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Abstract. The first purpose is to characterize the existence of well-behaved -
representations of locally convex x-algebras by unbounded C*-seminorms. The second is
to define the notion of spectral x-representations and to characterize the existence of
spectral well-behaved x-representations by unbounded C*-seminorms.

1. Introduction.

Unbounded x-representations of x-algebras were considered for the first time in
1962, independently by H. J. Borchers [9] and A. Uhlmann in the Wightman
formulation of quantum field theory. A systematic study was undertaken only at the
beginning of 1970, first by R. T. Powers and G. Lassner [21], then by many mathe-
matician, from the pure mathematical situations (operator theory, unbounded operator
algebras, locally convex x-algebras, representations of Lie algebras, quantum groups
etc.) and the physical applications (Wightman quantum field theory, unbounded CCR-
algebras etc.). A survey of the theory of unbounded *-representations may be found in
the monograph of K. Schmiidgen [30] and the lecture note of A. L. of us [18].

In the previous paper [6] two of us and H. Ogi have constructed unbounded
x-representations of x-algebras on the basis of unbounded C*-seminorms. In this
context there has been investigated a class of well-behaved x-representations. Re-
cently, Schmiidgen has defined another (but related) notion of well-behaved -
representations. Those notions were considered in order to avoid pathologies which
may appear for general x-representations and to select “‘nice” representations which may
have a rich theory. In this paper we shall study the well-behavedness of unbounded
x-reprensetations of locally convex x-algebras and characterize the existence of well-
behaved x-representations of locally convex x-algebras by unbounded C*-seminorms.
Let .« be a pseudo-complete locally convex x-algebra with identity / and let .o7, be the
Allan bounded part of o7 ([1]). In general, <7, is not even a subspace, and so we use
the x-subalgebra .o/, generated by the hermitian part of .o, as bounded x-subalgebra
of o/. Let J;, be the largest left ideal of ./ contained in .7, that is, %), = {x € .°7};
ax e ofy,'aec .o/}. A x-representation n of .o/ is said to be wuniformly nondegenerate
if n(4)%(x) is total in the non-zero Hilbert space #;. A non-zero mapping p of
a *-subalgebra Z(p) of .o/ into R" = [0, 0) is said to be an unbounded C*-seminorm
on .o/ if it is a C*-seminorm on Z(p). In [6] we have constructed a class {r,} of *-
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representations of ./ from an unbounded C*-seminorm p on ./ as follows: N, = ker p
is a x-ideal of Z(p), and so the quotient x-algebra Z(p)/N, is a normed *-algebra with
the C*-norm [|x + N, ||, = p(x), xe Z(p). Let o/, denote the C*-algebra obtained by
the completion of Z(p)/N, and let I, be any faithful *-representation of ./, on a
Hilbert space #7;,. We define

(% (m,) = the linear span of {II,(x+ N,)&xeWN,, e #y,},

7,(a) (Z (x5 + N,,)ék) = My(axi + Np)&s
k k

for ae .o/, {xi} e Ny, {&k} € Hn,,

\

where 9, is a left ideal of .o/ defined by
N, ={xeZ(p)axe %(p), ae o}

Then 7, is a *-representation of .o/ on #; (the closure of Z(m,) in #7,) such that
|7, (x)|| = p(x), "x e N, and ||z,(x)| < p(x), "xe Z(p). The class of well-behaved x*-
representations is now selected as a subclass of the class {m,} of x-representations
constructed before. If there exists a faithful x-representation 11, of .o/, on 7, such
that I7,((M, N.#p) + N,) A7, is total in #7,, then p is said to be topologically w-
semifinite, and the x-representation 7, of .&/ constructed from such a 7, is said to be
well-behaved. Note that this implies ||7,(x)|| = p(x), "x € Z(p). The first purpose of
this paper is to show that there exists a well-behaved x-representation of .o/ if and only
if there exists a uniformly nondegenerate x-representation of .o/ and that this is the case
if and only if there exists an unbounded C*-seminorm p on ./ such that 9,1 .7, & N,,.
Next we shall investigate the spectrality of s-representations. The spectrum Sp., (x)
and the spectral radius r.,(x) of x € .o/ are defined by

Spes,(x) = {2e C;2 (Al —x)"" in ),

resy (X) = sup{|A]; 2 € Sp.y, (x) }.

A x-representation n of .o/ is said to be spectral if Sp.,(x) = Spc:x)(n(x)) for each
x € oy, where C;(n) is the C*-algebra generated by n(.Z,). If n[% is spectral for each
unital closed x-subalgebra # of .o/, then 7 is said to be hereditary spectral. The second
purpose of this paper is to show that there exists a spectral well-behaved *-representation
of .o/ if and only if there exists a spectral uniformly nondegenerate x-representation of
o/. The third purpose is to show that the existence of a hereditary spectral well-
behaved *-representation of .7 implies a diration-property of .«/. Speaking roughly, .o/
is said to have diration-property if any closed x-representation of an arbitrary closed x-
subalgebera 4 < .o/ may be extended in a certain sense to a closed x-representation of
o/. The fourth purpose is the investigation of the relation between the concepts of well-
behaved s-representations defined in [6] and resp. By using multiplier algebras, it
will be shown that both concepts are closely related to each other. Furthermore, there
will be discussed a number of examples which illustrate the usability of concepts of well-
behaved *-representations. These include the universal enveloping algebra E(%) of the
Lie algebra ¢ of a Lie group G, locally convex x-algebras of distribution theory, gen-
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eralized B*-algebras of Allan and Dixon [12], as well as their variants like pro-C*-
algebras, the multiplier algebra of the Pederson ideal of a C*-algebra and the Moyal
algebra of quantization which turns out to be a well-behaved *-representation of the
Moyal algebra.

2. Well-behaved x-representations of x-algebras.

In this section we shall characterize a well-behaved x-representation of a general -
algebra by an unbounded C*-seminorm. We review the definition of x-representations.
Throughout this section let .o/ be a x-algebra with identity /. Let & be a dense
subspace in a Hilbert space # and let #'(2) denote the set of all linear operators X in
A with the domain & for which X% ¢ 9, 2(X*) > % and X*Z < 2. Then £'(2) is
a x-algebra with identity operator I under the usual linear operations and the involution
X — X' = X*[%. A unital *-subalgebra of the x-algebra #1(2) is said to be an O*-
algebra on & in #. A x-representation © of .o/ on a Hilbert space # with a domain
 is a x-homomorphism of .o/ into £(Z) such that 7(I) = I, and then we write &
and # by Z(n) and #,, respectively. Let 7 be a *-representation of /. If 9(n) is
complete with respect to the graph topology ¢, defined by the family of seminorms
{U - Nzy = 1+ I+ [I7(x) - [[;x € </}, then 7 is said to be closed. 1t is well-known that =

is closed if and only if Z(n) = (.., 2(n(x)). The closure 7 of 7 is defined by

27 = () 2(=(x)) and #(x)&=rn(x)¢ for xe .o, & e D(7).

Xe.of

Then 7 is the smallest closed extension of 7. We refer to [17], [18], [21], [28], for

more details on x-representations.
We define the notion of strongly nondegenerate x-representations of .o7:

DEFINITION 2.1. A non-trivial x-representation 7 of .o/ is said to be strongly nonde-

generate if there exists a left ideal .# of .o« such that # < /] = {x € .o/;n(x) € #(H7)} and

[n(.I)Hy| = A7, where B(H;) denotes the set of all bounded linear operators on #; and
[#] denotes the closed subspace in #, generated by a subset % of #;.

First we consider when a strongly nondegenerate x-representation can be con-
structed from an unbounded C*-seminorm on .«/. Let p be a unbounded C*-seminorm
on /. As shown in Section 1, we can construct a *-representation 7, of .o/ from any
faithful *-representation /7, of the C*-algebra .«,, but =, is not necessarily nontrivial,
that is, the case #7, = {0} may arise (Example 6.18). Suppose that p satisfies the fol-
lowing condition (R):

(R) 9%, & N,.

Then 7, is a nontrivial *-representation of .«/ on the non-zero Hilbert space #7, (the
closure of Z(m,) in #7,) such that |z,(b)|| < p(b), "be P(p) and ||m,(x)|| = p(x),
"xeMN, ([6]). Hence we call (R) the representability condition. Let p be an un-
bounded C*-seminorm on ./ satisfying the representability condition (R). We denote
by Rep(.Z,) the class of all faithful x-representations /7, of the C*-algebra .o/, on
Hilbert spaces #7;, and by Rep(.«Z, p) the set of all x-representations of .«/ constructed
as above by (<7, p), that is,
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Rep(.+#, p) = {my; 11, € Rep(#,) }.
Here we show that 7, is always strongly nondegenerate.

