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Abstract. If a normal quartic surface admits a singular point that is not a rational

double point, then the surface is determined by the triplet ðM;D;EÞ consisting of the

minimal desingularization M, the pullback D of a general hyperplane section, and a non-

zero e¤ective anti-canonical divisor E of M. Geometric constructions of all the possible

triplets ðM;D;EÞ are given.

Introduction.

The purpose of this paper is to classify the complex normal quartic surfaces in

the 3-dimensional projective space P
3 with irrational singularities by determining their

minimal desingularizations. Let S be a normal quartic surface and let s : M ! S be

the minimal desingularization. Then M is known to be one of the following surfaces

(cf. [8]):

(1) a K3 surface;

(2) a P
1-bundle over a smooth quartic curve of P

2;

(3) a ruled surface over an elliptic curve;

(4) a rational surface.

In the case (1), S has only rational double points as singularities. In the case (2), S is

nothing but the cone over the quartic curve. Umezu [8] have determined the structure

of M and the minimal desingularization s : M ! S in the case (3).

The classification problem has been studied by a number of algebraic geometers for

more than half a century. Umezu [8] and Urabe [9], [10] considered the problem from

a viewpoint of singularities. Umezu studied the singularities of a normal Gorenstein

surface with trivial dualizing sheaf in [7]. In our case, the singularities which are not

rational double points are studied by the configuration of the e¤ective anti-canonical

divisor E of M determined by KM @ s
�KS � E. In the next paper [8], Umezu described

the pair ðM;EÞ by determining the blowing-up process from a relative minimal model

of M. Urabe [9], [10] applied Looijenga’s argument in [5] to the pair ðM;EÞ in which

E is irreducible. By using Dynkin diagrams, Urabe determined possible singularities

on SnsðEÞ. On the other hand, Degtyarev [2] considered the problem by types of

equations of hypersurface singularities listed in [1].

Our approach is di¤erent from theirs. We consider a triplet ðM;D;EÞ called a

basic triplet which consists of a non-singular projective surface M, a smooth non-

hyperelliptic curve D of genus 3 on M, and a non-zero anti-canonical divisor E of
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M. If s : M ! S is the minimal desingularization of a normal quartic surface S with

irrational singularities, then ðM;D;EÞ is a basic triplet for the pullback D of a general

hyperplane section of S and for the anti-canonical divisor E with KM @ s�KS � E. The

basic triplet satisfies the condition C in §1. Conversely, if a basic triplet ðM;D;EÞ

satisfies C, then it is induced from a normal quartic surface with irrational singularities

(cf. Proposition 1.4). Therefore, it is enough to determine all the basic triplets satisfying

C. We apply the theory of extremal rays [6] to KM þD and 2KM þD. If KM þD

is not nef, then we infer that M is a P
1-bundle over a smooth non-hyperelliptic curve

of genus 3 and S is nothing but the cone over a smooth quartic curve. If KM þD is

nef, then we consider an extremal curve G with ð2KM þDÞ � G < 0. If G is a (�1)-

curve and if f : M ! M 0 is the contraction of G , then D 0 ¼ fðDÞ is isomorphic to D

and E 0 ¼ f�E is an anti-canonical divisor with KM þD@ f�ðKM 0 þD 0Þ. The mor-

phism f is the blowing-up at the unique point D 0
VE 0. The new triplet ðM 0;D 0;E 0Þ

satisfies the condition C1 in §1. Next, we consider another (�1)-curve G 0 with

ð2KM 0 þD 0Þ � G 0
< 0 and its contraction. In this way, we finally have a basic triplet

ðX ;B;GÞ and a birational morphism r : M ! X such that KM þD@ r�ðKX þ BÞ,

DFB, and ð2KX þ BÞ � Xb 0 for any (�1)-curve X on X . The basic triplet ðX ;B;GÞ

is called a minimal basic triplet and M is obtained canonically from ðX ;B;GÞ by the

method called separation (cf. §1.2). By the structure of ðX ;B;GÞ, the triplets ðM;D;EÞ

are classified into Types A to D in Theorem 1.7.

We shall give examples of the triplets ðM;D;EÞ and ðX ;B;GÞ in §2 and we shall

show in §3 that any basic triplet ðM;D;EÞ satisfying C is one of the triplets given in

§2. For the proof, we need some well-known facts on generalized del Pezzo surfaces,

rational elliptic surfaces, elliptic ruled surfaces, double-coverings, and extremal rays.

Our classification is very rough compared to Umezu’s work [8]. Because, firstly,

it is not the classification modulo isomorphisms. We need a hyperplane section as

an additional datum. Secondly, by the use of separation, we avoid studying the

configuration of centers (including infinitesimally near points) of related blowings-up. It

is related to the description of singular points on S. However, we can give a geometric

construction of any normal quartic surface with irrational singularities. It might be

useful for the fine classification.
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and surfaces are always assumed to be irreducible, reduced, and projective. These are

smooth (over C) if and only if they are non-singular.

Divisors: Let X be a normal surface or a smooth curve.

— OX ðDÞ denotes the invertible sheaf associated with a Cartier divisor D. We

write H pðX ;DÞ ¼ H pðX ;OX ðDÞÞ for short. We write also hpðX ;DÞ ¼ dimH pðX ;DÞ.

— For a non-zero global rational section j of an invertible sheaf L of X , we

define

divðjÞ :¼
X

ordGðjÞG

in which ordGðjÞ is the order of zeros or the minus of the order of poles of j along a

prime divisor G HX .

— KX denotes the canonical divisor of X . If KX is Cartier, then X is called

Gorenstein. The dualizing sheaf oX of X is isomorphic to OX ðKX Þ. A divisor E is

called anti-canonical if E@�KX .

