pz,
— | dz J danf TR DL (1 zl)J H Db (Tis zie1, zi) dby

0 0 i=ji+1
Zj A AZy Jie—1—1

X X 2k(fjk—za Zjea—1 Tt Zjpy — 2bk—3) J H Pbi_, (szi—lazi) dby—2
br3 i=jr_r+1

n Zn
2uby.
X 2k<rj/<*172jk7171 + Zj/c—l - 2bk*2) H pbk2<Ti7Zilazi)J e . dbk7
bk

i=jr_1+1
which implies the assertion of the proposition with k& replaced by k — 1. O]

The following theorem shows that ZE; ) = 2MW — B is a Markov process with
the transition probability density pgf))(t,z,z’ ) in and (5.3).

THEOREM 5.4. For any sequence {t;}!_, with 0 =ty < t; < --- < t, and non-negative
Borel functions f; on R., one has

E Hﬁ(zéﬁ‘)),,,.)] =JO dzl---jo dzn-l_Ilﬁ<zi>-Hp§§)><r,-,z,-_1,z,~>,

where t,=t;i—ti_1, i=1,...,n and zo = 0.
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Proor. Recall the simple relation

a_abl’b(‘[,Z,Z/) = —2k(t,z+z —2b)

and use [Proposition 5.2(i) and [Proposition 5.3, Then we obtain

T 070 s W N,
E Hfi(Z(zﬂ)J,) =E Hﬁ(z(5)7;,),0'— 1]
i=1 i=1
D) IWETRERA
=2 (=2 i=1
= J dzy - J dZani<Zi) Lot Mn/2
0 0 i=1
ZIANANZ, N
X 2k(ll,Zl)J [ e (zir2im1, 2i) - €202 dlb
0 =2
n o0 o0 n )
_I_ ZJ le .. J dzn Hﬁ(zl) . e_,u tn/z_,uZn
j=270 0 i=1
ZINNZy
X 2k(t1,Zl)J H pbl(‘[i,Zi_l,Z,'> dbl
0 ie{2,..n\{jn}

X 2k(t;, 2,1 + 21, — 2b1) J Y
by

o0 o0 n
= J le . J dzn Hﬁ(zl) . e—ﬂ2tn—/12n2k<tl , Zl)
0 i=1

0

i=2 1

ZIAANZy a n Zn b
XJO {_6—191 [HPbl(Ti,ZihZi) L eﬂzdb2]}db1'

Now, noting that

n
szl/\m/\zn(fiazi—lazl') - 07
i=1
we obtain the assertion of the theorem after some easy manipulations.

6. Non-Markov property of cM — X when ¢ > 1 and ¢ # 2.

531

In this section we prove [Theorem 1.1 in the case of 1 < ¢ < 2. We can prove the
assertion in the case of ¢ > 2 by the same way and we leave the details to the reader.
We first give explicit expressions of the probability densities of the two and three

dimensional distributions of ZEL{‘)) =cMWH — B,
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PROPOSITION 6.1.  Assume ¢ > 1 and ¢ # 2. Then, for any t| < tp, the distribution
of (Z((S).tl,ZEf)) L) on R? admits a density qgf))z(tl,zl,tz,zz) with respect to the Lebesgue
measure which is given by

(z1 Az2)/ (1)

qﬁf))z(tl,m, r,72) = 24 /2 HE J k(ti,z1 + (2 — ¢)by) db,
: 0

z/(c—1)
X 2J e”Cbzk(rz,Zl + 2z —chbi + (2 —¢)by) dbs

by

+ ecubl [W(szl _ 22) — (0(1'2,21 +z7 + 2(1 — C>b1>] )

where T, = tr — 1.

We can prove this proposition in the same way as Propositions B.1 and 5.1 and we
omit it.
We next consider the three-dimensional distribution.

PROPOSITION 6.2. Assume ¢ > 1 and ¢ # 2. Then, for any t; < t, < t3, the distri-

bution of (Z((g)vtl,ZES)’tz,Zéf))’h) admits a density qgf))ﬁ(tl,zl, th, 22, 13,23) given by

( ) (Z] NZp /\23)/((?71) )
6](f) (121,00, 22,13, 23) = J 207 BRI (1), 2 4+ (2 — ¢)by)
’ 0

X f&(cl)l)(bl,Zsz,Zz, 13, 23) dbl?