LemMA 2.2. Suppose that an unbounded C*-seminorm p on <f satisfies condition
(R).  Then every m, € Rep(, p) is strongly nondegenerate.

Proor. Let I7, € Rep(«/,). Since the || |[,-closure N,/N, o of {x+ N,;xeN,}
in o7, is a left ideal of the C*-algebra .7, it follows that there exists a left approximate
identity {E,} in W,/N,I b, so that lim, ||(x + N,)E, — (x + Np)ll, =0 for each x e 9,.
For any o, there exists a sequence {egn)} in 9, such that lim, . ||(e§(") +N,) — E, |, =0.
Take an arbitrary # € [I1,(N, + N,)#7,] N [70,(9,) 1T, (N, —i—Np)anp]L. Then we have

(,(x+ Np)S|n) = ligll(np(x + Np) I, (Ey)< | 17)

= lim lim (IT,(x + N,)IT,(e™ + N,)¢ | n)

o
o n—oo

— lim lim (z,(x) [T, (e" + N,)& | )

o

o n—aoo
=0
for each xeW%, and e #j,, which implies that [r,(9,)11,(%, + N,)#7,] =
[1,(M, + N,)#11,) = H7,. Hence =, is strongly nondegenerate. O

Next we review well-behaved x-representations of .7 defined in [6] which play an
important rule for the study of unbounded C*-seminorms. Moreover, we investigate
the relation of them and strongly nondegenerate x-representations. If

Rep™ (o, p) = {n, € Rep(#, p); #z, = Hi1,} # D,

then p is said to be weakly semifinite (or abbreviated, w-semifinite), and an element 7,
of Rep™(Z,p) is said to be a well-behaved x-representation of </. In a previous
paper ([6, Proposition 2.5]) we have shown that if 7, € Rep™*(.«Z, p) then 7, is strongly
nondegenerate and ||z,(x)|| = p(x), "x € Z(p). By Lemma 2.2, =, is always strongly
nondegenerate. A strongly nondegenerate x-representation of .o/ is not well-behaved
in general, but it allows to construct a w-semifinite C*-seminorm (and consequently also
a well-behaved x-representation) as follows: Let r, be the unbounded C*-seminorm

defined by

{9(%) =y,
ra(x) = [[7(x)]l,  x € Z(rz).

LemMmA 2.3. Suppose that n is a strongly nondegenerate x-representation of /.
Then r, is a w-semifinite unbounded C*-seminorm on <f.

PrOOF. Since 7 is strongly nondegenerate, there exists a left ideal .# of .7 such
that 4 < /] and [n(#)%(n)] = #. Now we put

II(x+ N,,) =n(x), xe.d.
Since |[/1(x + Ny,)|| = rz(x) = ||[x + N, ||, for each xe .oz, it follows that /T can be
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extended to the faithful x-representation I7 fr of o/, on the Hilbert space ;. We
denote by 77:,1: the *-representation of .o/ constructed from 77:,1: . Then it follows from
([6, Proposition 4.1]) that n,{;' is a well-behaved x-representation of .o/, and hence r, is
weakly semifinite. ]

The following scheme may serve as a short sketch of the proofs of and
Lemma 2.3:

p————————————— =y ———————————— — Iy
unbounded C*-seminorm strongly nondegenerate weakly semifinite
with condition (R) k-representation unbounded C*-seminorm
|
|
7Z:N H ______________ J
Yz,
well-behaved
k-representation. (S1)
Here, the arrow 4 ————— — B means that B is constructed from A.

We have the following

ProrosITION 2.4.  Let of be a x-algebra with identity 1. The following statements
are equivalent:

(1) There exists a well-behaved x-representation of <, that is, there exists a w-
semifinite unbounded C*-seminorm on <.

(i) There exists a strongly nondegenerate x-representation of <f.

(i) There exists an unbounded C*-seminorm on .o/ satisfying condition (R).

3. Well-behaved x-representations of locally convex x-algebras.

In this section we shall consider an extension of the results of Section 2 to the case
of locally convex x-algebras. First, we review some notions of the theory of locally
convex x-algebras. A locally convex x-algebra is a x-algebra which is also a Hausdorff
locally convex space such that the multiplication is separately continuous and the in-
volution is continuous. Let .o/ be a locally convex x-algebra with identity /. We
denote by # the collection of all absolutely convex, bounded and closed subsets B of
</ such that / € B and B> = B. For any B e %, let .«/[B] denote the subspace of .o/
generated by B. Then ./[B] = {/x; A€ C,x € B} and the equation: |x|z = inf{4 > 0;
x € AB} defines a norm on .«/[B|, which makes .«/[B] a normed algebra. If .«/[B] is
complete for each B € 4, then .o/ is said to be pseudo-complete. Note that .o/ is pseudo-
complete if it is sequentially complete. We refer to [I], [2], for more details on
locally convex x-algebras. Throughout this section .o/ will denote a pseudo-complete
locally convex x-algebra with identity /. An element x of .o is bounded if, for some
non-zero 4 € C, the set {(1x)";n e N} is bounded. The set of all bounded elements of
o/ 1s denoted by .7;. If .o/ is commutative, then .o/; is a x-subalgebra of .o/, but it
is not even a subspace of .7 in general. Hence we consider the x-subalgebra of .o/
generated by (7)), = {x € o/y;x* = x} as the bounded x-subalgebra of </, and denote
it by /). In general, (<), c 7, and (o)), = /), but there is no definite relation
between .o/, and .«7,. Of course, &/, = .o/, if .o/ i1s commutative. We put
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Iy ={xedyaxe oy ae ).

Then .7, is a left ideal of .o which is the largest left ideal of ./ contained in .o7,. By
(|4, Lemma 3.10]) we have the following

LemmA 3.1. If m is a x-representation of </, then </, — /) and |n(x)| < p(x) for
each x e (y),, where [(x) is the radius of boundedness of x defined by p(x)=
inf{1 > 0;{(A'x)";n e N} is bounded}.

Next we define the notion of uniform nondegenerateness of *-representations which
is stronger than that of the strong nondegenerateness.

DEerFINITION 3.2. A non-trivial x-representation 7 of .o/ is said to be uniformly
nondegenerate if [n(Ip)Z(n)| = H.

To investigate the relation of uniformly nondegenerate x-representations and un-
bounded C*-seminorms of a pseudo-complete locally convex x-algebra, we need a further
notion:

DErFINITION 3.3.  An unbounded C*-seminorm p on ./ is said to be topologically w-
semifinite (abbreviated, tw-semifinite) if there exists an element /7, € Rep(.«,) such that
[1,((M, N Ip) + Np) Hig,| = H,.

We denote by Rep”™ (.7, p) the set of all x-representations 7, of ./ constructed
from II, € Rep(.<Z,) satisfying [I1,((M, N.#}) + N,)H11,] = Hqr,. 1t is clear that

Rep™ (., p) = Rep™ (o, p).

In case of general x-algebras an element 7, of Rep""(.<Z, p) is said to be well-behaved,
but in case of locally convex x-algebras an element 7, of Rep” " (.7, p) is said to be
well-behaved, and an element 7, of Rep“* (.7, p) is said to be algebraically well-behaved.

The existence of well-behaved x*-representations of ./ may be characterized as
follows:

THEOREM 3.4. Let .o/ be a pseudo-complete locally convex x-algebra with identity 1.
Then the following statements are equivalent:

(i) There exists a well-behaved x-representation of </, that is, there exists a tw-
semifinite unbounded C*-seminorm on <.

(i) There exists a uniformly nondegenerate x-representation of <.

(i) There exists an unbounded C*-seminorm p on < satisfying the representability
condition (UR):

(UR) M, NI, & N,

PrOOF. (iii) = (ii) Suppose that p is an unbounded C*-seminorm on .o/ satisfying
condition (UR). By [Lemma 2.2l and [Lemma 2.3 r,, is a w-semifinite unbounded C*-
seminorm on .. Then it follows from [Cemma 3.1 that Z(r,) = «/,” > Ap, and hence
ER,np > #,. Thus we define an unbounded C*-seminorms r;‘p on .o/ by

{@(”fz’p) = )

e (%) =15, (¥) = I, xe ().
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Then we have STt,u = 4, and so r¥ is an unbounded C*-seminorm on .o/ satisfying
condition (UR). Hence an argument similar to the proof of Lemma 2.7 shows that

[n,,;p (fb)H,#p (‘R% + Nrj;p )an% ] = [ﬂr#p (SR,;F )Hr,‘;p (‘ﬁ,#p + Nr,‘;p >anf,‘{p]

= [H,u (%r;:p +Nrgp)%nru ]7

p 7p

which means that Tra is uniformly nondegenerate.

