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Abstract. In the present paper, we introduce L>-torsion invariants 7;(k > 1) for
surface bundles over the circle and investigate them from the view point of the mapping
class group of a surface. It is conjectured that they converge to the L>-torsion for the
regular representation of the fundamental group. Further we give an explicit and com-
putable formula of the first two invariants by using the Mahler measure.

1. Introduction.

Let M be a complete hyperbolic 3-manifold. By the famous Mostow rigidity the-
orem, its fundamental group 7y M dominates all geometric information of M. Hence its
hyperbolic volume can be computed theoretically from a presentation of 7M. The
L?-torsion, which is an invariant of 3-manifolds, gives a method to do actually it.

Historically, L?-analogues of Reidemeister-Ray-Singer torsion were initiated by
Mathai [23], Carey-Mathai and Lott [16]. They are defined for a manifold with
trivial L2-(co)homology and positive Novikov-Shubin invariants by using the Fuglede-
Kadison determinant of von Neumann algebras. The first one called combinatorial
L’-torsion is a piecewise linear invariant and the second one called analytic L’-torsion
is a smooth invariant. Burghelea, Friedlander, Kappeler and McDonald [3| proved the
equality between the combinatorial L2-torsion and the analytic L>-torsion for compact
Riemannian manifolds. Afterward, Liick and Schick generalized the equality for
hyperbolic manifolds with finite volume. In the following, based on these facts, we
simply call these two types invariants the L’-torsion.

Moreover it is shown in [16], and that the L’-torsion for the regular
representation is equal to Gromov’s simplicial volume up to a constant. Thus, for a
hyperbolic manifold, the L>-torsion is essentially equal to its hyperbolic volume. On
the one hand, Liick gave a formula of the L’-torsion 7(M) which is computable
from certain presentation of the fundamental group. Therefore we could compute the
hyperbolic volume of M from a presentation of m; M. However, in general, it seems
to be difficult to evaluate directly the exact value of hyperbolic volumes from Liick’s
formula.

Now from recent works of Kashaev-Murakami-Murakami [25], it is conjectured
that certain asymptotic behavior of the colored Jones polynomial of a knot gives the
simplicial volume of the complement of a given knot in S°. Then it seems to be natural
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to raise the following problem: Does there exist another sequence of invariants which
approximates the simplicial volume?

The purpose of this paper is to construct a sequence of L?-invariants, which approxi-
mates the original L>-torsion (namely the simplicial volume), for once-holed surface
bundles over S!. The point to do is the lower central series of the surface group.
Roughly speaking, the regular representation of 7y M could be approximated by rep-
resentations on the /%-spaces defined by the nilpotent quotients of ;M.

Here the contents of this paper is the following. In the next section, we recall the
definition of the L?-torsion of 3-manifolds and Liick’s formula. In Section 3, we define
L2-torsion invariants for surface bundles over S' and state our volume conjecture for
them. In particular, we show that the conjecture is true for a certain special case. In
fact, if a given surface bundle has a finite covering so that it is topologically the product,
then our L’-torsion invariants approximate the simplicial volume. In Section 4, we
describe these invariants from the view point of the Magnus representations of the
mapping class group of a surface. In Section 5, we state certain integral formula on
the first term of these invariants. More precisely, we show that it is essentially equal to
the Mahler measure of the characteristic polynomial of the homology representa-
tion. By using the formula, we give some numerical calculations for low genus. Fur-
ther, we explain a geometric meaning of the formula for the first term. In the final
section, we give a similar formula of the second term of our L2-torsion invariants for
surface bundles with monodromies in the Torelli subgroup.

ACKNOWLEDGMENTS. The authors wish to thank M. Boileau, M. Furuta, M.
Kapovich, S. Kojima, Thang Le, X. S. Lin, H. Murakami and J. Porti for helpful
comments and many useful discussions.

2. L2-torsion and Liick’s formula.

In this section, we review the combinatorial definition of L?-torsion 7(M) and its
basic properties. See for details.

Let 7 be a discrete group and Crn denote its group ring over C. For an element
> gen g9 € Cm, we define the Cr-trace by trez(d e, 4g9) = e € C, where e is the unit
element in 7. Next, for a matrix B = (b;) € M(n, Cn), we extend the definition of Cz-
trace by means of

tI'Cn<B) = Z trcn(bii).
i=1

Now let us recall the definition of the L2-Betti number of B e M(n,Crn). We con-
sider the bounded 7m-equivariant operator

Ry é—?lz(n) —~ PP

i=1

defined by natural right action of B. Here /?>(7) denotes the regular representation of .