— jDj denotes the complete linear system associated with a divisor D. The

associated rational map X ���! jDj4 into the dual space jDj4 is denoted by FjDj. If we

fix a basis ðj0; j1; . . . ; jnÞ of H 0ðX ;DÞ, then FjDj is equivalent to the map given by

x 7! ðj0ðxÞ : j1ðxÞ : � � � : jnðxÞÞ:

The base locus of jDj is denoted by BsjDj.

— A Cartier divisor D of a surface is called nef if the intersection number D � C

is non-negative for any curve CHX . If in addition the self-intersection number D2 is

positive, then D is called nef and big. Kawamata-Viehweg’s vanishing theorem states

that H pðX ;KX þDÞ ¼ 0 for a nef and big Cartier divisor D and for p > 0.

— Let D be a Cartier divisor of a surface X . If there is a morphism f : X ! Y

into another variety and if D � Cb 0 for any curves CHX contained in fibers of f , then

D is called f -nef.

— Let D and A be Cartier divisors on a surface X . If D � Aa 0 and A2 > 0,

then D2
a 0, in which D2 ¼ 0 if and only if D is numerically trivial: D � C ¼ 0 for any

curves C. This result is referred as the Hodge index theorem.

Curves: Let C be a curve.

— The arithmetic genus paðCÞ is defined as h1ðC;OCÞ. The genus gðCÞ is defined

as pað ~CCÞ for the normalization ~CC ! C.

— A rational curve is a curve C with gðCÞ ¼ 0. An elliptic curve is a smooth

curve with gðCÞ ¼ 1.

— A smooth curve C of genus gðCÞb 2 is called hyperelliptic if the image of the

canonical map

FjKC j : C ! P
gðCÞ�1

is P
1. In this case, C ! P

1 is a double-covering. If C is a non-hyperelliptic curve,

then the canonical map is an embedding of C.

— A quartic curve is a curve CHP
2 with degree 4. A smooth quartic curve is

nothing but a non-hyperelliptic curve of genus 3.
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— Let E be a locally free sheaf on C. We denote by PCðEÞ the projective bundle

associated with E. The tautological invertible sheaf OEð1Þ associated with E is defined

as the invertible sheaf on PCðEÞ satisfying p�OEð1ÞFE for the structure morphism

p : PCðEÞ ! C. A tautological divisor HE is a Cartier divisor with OðHEÞFOEð1Þ.

Surfaces: Let X be a smooth surface and C a smooth curve.

— qðXÞ denotes the irregularity of X : qðX Þ ¼ h1ðM;OX Þ.

— A (�1)-curve of X is a smooth rational curve CHX with C2 ¼ �1. It is

usually called the exceptional curve of the first kind. A smooth rational curve CHX

with C2 ¼ �2 is called a (�2)-curve.

— Let f : X ! Y be a morphism into another variety. If KX is f -nef, then X

is called minimal over Y or f is called minimal. If KX is not f -nef, then one of the

following cases occurs (cf. [6]):

(1) There is a (�1)-curve contained in a fiber of f ;

(2) f is isomorphic to a P1-bundle over a smooth curve C defined over Y ;

(3) f ðXÞ is a point and X FP2.

— The Hirzebruch surface Sr of degree rb 0 is defined as the P1-bundle

associated with OlOðrÞ on P1.

— X is called a generalized del Pezzo surface of degree d if �KX is nef and big

with K 2
X ¼ d. The following properties are known:

(1) A generalized del Pezzo surface is a rational surface.

(2) If d ¼ 2, then Bsj�KX j ¼ q, h0ðX ;�KX Þ ¼ 3, and Fj�KX j is a generically finite

surjective morphism onto P2 of mapping degree 2.

(3) If d ¼ 1, then Bsj�KX j consists of one point, h0ð�KX Þ ¼ 2, and Fj�KX j induces

an elliptic fibration Z ! P1 from the blown-up Z of X at Bsj�KX j.

For the readers’ convenience, we shall give a proof.

Proof. (1) We have H iðX ;OX Þ ¼ 0 for i > 0 by Kawamata-Viehweg’s vanishing

theorem. In particular, qðX Þ ¼ 0. Thus X is rational since the Kodaira dimension

kðXÞ is negative.

(2), (3). We first show that the fixed divisor F ¼ j�KX jfix is zero. If jMj is the

movable part, i.e., jMj þ F ¼ j�KX j, then M is nef and hence M � KX is nef and big.

Thus wðMÞ ¼ h0ðMÞ ¼ h0ð�KX Þ ¼ wð�KX Þ ¼ K 2
X þ 1 ¼ d þ 1 by Kawamata-Viehweg’s

vanishing theorem. This implies M � ðM � KX Þ ¼ 2K 2
X . We have inequalities

M 2
aM � ðM þ FÞ ¼ M � ð�KX Þa ð�KX Þ

2
:

Hence, M � F ¼ ð�KX Þ � F ¼ F 2 ¼ 0. The Hodge index theorem implies F ¼ 0.

Secondly, we show that a general member of j�KX j is an elliptic curve. Let

f : Y ! X be a succession of blowings-up at points such that Fj f �ð�KX Þj is holo-

morphic. Let jCj and G be the movable part and the fixed divisor of f �j�KX j,

respectively. We may assume that EaG for the exceptional divisor E ¼ KY � f �KX .