(ii) = (1) Suppose that 7 is a uniformly nondegenerate *-representation of .o7. As
shown above, the restriction ry of r, to .2/, is an unbounded C*-seminorm on .2/ such
that M.« = .7, and so it satisfies condition (UR). We denote by nrl}f the natural x-
representation of .o/ constructed from a faithful x-representation 177} P of the C *-algebra
<ty of Ay Then we have

(1172 By 0. Iy + Ny Aoy = [0(I) Ha] = A = Ay,

'n

which means that r is tw-semifinite and nj},’ is a well-behaved *-representation of .o7.
(1) = (iii) This 1s trivial. This completes the proof. O

The following schemes may serve as a sketch of the proof of Mheorem 3.4

u

T——————— — rl
uniformly nondegenerate tw-semifinite unbounded
x-representation C*-seminorm
|
o P — ]
well-behaved
k-representation (S2)
and
p—————"""- - np _____________ — T Ty
unbounded C*-seminorm strongly nondegenerate  w-semifinite
with condition (UR) x-representation unbounded C*-seminorm
|
|
|
R e Iy =Tz, I.oZ)
uniformly nondegenerate
x-representation
| I
|
L R ru

well- behaved
k-representation. (S3)
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4. Spectral well-behaved x-representations of locally convex x-algebras.

In this section we shall define the notion of spectral *-representations of locally
convex x-algebras and characterize them by unbounded C*-seminorms.

Let .o be a locally convex x-algebra. If .« does not have an identity, then we may
consider the locally convex x-algebra .o/; obtained by adjoining an identity / to .«7.
The algebraic spectrum Sp.,(x) and the spectral radius r.(x) of x € .o/ are defined by

pﬂx):{{zec;ﬂ(m—x)_l in o/}, if 1 e
{re C;:2(Al —x)"" in o U{0}, if I ¢ .o,
and

res(x) = sup{|4f; 4 € Sp(x)}.
In topological cases, it is natural to consider also Sp.,(x) defined by
{ e C;2(21 —x)™" in o}, if I e,
{Le C;2 (W —x)"" in (), U{0}, if 1¢ ..

Throughout this section let .«/ be a pseudo-complete locally convex x-algebra with
identity 1.
We first define the notion of spectral x-representations of .o7 as follows:

Sp&fb (X) = {

DEerFINITION 4.1. A x-representation n of .o/ is said to be spectral if Sp.,(x) <
Spci(n)(ﬁ) for each x € .o/), where C;(n) is the C*-algebra generated by n(.</,). If
nl# is spectral for each unital closed *-subalgebra # of .o/, then n is said to be
hereditary spectral.

In order to characterize the existence of (hereditary) spectral uniformly nonde-
generate x-representations of .o/, we shall define and study the notion of spectrality
of unbounded C*-seminorms. Note that an element x of an arbitrary (x-)algebra #
has the quasi-inverse ye # if x4+ y —xy =x+ y — yx =0. In an unital algebra # (or
in 4,) this is equivalent to (/ — y) = (/ —x)"'. An element x € 4 is said to be quasi-
regular if it has a quasi-inverse. In case of a topological x-algebra %, x € # is said to
be quasi-invertible if it has a quasi-inverse belonging to %;. Let 7 (resp. #") denote
the set of all quasi-invertible (resp. quasi-regular) elements of 4.

DEFINITION 4.2.  An unbounded C*-seminorm p on ./ is said to be spectral if
{xe2(p);p(x) <1} =« 2(p)”. 1If p!# is spectral for each unital closed x-subalgebra
A of o/, then p is said to be hereditary spectral.

REMARK 4.3. In [6] there has been defined the notion of spectrality of unboudned
C*-seminorms p on general x-algebras .o/ as follows: p is said to be spectral if {xe
2(p); p(x) <1} = 2(p)?, and p is said to be hereditary spectral if p[2 is spectral for
each x-subalgebra # of .o/. When .&/ is a locally convex x-algebra, such a p is said to
be algebraically (hereditary) spectral. 1t is clear that if p is spectral, then it is alge-
braically spectral.

LemMA 4.4. Let p be an unbounded C*-seminorm on of. The following statements
(i) and (ii) are equivalent:
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(i) p is spectral.

(i)  rg(p),(x) < p(x) for each x e %(p).
If this is true, then the following statements (ii) and (iv) hold:

(iil) 7oy (x) = lim,_, p(xm)" < o (p),(X) < p(x) for each x € Z(p).
In particular,

o (p)(X) = Tg(p), (X) = p(x) for each x* = xe Z(p).
(V) Spa(p),(x) U{0} = Spy,(x + N,) U{0},
Sp@(p),, (X) = Sp@(p) (x)7
and
1/n

ra(p), (X) = ro(p(x) = lim p(x")

for each x e Z(p),.

PrOOF. It is easily shown that (i) and (ii) are equivalent. Suppose that p is
spectral. Since p is algebraically spectral, it follows from (|24, Theorem 3.1]) that
(i) holds. We show that (iv) holds. Let ﬂpb be the C*-subalgebra of the C*-
algebra .7, generated by {x+ N,;xe Z(p),}. Suppose that xe Z(p), and that L€
C\(Spd;(x—l—Np)U{O}). Let Ae&fp” be the quasi-inverse of A~'(x+ N,). By the
definitions of the quasi-inverse and of %Pb, we find z € Z(p), such that

pO xz =1 —2) <1, pllax—2'x—2) < 1.

By spectrality of p, the first of these inequalities implies that —4 'xz+ A" 'x + z has a
quasi-inverse y € Z(p),. Hence

(2 "z x4 )y — (= 2+ A x +2) -y =0,
Alx(—zy+y+2) -2 x+zy—y—z=0,

which means that A 'x has the right quasi-inverse —zy + y +z € 2(p),. Similarly it
can be shown, that it has a left quasi-inverse in Z(p),. Consequently,

Sp&/pz; (x + Np) U{0} o Spgp), (x) U{0}. (4.1)

Since the converse inclusion is trivial and Sp_(x+ N,)U{0} = Sp., (x + N,) U {0}
(32, Proposition 4.8]), the first equation in (iV)p is established. Suppose now, that
2 'xe2(p), (he C\{0}) has a quasi-inverse ye Z(p). Then (I — (/l_lx—i—N,,))*l =
I —(y+N,) is o, ie, L¢Spy (x+N,). This implies 1 ¢ Sp_,»(x+ N,). But then
A ¢ Spa(p,(x)U{0} by [41). This proves ’

Spa(p) (x)U{0} o Spap), (x)U{0}, xeZ(p),.

Again, the converse inclusion is trivial, so that

Spa(p) (x)U{0} = Spap), (x)U{0}, xeZ(p),. (4.2)

Consequently, the second equation in (iv) is satisfied if Z(p) has no unit element. If
%(p) (and consequently also Z(p),) has a unit /4(,), (4.2) applied to /4, — x instead
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of x shows that x € Z(p), is invertible in Z(p) if and only if it is invertible in Z(p),,
ie., that 0 € Spy(p (x) if and only if 0 € Spy(p), (x). This completes the proof of the
second equation in (iv). Finally, the spectral radius formula in (iv) follows from (iii),
which completes the proof. O

For spectral unbounded C*-seminorms p on ./ whose domains Z(p) contain .o/,
we have the following

LemMA 4.5. Suppose that p is a spectral unbounded C*-seminorm on .o/ such that
9(p) o . Then the following statements hold:

(1) p(x)=ry, (x*x)'? for each xe %(p). Hence, a spectral unbounded C*-
seminorm p on o/ whose domain contains </}, is uniquely determined in a sense that if ¢
is a spectral unbounded C*-seminorm on .o/ whose domain contains </, then p(x) = q(x)
for each xe€ Z(p)N2(q). In particular, if p is a spectral C*-seminorm on </, then

p(x) = r&/(x*x)l/2 = r&/,)(x*x)l/z, x e .o,

and so p is unique.