Namely it is the complex Hilbert space of the formal sums } _ 4,9 which are square
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summable. This is the Hilbert completion of a pre-Hilbert space Cr with respect to the
natural inner product

<Z e ﬂgg> => i,

gemnm gemn gen

We fix a positive real number K so that K > ||Rp||, holds where ||Rp||, is the operator
norm of the bounded n-equivariant operator Rp.

DEeFINITION 2.1. The L2-Betti number of a matrix B is defined by

h(B) = lim tre,((I — K~2BB*)") € Ry,

p—©

where [ 1s the identity matrix and B* denotes the adjoint of B. That is, for any element
S Ayg € Cr, we define Y 4,9 = A,9~'. By using this, we define B* = (b;).

Roughly speaking, the L?-Betti number measures the size of the kernel of a matrix
B. Hereafter we assume h(B) =0. Then, for a matrix with a coefficient in a non-
commutative ring, we introduce the determinant as follows.

DeriNiTION 2.2, The Fuglede-Kadison determinant of a matrix B is defined by

1 &1
detcr(B) = K" exp <— EZ; treq (1 — KzBB*)”)> e R-o,
p=I

if the infinite sum of non-negative real numbers > (1/p) trc,((I — K~2BB*)?) converges
to a real number.

REMARK 2.3. It is shown that the L?-Betti number b(B) and the Fuglede-Kadison
determinant detc,(B) are independent of a choice of a constant K. A possible choice is
given by

K = V- max{[lby], |1 <i,j <n},

where Hqu = Egen |ig| (u = Egenj‘{/g € CT[)

Now we define the L>-torsion of 3-manifolds. Let M be a compact connected
orientable 3-manifold. We fix a CW-complex structure on M. Then we may assume
that the action of 7; M on the universal covering M is cellular (if necessary, we have
only to take a subdivision of the original structure). Let us consider the Cr; M-chain
complex of M:

0— G(M,C) 2 (M, C) & (M, 0) % Co(M, C) — 0.

Since the boundary operator 0; is a matrix with coefficients in Crz; M, if we take the
adjoint operator 0; : C;_1(M,C) — C;(M,C) as above, we can define the i-th (combi-
natorial) Laplace operator 4;: C;(M,C) — C;(M,C) by

Al' - 6,~+1 o 01.*“ + 8;‘ ¢] 6,~.

Let us suppose that all the L>-Betti numbers 5(4;) vanish. Thereby as a generaliza-
tion of classical Reidemeister torsion, an (combinatorial) L>-torsion 7(M) is defined by
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DErFINITION 2.4.
3 i+1 .
(M) = HdetcmM(A,-)(_l) "eR.
i=0

Here it should be noted that the L>-torsion t(M) is a positive real number.

To ensure the well-definedness of the above definition, we need the positivity of all
the Novikov-Shubin invariant o(4;) for the Laplace operator 4;. Namely, this condi-
tion guarantees the convergence of the infinite sum in the Fuglede-Kadison determinant.
For the precise definition, we refer to [17], [18], [27].

For instance, it is known that if a compact connected orientable 3-manifold M sat-
isfies the following all conditions, the L2-Betti numbers b(4;) vanish and the Novikov-
Shubin invariants «(4;) are positive:

(i) mM is infinite.
(i) M is homotopy equivalent to an irreducible 3-manifold or S' x S? or
RP3#RP’.

(iii) If oM # &, it consists of tori.

(iv) If OM = g, M is finitely covered by a 3-manifold which is homotopy equiv-

alent to a hyperbolic, Seifert or Haken 3-manifold.

As a notable property of the L>-torsion 7, it is known that logz(M) can be inter-

preted as Gromov’s simplicial volume of M (see [18], [16], [11], [21]).

THEOREM 2.5. Let M be a compact connected orientable irreducible 3-manifold with

an infinite fundamental group such that 0M is empty or a disjoint union of incompressible
tori. Then it holds

logz(M) = C-[|M],

where C is a universal constant not depending on M and ||M|| denotes the simplicial
volume of M. In particular, if M is a hyperbolic 3-manifold,

1
logt(M) = ~ 3. Vol(M)

holds.
Finally we describe Liick’s formula for the L>-torsion (see Theorem 2.4).

THEOREM 2.6. Let M be as in the above theorem. Further we suppose that oM
is non-empty and myM has a presentation {sy,...,Sy1|r1,...,tny. Define A to be the
n x n-matrix with entries in ZnyM obtained from the Fox matrix (0r;/0s;) by deleting one
of the columns. Then the logarithm of the L*-torsion of M is given by

log (M) = —2logdetcq m(Ra)
<1
= —2nlogK + Z; tren i (I — K~244%)7),
p=1

where K is a constant satisfying K > ||R4||.,-
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These two theorems give a method to compute the simplicial volume of 3-manifolds
in terms of the presentation of the fundamental group.