1

where t; = t; — t,_; and f((cl)‘) = E?Zl f((f)l) with

() (z2 A z3)/(c—1)
f(cl)ll =4J k(‘L’z,Z] + zp — ¢cby +(2—C)b2)db2
) by

z3/(e=1)
% J €cﬂb3k(f3722 +z3 — cb2 + (2 — C)b3> db37

() (227 23)/(e=1) .
f(CﬂZZZJ e"k(t2,21 + 22 — ¢b1 + (2 — ¢)ba)

X [p(t3,220 — 23) — @(13,22 + z3 + 2(1 — ¢)by)] dbs,

S8 =20p(ra,z1 — 22) — (2, 71 + 22+ 2(1 = ©)by)]

z3/(c—1)
% J ecﬂb3k(T3,Zz +z3 — cby + (2 — ¢)b3) dbs,
by

S8 = e p(ta,21 — 22) — p(t2,21 + 22 + 2(1 — €)y)]

X (13,220 — 23) — @(13,20 + 23 + 2(1 — ¢)by)].

Proor. For non-negative Borel functions fi, f>, f3 on R,, we set
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(), 02\ & (), 1,/ )3\ E (o), 50 M =M, = M6l

L =E[A(ZY VAEZE VHZE )M < M, MY < M),

0,13

I = E[fi(Z() )VAZE VAEZE )M, < M < M),

)13 5]

I = E[i(Z}) VAZE VA2 0 My, < M MY, < M),
We compute each I; using (2.7) and (2.8).
For I, we have

0 b 0 by 0 bs
11 = J db] J da1 J dsz chJ db3 J da3 f1 (Cb] — a1)f2<Cb2 — az)f3(cb3 - a3)
0 —0 by —o0 by — o0

X 86_”2[3/2+”a3k(11,2b1 — al)k(fz,zbz —a; — az)k(f3,2b3 —ay — Cl3).

Changing the variables by z; = cbh; —a;, i =1,2,3, and the order of integrations, we
obtain

o0 0

f2(22) dzy J f3(Z3) dzz - Ze_ﬂ2t3/2—ﬂ23
0

I = Jocfl(zl)dzlj

0 0

(z1 Az2AZ3)/(c—=1) ()
X J k(tl,Zl -+ (2 — C)b])ﬁc§71<b1,21,12,22, T3,Z3) db,.

0

For I, from (2.7), we deduce

o0 b] o0 b2 bZ
[2 = J dbl J da1 J dsz dazj da3 -fl(Cbl — al)fz(cbz - Clz)f3(€b3 — Cl3)

0 —o0 by — o0 — 0
X 4€7H2t3/2+ﬂa3k<[1,2b1 — al)k(T2,2b2 —ay; — az)pbz(r3,a2,a3).

Change the variables by z; =2b; —a; and z; =c¢by, —a;, i=2,3, and the order of
integrations. Then we obtain

0 0

f2(22) dzs J f3(Z3) dzs - 2e_ﬂ2t3/2—ﬂ23
0

L = wal(zl)dzlj

0 0

(z1 Az2Az3)/(c—1) W
X J k(ll,Zl -+ (2 — C)b])f(c)72<b1,21,‘[2,22, 1'3,23) db;.
0

We can modify I35 and I; in the same way. O

For a proof of [Theorem 1.1, we consider the conditional probability distribution of

: (1) (1) .
given Z and Ziy

)
Z ()t

I
(C)a 13

(&)
qc (l‘l,Zl,[z,Zz,lg,Zj,)
(61) P<Zécﬂ)),t; — Z],Z(%t) _ 22) _ (¢),3

€ d23 | ZE'L;)

¢ dZ3.

14

=

qgfxz(thzb t2722)

If ZEC”)) were a Markov process, then the density qgf)) 3/ qgff))z would not depend on #; and
z1.  We show that it does depend on.
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For this purpose, using the following lemma which is easily proved by an ele-
mentary Laplace method, we consider the asymptotic behavior as #; | 0 of the density
on the right hand side of (6.1).

LemMA 6.3.  Let ¢ and k be the functions defined by (2.1) and (2.2), respectively, and
let z>0,5>0, a>0. Then, for any C' function g on [0,6], one has

o /
(6.2) J k(t,z+ ab)g(b) db = é(p(t, z) (g(O) +9 © t+ 0(t)>

0 oz

as t | 0. Moreover, one also has (6.2) for 6 = oo, provided that the function g on R,
satisfies |g(b)| + g’ (b)| < Cy1exp(Cab?) for some Cy,Cy > 0.