Suppose that q is an unbounded C*-seminorm on </ such that 9(q) = /. Then the
Sfollowing (2)—(4) hold:

(2) If q < p, then q is spectral.

(3) If g = p, then q is spectral and q < p.

@) gq(x) < p(x), "xe2(p)N%(q).

Proor. (1) Since Z(p), = o7, it follows from [Lemma 4.4, (iii) that p(h) = r, (h)
for each h e Z(p),, which implies that p(x) = rArbe(x*x)l/2 for each x e Z(p).

Suppose that ¢ is an unbounded C*-seminorm on ./ such that Z(q) o .<7,.

(2) This is trivial.

(3) Suppose that ¢ > p. Then it is clear that ¢ is spectral, and hence by (1)
qgcp.

(4) We put

{9@) =2(p)N%(q)
r(x) = max(p(x),q(x)), xe2(r).

Then r is an unbounded C*-seminorm on .o/ such that %(r) > o/, and r > p. By (2)
we have r < p, and hence ¢(x) < p(x) for each x € Z(p) N Z(q). This completes the
proof. (]

We next define the notion of the spectral invariance of .. We denote by
Rep .o the class of all uniformly nondegenerate x-representations of .«/. Suppose that
Rep .o/ # (. Then we can define the unbounded Gelfand-Naimark C*-seminorm | | on
o/ as follows:

{9(\ ) ={x € ;supscreps I7(X)]| < o0},
’X| = SupneRep.‘olHn(x)Hv X € @(’ |)

Then it follows from [Cemma 3.0 that %(| |) > .,. Hence we may define the un-
bounded C*-seminorm | |, on .o/ obtained by the restriction | | to .7, that is,
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fﬂ“ﬂ:ﬂm

[xl, = [xl,  xe2(] [,).

LemMA 4.6.  Suppose that Rep o/ # . Then | |, is a tw-semifinite unbounded C*-
seminorm on /.

Proor. Let I' be a set of uniformly nondegenerate x-representations of .o/ such
that for all xe ./
sup [2(cx)| = sup [[n()]|
neRep .o/ nel
Here ||z(x)|| denotes the operator norm of the possibly non-closed operator z(x) if
n(x) is bounded and ||z(x)|| = oo if 7(x) is unbounded. Define 7 = _,7m,. Then
7 is uniformly nondegenerate. In fact, take an arbitrary & = (&,) € [n(fb)c%ﬂn]L. Then

&, € [na(fb)yfm]L for each «. Since 7, is uniformly nondegenerate, we have &, =0,
which implies that [z(;)#;] = #,. Here we put

H(x+ Nj| ) =n(x), xe.Ap

Then I1 can be extended to the faithful *-representation of the C*-algebra .</|| on the
Hilbert space #; and the x-representation 7| of ./ constructed from /7 is uniformly
nondegenerate. Hence it follows from the proof of [Theorem 3.4 that | |, is tw-
semifinite. (]

The C*-algebra .o/| | constructed from | |, is said to be the enveloping C*-algebra
of o/ and denoted by EC*(.</). The natural *-homomorphism:

xeﬂbn—>x+N| ‘uEEC*(VQ/)
is denoted by ;.

DerFINITION 4.7, If Rep.oZ # & and Sp.,,(x) = Spec+()(j(x)) for each x e .oz,
then .o/ is said to be spectral invariant.

Next, we characterize the existence of spectral well-behaved x-representations.

THEOREM 4.8. Let .o/ be a pseudo-complete locally convex x-algebra with identity 1.
The following statements are equivalent:

(1) There exists a spectral tw-semifinite unbounded C*-seminorm on </ whose
domain contains 7.

(i) There exists a spectral well-behaved x-representation of </ .

(i) There exists a spectral uniformly nondegenerate x-representation of .of.

(iv) o is spectral invariant.

In order to prove this theorem we shall prepare some lemmas.

Lemma 4.9. | |, is spectral if and only if o/ is spectral invariant.
Proor. This follows from [Cemma 4.4. H

LemMma 4.10. Let © be a x-representation of .«/. Consider the following statements:
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1) r¥ is hereditary spectral.

(
(i) 7 is hereditary spectral.
(iii) Iarg 18 spectral for each closed x-subalgebra % of </ with 1.
(iv) ry is spectral.

(v) m is spectral.

Then the following implications hold:

(ii) (iv)
(i) = ﬂ = ]I
(iii) (v).

Proor. We first show the equivalence of (iv) and (v). Since Z(r¥) = .o, it fol-
lows from [Cemma 4.4 that r* is spectral if and only if {xe .oZ;r¥(x) <1} = /7.
Suppose that = is spectral. Take an arbitrary x e .o/, such that r¥(x) < 1. Since
C*(n) = n(2y)I 1, it follows that 7(x) is quasi-invertible in the C*-algebra C*(r), and so
1 ¢ Spe:(x) (n(x)). Since 7 is spectral, we have I ¢ Sp.y, (x), and so x € .o/?. Therefore r"
is spectral. Conversely suppose that ry is spectral. Let x € .7, and A € C\Spc:(x) (n(x))

be fixed. Since {n(y);y € .y} is dense in C;(n), we can find y e .o/, such that

(M =x)y = 1) = [[(U = n(x))=(y) = 1| <1,

ra(Y(A = x) = 1) = [[n(y)(M —n(x)) = || < 1.

Since r! is spectral, (A1 —x)y and y(Al — x) are invertible in ., and so 4 ¢ Sp.,(x).

Hence Spc: (v (n(x)) © Sp.y,(x). Thus = is spectral if and only if " is spectral.
Applying the equivalence of (iv) and (v) to n[%, where # is an arbitrary unital

closed *-subalgebra of .7, we obtain the equivalence of (ii) and (iii). From the de-

finitions of the unbounded C*-seminorms I21B and r’[%, it follows that

v

rarp is spectral if and only if ryg,(x) < |lz(x)]], "xeB

and

r“14 is spectral if and only if ryg, (x) < ||z(x)|, "xe . N%A,

so that the implication (i) = (ii) holds since %, < .o/, N %. This completes the proof.
]

LemMA 4.11.  Suppose that p is a tw-semifinite unbounded C*-seminorm on </ such
that 9(p) o /y. Then the following statements hold:

(1) If p is spectral, then Rep.o/ # & and | |, < p.

(2) If p is (hereditary) spectral, then every m, € Rep”™ (<, p) is (hereditary)
spectral.

ProoF. (1) Suppose that p is spectral. By (4), we have
x|, < p(x), x€ ..

On the other hand, since p is tw-semifinite, there exists an element 7, of Rep”™"(.«Z, p)
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such that ||z, (x)|| = p(x) for each x € Z(p), which implies that Rep.«/ # ¢J and p(x) <
|x|, for each xe.«Z,. Hence we have | |, < p.

(2) Suppose that p is (hereditary) spectral, and 7, € Rep”™"*(.«, p). Then we have
ry < p, which implies by Lemma 4.5, (2) that ry is (hereditary) spectral. Hence it

7(

follows from that 7, is (hereditary) spectral. O

PROOF OF THEOREM 4.8.

(i) = (ii) This follows from [Lemma 4.11, (2).

(ii) = (iii) This is trivial.

(iii) = (i) Let 7 be a spectral uniformly nondegenerate x-representation of .«Z. As
seen in the proof of (ii) = (i) in [MTheorem 3.4, r" is a tw-semifinite unbounded C*-
seminorm on .«/. Furthermore, it follows from that r¥ is spectral.

(i) = (iv) Let p be a spectral tw-semifinite unbounded C*-seminorm on .o/ such
that Z(p) o «/,. By [Lemma 4.11, (1), we have | |, = p, which implies by [Lemma 4.5,
(2) that | |, is spectral. Hence it follows from that .o/ is spectral invariant.

(iv) = (i) Suppose that .7 is spectral invariant. By [Lemma 4.9, Rep.«# # & and
| |, is spectral. Furthermore it follows from that | |, is tw-semifinite. This
completes the proof. ]

Finally in this section, there are obtained several conditions for the existence of
hereditary spectral well-behaved x-representations.

ProposITION 4.12. Let o/ be a pseudo-complete locally convex x-algebra with
identity 1. Consider the following statements:

(i) There exists a hereditary spectral tw-semifinite unbounded C*-seminorm on </
whose domain contains </p,.

(i) There exists a hereditary spectral well-behaved x-representation of <.

