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Abstract. In the present paper, we introduce L2-torsion invariants tkðkb 1Þ for

surface bundles over the circle and investigate them from the view point of the mapping

class group of a surface. It is conjectured that they converge to the L2-torsion for the

regular representation of the fundamental group. Further we give an explicit and com-

putable formula of the first two invariants by using the Mahler measure.

1. Introduction.

Let M be a complete hyperbolic 3-manifold. By the famous Mostow rigidity the-

orem, its fundamental group p1M dominates all geometric information of M. Hence its

hyperbolic volume can be computed theoretically from a presentation of p1M. The

L2-torsion, which is an invariant of 3-manifolds, gives a method to do actually it.

Historically, L2-analogues of Reidemeister-Ray-Singer torsion were initiated by

Mathai [23], Carey-Mathai [5] and Lott [16]. They are defined for a manifold with

trivial L2-(co)homology and positive Novikov-Shubin invariants by using the Fuglede-

Kadison determinant of von Neumann algebras. The first one called combinatorial

L2-torsion is a piecewise linear invariant and the second one called analytic L2-torsion

is a smooth invariant. Burghelea, Friedlander, Kappeler and McDonald [3] proved the

equality between the combinatorial L2-torsion and the analytic L2-torsion for compact

Riemannian manifolds. Afterward, Lück and Schick [21] generalized the equality for

hyperbolic manifolds with finite volume. In the following, based on these facts, we

simply call these two types invariants the L2-torsion.

Moreover it is shown in [16], [11] and [21] that the L2-torsion for the regular

representation is equal to Gromov’s simplicial volume up to a constant. Thus, for a

hyperbolic manifold, the L2-torsion is essentially equal to its hyperbolic volume. On

the one hand, Lück [18] gave a formula of the L2-torsion tðMÞ which is computable

from certain presentation of the fundamental group. Therefore we could compute the

hyperbolic volume of M from a presentation of p1M. However, in general, it seems

to be di‰cult to evaluate directly the exact value of hyperbolic volumes from Lück’s

formula.

Now from recent works of Kashaev-Murakami-Murakami [25], it is conjectured

that certain asymptotic behavior of the colored Jones polynomial of a knot gives the

simplicial volume of the complement of a given knot in S3. Then it seems to be natural
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to raise the following problem: Does there exist another sequence of invariants which

approximates the simplicial volume?

The purpose of this paper is to construct a sequence of L2-invariants, which approxi-

mates the original L2-torsion (namely the simplicial volume), for once-holed surface

bundles over S1. The point to do is the lower central series of the surface group.

Roughly speaking, the regular representation of p1M could be approximated by rep-

resentations on the l2-spaces defined by the nilpotent quotients of p1M.

Here the contents of this paper is the following. In the next section, we recall the

definition of the L2-torsion of 3-manifolds and Lück’s formula. In Section 3, we define

L2-torsion invariants for surface bundles over S1 and state our volume conjecture for

them. In particular, we show that the conjecture is true for a certain special case. In

fact, if a given surface bundle has a finite covering so that it is topologically the product,

then our L2-torsion invariants approximate the simplicial volume. In Section 4, we

describe these invariants from the view point of the Magnus representations of the

mapping class group of a surface. In Section 5, we state certain integral formula on

the first term of these invariants. More precisely, we show that it is essentially equal to

the Mahler measure of the characteristic polynomial of the homology representa-

tion. By using the formula, we give some numerical calculations for low genus. Fur-

ther, we explain a geometric meaning of the formula for the first term. In the final

section, we give a similar formula of the second term of our L2-torsion invariants for

surface bundles with monodromies in the Torelli subgroup.

Acknowledgments. The authors wish to thank M. Boileau, M. Furuta, M.

Kapovich, S. Kojima, Thang Le, X. S. Lin, H. Murakami and J. Porti for helpful

comments and many useful discussions.

2. L2
-torsion and Lück’s formula.

In this section, we review the combinatorial definition of L2-torsion tðMÞ and its

basic properties. See [18] for details.

Let p be a discrete group and Cp denote its group ring over C . For an elementP
g A p lgg A Cp, we define the Cp-trace by trCpð

P
g A p lggÞ ¼ le A C ; where e is the unit

element in p. Next, for a matrix B ¼ ðbijÞ A Mðn;CpÞ, we extend the definition of Cp-

trace by means of

trCpðBÞ ¼
Xn

i¼1

trCpðbiiÞ:

Now let us recall the definition of the L2-Betti number of B A Mðn;CpÞ. We con-

sider the bounded p-equivariant operator

RB : 0
n

i¼1

l2ðpÞ ! 0
n

i¼1

l 2ðpÞ

defined by natural right action of B. Here l 2ðpÞ denotes the regular representation of p.