Since C þ E � KY is nef and big, we have wðY ;C þ EÞ ¼ wð�KX Þ, equivalently,

ðC þ EÞ � ðC þ f �ð�KX ÞÞ ¼ 2K 2
X . We infer that C � ðG � EÞ ¼ 0 from inequalities

ðC þ EÞ � Ca ðC þ GÞ � C ¼ f �ð�KX Þ � ðC þ EÞa f �ð�KX Þ
2
:

Y. Ishii and N. Nakayama944



Thus a general member C of jCj is a disjoint union of elliptic curves and C ! f ðCÞ is

an isomorphism by

ðKY þ CÞjC ¼ f �ðKX þ ð�KX ÞÞjC � ðG � EÞjC @ 0:

For a member D of j�KX j, we have h0ðD;ODÞ ¼ 1 by qðX Þ ¼ 0. Thus a general

member D is an elliptic curve.

Finally, we show (2) and (3). For a general member D A j�KX j, H
0ðX ;�KX Þ !

H 0ðD; ð�KX ÞjDÞ is surjective by qðX Þ ¼ 0. Thus if db 2, then j�KX j is base point

free. Thus (2) follows. If d ¼ 1, then Bsj�KX j consists of one point which is the

intersection of general two members. Thus (3) follows. r

The referee pointed out that more systematic argument on generalized del Pezzo

surfaces are written in [3].

Desingularization: Let S be a normal surface and let s : M ! S be a birational

morphism from a non-singular surface.

— If R1
s�OM ¼ 0, then the singularities of S are called rational. If S is Gor-

enstein in addition, then the singularities are called rational double points. The dual

graph defined by the exceptional locus of the minimal desingularization of a rational

double point is one of Dynkin diagrams An, Dn, E6, E7, E8. Rational double points are

also called ADE-singularities, simple singularities, Du Val singularities, and so on.

— If SHP3 with degS ¼ 4, then S is called a quartic surface. Here, oS FOS

and h1ðS;OSÞ ¼ 0. If s is the minimal desingularization and if M is not a ruled

surface, then S has only rational double points as singularities and M is a K3 surface.

§1. Condition C and separation.

§1.1. Condition C and quartic surfaces.

Proposition 1.1. Let M be a non-singular projective surface admitting a non-zero

e¤ective anti-canonical divisor E. Then h0ðE;OEÞ ¼ qðMÞ þ 1.

Proof. In view of the exact sequence

0 ! oM ! OM ! OE ! 0;

we infer that h0ðE;OEÞ ¼ 1 when qðMÞ ¼ 0. Assume that M contains a (�1)-curve

G . Let h : M ! M 0 be the contraction of G and let E 0 ¼ h�E be the image of E

as a divisor. Then OE 0 F h�OE by the vanishing R1h�OMð�EÞ ¼ 0. In particular,

h0ðE;OEÞ ¼ h0ðE 0;OE 0Þ. Therefore, we may assume that M is an irrational relatively

minimal surface. Hence M has a P1-bundle structure p : M ! C over a smooth curve

C with gðCÞ ¼ qðMÞ > 0. Here, we have the following exact sequence:

0 ! OC F p�OM ! p�OE ! R1 p�oM FoC ! 0:

Since some component of E dominates C, there is a splitting of OC ! p�OE . Thus

p�OE FOC loC . Therefore h0ðE;OEÞ ¼ 1þ gðCÞ ¼ 1þ qðMÞ. r

Corollary 1.2 (cf. [7]). A non-singular projective surface admitting an irreducible

and reduced anti-canonical divisor is rational.
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Lemma 1.3. Let M be a non-singular projective surface admitting a non-zero

e¤ective anti-canonical divisor E. If any prime component of E is a rational curve, then

M is rational.

Proof. Assume the contrary. Then the Albanese map induces a surjective

morphism p : M ! C into a smooth curve C of genus qðMÞ > 0 whose general fibers F

are rational curves. Since E � F ¼ �degKF ¼ 2, some component of E dominates C.

Thus CFP
1. This is a contradiction. r

Definition. A basic triplet ðM;D;EÞ is a triplet consisting of a non-singular

projective surface M, a smooth non-hyperelliptic curve D of genus 3 on M, and a non-

zero e¤ective anti-canonical divisor E of M. The condition C for ðM;D;EÞ is the

collection of the following two conditions:

C-1: D � G > 0 for any (�1)-curve G on M;

C-2: DVE ¼ q.

If ðM;D;EÞ satisfies C, then

D2 ¼ ðKM þDÞ �D ¼ 2gðDÞ � 2 ¼ 4:

Let s : M ! S be the minimal desingularization of a normal quartic surface S

with irrational singularities. Let E be the s-exceptional anti-canonical divisor such that

KM @ s�KS � E@�E and let D be the pullback of a general hyperplane section of

S. Then the basic triplet ðM;D;EÞ satisfies the condition C. Conversely, we have:

Proposition 1.4. If a basic triplet ðM;D;EÞ satisfies the condition C, then there

exist a normal quartic surface S and a birational morphism s : M ! S such that

(1) S has irrational singular points,

(2) s is the minimal desingularization of S,

(3) D is the pullback of a general hyperplane section of S,

(4) E is the s-exceptional divisor satisfying KM @ s�ðKSÞ � E.

Proof. Since D is a nef and big divisor, H iðM;KM þDÞ ¼ 0 for i > 0 by

Kawamata-Viehweg’s vanishing theorem. Hence

h0ðM;DÞ ¼ h0ðM;KM þDÞ þ h0ðE;OEÞ

¼ wðM;KM þDÞ þ 1þ qðMÞ

¼ gðDÞ þ 1 ¼ 4

by Proposition 1.1. In view of the exact sequence

0 ! OM ! OMðDÞ ! ODðDÞFoD ! 0;

we infer that H 0ðM;DÞ ! H 0ðD;KDÞ is surjective. Hence BsjDj ¼ q. Thus we have

a generically finite morphism

s :¼ FjDj : M ! P
3
:

Let S be the image. Then deg s ¼ 1 or deg s ¼ 2 since D2 ¼ 4. We note that the

restriction sjD : D ! P
2 is the canonical map of D. This is an embedding since D is
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non-hyperelliptic. Thus deg s ¼ 1. Hence s : M ! S is a birational morphism and S

is a quartic surface. Now oS FOS, E is s-exceptional, and KM @�E. Thus S is a

normal surface and s : M ! S is the minimal desingularization by C-1. r

Therefore, the classification of normal quartic surfaces with irrational singularities is

reduced to that of basic triplets ðM;D;EÞ satisfying the condition C.