3. Definition of 7.

From now on, we restrict ourselves to the L>-torsion of a surface bundle over the
circle S'.

Let 2, | be a compact oriented smooth surface of genus g > 1 with one boundary
component. For an orientation preserving diffeomorphism ¢ of 2, ;, we form the
mapping torus W, by taking X, ; x [ and gluing X, ; x {0} and X, | x {1} via ¢. This
gives a surface bundle over S!. Its difftomorphism type is determined by its mon-
odromy diffeomorphism, up to conjugacy and isotopy. Here an isotopy fixes setwisely
the points of the boundary of X, ;. However from here, we assume that a diffeo-
morphism on 2, | fixes pointwisely them and an isotopy also does. It is the technical
reason from the view point of the mapping class group.

For simplicity, we put 7 = 7;(W,,*) and I" = m;(Z,,1, *), where the base point * of
n and I is the same one on the fiber X, | x {0} = W,. Then 7 is isomorphic to the
semi-direct product of I and mS! =~ Z = {¢).

In order to construct a sequence of L>-torsion invariants which approximates the
original one, we consider the lower central series of /. Since I is the free group of
rank 2g, it is residually nilpotent. Namely, we have an infinite sequence

F]ZFDF2D---DFkD...

)

where Iy, = [I'y—1, 1] for k > 2. Let Ni be the k-th nilpotent quotient Ny = I" /I and
pr - I' — Ny be the natural projection.

In the previous section, we considered a chain complex C*(W(,,C) as a chain
complex of Cn-modules. Instead of this complex, we can use the following chain
complex

Co(Wp, I*(n)) = I* () ®cr Cu(Wy, C)

to define the same L’-torsion t(W,). The group I} is a normal subgroup of 7, so
that we can take the quotient group 7n(k) = 7m/I%. It should be noted that z(k) is
isomorphic to the semi-direct product N, < Z. We denote the induced homomorphism
n — n(k) by the same letter py. Thereby we can consider the chain complex

C.(W,, I*(n(k))) = I*(n(k)) ®cr Co( Wy, C)

through the projection p;. By using the Laplace operator on this complex, we can
formally define the k-th L>-torsion tx(W,) as follows.

DEerINITION 3.1.
3 (k) 1 i+l
(W) = [ [ detenu (41) ",
i=0

where 4 : Cy(W,, 2(n(k))) — Ci(W,,[*(z(k))) is the Laplace operator over /2(z(k)).
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Of course, the above definition is well-defined if every L2-Betti number b(Al(k))
vanishes and every Novikov-Shubin invariant oc(Al(k)) is positive for any i=0,1,2,3.
As for the L’-Betti numbers, we can show the following.

LEMMA 3.2.  The L?-Betti numbers of W, with coefficients in p;1*(n(k)) are all zero.

Proor. We can directly apply Liick’s result Theorem 2.1 for a factorization
n n(k) — Z of the canonical map n — Z, so that the assertion immediately follows.

]

On the other hand, at the time of writing, the positivity of the Novikov-Shubin
invariant for general operators seems to be an open problem. However, fortunately, it
is known that a weaker condition (namely, the operator AM s n(k)-determinant class)

I
guarantees the well-definedness of 7 (see and for details). In fact, the groups
n(k) = Ny X Z are all contained in a large class 4 of groups, which is determinant class,
considered in [29]. Therefore our L>-torsion invariants 75 can be defined for any k > 1
and they are all homotopy invariants.

Let x1,...,x2, be a generating system of the free group F>, = I". Then the fun-
damental group = is presented by

= <X1, cee 7x297l|ri = lxitil((0*<xi>)_l71 <i< Zg>7

where ¢, : I" — I' 1s a homomorphism induced by ¢ : 2, — 2, ;. Applying the free
differential calculus to relators rq,...,ry,, we obtain an Alexander matrix

6r,~
A= (a_xJ) e M(2g, Zn).

Then Liick’s formula for a surface bundle over S! is described as follows:
logt(W,) = —2logdetcr(Ry)
<1
= —4g10gK -+ Z; trCn(([ _ KizAA*)p),
p=1

where K is a constant satisfying K > ||R4]|| ...
Now let us derive a formula for the k-th L-torsion 7 (W,). Let py, : Cn — Cn(k)
be an induced homomorphism over the group rings. Thereby we put

ari
4= (e (52)) e MCag. €l
Xj
Moreover we fix a constant Kj satisfying Ki > ||R4.||.,- Then we have

log 74 (W,) = —2logdetcq) (R4, )

1
= —4glog K; + Z; trCn(k)((I — Kk_zAkA}i)p),
p=1

by virtue of the same argument as [Theorem 2.6.
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REMARK 3.3. It is easy to see that we can take constants K and Kj so that K = K.
for all k> 1 (see [6] Part 1, Chapter 1, Proposition 8).