Namely it is the complex Hilbert space of the formal sums
P

g A p lgg which are square
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summable. This is the Hilbert completion of a pre-Hilbert space Cp with respect to the

natural inner product

X

g A p

lgg;
X

g A p

mgg

* +

¼
X

g A p

lgmg:

We fix a positive real number K so that Kb kRBky holds where kRBky is the operator

norm of the bounded p-equivariant operator RB.

Definition 2.1. The L2-Betti number of a matrix B is defined by

bðBÞ ¼ lim
p!y

trCpððI � K�2BB�ÞpÞ A Rb0;

where I is the identity matrix and B� denotes the adjoint of B. That is, for any element
P

lgg A Cp, we define
P

lgg ¼P lgg
�1. By using this, we define B� ¼ ðbjiÞ.

Roughly speaking, the L2-Betti number measures the size of the kernel of a matrix

B. Hereafter we assume bðBÞ ¼ 0. Then, for a matrix with a coe‰cient in a non-

commutative ring, we introduce the determinant as follows.

Definition 2.2. The Fuglede-Kadison determinant of a matrix B is defined by

detCpðBÞ ¼ K n exp � 1

2

X

y

p¼1

1

p
trCpððI � K�2BB�ÞpÞ

 !

A R>0;

if the infinite sum of non-negative real numbers
P

ð1=pÞ trCpððI � K�2BB�ÞpÞ converges

to a real number.

Remark 2.3. It is shown that the L2-Betti number bðBÞ and the Fuglede-Kadison

determinant detCpðBÞ are independent of a choice of a constant K . A possible choice is

given by

K ¼
ffiffiffi

n
p

�maxfkbijk1 j 1a i; ja ng;

where kuk1 ¼
P

g A p jlgj ðu ¼
P

g A p lgg A CpÞ.

Now we define the L2-torsion of 3-manifolds. Let M be a compact connected

orientable 3-manifold. We fix a CW -complex structure on M. Then we may assume

that the action of p1M on the universal covering ~MM is cellular (if necessary, we have

only to take a subdivision of the original structure). Let us consider the Cp1M-chain

complex of ~MM:

0 ! C3ð ~MM;CÞ !q3 C2ð ~MM;CÞ !q2 C1ð ~MM;CÞ !q1 C0ð ~MM;CÞ ! 0:

Since the boundary operator qi is a matrix with coe‰cients in Cp1M, if we take the

adjoint operator q�
i : Ci�1ð ~MM;CÞ ! Cið ~MM;CÞ as above, we can define the i-th (combi-

natorial) Laplace operator Di : Cið ~MM;CÞ ! Cið ~MM;CÞ by

Di ¼ qiþ1 � q�
iþ1 þ q�

i � qi:

Let us suppose that all the L2-Betti numbers bðDiÞ vanish. Thereby as a generaliza-

tion of classical Reidemeister torsion, an (combinatorial) L2-torsion tðMÞ is defined by
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Definition 2.4.

tðMÞ ¼
Y3

i¼0

detCp1MðDiÞ
ð�1Þ iþ1

i
A R:

Here it should be noted that the L2-torsion tðMÞ is a positive real number.

To ensure the well-definedness of the above definition, we need the positivity of all

the Novikov-Shubin invariant aðDiÞ for the Laplace operator Di. Namely, this condi-

tion guarantees the convergence of the infinite sum in the Fuglede-Kadison determinant.

For the precise definition, we refer to [17], [18], [27].

For instance, it is known that if a compact connected orientable 3-manifold M sat-

isfies the following all conditions, the L2-Betti numbers bðDiÞ vanish and the Novikov-

Shubin invariants aðDiÞ are positive:

(i) p1M is infinite.

(ii) M is homotopy equivalent to an irreducible 3-manifold or S1 � S2 or

RP3#RP3.

(iii) If qM0q, it consists of tori.

(iv) If qM ¼ q, M is finitely covered by a 3-manifold which is homotopy equiv-

alent to a hyperbolic, Seifert or Haken 3-manifold.

As a notable property of the L2-torsion t, it is known that log tðMÞ can be inter-

preted as Gromov’s simplicial volume [10] of M (see [18], [16], [11], [21]).