§1.2. Separation.

Let ðX ;B;GÞ be a basic triplet with BQG. Let r : Y ! X be a birational

morphism from a non-singular projective variety and let BY and GY be e¤ective divisors

on Y .

Definition. The triplet ðY ;BY ;GY Þ or the birational morphism r : Y ! X is

called the separation of ðX ;B;GÞ if the following conditions are satisfied:

(1) KY þ BY @ r�ðKX þ BÞ;

(2) KY þ GY @ 0;

(3) BYa r�ðBÞ, GYa r�ðGÞ;

(4) BY VGY ¼ q.

Lemma 1.5. The separation exists and is unique.

Proof. First, we shall show the existence. If BVG ¼ q, then the identity

mapping X ! X is the separation. Assume that BVG0q. Let r1 : Y1 ! X be the

blowing-up at a point x1 A BVG and let G be the exceptional divisor r�1
1 ðx1Þ. We

consider divisors BY1
:¼ r�

1 ðBÞ � G and GY1
:¼ r�

1 ðGÞ � G. Here, BY1
is the proper

transform of B and B � G ¼ BY1
� GY1

þ 1. If BY1
VGY1

¼ q, then r1 is the separa-

tion of ðX ;B;GÞ. If BY1
VGY1

0q, then we blow up at a point x2 A BY1
VGY1

, and

we define BY2
and GY2

similarly. By continuing this procedure, we finally get the

separation.

Next, we shall show the uniqueness. Let ðY ;BY ;GY Þ be a separation of ðX ;B;GÞ.

If G is a r-exceptional curve, then KY � G ¼ �BY � Ga 0. If KY � G < 0, then G is a

(�1)-curve. Otherwise, G is a (�2)-curve. Let p : Y ! V be the contraction of all the

r-exceptional (�2)-curves. Then V has only rational double points as singularities, and

BY ¼ p�ðBV Þ and GY ¼ p�ðGV Þ

for e¤ective Cartier divisors BV and GV on V , respectively. There is an e¤ective

Cartier divisor E on V such that

BV ¼ t�ðBÞ � E and GV ¼ t�ðGÞ � E;

for the induced morphism t : V ! X . Here, �E is t-ample and BV VGV ¼ q.

Hence, t is the normalization of the blowing-up of X along the ideal OX ð�BÞþ

OX ð�GÞ. Moreover, p : Y ! V is the minimal desingularization. Therefore, Y ! X

is uniquely determined. r

Definition. Let ðX ;B;GÞ be a basic triplet and let r be a non-negative integer.

The condition Cr for ðX ;B;GÞ is the collection of the following two conditions:

Cr-1: KX þ B is nef;

Cr-2: B � G ¼ r.
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If ðX ;B;GÞ satisfies the condition Cr, then

B2 ¼ ðKX þ BÞ � Bþ G � B ¼ 2gðBÞ � 2þ r ¼ 4þ r:

In particular BQG, since B2 > B � G. Note that the condition C0 implies the con-

dition C.

Lemma 1.6. Let ðX ;B;GÞ be a basic triplet satisfying the condition Cr.

(1) Suppose that r > 0. Let j : Y ! X be the blowing-up at a point x A BVG, G

the exceptional divisor j�1ðxÞ, BY the proper transform of B, and GY :¼

j�G � G . Then ðY ;BY ;GY Þ satisfies the condition Cr�1.

(2) Suppose that there is a (�1)-curve X with B � X ¼ 1. Let f : X ! Z be the

blowing-down of X, BZ :¼ fðBÞ, and GZ :¼ f�G. Then ðZ;BZ;GZÞ satisfies the

condition Crþ1.

Proof. (1) We infer that BY FB and that GY is a non-zero e¤ective anti-canonical

divisor of Y . Here, KY þ BY @ j�ðKX þ BÞ is nef and BY � GY ¼ B � G � 1.

(2) We infer that BFBZ, G � X ¼ 1, and that GZ is a non-zero e¤ective anti-

canonical divisor. Here, f�ðKZ þ BZÞ@KX þ B is nef and BZ � GZ ¼ B � G þ 1. r

Definition. A basic triplet ðX ;B;GÞ is called minimal if it satisfies the condition

Cr for some r and B � G > 1 for any (�1)-curve G on X .

Theorem 1.7. Let ðM;D;EÞ be a basic triplet satisfying the condition C. Then one

of the following four possibilities occurs:

Type A: KM þD is not nef;

Type B: ðM;D;EÞ is the separation of a minimal basic triplet ðX ;B;GÞ in which

2KX þ B is nef;

Type C: ðM;D;EÞ is the separation of a minimal basic triplet ðX ;B;GÞ in which X

has a P
1-bundle structure over a smooth curve and ð2KX þ BÞ � l < 0 for a

fiber l;

Type D: ðM;D;EÞ is the separation of a minimal basic triplet ðX ;B;GÞ in which

X FP
2 and degð2KX þ BÞ < 0.