REMARK 3.4. By using the above formulas, we have numerically computed approxi-
mate values of 7; and 7, for some examples in [14].

Here let us state our volume conjecture for a surface bundle over S!.

CoNJECTURE 3.5. For any orientation preserving diffeomorphism ¢ of 2,1, the
sequence {t(W,)} converges to t(W,) when we take the limit on k.

It would be an interesting problem to compare Conjecture 3.5 with the Kashaev-
Murakami-Murakami volume conjecture when W, is the complement of a fibered knot
in S3.

REMARK 3.6. As was discussed in [29], logdetc,(R4) is not smaller than the supe-
rior limit of logdetcyk) (R, ), which are all bounded below by zero. However, the
reverse inequality seems to be an open problem in general.

Now we consider the following case. That is, we assume that there exists an
integer n such that W, is topologically the product of X, and S'. Here, in general,
its bundle structure is not trivial. Namely, the n-th power ¢” of a given monodromy ¢ is
not trivial. A typical example is a diffeomorphism ¢ so that some power of ¢ becomes
the Dehn twist along a simple closed curve on 2, ; which is parallel to the boundary.
The difference between an isotopy fixes pointwisely and such one fixes setwisely, it gives
birth to the difference between a bundle structure and a topological type.

Let us consider a more general setting. By abuse of notation, we use the same
letter ¢ for the mapping class of an orientation preserving diffeomorphism ¢ of X ;.
Naturally there exists the projection W,» — W, of an n-fold cyclic covering. We then
take a representation of 7;(W,:) on [>(Ny X, Z). Further we take the induced repre-
sentation of this, which is a representation of 7 (W) on Cri(W,) ® cx, () (N X Z).
The following lemma is straightforward by using the fixed presentation of groups.

LemMa 3.7.  This induced representation is equivalent to the representation of m(W,)
on I>(Ny X, Z).

Thereby we can show the next proposition by using this lemma. This is a well-
known property of the torsion invariants. (for example, see [5]).

PROPOSITION 3.8. 14 (W,n) = 1 (W,)".
PROPOSITION 3.9. For the product bundle X, x S', it holds t (X, x S') = 1.

Proor. In this case, we see that Ay =t/ — I and then by an easy computation,
detcg) (¢ — I) = deteq)(tf — I) = 1. Therefore, we have (2, x S') = 1. O

Now we assume that W, has a finite covering W,» — W, such that it is topo-
logically the product X,; x S'. Combining these two propositions, we obtain the
following one.

ProposiTION 3.10. It holds i (W,) =1 for all k > 1.
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It is easy to see that such a 3-manifold does not admit a hyperbolic structure, then
it has the trivial simplicial volume. This gives an affirmative example in our conjecture.
To sum up, we obtain the following theorem.

THEOREM 3.11.  For a surface bundle W, over S' as above, the sequence {ti(W,)}
converges to the original L*-torsion t(W,).

REMARK 3.12. In some sense, this result corresponds to an affirmative answer, due
to Kashaev and Tirkkonen [13], of Kashaev-Murakami-Murakami volume conjecture
for torus knots.

4. Relation to the Magnus representation.

In this section, we reconsider our L>-torsion invariants from the view point of the
Magnus representation of the mapping class group. See [24], as references for the
Magnus representation.

Let .#, 1 be the mapping class group of X, i, that is, the group of all isotopy classes
of orientation preserving diffeomorphisms of X, | relative to the boundary. From the
well-known result of Nielsen, one can consider .#,; to be a subgroup of the auto-
morphism group of I' = {xi,...,X).

DEerFINITION 4.1. The Magnus representation p:.#, — GL(2g9,ZI") of ., is
defined by
9. (x;)

p: %971 20— (T) € GL<2g7ZF)7
i i

where the map ~: ZI' — ZI" implies Y 4,9 => 97"

REMARK 4.2. To say fact, this is a crossed homomorphism, not a homomorphism.
However one calls this simply the Magnus representation of .Z, .

By using this Magnus representation p, we can explain the previous Liick’s for-
mula as a characteristic polynomial with respect to the Fuglede-Kadison determinant as
follows.

In Lick’s formula, we applied the free differential calculus to relators r; =
xit ™ (¢, (x;)) " of n1(W,). As a result, we obtain 4 = tI — /p(p). Namely, in some
sense, this Alexander matrix A is nothing but a characteristic matrix of the Magnus
representation. Then if we take the Fuglede-Kadison determinant in M (2g, Cn), its
value is equal to the one for a matrix defined by 1717 — p(p) (see Lemma 4.2).
Therefore the L>-torsion is interpreted as the characteristic polynomial of p(p).