Theorem 2.5. Let M be a compact connected orientable irreducible 3-manifold with

an infinite fundamental group such that qM is empty or a disjoint union of incompressible

tori. Then it holds

log tðMÞ ¼ C � kMk;

where C is a universal constant not depending on M and kMk denotes the simplicial

volume of M. In particular, if M is a hyperbolic 3-manifold,

log tðMÞ ¼ �
1

3p
VolðMÞ

holds.

Finally we describe Lück’s formula for the L2-torsion (see [18] Theorem 2.4).

Theorem 2.6. Let M be as in the above theorem. Further we suppose that qM

is non-empty and p1M has a presentation hs1; . . . ; snþ1 j r1; . . . ; rni. Define A to be the

n� n-matrix with entries in Zp1M obtained from the Fox matrix ðqri=qsjÞ by deleting one

of the columns. Then the logarithm of the L2-torsion of M is given by

log tðMÞ ¼ �2 log detCp1MðRAÞ

¼ �2n logK þ
Xy

p¼1

1

p
trCp1MððI � K�2AA�ÞpÞ;

where K is a constant satisfying Kb kRAky.
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These two theorems give a method to compute the simplicial volume of 3-manifolds

in terms of the presentation of the fundamental group.

3. Definition of tk.

From now on, we restrict ourselves to the L2-torsion of a surface bundle over the

circle S1.

Let Sg;1 be a compact oriented smooth surface of genus gb 1 with one boundary

component. For an orientation preserving di¤eomorphism j of Sg;1, we form the

mapping torus Wj by taking Sg;1 � I and gluing Sg;1 � f0g and Sg;1 � f1g via j. This

gives a surface bundle over S1. Its di¤eomorphism type is determined by its mon-

odromy di¤eomorphism, up to conjugacy and isotopy. Here an isotopy fixes setwisely

the points of the boundary of Sg;1. However from here, we assume that a di¤eo-

morphism on Sg;1 fixes pointwisely them and an isotopy also does. It is the technical

reason from the view point of the mapping class group.

For simplicity, we put p ¼ p1ðWj; �Þ and G ¼ p1ðSg;1; �Þ, where the base point � of

p and G is the same one on the fiber Sg;1 � f0gHWj. Then p is isomorphic to the

semi-direct product of G and p1S
1
GZ ¼ hti.

In order to construct a sequence of L2-torsion invariants which approximates the

original one, we consider the lower central series of G. Since G is the free group of

rank 2g, it is residually nilpotent. Namely, we have an infinite sequence

G1 ¼ G IG2 I � � �IGk I � � � ;

where Gk ¼ ½Gk�1;G1� for kb 2. Let Nk be the k-th nilpotent quotient Nk ¼ G=Gk and

pk : G ! Nk be the natural projection.

In the previous section, we considered a chain complex C�ð ~WWj;CÞ as a chain

complex of Cp-modules. Instead of this complex, we can use the following chain

complex

C�ðWj; l
2ðpÞÞ ¼ l 2ðpÞnCp C�ð ~WWj;CÞ

to define the same L2-torsion tðWjÞ. The group Gk is a normal subgroup of p, so

that we can take the quotient group pðkÞ ¼ p=Gk. It should be noted that pðkÞ is

isomorphic to the semi-direct product Nk cZ. We denote the induced homomorphism

p ! pðkÞ by the same letter pk. Thereby we can consider the chain complex

C�ðWj; l
2ðpðkÞÞÞ ¼ l 2ðpðkÞÞnCp C�ð ~WWj;CÞ

through the projection pk. By using the Laplace operator on this complex, we can

formally define the k-th L2-torsion tkðWjÞ as follows.

Definition 3.1.

tkðWjÞ ¼
Y3

i¼0

detCpðkÞðD
ðkÞ
i Þð�1Þ iþ1

i;

where D
ðkÞ
i : CiðWj; l

2ðpðkÞÞÞ ! CiðWj; l
2ðpðkÞÞÞ is the Laplace operator over l 2ðpðkÞÞ.
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Of course, the above definition is well-defined if every L2-Betti number bðD
ðkÞ
i Þ

vanishes and every Novikov-Shubin invariant aðD
ðkÞ
i Þ is positive for any i ¼ 0; 1; 2; 3.

As for the L2-Betti numbers, we can show the following.

Lemma 3.2. The L2-Betti numbers of Wj with coe‰cients in p�
k l

2ðpðkÞÞ are all zero.