Now we are in a position to give a proof of in the case of 1 < ¢ < 2.
We notice that we can prove [Theorem 1.1 in the case of ¢ > 2 by the same arguments,

\

where we use a similar asymptotic formula for o < 0 to [(6.2).

PrROOF OF THEOREM 1.1 IN THE CASE OF | < c¢ < 2. From [Proposition 6.1 and
(here we consider only the leading term), we deduce

2 Z
40y 2(11, 21, 12,22) = 57— (1, 21) s (21,72, 22) - (14 0(1)

for the density qgf_‘))z of (Zt(f),Z,(zc)) as t; | 0, where
z2/(c—1)
¢2(21,T2,22) :2J e”cﬂk(rz,zl —I—Zz—l—(2—€)ﬁ)dﬁ
0

+ ¢(12,21 — 22) — (12,21 + 22).
(f )73 of the three-dimensional distribution, we deduce from

For the density ¢
6.2 and m&

(1) _
q(f)73(t17217 t25227 t3,Z3) - 2

2
67”213/2’”23]”((6,’;)(0,21,12,22,13,23)(p(t1,21) (I +o0(1))
—c

as 11 | 0. Hence we obtain

(1)
. q.5(t, 21,1, 20,13, 23) _ (o
(6.3) lim -3 = o KT/ 2 ul ZZ)VE”))(Z1,T2,22,T3,Z3),

alo QES)J(ZLI)ZI’IZ?ZZ) ¢

where
f‘(((é‘)(o) Z1,72,22, 13, Z3)

¢2(Zl7 T2722)

VES)(ZMTLZLTS;Z}) =
We set
c
W(z1,72,22) = 9(12,21 — 22) +2—_C(P(72,21 + 22).

It is not hard to see

f‘(((.‘l)l)(07217f27227r3723) = ¢(21,T2,22)¢2(22,T3,Z3) ) (1 + 0(1))
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and

$:(z1,72,22) = Y(z1,72,22) - (1 + 0(1))

as 7o | 0. However these show that the limit of rgf)) as 73 | 0 is independent of zj.

Thus we have to make a more precise inspection of f (C” ) and 0.
First we consider ¢,(z1,72,2z2). With the help of (2.2), we obtain

(6.4)  ¢y(z1,12,22) = Y(z1,72,22) — 5

2 z
pez/(e—1) 2
—Ce ¢<T27Zl+c_l>

e (2D
+’“j By, 21 + 2+ (2 — O)B) d

2—c¢ 0
2uc

(2—¢)*(z1 + 22)

as 72 | 0, where we have used for the second equality. )
Next we consider each f((f)l)i :f((”) (0,21,72,22,73,23), i=1,...,4. For f((c’)‘)l, by

c),i

using |Proposition 6.2 and [Lemma 6.3, we deduce

=Y(z1,12,22) + 720(72,21 + 22) + 0(120(72, 21 + 22))

(z2 Az3)/(c—1)
J k(‘L’z,Zl + 2z + (2 — C)bz) db»

f~(cll) —4
(0),1 0

z3/(c=1)
% J ec,ubgk(TS’ZZ +z3—chby + (2 — C)b3) dbs
by

4 J~z3/(0—1) b k( (2 )b )db ( ) 4

e k(t3,z0+ 23+ (2—c¢)b3) dbs - p(12,21 + 22) —
2—cJo (2-0)*(z1+ 22)
z3/(c—-1)

ek’ (13,20 + 23 + (2 — ¢)b3) db3}f2(p(72’ 21+ 22)
0

X {k(‘[g,Zz +z3) + cJ

+ o(120(12, 21 + 22)),

where k'(1,&) = (0/0¢)k(1, ).
For f((cl)‘)z, by Lemma 6.3, we obtain
~ 2
f((f)l)z 7 _¢ [0(t3,22 — 23) — (13,22 + 23)]0(72, 21 + 22)
2
+ 2
(2—1¢)(z1 + 22)

—2(c — Vk(t3,22 + z3) }120(12, 21 + 22) + 0(120(12, 21 + 22)).