Proof. If ðM;D;EÞ does not satisfy C0, then it is of Type A. Thus we assume

that the triplet satisfies C0. By Lemma 1.6, we have a minimal basic triplet ðX ;B;GÞ

whose separation is ðM;D;EÞ. Note that this ðX ;B;GÞ is not necessarily uniquely

determined by ðM;D;EÞ. If 2KX þ B is nef, then ðM;D;EÞ is of Type B. If 2KX þ B

is not nef, then there is an extremal ray R such that ð2KX þ BÞ � R < 0 (cf. [6]). Now

the contraction of R can not be birational, since ð2KX þ BÞ � Gb 0 for any (�1)-curve G

on X . Thus X has a P
1-bundle structure over a smooth curve or X FP

2. r

§2. Examples.

We shall give examples of basic triplets ðM;D;EÞ satisfying the condition C and

examples of minimal basic triplets ðX ;B;GÞ.

§2.1. Examples of Type A.

We take a hyperplane H in P
3 and a smooth quartic curve C in HFP

2. For

a point v B H, let S :¼ Sv be the union of all lines through v and a point of C. Then S
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is a normal quartic surface and v is the unique singular point. Let s : M ! S be the

blowing-up at v. Then s is the minimal desingularization of S and M is isomorphic

to the P
1-bundle PCðOC loCÞ over the curve C. In this case, s�H is a tautological

divisor with respect to OC loC , thus KM þ s�H is not nef. Let C0 be the minimal

section of the P
1-bundle. If we take a general member D of js�Hj, then the basic

triplet ðM;D; 2C0Þ does not satisfy the condition C0 but C. Thus it is of Type A.

Next, we consider the defining equation of S. Let F4ðx; y; zÞ A C ½x; y; z� be a

homogeneous polynomial of degree 4 defining C in P
2 ¼ ProjC ½x; y; z�. Then S ¼ Sv is

defined as

F4ðX1;X2;X3Þ ¼ 0

in P
3 ¼ ProjC ½X0;X1;X2;X3� in which v corresponds to the point ð1 : 0 : 0 : 0Þ. The

projection P
3 ���!P

2 from v induces the rational map

S ���!
s�1

M ¼ PCðOC loCÞ ! CHP
2
:

§2.2. Examples of Type B.

§2.2.1. A generalized del Pezzo surface of degree two.

Let X be a generalized del Pezzo surface of degree 2. Then j�KX j has no base

points and defines a generically finite morphism t : X ! P
2 of degree 2.

Lemma 2.1. A general member of j�2KX j is a non-hyperelliptic curve of genus 3.

Proof. A general member B of j�2KX j is a smooth curve of genus 3. In view of

the exact sequence

0 ! OX ðKX Þ ! OX ð�KX Þ ! OBð�KX ÞFoB ! 0;

we infer that the restriction of t to B is the canonical mapping of B. If B A j�2KX j is

a smooth hyperelliptic curve, then tðBÞ is a smooth conic of P
2 and B ¼ t�ðtðBÞÞ.

Now h0ðP2
;Oð2ÞÞ ¼ 6 and h0ðX ;�2KX Þ ¼ wðX ;�2KX Þ ¼ 7. Thus the pullback

H 0ðP2
;Oð2ÞÞ ! H 0ðX ;�2KX Þ is not surjective. Therefore, a general member B is non-

hyperelliptic. r

Let B A j�2KX j be a non-hyperelliptic curve of genus 3 and let G be a member of

j�KX j. Then ðX ;B;GÞ satisfies the condition C4 and 2KX þ B@ 0. For the separa-

tion ðM;D;EÞ, M is a rational surface with the Picard number 12. In particular,

E2 ¼ �2. The triplet ðM;D;EÞ is called of Type B1.

We shall give a defining equation of S as follows: Let t : X ! V ! P
2 be the

Stein factorization of t. Then V has only rational double points as singularities and

t�OX FO
P

2 lO
P

2ð�2Þ. The O
P

2 -algebra structure of t�OX is given by an element

d A H 0ðP2
;Oð4ÞÞ in such a way that

ðu1; v1Þ � ðu2; v2Þ ¼ ðu1u2 þ v1v2d; u2v1 þ u1v2Þ

for local holomorphic sections u1; u2 of O
P

2 and v1; v2 of O
P

2ð�2Þ. Let h A

H 0ðX ;�2KX Þ be an element corresponding to ð0; 1Þ under the isomorphism

H 0ðX ;�2KX ÞFH 0ðP2
;Oð2ÞÞlH 0ðP2

;OÞ:
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Then h2 ¼ t�d in H 0ðX ;�4KX Þ. The smooth curve B is defined as divðhþ t�qÞ

for some q A H 0ðP2
;Oð2ÞÞ. The e¤ective divisor G is defined as divðt�lÞ for some

l A H 0ðP2
;Oð1ÞÞ. For a suitable choice of homogeneous coordinate system ðx : y : zÞ of

P
2, we may assume that l ¼ x. Then

x0 ¼ hþ t�q; x1 ¼ t�ðx2Þ; x2 ¼ t�ðxyÞ; x3 ¼ t�ðxzÞ

form a basis of the vector subspace H 0ðM;DÞHH 0ðX ;�2KX Þ. We have the following

relation:

x0x1 � qðx1; x2; x3Þ ¼ hx1:

By taking square, we have

ðx0x1 � qðx1; x2; x3ÞÞ
2 ¼ dðx1; x2; x3Þ:

Therefore, S is defined in P
3 ¼ ProjC ½X0;X1;X2;X3� by

ðX0X1 � qðX1;X2;X3ÞÞ
2 � dðX1;X2;X3Þ ¼ 0;

in which deg q ¼ 2 and deg d ¼ 4. The conditions required for q and d are as follows:

(1) divðdÞ is a reduced divisor;

(2) the double-covering branched along divðdÞ has only rational double points as

singularities;

(3) divðd� q2Þ is a smooth curve.