For the k-th term t;, we have taken the lower central series {I}} of I" and the
nilpotent quotients {N, = I'/I}}. These quotients induce a sequence of representations

Pic Mg — GL(2g, ZNy)

for k > 1 (see [24]). Consequently, by the similar observation as above, the k-th term
7t(W,) can be regarded as the characteristic polynomial of p,(¢) with respect to the
Fuglede-Kadison determinant in M (2g, Cr(k)).
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5. A formula of 7.

First we try to formulate the first term 7; of our L>-torsion invariants. It means
that we consider a representation

pr+ Mgy — GL(29, ZNy).

Here N; is the trivial group and then the above representation is the same one as the
usual homological action of .#,; on H{(2,1,Z). Namely we have the representation

P1 :%1],1 - Aut(Hl(Zg,17Z)v<7>) = Sp(2g,Z),

where {, ) denotes the intersection form on the homology. Further n(l) =7/l = Z =
{ty and its group ring C{t) is a commutative Laurent polynomial ring C[z,¢7!]. Then
the matrix A; is nothing but the usual characteristic matrix of ‘p;(¢). In Section 4, we
saw that 7;(W,) is the characteristic polynomial in the sense of the Fuglede-Kadison
determinant in GL(2¢g, C<t)). In this case, it is described by the usual determinant for
a matrix with commutative entries.

In order to state the theorem, we recall a definition from the number theory (see
and its references). For a Laurent polynomial F(t) € C[f{',... ¢F!], the Mahler mea-
sure of F is defined by

1 1
m(F) = JO .. .JO 10g|F(62n\/—_1t91, o ’6271\/—_10") do, - --do,,

where we assume that undefined terms are omitted. Namely we define the integrand to
be zero whenever we hit a zero of F.

THEOREM 5.1.  The logarithm of the first invariant t| is given by
log 71 (W) = =2m(4, (),

where A4, ,(t) = det(t] — p(p)). Further if 4, ) factorizes as A, ,(t) = lejl(t — o)
(o; € C), then we have

29
logti(W,) = —2210gmax{1, |oti| }
i=1
REMARK 5.2. In [18], Liick points out

log71(S*\K) = Ll log(4k(z)A4k(2)) dvol

for a knot K in S3 without proof. Here Ak is the Alexander polynomial of K. In the
fibered knot case, it is the same with 4, (,). Probably this integral formula is well-
known to experts.

Proor. First of all, we remark that the Novikov-Shubin invariants oc(Alm) are
positive in this case. Because 7(1) = Z is an abelian group (see [16]). Thus the well-
definedness of 7; also follows from this fact.
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Next we recall that the Hilbert space /?(Z) can be identified with L?(R/Z) in terms
of the Fourier transforms. For example, an element " is identified with the L?-function
e>V=1n0 " Then the trace

tregn - 12<Z) 3 Zant” —ageC

can be realized as the integration

1
L*(R/Z)> f(0) — L f(0)doeC.

Now from Liick’s formula for the first term, we have

log71(W,) = —2logdetcy(Ry,)

<
= —4glog K + Z; treay (I — K24,4,%)?)
p=1

=1

= —4glogK + treers (Z; tr(([ — KZAlAl*)I’)>.
p=1

Here tr: M(2g,Z<t)) — Z<{t) is the usual trace. By using the above identification

I>(Z) =~ L*(R/Z), an infinite series > (1/p)tr((I — K~2414;%)") gives an L>-function

on R/Z. Therefore we obtain

1 0
logt(W,) = —4glogK—|—J <Zl tr((I — K2A1A1*)”)> do
0

p=l1

1 0
= J —4glog K + Zl tr((1 — KZAlAl*)”)) do

0 p=1

1
= — | logdet(A4,47)d0
Jo

1
= — | logdet(4;)det(A4;)d0
Jo

1
==, log|4,,y)(

6271\/—_10)‘2 do

= _Zm(A/’l(q’))’

completing the proof of the desired formula.
As for the second assertion, it is nothing but Mahler’s theorem (see [8] Theorem 1).
This completes the proof of Theorem 3.1. O

From this description, we obtain the following notable corollary.

COROLLARY 5.3.  The logarithm of the first term t,(W,) vanishes if and only if every
eigenvalue of p,(p) € Sp(29,Z) is a root of unity.
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Proor. We easily see the coefficient of the leading term of 4, (,)(¢) is one, so that
it is a primitive polynomial. Hence the claim follows from Kronecker’s theorem (see
Theorem 2). [

This corollary seems to be interesting. Because in some case, we can say that the
first term 7; already approximates the simplicial volume. In particular, |[Corollary 5.
implies that a torus bundle W, with the hyperbolic structure (namely, |tr(p;(¢))| = 3)
has always non-trivial L>-torsion invariant 7;(W,). We explain this fact in the next
example.