{eulp(ts, 22 — 23) — p(13, 22 + 23)]

For f~((c’)‘)3 and f((f)l)m we have

z3/(c—1)
ﬂ%zzj k(3,23 + 23 + (2 = €)b3) dby - [p(t2,21 — 22) — p(12,21 + 2)]
’ 0
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and
fW, =Ttz 22— 23) — (13,22 + 23)][p(22, 21 — 22) = pl2,21 + 22)].
Summing up the results for J;((f)l)p we obtain

2
2—0)*(z1+ )

j‘((c-‘l)l)(0721772722773723) = ¢(217T2722>¢2<227 T3723) +
X {c,u[go(fg,zz —z3) — (13,20 + 23)] — 2¢k(13, 22 + 23)

z3/(c—1)
— 2cJ e”‘b3k'(13,22 + 23+ (2 —¢)b3) db3}‘[2(0(‘£2,21 + 22)
0

+ o(120(12, 21 + 22)).

Now, comparing this asymptotics as 7, | 0 of f((f)l) with that of ¢,(z1,12,22) given by
(6.4), we obtain the desired dependence of rgf)) (z1,72,22,73,23) on the right hand side of

on z; if we show

/(1)
(6.5) uJ W3 e(t3, 72 + 23+ (2 — €)bs) dbs + k(13,22 + 23)
0

z3/(c—1)
—l—J e k! (13,22 + 23 4 (2 — ¢)b3) dbs # 0.
0

To show this, we note, by integration by parts, that the left hand side is equal to

e —1 z3/(c—1)
_(276)'“] ecﬂb3k(T3,Zz + 23+ (2 — ¢)b3) dbs
- 0

L en ) emucnk(n@ - 1)
and consider the asymptotics as 73 | 0. Then, the first term is exactly of order
O(p(t3,22 + z3)) by and the third term is exponentially smaller than the
second term. Therefore the second term is the main term, which is strictly negative.
Now we have shown and the proof of [Theorem 1.1 in the case of 1 <c¢ <2 is
completed. ]

7. Non-Markov property of ¢cM — X when ¢ <1 and ¢ # 0.

In this final section we prove [Theorem 1.1 in the case of ¢ < 1 and ¢ # 0, which,
together with the results in the previous section, completes our proof of Theorem 1.1l
Note that Zés) = eM™ — B" takes values in the whole R in this case. However, the
method is the same as in the previous section and we show only a sketch of the proof.

At first we give explicit forms of the probability densities of the two and three
dimensional distributions. We can prove the following two propositions in the same

way as in the proofs of Propositions and 6.2



Markov or non-Markov property 537

ProrosITION 7.1.  Assume ¢ < 1 and ¢ #0. Then, for any t| < tp, the distribution
of (Z((C”)) tl7ZEC‘u)) ,) admits a density qgf))z(tl,zl, 12,22) with respect to the Lebesgue measure

which is given by

0
(]E?))z(ll,zl, 12,22) = e—u2t2/2—,uzz 2J k(tl,Zl + (2 - C)bl) db;
7 (21 A0)/(c=1)

0
X J €C’Ub2k(7.'2, Z1 + 20 — chy + (2 — C)bz) db,
by v (z2/(c—1))

4 J ety 71 + (2 — Ybr)
(zi Az2 A0)/(c—1)

X [p(t2,21 — 22) — @(12,21 + 22 + 2(1 — ¢)by)] dby |,

where 1) = tp — t, z1,z22 € R.

PROPOSITION 7.2. For any t; < t, < t3, the distribution of (ZéS)II,ZEf))tz,
) ' '

admits a density q(c)ﬁ(tl,zl,tz,zz,t3,23) given by

4
QEg)’:;(tl)Zla I, Z2, l3,Z3) = Z qgg)737i(t17217 b, 22,13, 23)5

i—1
where

quf)) 51 = e K 13/2—uzs J k(ti,z1 + (2 — ¢)by) dby
"’ (21 70)/(c—1)

o0
X J k(‘L’z,Zl + 2z, — ¢by —1—(2—6‘)[)2) db>
by v (z2/(c-1))

% J ecﬂb3k(f3, Zy + 23 — by + (2 — ¢)b3) dbs,
by v (z3/(c=1))

%
qgf))3 , = 46_/12[3/2_”23 J k([l,Zl + (22— C)b]) db,
o (z1 A0)/(c—1)