(i) There exists a hereditary spectral uniformly nondegenerate x-representation of

Then the following implications (1) = (ii) < (i) hold.

PrROOF. (i) = (ii) This follows from [Cemma 4.11, (2).
(ii) = (iii) This is trivial.
(iii) = (ii) Let 7 be a hereditary spectral uniformly nondegenerate x-representation

of «/. As shown in the proof (ii) = (i) of [heorem 3.4, r¥ is a tw-semifinite unbounded
C*-seminorm on .o/ and =% is a well-behaved x-representation of .. Since 7 is

hereditary spectral, it follows that for any closed *-subalgebra # of .o/ containing I,

Spa,(x) = SPMH | (7(x))

= SPov i (7 (x))

for each x € 4, which implies that z} is hereditary spectral. This completes the proof.

[

5. Locally convex x-algebras with diration-property.

In [6] we have generalized the following diration-property of C*-algebras:
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Let o/ be a C*-algebra and % any closed x-subalgebra of /. For any x-repre-
sentation © of B on a Hilbert space #, there exists a x-representation p of </ on a
Hilbert space #, such that #, > #; as a closed subspace and n(x) = p(x) [ H# for
each x € #

to general x-algebras, and characterized it by the hereditary spectrality of unbounded
C*-seminorms. In this section we shall consider this diration-problem in case of locally
convex x-algebras.

DEerINITION 5.1. Let .o/ be a pseudo-complete locally convex x-algebra with
identity /. If for any unital closed x-subalgebra # of .o/ and any closed x-repre-
sentation 7 of # such that [n(.#,N%)%(n)]" = Z(n) there exists a closed #-repre-
sentation p of .7 such that [p(.9,)%(p)|” = Z(p), #» = #, and n(x) = p/r@(x) for each
x € 4, then .o/ is said to have diration-property. Here we denote by [#7]" the closed
subspace of the complete locally convex space Z(n)[t;] generated by a subset # of
9 (7).

THEOREM 5.2. Let o/ be a pseudo-complete locally convex x-algebra with identity
1. Consider the following statements:

(i) There exists a hereditary spectral well-behaved x-representations of .o/ .

(i) There exists a hereditary spectral uniformly nondegenerate x-representation of
o .

(i) .o/ has diration-property.
Then the following implications (i) < (ii) = (iii) hold.

ProoF. The equivalence of (i) and (ii) follows from [Proposition 4.12|

(i) = (iii) Let p, be a hereditary spectral well-behaved =*-representation of .«Z. Let
% be a unital closed x-subalgebra of .o/ and 7 a closed x-representation of # such that
(SN B)D (7)) = Z(n). Then it follows from that ry, (x) < ||po(x)| for
each x € 4,. Hence we have

fim [|2(x)"|"" = re; o (2(x)) < 1o (7(x)

n— oo u

<lpo)ll, "x e,

which implies that

Iz < llpo)ll,  "x € % (5.1)

We put

Po(pox) = 7(x),  x€ By

By (5.1) Py can be extended to a s*-representation of the C*-algebra C;(p %) =
po(By)I'l on #;, and it is denoted by the same Py. By the diration-property of
C*-algebras there exists a Hilbert space #p containing #, as a closed subspace
and a s-representation P of the C*-algebra C*(py) [ #; = po(Zp)! | on #p such
that P(A4) | #, = Po(A) for each A € C(py[#). We define a x-representation of .o/ by
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pla)P(py(x))E = P(py(ax))E, ae.of, xe Iy, e Hp,
and denote its closure by the same p. For any be 4, xe #,N# and & € #, we have

{@(p) = the linear span of {P(py(x))E xe Sy, Ee Hp}

n(x)€ = Po(py(x))¢ = P(py(x))<

and
n(b)(x)¢ = n(bx)¢ = P(py(bx))<
= p(b)P(py(x))¢,
which implies by [z(.#, N %)%(n)]"™ = %(=) that #, = #, and n(x) = p/ﬁ/%’(x) for each
x € 4. This completes the proof. L]

6. Special cases and examples.

The main purpose of this section is to give a number of examples of well-behaved
x-representations of (locally convex) x-algebras and of corresponding unbounded C*-
seminorms satisfying conditions (R) or (UR). All these examples belong to one of the
following special cases: Representations related to well-behaved *-representations in the
sense of Schmiidgen [31], representations of pseudo-complete locally convex x-algebras
satisfying .o = .o/, and representations of GB*-algebras.

6.1. Multiplier algebras and Schmiidgen’s well-behaved x-representations.

Here we investigate the relation of two concepts of well-behaved *-representations
using multiplier algebras.

Let X be a x-algebra without unit such that ¢ = 0 whenever ax =0 for all x € X.
A multiplier on X is a pair (/,r) of linear operators on X such that /(xy) =/(x)y,
r(xy) = xr(y) and xl(y) = r(x)y for each x,ye X. Let I'(X) be the collection of all
multipliers on X. Then I'(X) is a *-algebra with unit (z,7), where 1(x) = x, x € X, with
pointwise linear operations, with multiplication defined by (/1,r1)(h,r2) = (L, rr),
and with the involution (/,r)" = (r*,1*), where [*(x) = I[(x*)" and r*(x) = r(x*)", x e X.
For x e X we put

I,(y)=xy and r.(y)=yx, yekX.

Then the map x e X — (/;,r,) € I'(X) embeds X into a x-ideal of I'(X). Let X be a
normed x-algebra with approximate identity. By an approximate identity for X, we
mean that a net {e,} in X, ||e,|| <1, such that x = lim, e,x = lim, xe, for all x € X.
We denote by ¥ the Banach x-algebra obtained as completion of ¥. Then, for (I,r) e
I'(X), since

lr(a)|| = sup{||r(a)x]||; x € X such that ||x|| <1}
= sup{||al(x)||; x € X such that |x| <1}
< ||lal| sup{||Z(x)||; x € ¥ such that ||x|| < 1}

and similarly,
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1(a)ll < [lall sup{[|r(x)[|; x € X such that |[x[| <1},
it follows that / is bounded if and only if r is bounded, and
I/ = sup{||/(a)||;a € X such that |ja|| < 1}
= sup{||r(a)||;a € X such that |ja|| < 1}

= [Irll;
so that
I.(X)={(l,r) e I'(X);] is continuous}

is a normed x-algebra with the norm

17, )|l = sup{[[/(a)][; [lall < T}.

It is well-known that every element of I'(X) is continuous and that I'(X) =TI, L(%)
(denoted also by M (X)) is a Banach x-algebra. We have the following diagram:

T

X —— Fc(%) — F(%)

The map 7I.(X) — M(X) is defined by (/,r) — (I,7) (where I,7 are the continuous ex-

tensions to X of / and r, resp). If X is a *-ideal of X, then
X (X)) — MZ)
w w
X (L, 1)

and

LX) = {(I,r) e M(%);1X < X and rX < X}.

By [Proposition 2.4 we have the following

PrOPOSITION 6.1. Let .o/ be a x-algebra without identity such that a =0 whenever
ax =20 for all xe of. Suppose that there exists a non-zero bounded, nondegenerate,
closed x-representation my of o/. Then there exists a well-behaved x-reprensetation r
of the multiplier algebra I'(.o/) such that #, = A7, and w((ly,ry)) = mo(x) | Z(n) for all
xed.

Proor. Identifying x € .o with (/,,r,) € I'(</), .o/ becomes a subset (even an ideal)
of I'(«/). Now the unbounded C*-seminorm p on ['(.</) defined by

{D(P) =,
p(x) = ()], xeo

satisfies condition (R) since 9N, = .o/ # N,. By [Proposition 2.4, there exists a well-
behaved *-representation of I'(.«/). But in the present situation we can define a repre-
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sentation I1, of .o/, on H#, such that IT,(x+ N,) = mp(x) for all xe .o/. Since g is
nondegenerate,

D(m,) = linear span of {I1,(.o/ + N,)#y,}
= linear span of {my(./)#7,}
is dense in 7, i.e., m, is well-behaved. O

Schmiidgen has defined the notion of well-behaved x-representations of x-
algebras. Here we shall introduce it and investigate the relation between his concept of
well-behaved x-representations and that of well-behaved *-representations in our frame-
work. Let o7 be a x-algebra with identity / and X a normed *-algebra (without identity
in general). The pair (<7, X) is called a compatible pair if X is a left .o/-module with left
action denoted by >, such that (a>x)"y =x*(a* > y) for all x,ye X and a € /. Then,
Schmiidgen has shown that for any nondegenerate continuous bounded x-representation
p of X on J#, there exists a unique *-representation p of ./ such that

{@ (p) = the linear span of p(X)i,,
pla)(p(x)&) = pla>x)é, aedd, xeX, e A,

and he has called the closure p’ of p the well-behaved *-representation of o/ associated
with the compatible pair (</,X). We consider this in our framework.