Proof. We can directly apply Lück’s result [19] Theorem 2.1 for a factorization

p !
pk

pðkÞ ! Z of the canonical map p ! Z, so that the assertion immediately follows.

r

On the other hand, at the time of writing, the positivity of the Novikov-Shubin

invariant for general operators seems to be an open problem. However, fortunately, it

is known that a weaker condition (namely, the operator D
ðkÞ
i is pðkÞ-determinant class)

guarantees the well-definedness of tk (see [3] and [29] for details). In fact, the groups

pðkÞGNk cZ are all contained in a large class G of groups, which is determinant class,

considered in [29]. Therefore our L2-torsion invariants tk can be defined for any kb 1

and they are all homotopy invariants.

Let x1; . . . ; x2g be a generating system of the free group F2g ¼ G. Then the fun-

damental group p is presented by

p ¼ hx1; . . . ; x2g; t j ri ¼ txit
�1ðj�ðxiÞÞ

�1
; 1a ia 2gi;

where j� : G ! G is a homomorphism induced by j : Sg;1 ! Sg;1. Applying the free

di¤erential calculus to relators r1; . . . ; r2g, we obtain an Alexander matrix

A ¼
qri

qxj

� �

A Mð2g;ZpÞ:

Then Lück’s formula for a surface bundle over S1 is described as follows:

log tðWjÞ ¼ �2 log detCpðRAÞ

¼ �4g logK þ
X

y

p¼1

1

p
trCpððI � K�2AA�ÞpÞ;

where K is a constant satisfying Kb kRAky.

Now let us derive a formula for the k-th L2-torsion tkðWjÞ. Let pk� : Cp ! CpðkÞ

be an induced homomorphism over the group rings. Thereby we put

Ak ¼ pk�
qri

qxj

� �� �

A Mð2g;CpðkÞÞ:

Moreover we fix a constant Kk satisfying Kkb kRAk
ky. Then we have

log tkðWjÞ ¼ �2 log detCpðkÞðRAk
Þ

¼ �4g logKk þ
X

y

p¼1

1

p
trCpðkÞððI � K�2

k AkA
�
kÞ

pÞ;

by virtue of the same argument as Theorem 2.6.
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Remark 3.3. It is easy to see that we can take constants K and Kk so that K ¼ Kk

for all kb 1 (see [6] Part 1, Chapter 1, Proposition 8).

Remark 3.4. By using the above formulas, we have numerically computed approxi-

mate values of t1 and t2 for some examples in [14].

Here let us state our volume conjecture for a surface bundle over S1.

Conjecture 3.5. For any orientation preserving di¤eomorphism j of Sg;1, the

sequence ftkðWjÞg converges to tðWjÞ when we take the limit on k.

It would be an interesting problem to compare Conjecture 3.5 with the Kashaev-

Murakami-Murakami volume conjecture when Wj is the complement of a fibered knot

in S3.

Remark 3.6. As was discussed in [29], log detCpðRAÞ is not smaller than the supe-

rior limit of log detCpðkÞðRAk
Þ, which are all bounded below by zero. However, the

reverse inequality seems to be an open problem in general.

Now we consider the following case. That is, we assume that there exists an

integer n such that Wj n is topologically the product of Sg;1 and S1. Here, in general,

its bundle structure is not trivial. Namely, the n-th power jn of a given monodromy j is

not trivial. A typical example is a di¤eomorphism j so that some power of j becomes

the Dehn twist along a simple closed curve on Sg;1 which is parallel to the boundary.

The di¤erence between an isotopy fixes pointwisely and such one fixes setwisely, it gives

birth to the di¤erence between a bundle structure and a topological type.

Let us consider a more general setting. By abuse of notation, we use the same

letter j for the mapping class of an orientation preserving di¤eomorphism j of Sg;1.

Naturally there exists the projection Wj n ! Wj of an n-fold cyclic covering. We then

take a representation of p1ðWj nÞ on l2ðNk cj n ZÞ. Further we take the induced repre-

sentation of this, which is a representation of p1ðWjÞ on Cp1ðWjÞnCp1ðWj n Þ l
2ðNk cj n ZÞ.

The following lemma is straightforward by using the fixed presentation of groups.

Lemma 3.7. This induced representation is equivalent to the representation of p1ðWjÞ

on l 2ðNk cj ZÞ.

Thereby we can show the next proposition by using this lemma. This is a well-

known property of the torsion invariants. (for example, see [5]).

Proposition 3.8. tkðWj nÞ ¼ tkðWjÞ
n.

Proposition 3.9. For the product bundle Sg;1 � S1, it holds tkðSg;1 � S1Þ ¼ 1.