ExXaMPLE 5.4. We apply [Theorem 5.1 to torus bundles. In order to compute 7
numerically, we have used the Maple 6. It is well-known that the mapping class group
of the two dimensional torus 72 is isomorphic to SL(2,Z). Then we take a matrix

-1 0
it is the identity on some embedded 2-disk by an isotopic deformation. For this map ¢,
we make a calculation of a hyperbolic volume by using the SnapPea [34].

1
( ¢ ) Naturally, this matrix gives a diffeomorphism ¢ on 72 and we may assume

trace(p;(p)) —3nlogr hyperbolic volume

0 0 0

1 0 0

2 0 0

3 18.1412584724 2.0298832128
4 24.8240715245 2.6667447835
5 29.5334698358 2.9891202829
6 33.2270014461 3.1772932786
7 36.2825168855 3.2969024143
8 38.8948730158 3.3775974082
9 41.1795720326 3.4345408859
10 43.2113662660 3.4761739892

ExaMPLE 5.5. We consider some surface bundles of genus two. Let #1,...,75 be

the Lickorish generators of .#> ; and T1,...,Ts their images in Sp(4, Z) with respect to
the corresponding symplectic basis of Hi(2»,Z). They are explicitly given by

1 01 0 1 000 1 0 1 1
01 0 0 0 1 0 0 01 1 1
h=to o1 o0l 271101 0] " loo1 of
00 0 1 0 0 0 1 00 0 1

1 0 0 0 1 00 0
0 1 0 0 01 0 1
=1y o 1 0] ™ 5=y 01 o
0 -1 0 1 00 0 1

By Penner’s results [28], mapping classes ¢! #5"¢2¢; ¢! for any /,m,n > 1 are pseudo-
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Anosov maps. By applying the above formula to these cases, we compute 7; for some
triples of (/,m,n) by using the Maple 6 again. Their hyperbolic volumes can be com-
puted by two methods. The first one is to use the SnapPea with Ichihara’s algorithm
to describe a surface bundles by means of link surgeries. The second one is to use
also the SnapPea with the XTrain [1], [2].

(I,m,n) —3rlogrt hyperbolic volume
(1,1,1) || 47.6747282482 10.6497813754
(1,1,2) || 52.9544769222 11.4666578757
(1,1,3) || 56.9524589673 11.8937138137
(1,1,4) || 60.2003564513 12.1434702788
(1,1,5) || 62.9462610289 12.3010254753
(1,2,1) || 54.4237752394 11.9187558233
(1,2,2) || 59.2291561987 12.7824557985
(1,2,3) || 62.9462610289 13.2306812552
(1,2,4) || 66.0036368428 13.4904289941
(1,2,5) || 68.6103164760 13.6529808192
(1,3,1) || 59.3208237316 12.4291049018

By the way, if we consider only the first term 7;, we can define it to knot exteriors,
as well, other than surface bundles. Namely, logz; is described as the integral of the
Alexander polynomial of knots. In this case, the above integral formula of 7; is related
with the next classical result on knots. The following argument was informed us by
Porti.

Let K be a knot in S and M (n) — S3 the n-fold cyclic branched covering along K.
Here we define ord(n) to be the order of H (M (n),Z). If the order of H|(M(n),Z)
is infinity, then we put ord(n) = 0. The following result is classically well-known (see

30)
ord(n) = ﬁ |4k ()],
pale]

where Ak is the Alexander polynomial of K and (,...,{, are the n-th roots of unity.
Then we can modify this equality as follows:

210 ord(n) 2"21 log|4x (&)|?

— n) = — ; .

n g £ n glAk (G

If we take the limit on n, we obtain
. n 1 1 ]
Jim Z; log|4x (¢ = J log\AK(ezn\/_m)’zd&

It means that the logarithm of 7; can be described by the asymptotic behavior of the
order of the first homology group of branched coverings up to sign.
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REMARK 5.6. As for a related work to the above interpretation, see [31]. X. S.
Lin informed us the literature at the workshop “Invariants of Knots and 3-Manifolds”
held in Kyoto 2001.

6. A formula of 7,.

If ¢ is an element of the Torelli group .4, , that is, ¢ acts trivially on the first
homology group H;(Z,1,Z), we can give an explicit formula of the second invariant

73(W,). Here it should be noted that logz;(W,) =0 for p €., (see [Corollary 5.3).

The second term is described by the representation
Pr %971 — GL(ZQ,ZNQ),

where N, =I'/[I',I'] = Hi(Z,1,Z). If we restrict p, to the Torelli group .7, i, this
is really a homomorphism (see Corollary 5.4). Then our second formula is the
following.