THEOREM 6.2. Let (o/,X) be a compatible pair with left action >. Suppose that X
has an approximate identity. Then the map: x € X — (I, ry) € I'(X) embeds X into a *-
ideal of the multiplier algebra I'(X). For any a € o/ we put

lix =anpx,
rax = (l=x*)", xekX.
Then, a x-homomorphism m of </ into I'(X) is defined by
m:ae.of — (lrz) € I'(X).

Suppose that © is a non-zero x-representation of /. Then the following statements are
equivalent:

() = coincides with the well-behaved (in the sense of [31]) x-representation p' of o/
associated with the compatible pair (</,X).

(i) = is the closure of m, o m, where m, is the well-behaved (in the sense of [6]) *-
representation m, of I'(X) constructed for some weakly semifinite unbounded C*-seminorm

ron I'(X) such that 9(r) = {(ly,ry); x € X} and r is continuous on the normed x-algebra
9(r).

Proor. It is easily shown that m is a *-homomorphism of .o/ into I'(X).
(i) = (ii)) Let p be a nondegenerate continuous bounded x-representation of the
normed x-algebra X on ), and set 7 = p’. We define an unbounded C*-seminorm r,

on I'(X) by

{9("/)) = {(le;ra);x € X},
rp((Leyrx)) = lp()ll, - x e X,
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By the continuity of p, r, is continuous on the normed x-algebra Z(r,). Moreover,
N, = %(r,) and N,, ~kerp. Hence, a faithful *-representation /7, of the C*-algebra
X, (the completion of %(r,)/N,,) on the Hilbert space #, can be defined so that

Hrp((lxarx)+Nr,,>:p(X), xeX.

As stated in the Introduction, the *-representation 7, of the multiplier algebra I"(X) is
constructed from 17, as follows:

9(m;,) = the linear span of I, (N, + N,,)H#,
= the linear span of p(X)x7,,
7, (1Lr)p(X)E = p(l(x))E, x€X, Le )

Since p is nondegenerate, it follows that #; = #,, which implies that 7, is a well-
behaved *-representation of I'(X) constructed from the unbounded C*-seminorm r,.
Furthermore, it follows that

@<7[r,,) = @<ﬁ>
and

(7, 0 m)(a)p(x)¢ = 7y, ((la; a))p(x)& = p(la(x))<

for all ae .o/, xe X and & e #,, which implies (ii).

(ii) = (i) Suppose n is the closure of m,om, where =, is a well-behaved x-
representation of I'(X) constructed from an unbounded C*-seminorm r on [I'(X) such
that 2(r) = {(ly,ry); x € X} and r is continuous on the normed x-algebra Z(r). Here
we put

p(x) = m, xeX.

Then since 7, is well-behaved, it follows that p is a nondegenerate continuous bounded
x-representation of the normed x-algebra X on the Hilbert space #, = A7, and

9(p) = linear span of p(X).%,
— linear span of {m((ly,ry))#;;x € X}
= 9(n,).
Moreover,
pla)p(x)& = p(a > x)<E

= p(lax)¢
= o ((laly, rra) )&
= m,(m(a))m (L, 1+))&
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for all ae o/, xe X and & e #,. Hence p = m, o m, which implies (i). This completes

the proof. ]

REMARK 6.3. Let (o/,X) be a compatible pair. Suppose that X is a *-ideal of
the Banach x-algebra X[|| ||] obtained by the completion of X[|| ||]. Then every C*-
seminorm r on X is || [[-continuous. Equivalently we show this for a bounded -
representation 7z of X. Since X is a %-ideal of X[|| ||], it follows that ¥ is quasi-inverse
closed in X[|| ||] and X% = XNX[|| ||]”. Hence, X? is open in X[|| ||], which implies

re(0) < lxll, xeX,

where r, denotes the spectral radius of x in X, which implies that

1) 1% = o) () (X)) < gy () ()
< r(x"x)
< [lx*x
< |lx?

for all xe X. Thus, n is || ||-continuous. Therefore we may take off the assumption of
the continuity of the C*-seminorm r on %(r) in [Theorem 6.2, (ii).

As a consequence of [Theorem 6.2 examples of well-behaved x-representations
given by Schmiidgen in are equivalent to well-behaved (in the sense of [6]) *-
representations of the corresponding multiplier algebras. We discuss those examples in
some detail (Examples 6.4-6.7). In the same way, the Moyal quantization is related to
a well-behaved x-representation of the Moyal algebra (Example 6.8).

ExamMPLE 6.4. Let o/ be the x-algebra 2(xj,...,x,) of all polynomials with
complex coefficients in » commuting hermitian elements xj,...,x,, and let X be the
normed x-algebra C.(R") of all compactly supported continuous functions on R" with
pointwise multiplication (fg)(f) = f(¢)g(t), the involution f*(f) = f(¢), and the norm
|fIl = sup,cge|f(2)]. It is clear that (.7, X) is a compatible pair with the left action

p>f=pf, ped feX

Let 7 be a closed -representation of .«#. Then, according to and [31], the
following statements are equivalent:

(i) 7 is integrable, that is, n(a)* = n(a*) for all a € .o/,

(ii) 7 is a well-behaved (in the sense of [31]) *-representation of .7 associated with
the compatible pair (o7, X).

(iii) = is the closure of =, o m, where 7, is a well-behaved (in the sense of [6]) *-
representation of the multiplier algebra I'(C.(R")) constructed from an unbounded C*-
seminorm r whose domain is {(/;,rr); f € C.(R")}.

ExampPLE 6.5. Let G be a finite dimensional real Lie group with the left Haar
measure 4, % the Lie algebra of G and E(%) the complex universal enveloping algebra
of 4. The algebra E(¥) is a x-algebra with the involution x* = —x, x € ¥ [30], [31]
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The space C¥(G) of C*-functions on G with compact supports is a normed s*-algebra
with the convolution multiplication

(f * 9)(v) = JGuf(u)g(u_lv)CLu(u%

the involution
[() =6(v)" ST,

where § denotes the modular function on G, and the L'-norm

171, ::jcrf<v>rdﬂ<v>

The completion of C*(G) is nothing but the Banach x-algebra L!(G), and C*(G)
contains a bounded approximate identity for L'(G). Furthermore, (E(%9), C*(G)) is a
compatible pair with the left action b:

(x> f)(u) = (Xf)(u) = d% fle™u), xeE(9), feCl(G)

=0

Let © be a closed x-representation of the x-algebra E(%). Then the following
statements are equivalent by [3I], Section 3 and [Theorem 6.2

(i) = is G-integrable, that is, it is of form n = dU for some strongly continuous
unitary representation U of G on a Hilbert space #, where dU is a x-representation of
E(%) defined by

2(dU) = 2% (U) = the space of C*-vectors in # for U,

d

dU(x)p = d
=0

Ue™)p, ¢e2(dU).

(ii) = is a well-behaved (in the sense of [31]) *-representation of E(%) associated
with the compatible pair (E(9),Cr(G)).

(i) 7 is the closure of m, o m, where 7, is a well-behaved (in the sense of [6]) -
representation of I'(C(G)) defined by an unbounded C*-seminorm r whose domain is
{(Ir,rr); f € C*(G)} and which is continuous with respect to the L!-norm || ||, of C*(G).

ExamMPLE 6.6. Let .o/ be the x-algebra generated by unit / and two hermitian
generators p and ¢ satisfying the commutation relation pg — gp = —il, and let ng be
the Schrédinger representation of ./ on the Hilbert space L?(R) with domain Z(rg) =
S (R), that is, it is a x-representation of .o/ defined by

(5PN = ~i 5 1.
(s(@))(0) = (1), [ e SR).

Let P and Q be the self-adjoint operators and let W (s,¢) be the unitary operator on
L*(R) defined by
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P=ns(p), O=rns(q), W(s,t):ezm(SQ”P), s,teR.