Proof. In this case, we see that Ak ¼ tI � I and then by an easy computation,

detCpðkÞðtI � IÞ ¼ detCpð1ÞðtI � IÞ ¼ 1. Therefore, we have tkðSg;1 � S1Þ ¼ 1. r

Now we assume that Wj has a finite covering Wjn ! Wj such that it is topo-

logically the product Sg;1 � S1. Combining these two propositions, we obtain the

following one.

Proposition 3.10. It holds tkðWjÞ ¼ 1 for all kb 1.
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It is easy to see that such a 3-manifold does not admit a hyperbolic structure, then

it has the trivial simplicial volume. This gives an a‰rmative example in our conjecture.

To sum up, we obtain the following theorem.

Theorem 3.11. For a surface bundle Wj over S1 as above, the sequence ftkðWjÞg

converges to the original L2-torsion tðWjÞ.

Remark 3.12. In some sense, this result corresponds to an a‰rmative answer, due

to Kashaev and Tirkkonen [13], of Kashaev-Murakami-Murakami volume conjecture

for torus knots.

4. Relation to the Magnus representation.

In this section, we reconsider our L2-torsion invariants from the view point of the

Magnus representation of the mapping class group. See [24], [33] as references for the

Magnus representation.

Let Mg;1 be the mapping class group of Sg;1, that is, the group of all isotopy classes

of orientation preserving di¤eomorphisms of Sg;1 relative to the boundary. From the

well-known result of Nielsen, one can consider Mg;1 to be a subgroup of the auto-

morphism group of G ¼ hx1; . . . ; x2gi.

Definition 4.1. The Magnus representation r : Mg;1 ! GLð2g;ZGÞ of Mg;1 is

defined by

r : Mg;1 C j 7!
qj�ðxjÞ

qxi

 !

ij

A GLð2g;ZGÞ;

where the map : ZG ! ZG implies
P

lgg ¼
P

lgg
�1.

Remark 4.2. To say fact, this is a crossed homomorphism, not a homomorphism.

However one calls this simply the Magnus representation of Mg;1.

By using this Magnus representation r, we can explain the previous Lück’s for-

mula as a characteristic polynomial with respect to the Fuglede-Kadison determinant as

follows.

In Lück’s formula, we applied the free di¤erential calculus to relators ri ¼

txit
�1ðj�ðxiÞÞ

�1 of p1ðWjÞ. As a result, we obtain A ¼ tI � trðjÞ. Namely, in some

sense, this Alexander matrix A is nothing but a characteristic matrix of the Magnus

representation. Then if we take the Fuglede-Kadison determinant in Mð2g;CpÞ, its

value is equal to the one for a matrix defined by t�1I � rðjÞ (see [18] Lemma 4.2).

Therefore the L2-torsion is interpreted as the characteristic polynomial of rðjÞ.

For the k-th term tk, we have taken the lower central series fGkg of G and the

nilpotent quotients fNk ¼ G=Gkg. These quotients induce a sequence of representations

rk : Mg;1 ! GLð2g;ZNkÞ

for kb 1 (see [24]). Consequently, by the similar observation as above, the k-th term

tkðWjÞ can be regarded as the characteristic polynomial of rkðjÞ with respect to the

Fuglede-Kadison determinant in Mð2g;CpðkÞÞ.
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5. A formula of t1.

First we try to formulate the first term t1 of our L2-torsion invariants. It means

that we consider a representation

r1 : Mg;1 ! GLð2g;ZN1Þ:

Here N1 is the trivial group and then the above representation is the same one as the

usual homological action of Mg;1 on H1ðSg;1;ZÞ. Namely we have the representation

r1 : Mg;1 ! AutðH1ðSg;1;ZÞ; h ; iÞGSpð2g;ZÞ;

where h ; i denotes the intersection form on the homology. Further pð1Þ ¼ p=G1 GZ ¼
hti and its group ring Chti is a commutative Laurent polynomial ring C ½t; t�1�. Then

the matrix A1 is nothing but the usual characteristic matrix of tr1ðjÞ. In Section 4, we

saw that t1ðWjÞ is the characteristic polynomial in the sense of the Fuglede-Kadison

determinant in GLð2g;ChtiÞ. In this case, it is described by the usual determinant for

a matrix with commutative entries.

In order to state the theorem, we recall a definition from the number theory (see [8]

and its references). For a Laurent polynomial FðtÞ A C ½tG1
1 ; . . . ; tG1

n �, the Mahler mea-

sure of F is defined by

mðF Þ ¼
ð1

0

� � �
ð1

0

logjF ðe2p
ffiffiffiffiffi

�1
p

y1 ; . . . ; e2p
ffiffiffiffiffi

�1
p

ynÞj dy1 � � � dyn;

where we assume that undefined terms are omitted. Namely we define the integrand to

be zero whenever we hit a zero of F .