X J e“2 (1,21 + 2 — by + (2 — ¢)by)
b] V((Zz /\23)/(0—1))

X [p(t3,220 — 23) — 9(13,20 + 23 + 2(1 — ¢)b2)] db»,

qgf))3 3= Jo—HP1/ 213 J k(21 4 (2 = ¢)br)
)3, (z1A2270)/(c—1)

X [@p(t2,21 — 22) — @(72,21 + 22 + 2(1 — ¢)b1)] db)

« J e(fﬂb}k(TS,Zz +z3 —chy + (2 — C)bS) dbs,
b1 v (z3/(c—1))
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e8]
qgg)‘m = D¢ /21 J ek (ty,z1 + (2 — ¢)by)
o (z1 Az2 AZ3 A0)/(c—1)

X [p(12,21 — 22) — @(12,21 + 22 + 2(1 — ¢)by)]

X [p(13,22 — z3) — 913,22 + 23 + 2(1 — ¢)by)] db;.

Using these propositions, we can complete our proof of in the same
way as in the previous section.

PrROOF OF THEOREM 1.1 WHEN ¢ <1 AND ¢ # 0. We recall that, for 1 < 1, < 13,

9
P(Z(IL;) 13 € dZ3 |ZE5)) 1] =l Z(ﬂ) = 22) = (.3

(c), (¢),ta

) (t1,z1,t2,22,13,23)
7 Z3.

(]Ec){z(llyzlv 1, 22)

If ZES) were a Markov process, then the density on the right hand side would not
depend on #; and zj.

We fix zy,z2,z3 > 0. By [Proposition 7.1 and Lemma 6.3, it is easy to show

eiﬂ2t2/27ﬂ22¢3(217 TZ,ZQ)(P(II;ZZ) ' (1 + 0(1))’

(&) _
Q(Sg(tbzh t2722) - 1_¢

as 11 | 0, where

o0

(21,72, 22) = 2J ec”bk(rz,zl +z24+2—=c)b)db+ ¢(12,21 — z2) — (12,21 + 22).
0

For the numerator ¢
that the limit

E(’f)) ;» We also consider the asymptotics as 7; | 0. Then we can show

. 425))3(11;21712,22,13,23)
lim —=

110 qgfl.)),z(ll,zl,lz,zz)

=F (o (21,72, 22,73, 23)

exists and

) hgf)) (21,72, 22,73, 23)

~(1) _—ut13)2—u(z3—zy
r Z1,T2,22,73,23) = €
() ( T ) ¢3(ZI;T27ZZ)

where hg”) = hgf))l. with

0

o0 )
| = 4J k(12,21 + 22 + (2 — ¢)by) dsz e fe(t3, 20 4 23 — chy + (2 — ¢)b3) dbs,

by

hgﬁ)),z = 2J e he(ty, 21 + 22+ (2 — ¢)b2)[p(t3, 22 — 23) — 9(73, 22 + 23 + 2(1 — ¢)by)] dba,

hgf)).3 =2[p(12,z1 — z2) — (72,21 + 22)] J e fe(t3, 20 + 23 + (2 — ¢)b3) dbs,
’ 0

WY, = lp(ra,21 = 22) — p(r2, 21 + 22)][p(e3, 22 — 23) — plT3,22 + 23)].
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Next we consider the asymptotic behavior of fgé‘)) (z1,72,22,73,23) as 72 | 0. Again

we will have the same leading and second terms in the denominator and the numerator.
For the denominator, we obtain by

= Z1,T2, Z zcu T Ty, Z 4 .
$3(21,72,22) = Y(21, 12, z)+(2_c>2(21 T 20(72,21 +22) - (1 +0(1)).

For the numerator, some computations similar to those in the previous section yield

h(ﬂ) 2¢
(2—¢)*(z1 +22)

(o) (21, 72,22, 73, 23) = $3(22, 73, 23)Y (21, 72, 23) +
X |:/1[(0(T3722 - ZS) - (0(T3,22 + Z3)] — 2]((‘[3,22 —+ 23)

o0
- 2J e k! (13,20 + 23 + (2 — €)b3) db3 | 129p(12, 21 + 22)
0
+ o(120(12, 21 + 22)).

Finally, taking the asymptotics as 73 | 0 into account, we obtain the dependence of

f((f)) (z1,72,22,73,23) on z; and complete the proof of Theorem 1.1. ]
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