To any f € 9(R?) the Weyl calculus assigns a bounded operator W (f) on the Hilbert
space L*(R) by

W(f) = ” £ (s, )W (s, t) dsdt,

where f is the Fourier transform of f. The Schwartz space %(R?) is a normed x-
algebra with the multiplication f#g, the involution f* and the norm | |

(f#g)(t1,12)
= JJJJ £ (ur,u2)g(vy, vy)e*l—uz=v)=(t=en)(e=w)] gy s dyy d, ,

[t 0) = f(t, ),
1A= WO,

and
W()W(g) = W(ftg) and W(f) =W(f"), [f.ge S (R

(o/,F(R?)) is a compatible pair with the following action:

1 0 1 0
pbf:(za—tl—{—27'[t2)f, qu:(tl—%a_tz)fy fey(R2)'

By [31, Section 4] and we have the following:

Let 7 be a closed *-representation of .«7/. The following statements are equivalent:

(i) = is standard, [28], that is, it is unitarily equivalent to the direct sum of the
Schrédinger representation of .of.

(i) = is a well-behaved *-representation of .o/ associated with the compatible pair
(o, S (R?)).

(i) 7 =m,om for a well-behaved x-representation 7, of I'(¥(R")) constructed
from an unbounded C*-norm r on I'(¥(R")) such that 2(r) = {(l;,rr); f € S(R")} and
r is continuous on the normed x-algebra Z(r).

ExXAMPLE 6.7. Schmiidgen has given the examples of well-behaved x-
representations of the coordinate x-algebra O(Rs) of the real quantum plane and the
coordinate x-algebra O(SU,(1,1)) of the quantum group SU,(1,1).

We consider well-behaved x-representations of the Moyal algebra. For the Moyal
algebra we refer to [16].

ExampLE 6.8. Consider a system having n degrees of freedom and the configu-
ration space R". Then the phase space is identified with the cotangent boundle 7*R" =
R" x R", (g, p) being the canonical variables. On the Hilbert space # = L*(R"), the
Moyal quantizer 1s given by the operators
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(@) )(3) = 2"exp( 5 plor = 0) ) 20~ ).

For a symbol a of the Schwartz space ¥ (T*R"), the Bochner integral

()0 = e | ala. @ g ) 0’

defines the Moyal quantization map. Then Qy(a) is a trace class operator on L?(R")
such that a(q, p) = Tr[OQn(a)R"(q, p)]. The Moyal product

a X, b(u) = JJ Tr[Q" (1) Q" (v)Q" (W))a(v)b(w) d"vd"w

converts ¢ (7*R") into a non-commutative x-algebra X such that Qy(a x;b) =
On(a)On(b). Tt is a normed *-algebra X with Hilbert-Schmidt operator norm induced
by Q. The Moyal product extends to large classes of distributions as follows: For
T e (R*") and ae ¥ (R*), we can define T x;,a and a x, T in %'(R*") by

(T xpa,by =<{T,ax,b),
laxp T,by=(T,bx,ay, bePR™).
The multiplier algebra of X in the space of tempered distributions defined by
M ={T e (R");T xpa,ax, T are in #(R") for all a e ¥(R™)}

is a x-algebra with Moyal product and complex conjugation containing X as a -
ideal. This .# is called the Moyal algebra. The Moyal quantizer Q) extends as a *-
representation [denoted by Qj, also] of .# into unbounded operators on L?(R") such that
On(g) = multiplication by x and Q;(p) = —ih(d/0x). Thus (.#,X) is a compatible pair
and ./ < I'(X). immediately gives the following:

Let = be a *-representation of .#. Then the following are equivalent:

(i) = is a well-behaved *-representation of .# associated with the compatible pair
(M, X).

(i) n =m. om for a well-behaved x-representation 7z, of I'(X) defined by an un-
bounded C*-seminorm r whose domain is {(/,,r,);a € X}. In particular, the Moyal
quantization map Q; is a well-behaved x-representation of the Moyal algebra ./.

6.2. Pseudo-complete locally convex x-algebras .o/ with .7 = .o7,.

Let ./ be a pseudo-complete locally convex x-algebra with .o/ = .o7;. Then .o/, =
Iy = /. When .o/ does not have identity, we will consider the pseudo-complete locally
convex *-algebra .o7; obtained by adjoining an identity /. By [Cemma 3.1 and [Theoreml
4.8 we have the following:

COROLLARY 6.9. Let of be a pseudo-complete locally convex x-algebra with
of = .ofy. Then the following statements are equivalent:
(1) There exists a spectral well-behaved bounded x-representation of /.
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(i) There exists a spectral C*-seminorm on /.
(iii) .o/ is spectral invariant.

ExamMpPLE 6.10. Let .o/ be a Banach x-algebra. Then there exists a spectral un-
bounded C*-seminorm on ./ if and only if .7 is hermitian, that is, Sp.,(x) = R for each
xeody. Let 2={aeC;la| <1} and o7 ={f € C(2); f is analytic in the interior of
2%}. Then the disc algebra .o/ is a Banach x-algebra which is not hermitian under the

usual operations, the involution f*(«) = f(&) and the uniform norm. Hence there is no
spectral unbounded C*-seminorm on the disc algebra.

ExampLE 6.11. Let &(R") be the Schwartz space of rapidly decreasing infinitely
differentiable functions on R" equipped with the topology defined by the seminorms

U gim ke =0,1,...}, where
()7}

(1) Z(R") is a Fréchet x-algebra with & (R") =% (R"), under the pointwise
multiplication fg : (fg)(x) = f(x)g(x) and the involution /™ : f*(x) = f(x), and || f||, =
sup, . gr|f(x)| is a spectral C*-norm on ¥ (R").

(2) Z(R") is a Fréchet x-algebra with the convolution multiplication

1/l = sup {sup{<1 )

|p|<m LxeR"

1
(/) = WJ FGe- ey dy
and the involution
f(x) = f(=x).

The Fourier transform f — f establishes an isomorphism between .#(R") with con-
volution multiplication and .#(R") with pointwise multiplication. It follows that || f|| =
I/1l.. = sup,.ge|f(x)] is a spectral C*-norm on the convolution algebra ¥(R"). In
fact, || || is the Gelfand-Naimark pseudo norm and E(¥(R")) ~ C*(R") (the group C*-
algebra of R") ~ Cy(R") = {f € C(R");lim|y_,., f(x) = 0}.

ExXAMPLE 6.12. Let Z(R")(= CF(R")) be the space of C*-functions on R" with
compact supports. Let #° be the set of all compact subsets of R" and let

Ixk(R") ={fe€e2(R");suppf =K}, KeA.

Then Zg(R") is a Fréchet space with the topology of uniform convergence on K of func-
tions as well as all their derivatives, and Z(R") = ( {Zk(R");K € #"} = lim Zg(R")
with the usual inductive limit topology. -

(1) 2(R") with pointwise multiplication is a complete locally convex x-algebra
which is a LF Q-algebra (that is, a LF-space which is a Q-algebra). The norm || |, is
a spectral C*-norm and E(Z(R")) ~ Cy(R").

(2) Z(R") is also a complete locally convex *-algebra with convolution multiplica-
tion which is an ideal of L'(R"), and | f|| = || ||, is a spectral C*-norm on Z(R").
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ExamPLE 6.13. The Schwarz space ¥ (R" x R") equipped with the Volterra con-
volution and the involution:

Umew:jfmmwww,

n

S ) = f(y,x)

is a complete locally convex x-algebra with a spectral C*-seminorm. In fact, let f €
J(R" x R"). We put

(N0l = | Fx o) dy. pe SR,

Then we can show that 7y(f) can be extended to a bounded linear operator z(f) on
L*(R") and = is a continuous bounded *-representation of #(R" x R") on L*(R"). By
the simple calculation we have

n n—1
f[n]Efo...of:<J f(x,x)dx) f, neN

Rn

and

J flx,x)dx| <1 if r(f) <1,

which implies that the C*-seminorm r, on (R" x R") is spectral. Similarly,
Z(R" x R") has a spectral C*-seminorm.