Theorem 5.1. The logarithm of the first invariant t1 is given by

log t1ðWjÞ ¼ �2mðDr1ðjÞÞ;

where Dr1ðjÞðtÞ ¼ detðtI � r1ðjÞÞ. Further if Dr1ðjÞ factorizes as Dr1ðjÞðtÞ ¼
Q2g

i¼1ðt� aiÞ
ðai A CÞ, then we have

log t1ðWjÞ ¼ �2
X

2g

i¼1

logmaxf1; jaijg:

Remark 5.2. In [18], Lück points out

log t1ðS3nKÞ ¼
ð

S 1

log DKðzÞDKðzÞÞ dvolð

for a knot K in S3 without proof. Here DK is the Alexander polynomial of K . In the

fibered knot case, it is the same with Dr1ðjÞ. Probably this integral formula is well-

known to experts.

Proof. First of all, we remark that the Novikov-Shubin invariants aðDð1Þ
i Þ are

positive in this case. Because pð1Þ ¼ Z is an abelian group (see [16]). Thus the well-

definedness of t1 also follows from this fact.
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Next we recall that the Hilbert space l 2ðZÞ can be identified with L2ðR=ZÞ in terms

of the Fourier transforms. For example, an element tn is identified with the L2-function

e2p
ffiffiffiffiffi

�1
p

ny. Then the trace

trChti : l
2ðZÞ C

X

ant
n 7! a0 A C

can be realized as the integration

L2ðR=ZÞ C f ðyÞ 7!
ð1

0

f ðyÞ dy A C :

Now from Lück’s formula for the first term, we have

log t1ðWjÞ ¼ �2 log detChtiðRA1
Þ

¼ �4g logK þ
X

y

p¼1

1

p
trChtiððI � K�2A1A1

�ÞpÞ

¼ �4g logK þ trChti

X

y

p¼1

1

p
trððI � K�2A1A1

�ÞpÞ
 !

:

Here tr : Mð2g;ZhtiÞ ! Zhti is the usual trace. By using the above identification

l 2ðZÞGL2ðR=ZÞ, an infinite series
P

ð1=pÞ trððI � K�2A1A1
�ÞpÞ gives an L2-function

on R=Z. Therefore we obtain

log t1ðWjÞ ¼ �4g logK þ
ð1

0

X

y

p¼1

1

p
trððI � K�2A1A1

�ÞpÞ
 !

dy

¼
ð1

0

�4g logK þ
X

y

p¼1

1

p
trððI � K�2A1A1

�ÞpÞ
 !

dy

¼ �
ð1

0

log detðA1A
�
1 Þ dy

¼ �
ð1

0

log detðA1Þ detðA�
1 Þ dy

¼ �
ð1

0

logjDr1ðjÞðe
2p
ffiffiffiffiffi

�1
p

yÞj2 dy

¼ �2mðDr1ðjÞÞ;

completing the proof of the desired formula.

As for the second assertion, it is nothing but Mahler’s theorem (see [8] Theorem 1).

This completes the proof of Theorem 5.1. r

From this description, we obtain the following notable corollary.

Corollary 5.3. The logarithm of the first term t1ðWjÞ vanishes if and only if every

eigenvalue of r1ðjÞ A Spð2g;ZÞ is a root of unity.
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Proof. We easily see the coe‰cient of the leading term of Dr1ðjÞðtÞ is one, so that

it is a primitive polynomial. Hence the claim follows from Kronecker’s theorem (see [8]

Theorem 2). r

This corollary seems to be interesting. Because in some case, we can say that the

first term t1 already approximates the simplicial volume. In particular, Corollary 5.3

implies that a torus bundle Wj with the hyperbolic structure (namely, jtrðr1ðjÞÞjb 3)

has always non-trivial L2-torsion invariant t1ðWjÞ. We explain this fact in the next

example.