THEOREM 6.1. For any mapping class ¢ € 9, 1, the logarithm of the second invariant
2(W,) is given by

logt2(W,) = —2m(4,,.,)),

where A, (Y1, .., Y2, t) = det(t] — p,(p)) and y; denotes the homology class corre-
sponding to x;.

Proor. If ¢ belongs to the Torelli group, we easily notice that the group
7[(2) =N, X Z = Hl(ZL%],Z) x Z

is isomorphic to the abelian group Z*/*!. Accordingly we see that the Novikov-Shubin
invariants oc(Al@) are positive in this case (see [16]).

On the one hand, we can identify /2(Z*"!) with L?>(T%**'), the space of L’
functions on the (2g + 1)-dimensional torus, by Fourier transforms. Under this identi-
fication, the trace is just equal to the multiple integral

1 1
J J dOy - --dbsy, .
0 0
Hence we can prove the desired formula by the similar argument as in the case of the
first term t;. This completes the proof. ]

Now we suppose F(t) e Z[tf!,... ¢F'] is primitive. Then define F to be a gen-
eralized cyclotomic polynomial if it is a monomial times a product of one-variable
cyclotomic polynomials evaluated at monomials.

COROLLARY 6.2. For any mapping class ¢ € 4,1, the logarithm of the second in-
variant t5(W,) vanishes if and only if A, ,) is a generalized cyclotomic polynomial.

ProorF. Since the characteristic polynomial 4, is primitive as before, the as-
sertion immediately follows from the theorem of Boyd, Lawton and Smyth (see
Theorem 4). (]
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ExamPLE 6.3. Let ¢, (1 <h < g) denote a BSCC-map of genus 4, that is, a Dehn
twist along a bounding simple closed curve on X, ; which separates X, | into 2} ; and

genus g — h surface with two boundaries. This is a typical element of the Torelli group
Jy.1. Thereby we see from that

Ay oy = (t—1)%.

P2 ((ph)

Thus by virtue of we can conclude log (W, ) = 0.
Next we consider the BP-map , = D.D_! of genus h (1 <h < g— 1), where ¢ and

¢’ are disjoint homologous simple closed curves on X, ; as in Figure 1 and D, denotes
the Dehn twist along ¢. It is known that the Torelli group .%; | is normally generated

Cc

:

VAR
C/ Zg,l
FIGURE 1.

in .4, by ;. Then from Proposition 3.5, we obtain

2h

2g—2h
Ay = =)t = ygin)™,

where y,.,+1 denotes the homology class corresponding to the (4 + 1)-th meridian of
%,1. This is also a generalized cyclotomic polynomial, so that its L>-torsion vanishes.

ExampLE 6.4. Let 9 =D.,D.D_'D, €.9,,. Here ¢; and ¢, are simple closed
curves on X, as in Figure 2 below. Then we see from a computation of that

Apyip) = (1= +2(t = 1) (g1 — 2+ Vyt) g2 =24 v, 1)

FIGURE 2.

This is not a generalized cyclotomic polynomial, so that the mapping torus W, has a
non-trivial L>-torsion invariant 72(W,). In fact we can compute the second term as
follows. By means of Lawton’s result (see [15]), m(4,,.,)) can be expressed as the limit
of the Mahler measure in a single variable. More precisely we have

m(Ap, () = M m(d,, ) (u, u, u")).
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In Figure 3, we plot the Mahler measure m(4,,., (u,u,u")) versus r. The convergence
is evident and we obtain the approximate value

—3n log Tz(%) = 67‘(7’1/1(11/,2((/,)) =19.28....

1.03 T T T T 1

1 T
Mahler measure +

1.028 |
1.026 |
1.024 |
1.022 |
1.02 |
1.018 |

1.016

0 100 200 300 400 500 600 700 800

FIGURE 3. Mabhler measure m(4,,,) (u,u,u")) vs. r.

References

P. Brinkmann and S. Schleimer, Computing triangulations of mapping tori of surface homeomorphisms,
Experiment. Math., 10 (2001), 571-581.

P. Brinkmann, XTrain, http://www.math.uiuc.edu/~brinkman/.

D. Burghelea, L. Friedlander, T. Kappeler and P. McDonald, Analytic and Reidemeister torsion for
representations in finite type Hilbert modules, Geom. Funct. Anal., 6 (1996), 751-859.

A. Carey, M. Farber and V. Mathai, Determinant lines, von Neumann algebras and L’ torsion, J.
Reine. Angew. Math., 484 (1997), 153-181.

A. Carey and V. Mathai, L2?-torsion invariants, J. Funct. Anal., 110 (1992), 377-409.

J. Diximier, Von Neumann Algebras, North-Holland, 1981.

J. Dodziuk, L?-harmonic forms on rotationally symmetric Riemannian manifolds, Proc. Amer. Math.
Soc., 77 (1979), 395-400.