The image sðEÞ of E under s : M ! S is just the point ð1 : 0 : 0 : 0Þ. The projection

P
3 ���!P

2 from the singular point gives the composite

S ���!
s�1

M ! X ! P
2
:

§2.2.2. Blowing-up of a generalized del Pezzo surface of degree one at one

point.

Let Y be a generalized del Pezzo surface of degree one and let GY be a member of

j�KY j. It is well-known that j�KY j has a unique base point b and the linear system

induces a minimal elliptic fibration p : Z ! P
1 from the blown-up Z of Y at b. Thus b

is a smooth point of GY . Let GY ;0 be the irreducible component of GY containing

b. Here, we take a point q A GY ;0 such that

(1) q is a smooth point of GY ,

(2) OGY
ðb� qÞVOGY

and OGY
ð2b� 2qÞVOGY

.

There exists uniquely a point q1 A GY ;0 satisfying OGY
ðq1ÞFOGY

ð3b� 2qÞ. Then q1 0 b

by the condition (2) above. Let f : X ! Y be the blowing-up at q, G ¼ f �1ðqÞ, and G

the proper transform of GY in X . Then we have the following:

Lemma 2.2. A general member of the linear system j3G þ G j is a smooth non-

hyperelliptic curve of genus 3. In particular, ðX ;B;GÞ satisfies the condition C1 for a

general member B A j3G þ G j.

Proof. We consider the exact sequence:

0 ! OX ð2G þ GÞ ! OX ð3G þ GÞ ! OGð3G þ GÞFOGð3b
0 � 2q 0Þ ! 0;
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where b 0 ¼ f �1ðbÞ and fq 0g ¼ GVG. Note that b 0 and q 0 are contained in the proper

transform G0 of GY ;0. There is a smooth point q 0
1 A G with OGð3b

0 � 2q 0ÞFOGðq
0
1Þ,

since degOGð3b
0 � 2q 0Þ ¼ 1. Then q 0

1 A G0, f ðq 0
1Þ ¼ q1, and q 0

1 A Bsj3G þ G j. The

divisor 3G þ G is nef and big, since the restrictions of 3G þ G to any component

of G and G are nef and since ð3G þ GÞ2 ¼ 5 > 0. Hence, H iðX ; 2G þ GÞ ¼

H iðX ;KX þ 3G þ GÞ ¼ 0 for i > 0. Therefore h0ðX ; 2G þ GÞ ¼ 3 and h0ðX ; 3G þ GÞ ¼

4. We can calculate h0ðX ;GÞ ¼ h0ðX ; 2GÞ ¼ 1 and h1ðX ;GÞ ¼ h1ðX ; 2GÞ ¼ 0 from the

following three exact sequences:

0 ! OX ! OX ðGÞ ! OGðGÞFOGðb
0 � q 0Þ ! 0;

0 ! OX ðGÞ ! OX ð2GÞ ! OGð2GÞFOGð2b
0 � 2q 0Þ ! 0;

0 ! OX ð2GÞ ! OX ð3GÞ ! OGð3GÞFOGð3b
0 � 3q 0Þ ! 0:

We consider the following two cases:

B2-1: h0ðX ; 3GÞ ¼ 1;

B2-2: h0ðX ; 3GÞ > 1.

In Case B2-2, 3b 0
@ 3q 0 and equivalently, q 0

1 ¼ q 0. Thus h0ðX ; 3GÞ ¼ 2. In Case B2-1,

3b 0 S 3q 0 and equivalently, q 0
1 0 q 0.

Claim 2.3. fq 0
1g ¼ Bsj3G þ Gj. In particular, a general member of j3G þ G j is a

smooth curve of genus 3.

Proof. Case B2-1: In view of the exact sequence

0 ! OX ð3GÞ ! OX ð3G þ GÞ ! OGð3G þ GÞFO
P

1ð2Þ ! 0;

we infer that H 0ðX ; 3G þ GÞ ! H 0ðG;OGð3G þ GÞÞ is surjective. Therefore

G VBsj3G þ G j ¼ q. Hence Bsj3G þ G j ¼ fq 0
1g.

Case B2-2: The image of

H 0ðX ; 3G þ GÞ ! H 0ðG;OGð3G þ GÞÞFC
3

is contained in the two-dimensional subspace

H 0ðG ;OGð3G þ GÞnOGð�q 0ÞÞ

since q 0 ¼ q 0
1. Hence Bsj3G þ G j ¼ fq 0

1g by h0ðX ; 3GÞ ¼ 2. r

We shall show a general member B of j3G þ Gj is non-hyperelliptic. Let

r : M ! X be the blowing-up at q 0
1. Then r is the separation of ðX ;B;GÞ. Let D and

E be the proper transforms of B and G, respectively. Since h0ðM;DÞ ¼ h0ðX ;BÞ ¼ 4,

the homomorphism H 0ðX ;DÞ ! H 0ðD;DjDÞFH 0ðD;KDÞ is surjective. Thus BsjDj ¼

q. If the morphism FjDj : M ! P
3 is a birational morphism onto its image, then

DFB is a non-hyperelliptic curve. Let X be the r-exceptional divisor r�1ðq 0
1Þ and let

G 0 be the proper transform of G .

Case B2-1: We have D@ 3E þ G 0 þ 2X. Thus 3E þ G 0 þ 2X is the pullback of a

hyperplane section. Now FjDj maps E to a point and X to a line of P3 isomorphically.
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Since H 0ðM;DÞ ! H 0ðG 0
;DjG 0ÞFH 0ðG ;BjGÞ is surjective, the restriction of FjDj to G 0

is an isomorphism to a conic in P
3. Therefore FjDj is birational.