Example 5.4. We apply Theorem 5.1 to torus bundles. In order to compute t1

numerically, we have used the Maple 6. It is well-known that the mapping class group

of the two dimensional torus T 2 is isomorphic to SLð2;ZÞ. Then we take a matrix

a 1

�1 0

� �

. Naturally, this matrix gives a di¤eomorphism j on T 2 and we may assume

it is the identity on some embedded 2-disk by an isotopic deformation. For this map j,

we make a calculation of a hyperbolic volume by using the SnapPea [34].

traceðr1ðjÞÞ �3p log t1 hyperbolic volume

0 0 0

1 0 0

2 0 0

3 18.1412584724 2.0298832128

4 24.8240715245 2.6667447835

5 29.5334698358 2.9891202829

6 33.2270014461 3.1772932786

7 36.2825168855 3.2969024143

8 38.8948730158 3.3775974082

9 41.1795720326 3.4345408859

10 43.2113662660 3.4761739892

Example 5.5. We consider some surface bundles of genus two. Let t1; . . . ; t5 be

the Lickorish generators of M2;1 and T1; . . . ;T5 their images in Spð4;ZÞ with respect to

the corresponding symplectic basis of H1ðS2;1;ZÞ. They are explicitly given by

T1 ¼

1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1

0

B

B

B

@

1

C

C

C

A

; T2 ¼

1 0 0 0

0 1 0 0

�1 0 1 0

0 0 0 1

0

B

B

B

@

1

C

C

C

A

; T3 ¼

1 0 1 1

0 1 1 1

0 0 1 0

0 0 0 1

0

B

B

B

@

1

C

C

C

A

;

T4 ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 �1 0 1

0

B

B

B

@

1

C

C

C

A

and T5 ¼

1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

0

B

B

B

@

1

C

C

C

A

:

By Penner’s results [28], mapping classes t l1t
m
3 t

n
5 t

�1
2 t�1

4 for any l;m; nb 1 are pseudo-
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Anosov maps. By applying the above formula to these cases, we compute t1 for some

triples of ðl;m; nÞ by using the Maple 6 again. Their hyperbolic volumes can be com-

puted by two methods. The first one is to use the SnapPea with Ichihara’s algorithm

[12] to describe a surface bundles by means of link surgeries. The second one is to use

also the SnapPea with the XTrain [1], [2].

ðl;m; nÞ �3p log t1 hyperbolic volume

ð1; 1; 1Þ 47.6747282482 10.6497813754

ð1; 1; 2Þ 52.9544769222 11.4666578757

ð1; 1; 3Þ 56.9524589673 11.8937138137

ð1; 1; 4Þ 60.2003564513 12.1434702788

ð1; 1; 5Þ 62.9462610289 12.3010254753

ð1; 2; 1Þ 54.4237752394 11.9187558233

ð1; 2; 2Þ 59.2291561987 12.7824557985

ð1; 2; 3Þ 62.9462610289 13.2306812552

ð1; 2; 4Þ 66.0036368428 13.4904289941

ð1; 2; 5Þ 68.6103164760 13.6529808192

ð1; 3; 1Þ 59.3208237316 12.4291049018

By the way, if we consider only the first term t1, we can define it to knot exteriors,

as well, other than surface bundles. Namely, log t1 is described as the integral of the

Alexander polynomial of knots. In this case, the above integral formula of t1 is related

with the next classical result on knots. The following argument was informed us by

Porti.

Let K be a knot in S3 and MðnÞ ! S3 the n-fold cyclic branched covering along K .

Here we define ordðnÞ to be the order of H1ðMðnÞ;ZÞ. If the order of H1ðMðnÞ;ZÞ
is infinity, then we put ordðnÞ ¼ 0. The following result is classically well-known (see

[30]):

ordðnÞ ¼
Y

n

i¼1

jDKðziÞj;

where DK is the Alexander polynomial of K and z1; . . . ; zn are the n-th roots of unity.

Then we can modify this equality as follows:

2

n
log ordðnÞ ¼

X

n

i¼1

1

n
logjDKðziÞj2:

If we take the limit on n, we obtain

lim
n!y

X

n

i¼1

1

n
logjDKðziÞj2 ¼

ð1

0

logjDKðe2p
ffiffiffiffiffi

�1
p

yÞj2 dy:

It means that the logarithm of t1 can be described by the asymptotic behavior of the

order of the first homology group of branched coverings up to sign.
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Remark 5.6. As for a related work to the above interpretation, see [31]. X. S.

Lin informed us the literature at the workshop ‘‘Invariants of Knots and 3-Manifolds’’

held in Kyoto 2001.

6. A formula of t2.

If j is an element of the Torelli group Ig;1, that is, j acts trivially on the first

homology group H1ðSg;1;ZÞ, we can give an explicit formula of the second invariant

t2ðWjÞ. Here it should be noted that log t1ðWjÞ ¼ 0 for j A Ig;1 (see Corollary 5.3).