G. Everest, Measuring the height of a polynomial, Math. Intelligencer, 20 (1998), 9-16.

R. Fenn, Techniques of Geometric Topology, London Math. Soc. Lect. Notes, 57 (1983).

M. Gromov, Volume and bounded cohomology, Publ. Math. Inst. Hautes Etudes Sci., 56 (1982), 5-
100.

E. Hess and T. Schick, L2-torsion of hyperbolic manifolds, Manuscripta Math., 97 (1998), 329-334.
K. Ichihara, On framed link presentations of surface bundles, J. Knot Theory Ramifications, 7 (1998),
1087-1092.

R. M. Kashaev and O. Tirkkonen, A proof of the volume conjecture on torus knots, Zap. Nauchn.
Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 269 (2000), Vopr. Kvant. Teor. Polya i Stat. Fiz.
16, 262-268, 370.

T. Kitano, T. Morifuji and M. Takasawa, Numerical calculation of L?-torsion invariants, Interdiscip.
Inform. Sci., 9 (2003), 35-42.

W. M. Lawton, A problem of Boyd concerning geometric means of polynomials, J. Number Theory,
16 (1983), 356-362.

J. Lott, Heat kernels on covering spaces and topological invariants, J. Differential Geom., 35 (1992),
471-510.

J. Lott and W. Liick, L?-topological invariants of 3-manifolds, Invent. Math., 120 (1995), 15-60.
W. Liick, L>-torsion and 3-manifolds, Proc. Low-Dimensional Topology, Knoxville, TN, 1992, (ed.
K. Johanson), Internat. Press, 1994, 75-107.

W. Liick, L?-Betti numbers of mapping tori and groups, Topology, 33 (1994), 203-214.

W. Lick and M. Rothenberg, Reidemeister torsion and the K-theory of von Neumann algebras, K-
Theory, 5 (1991), 213-264.

W. Liick and T. Schick, L?-torsion of hyperbolic manifolds of finite volume, Geom. Funct. Anal., 9
(1999), 518-567.



T. Kitano, T. Moriruil and M. TAKASAWA

W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Dover, 1976.

V. Mathai, LZ?-analytic torsion, J. Funct. Anal.,, 107 (1992), 369-386.

S. Morita, Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. J., 70
(1993), 699-726.

H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial volume of a
knot, Acta Math., 186 (2001), 85-104.

S. Novikov and M. Shubin, Morse inequalities and von Neumann invariants of non-simply connected
manifolds, Uspekhi. Mat. Nauk., 46 (1986), 222-223.

S. Novikov and M. Shubin, Morse inequalities and von Neumann II;-factors, Soviet Mathematics
Doklady, 34 (1987), 79-82.

R. C. Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc., 310
(1988), 179-197.

T. Schick, L>-determinant class and approximation of L2-Betti numbers, Trans. Amer. Math. Soc.,
353 (2001), 3247-3265 (electronic).

H. Seifert, Uber das Geshlecht von Knoten, Math. Ann., 110 (1934), 571-592.

D. S. Silver and S. G. Williams, Mahler measure, links and homology growth, Topology, 41 (2002),
979-991.

M. Suzuki, Some properties of the Magnus representation of the Torelli group; reducibility and a class
function, Master thesis at Univ. Tokyo, 2000.

M. Suzuki, Irreducible decomposition of the Magnus representation of the Torelli group, Bull.
Austral. Math. Soc., 67 (2003), 1-14.

J. Weeks, SnapPea, http://geometrygames.org/SnapPea.

Teruaki KitaNno Takayuki MoRIFUII

Department of Mathematical and Department of Mathematics

Computing Sciences Tokyo University of Agriculture and Technology
Tokyo Institute of Technology 2-24-16 Naka-cho, Koganei

2-12-1 Oh-okayama, Meguro-ku Tokyo 184-8588

Tokyo 152-8552 Japan

Japan E-mail: morifuji@cc.tuat.ac.jp

E-mail: kitano@is.titech.ac.jp
Mitsuhiko TAkASAWA

Department of Mathematical and Computing Sciences
Tokyo Institute of Technology

2-12-1 Oh-okayama, Meguro-ku

Tokyo 152-8552

Japan

E-mail: takasawa@is.titech.ac.jp



	1. Introduction.
	2. $L^{2}$ -torsion and ...
	THEOREM 2.5. ...
	THEOREM 2.6. ...

	3. Definition of $\tau_{k}$ ...
	THEOREM 3.11. ...

	4. Relation to the Magnus ...
	5. Aformula of $\tau_{1}$ ...
	THEOREM 5.1. ...

	6. Aformula of $\tau_{2}$ ...
	THEOREM 6.1. ...