Case B2-2: We have D@ 3E þ G 0 þ 3X. Thus G 0 and X are mapped to lines in P
3

by FjDj. Therefore FjDj is birational. r

Therefore, ðX ;B;GÞ satisfies the condition C1 and M is a rational surface with the

Picard number 11. In particular, E2 ¼ �1. The basic triplet ðM;D;EÞ is called of

Type B2; more precisely, of Type B2-1 or Type B2-2.

§2.2.3. Blowing-down from a double-covering over S1.

Let S :¼ S1 be the Hirzebruch surface P
P

1ðOlOð1ÞÞ. We denote the ruling

by p : S ! P
1 and a fiber of p by l. Let X be the unique (�1)-curve of S and let

n : S ! P
2 be the blowing-down of X. We now fix a point x0 A X and we denote by l0

the fiber of p passing through x0.

Lemma 2.4. There is an e¤ective divisor D A j2X þ 6lj satisfying the following

conditions:

(b-1) D is reduced and if V ! S is the double covering branched just along D, then

V has only rational double points as singularities.

(b-2) XQD.

(b-3) x0 A DVX and multx0
ðDjXÞ ¼ 1.

(b-4) l0 QD and l0 VD ¼ fx0g.

Proof. Let m0 : S0 ! S be the blowing-up at x0 and let G0 be the exceptional

curve m�1
0 ðx0Þ. Let l

0
0 be the proper transforms of l0. We next blow-up S0 at

x1 :¼ l
0
0 VG0. Let m1 : S1 ! S0 be the blowing-up and let l

00
0 be the proper transform

of l
0
0. We look at the linear system jm�

1m
�
0 ð2X þ 5lÞ þ l

00
0 j. Let us consider the exact

sequence:

0 ! Oðm�
1m

�
0 ð2X þ 5lÞÞ ! Oðm�

1m
�
0 ð2X þ 5lÞ þ l

00
0 Þ ! Ol

00
0
! 0:

Since H 1ðS; 2X þ 5lÞ ¼ 0 and Bsj2X þ 5lj ¼ q, we see that Bsjm�
1m

�
0 ð2X þ 5lÞ þ l

00
0 j ¼

q. Let D 00 be a general member of the linear system jm�
1m

�
0 ð2X þ 5lÞ þ l

00
0 j and let

D :¼ m0�m1�D
00. Then D satisfies the conditions above. r

We fix a divisor D A j2X þ 6lj satisfying (b-1) to (b-4). Let l : Y ! S be the

minimal desingularization of the double covering of S branched just along D. Then

we have KY @ l�ðKS þ X þ 3lÞ@ l�ð�XÞ. We set GY :¼ l�X. We infer that Y is a

rational surface by h1ðY ;OÞ ¼ h1ðS;OlOð�X � 3lÞÞ ¼ 0. By the conditions (b-2) and

(b-3), there is an irreducible component GY ;0 HGY such that the induced morphism

GY ;0 ! X is a double covering. Then other components of GY are contracted to points

of X by l. Furthermore, l is a finite morphism over an open neighborhood of x0

and l�1ðx0Þ consists of only one point, which we denote by b 0 A GY ;0. Moreover, we

can write l�
l0 ¼ F1 þ F2 for (�1)-curves F1 and F2 such that fb 0g ¼ F1 VF2. Since

ðX þ lÞjX @ 0, we have ðl�
lþ GY ÞjGY

@ 0 and OGY
ðGY ÞF l�

OXð�x0ÞFOGY
ð�2b 0Þ.

Let m : Y ! M be the blowing-down of F1. We set E :¼ m�GY @�KM , F :¼ m�F2,

and b :¼ mðb 0Þ. Then m�E ¼ GY þ F1 and l�
l@ m�F . Hence, ðF þ 2EÞjE @ 0.

Y. Ishii and N. Nakayama952



Lemma 2.5. jF þ 2Ej is base point free and its general members are non-hyperelliptic

curves of genus 3.

Proof. We consider the following two exact sequences:

0 ! OðF Þ ! OðF þ EÞ ! OEðF þ EÞFOEðbÞ ! 0;

0 ! OðF þ EÞ ! OðF þ 2EÞ ! OEðF þ 2EÞFOE ! 0:

Since F is a fiber of the ruling p � l � m�1
: M ! P

1 and since b is a smooth point of

the anti-canonical divisor E, we infer that h0ðM;F þ 2EÞ ¼ 4 and H 0ðM;F þ 2EÞ !

H 0ðE;OEÞ is surjective. Thus BsjF þ 2Ej ¼ q. Let D be a general member of the

linear system. Then D is a smooth curve of genus 3. We have only to show that D is

non-hyperelliptic.

We set BY :¼ m�D. Then BY FD, since b B D. Here we have an isomorphism

H 0ðY ;KY þ BY ÞFH 0ðBY ;KBY
ÞFC

l3. Now KY þ BY @ l�
lþ GY þ 2F1. Since

H 0ðY ; l�
lþ GY ÞFH 0ðY ; l�ðX þ lÞÞFH 0ðS;OðX þ lÞlOð�2lÞÞFC

l3
;

we infer that 2F1 is the fixed part of jKY þ BY j and that jKY þ BY � 2F1j is a base

point free linear system inducing the morphism n � l : Y ! P
2. Thus its restriction

BY ! P
2 is the canonical map of BY . Let t : Y ! Y be a generator of the Galois

group of l. If BY is hyperelliptic, then BY must be t-invariant. However, t�BY @

t�ðl
�ðlþ 2XÞ þ 2F1Þ@ l�ðlþ 2XÞ þ 2F2. Since 2F1 S 2F2, we infer that BY FD is

non-hyperelliptic. r

Therefore, the triplet ðM;D;EÞ is satisfying the condition C0 and M has the Picard

number 11 in which E2 ¼ �1. The triplet ðM;D;EÞ is called of Type B3.