The second term is described by the representation

r2 : Mg;1 ! GLð2g;ZN2Þ;

where N2 ¼ G=½G ;G �GH1ðSg;1;ZÞ. If we restrict r2 to the Torelli group Ig;1, this

is really a homomorphism (see [24] Corollary 5.4). Then our second formula is the

following.

Theorem 6.1. For any mapping class j A Ig;1, the logarithm of the second invariant

t2ðWjÞ is given by

log t2ðWjÞ ¼ �2mðDr2ðjÞÞ;

where Dr2ðjÞðy1; . . . ; y2g; tÞ ¼ detðtI � r2ðjÞÞ and yi denotes the homology class corre-

sponding to xi.

Proof. If j belongs to the Torelli group, we easily notice that the group

pð2Þ ¼ N2 cZ ¼ H1ðSg;1;ZÞ � Z

is isomorphic to the abelian group Z
2gþ1. Accordingly we see that the Novikov-Shubin

invariants aðD
ð2Þ
i Þ are positive in this case (see [16]).

On the one hand, we can identify l2ðZ 2gþ1Þ with L2ðT 2gþ1Þ, the space of L2-

functions on the ð2gþ 1Þ-dimensional torus, by Fourier transforms. Under this identi-

fication, the trace is just equal to the multiple integral

ð1

0

� � �

ð1

0

dy1 � � � dy2gþ1:

Hence we can prove the desired formula by the similar argument as in the case of the

first term t1. This completes the proof. r

Now we suppose FðtÞ A Z½tG1
1 ; . . . ; tG1

n � is primitive. Then define F to be a gen-

eralized cyclotomic polynomial if it is a monomial times a product of one-variable

cyclotomic polynomials evaluated at monomials.

Corollary 6.2. For any mapping class j A Ig;1, the logarithm of the second in-

variant t2ðWjÞ vanishes if and only if Dr2ðjÞ
is a generalized cyclotomic polynomial.

Proof. Since the characteristic polynomial Dr2ðjÞ is primitive as before, the as-

sertion immediately follows from the theorem of Boyd, Lawton and Smyth (see [8]

Theorem 4). r
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Example 6.3. Let jh ð1a ha gÞ denote a BSCC-map of genus h, that is, a Dehn

twist along a bounding simple closed curve on Sg;1 which separates Sg;1 into Sh;1 and

genus g� h surface with two boundaries. This is a typical element of the Torelli group

Ig;1. Thereby we see from [32] that

Dr2ðjhÞ
¼ ðt� 1Þ2g:

Thus by virtue of Corollary 6.2, we can conclude log t2ðWjhÞ ¼ 0.

Next we consider the BP-map ch ¼ DcD
�1
c 0 of genus h ð1a ha g� 1Þ, where c and

c 0 are disjoint homologous simple closed curves on Sg;1 as in Figure 1 and Dc denotes

the Dehn twist along c. It is known that the Torelli group Ig;1 is normally generated

in Mg;1 by c1. Then from [32] Proposition 3.5, we obtain

Dr2ðchÞ
¼ ðt� 1Þ2g�2hðt� ygþhþ1Þ

2h
;

where ygþhþ1 denotes the homology class corresponding to the ðhþ 1Þ-th meridian of

Sg;1. This is also a generalized cyclotomic polynomial, so that its L2-torsion vanishes.

Example 6.4. Let j ¼ Dc2Dc1D
�1
c2
Dc1 A Ig;1. Here c1 and c2 are simple closed

curves on Sg;1 as in Figure 2 below. Then we see from a computation of [32] that

Dr2ðjÞ
¼ ðt� 1Þ4 þ tðt� 1Þ2ðygþ1 � 2þ y�1

gþ1Þðygþ2 � 2þ y�1
gþ2Þ:

This is not a generalized cyclotomic polynomial, so that the mapping torus Wj has a

non-trivial L2-torsion invariant t2ðWjÞ. In fact we can compute the second term as

follows. By means of Lawton’s result (see [15]), mðDr2ðjÞÞ can be expressed as the limit

of the Mahler measure in a single variable. More precisely we have

mðDr2ðjÞ
Þ ¼ lim

r!y

mðDr2ðjÞ
ðu; u; urÞÞ:

c

h

c 0 Sg; 1

Figure 1.

c2

c1 Sg; 1

Figure 2.
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In Figure 3, we plot the Mahler measure mðDr2ðjÞðu; u; u
rÞÞ versus r. The convergence

is evident and we obtain the approximate value

�3p log t2ðWjÞ ¼ 6pmðDr2ðjÞÞ ¼ 19:28 . . . :
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