6.3. GB™-algebras.

G. R. Allan |2] and P. G. Dixon defined the notion of GB*-algebras which is a
generalization of C*-algebra: A pseudo-complete locally convex x-algebra .o/ is said to
be a GB*-algebra over By if By is the greatest member in #* = {B e %#;B* = B} and
(1 + x*x)"" € .o/[By) for every xe .. Let o/ be a GB*-algebra over By. Then the
unbounded C*-norm p, on ./ is defined by

Z(py,) = B
Py, (%) = lIxll, »  x€Z(py)

and it has the following properties:

(1) p,, is spectral and o/, = /[Bg] = Z(p, ). In fact, since By is absolutely
convex, it follows that (x + x*)/2, (x — x*)/(2i) € (By), < (), for each x € By, which
implies that x € .«/,. Hence /[By]  .«/,. Conversely, since (7)), < .oZ[By], we have
/), = o/ [By]. Therefore, o/, = </[By]. Since /), is a C*-algebra, it follows that p, is
spectral. By (1) we have the following

(2) p,, satisfies condition (UR) if and only if %, # {0}.

Here we give an example of a GB*-algebra with .#, # {0}.

ExamPLE 6.14. " ={z=(z1,...,2,) e C"|z;] = 1,i=1,...,n} and C*(I"") the
Fréchet space of all C*-functions on I'" with the topology defined by the seminorms
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| flly = max sup [D*f(z)], N=0,1,....
(| <N zepm

Let C*(I'")" be the dual space of C*(I'"). Then, with the weak topology ¢ =
a(C (™), C*(I'"), (C*(I'")', ) is a sequentially complete convolution algebra which
is a GB*-algebra with A(By) = py/(I'") (the C*-algebra of all pseudo-measures on I'").
Since the Fourier-Stiltjes transform u + fi is a *-isomorphism of C*(I"")" onto the *-
algebra s’ of tempered sequences:

s'={0=1(0p),czm0p € C,"p and 7k > 0 such that {(1+|p|)¥a,} €1*(Z2")},

it follows that
|ul| = sup{|a(k)|; ke Z"}

is an unbounded C*-norm on C*(I'")’ satisfying

Iy =Ny
~ {(Xk)ezn € 17(Z");{a(k)x(k) e zn €17(Z7), a € &'}

> {(xx); xx # 0 for only finite terms}.

We consider the cases of pro-C*-algebras and C*-like locally convex x-algebras which
are important in GB*-algebras.

A complete locally convex x-algebra ./[t] is said to be pro-C*-algebra if the
topology 7 is determined by a directed family I" = {p;},_, of C*-seminorms. Then,
any C*-seminorm p; satisfies condition (R), but it does not necessarily satisfy condition
(UR). We put

2(p,) :{xe;z/;sup pi(x) < oo},
AeA

pr(x) :Eulj pi(x% XE@(pr).

Then 7 is a GB*-algebra over By = %(p,) = {xe %(p,); p,(x) <1} and p. = p, , and
so p, 1s a spectral unbounded C*-norm on .27 such that

(1) </ =2(p,), and so Jp =N, ;

(2) p, satisfies condition (UR) if and only if .#, # {0} if and only if p, is a C*-
seminorm with condition (UR) for some 4 € A.

ExaMmPLE 6.15. Let .o/ be a C*-algebra without identity and 7., the Pedersen ideal
of <7, that is, a minimal dense hereditary ideal of .« [22], [27]. For a € &/ we denote by
L, the closed left ideal .«Za generated by a, and R, the closed right ideal generated by a.
We denote by M, the C*-algebra of all pairs (/,r) consisting of linear maps /: L, — L,
and r : R, — R+ such that y/(x) = r(y)x for each xe L, and y € R,~. Note that / and
r are automatically bounded, and that M, is a C*-algebra. Furthermore, if a,b € .o/
with 0 <a <b, then L, = Ly, R, < R, and the restriction map (/,r) — (/[L4,r[R,)
defines a x-homomorphism from M, to M,. It is shown by Phillips that the
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multiplier algebra I'(#.,) of 4., is isomorphic to the pro-C*-algebra lim e (x,), Ma
such that

I'(Ay), =T(AHy)={(l,r) e I'(Hy);l(or r) is bounded}
~ M(</) (the multiplier algebra of the C*-algebra .7, in fact, I'(.</)).

Hence, ., < .#5, and so there exists a spectral well-behaved x-representation of I'(#,).
If o7 is a unital pro-C*-algebra such that .7, = M (%) for a non-unital C*-algebra % in
oy, and if of < I'(Ay), then Ay < ), # {0} and p satisfies (UR). This holds if .o7 is
commutative.

(1) Let w be the pro-C*-algebra of all complex sequences equipped with the usual
operations, the involution and the topology of the sequences I" = { p;} of C*-seminorms:
pr({x,}) = |xx|, and denote by ./ the C*-algebra ¢y = {{x,} € w;lim,_ x, = 0} with
the C*-norm |{x,}|| = sup,|x,|- Then we have

Hey = coo = {{xn} € co;x, # 0 for only finite numbers n},
M(Z) =c={{x,} € w;{x,} is bounded},

(2) Let C(R") be the pro-C*-algebra of all complex-valued continuous functions
on R" with the compact open topology defined by the sequence I' = {pi} of C*-
seminorms: pi(f) = sup{|f(x)|;x e R" and |x| < k}, and denote by .o/ the C*-algebra
Co(R"). Then we have

Ay = C.(R") ={f e C(R");supp f is compact},
M(Z) = Cp(R") = {f € C(R"); f is bounded},
I'(Ay) = C(R").
EXAMPLE 6.16. Let L;° (R") be the pro-C*-algebra of all Lebesgue measurable
functions on R" which are essentially bounded on every compact subset of R" equipped

with the topology defined by the sequence I' = {pi} of C*-seminorms: pi(f) =
ess.sup{|f(x)|;|x| < k}. Then we have

Hp,) = L*(R"),
{pr () =esssuplf(¥). fe(p,)

and

Ip=MN, > L (R")={f €Ly (R");supp [ is compact}.

loc

Hence p, is a spectral unbounded C*-norm on L2 (R") with condition (UR).

ExampLE 6.17. Let {<Z;},_, be a family of C*-algebras .«Z; with C*-norms p;.
Then the product space [[,. ./, is a pro-C*-algebra equipped with the multiplication:
(x,)(¥,) = (x,p;), the involution: (x;)" = (x}) and the topology defined by the family
I' ={pi},c, of C*-norms. Then we have
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{ (pr) = {(x2) € TLic s o33 8Upse 4 P1(x1) < 03,
P((x2)) = supseq pa(xi),  (x2) € Z(p;)

and

Ip =N, > {(xi) € H o) {h e A;x; #0} is ﬁnite}.
led

Hence p, is a spectral unbounded C*-norm on [[,. ,./; with condition (UR), and any
p, 18 an unbounded C*-seminorm on [[,.,#/; with condition (UR) but it is not
spectral.

Next we consider C*-like locally convex *-algebras. Let .o/[z] be a locally convex
«-algebra. A directed family I" = {p;},_, of seminorms determining the topology 7 is
said to be C*-like if for any A € A there exists a A’ € 4 such that p;(xy) < p, (x)p, (),
pi(x*) < py(x) and p;(x)* < py(x*x) for each x,ye.«/. Then any p; is not nec-
essarily submultiplicative, but the unbounded C*-norm p, on .o/ is defined by

{@(pr) = {X € &{; SUP) e 4 pi(x> < OO}?
pr(x) = SUP;cq p/l(x)v XG@(pr).

A complete locally convex x-algebra .o/[z] is said to be C*-like if there exists a C*-like
family I" = {p,},. , of seminorms determining the topology 7 such that Z(pr) is t-dense
in /. Then it follows from [20, Theorem 2.1] that &/ is a GB*-algebra over By =
U(p;) and p. =p,. Hence p, is a spectral unbounded C*-norm on .o/ with </, =

D(p)

ExamPpLE 6.18. The Arens algebra L“[0, 1] ﬂ1<p<m 7[0,1] is a C*-like locally
convex *-algebra with the C*-like family of norms I"={|| |,;1 < p < co}, and

{9(2%) =L~[0,1],
() =1y fe2(py)

and J, =M, ={0}. Hence p, is a spectral unbounded C*-norm on L*[0,1] which
does not satisfy condition (UR).

ExamMpPLE 6.19. We consider a x-subalgebra .o/ of the Arens algebra L®[0,1]
defined by

o/ ={feL”[0,1]; fTy,1/y € C[0, 1/2]}.

Then ./ is a C*-like locally convex x-algebra with the C*-like family 7" = {|| - ||
1 < p< o} of seminorms:

w7p;
HfHoo,,,EmaX{ sup \f(l)l,llfhl/z,u|!,,}7
0<1<1/2

and S = {f € /; (|15, =0 a.e.}. Hence p, is a spectral unbounded C*-norm on .o/
with condition (UR).
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