§2.3. Examples of Type C.

§2.3.1. Minimal triplet ðX ;B;GÞ satisfying C4.

Let C be an elliptic curve with an ample divisor A of degree 2. Let X be the

P
1-bundle PCðOC lOCðAÞÞ and let p : X ! C be the structure morphism. Then j�KX j

is non-empty. We take an e¤ective divisor G@�KX . Note that h0ðG;OGÞ ¼ 2 by

Proposition 1.1.

Lemma 2.6. A general member B of jp�A� KX j is a smooth non-hyperelliptic curve

of genus 3.

Proof. Let C0 be the negative section of p : X ! C. Then p�A� KX @

2ðp�Aþ C0Þ, ðp
�Aþ C0ÞjC0

@ 0, and Bsjp�Aþ C0j ¼ q. Thus jp�A� KX j is also base

point free. Hence, B is smooth with BVC0 ¼ q. Since KB @ ðKX þ BÞjB @ p�AjB @

ðp�Aþ C0ÞjB, we have gðBÞ ¼ 3 and an exact sequence:

0 ! OX ðKX þ C0Þ ! OX ðp
�Aþ C0Þ ! OBðKBÞ ! 0:

This induces an isomorphism H 0ðX ; p�Aþ C0ÞFH 0ðB;KBÞ, since H 1ðX ;KX þ C0Þ ¼

0. Hence, for the morphism F :¼ Fjp�AþC0j : X ! P
2, the restriction FjB : B ! P

2

is the canonical map. Here B@ p�A� KX @ 2ðp�Aþ C0Þ@F�
Oð2Þ. Hence, B is

hyperelliptic if and only if B is the pullback of a conic by F. However, we have

h0ðP2
;Oð2ÞÞ ¼ 6 and h0ðX ;BÞ ¼ h0ðC;OlOðAÞlOð2AÞÞ ¼ 7. Therefore, B is non-

hyperelliptic. r
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Thus we obtain a minimal triplet ðX ;B;GÞ with B@ p�A� KX and G@�KX .

Since B � G ¼ 4, the condition C4 is satisfied. Let ðM;D;EÞ be the separation of

ðX ;B;GÞ. Then M is an elliptic ruled surface with Picard number 6. The basic triplet

ðM;D;EÞ is called of Type C1.

§2.3.2. Minimal triplet ðX ;B;GÞ satisfying C2.

Let C be an elliptic curve and let E be one of the following locally free sheaves:

C2-1: E ¼ OCðq1ÞlOCðq2Þ for two points q1 0 q2 of C with 2q1 S 2q2.

C2-2: There is a non-splitting exact sequence:

0 ! OCðqÞ ! E ! OCðqÞ ! 0

for a point q of C.

Case C2-1: Let p : X ! C be the P
1-bundle associated with E. For a point q A C, we

denote the fiber p�1ðqÞ by lq. Then we have two sections C1 and C2 with C1 @HE � lq1

and C2 @HE � lq2 , respectively. Here HE denotes a tautological divisor with respect to

E. Then C1 VC2 ¼ q. Furthermore, j�KX j ¼ fC1 þ C2g, since C1jC1
@ q2 � q1 and

C2jC2
@ q1 � q2. We set G :¼ C1 þ C2.

Lemma 2.7. A general member B of jHE � KX j is a smooth non-hyperelliptic curve

of genus 3.

Proof. First, we shall prove that B is a smooth curve of genus 3. From the exact

sequence

0 ! OEð1Þ ! OX ðHE � KX Þ ! OC1
ð2q2 � q1ÞlOC2

ð2q1 � q2Þ ! 0;

we infer that h0ðX ;HE � KX Þ ¼ 4 and

BsjHE � KX j ¼ ðlq3 VC1Þ t ðlq4 VC2Þ;

where q3 and q4 are points of C determined by q3 @ 2q2 � q1 and q4 @ 2q1 � q2,

respectively. Therefore, B A jHE � KX j must intersect C1 and C2, transversally. Thus

B is smooth. The genus gðBÞ is 3, since ðKX þ BÞ � B ¼ HE � ðHE � KX Þ ¼ 4.

Next, we shall prove that B is non-hyperelliptic. Here, we note that fq3; q4gV

fq1; q2g ¼ q by assumption. We consider the separation r : ðM;D;EÞ ! ðX ;B;GÞ.

Since B intersects C1 and C2 transversally at points x1 :¼ lq3 VC1 and x2 :¼ lq4 VC2, r is

just the blowing-up at fx1; x2g. Let Gi ¼ r�1ðxiÞ and let C 0
i be the proper transform of

Ci in M for i ¼ 1; 2, respectively. Then D ¼ r�B� G1 � G2 and E ¼ r�G � G1 � G2 ¼

C 0
1 þ C 0

2. The linear system jDj is base point free by the proof of Proposition 1.4. Let

F be the morphism FjDj : M ! P
3. Suppose that M ! FðMÞ is not birational. Then

this is a generically finite morphism of degree 2 and FðMÞ is a quadric surface in P
3.

Now DVE ¼ q, D � G1 ¼ D � G2 ¼ 1, and D � r�
lq1 ¼ D � r�

lq2 ¼ 3. Thus FðC 0
1Þ is a

point, FjG1 : G1 ! FðG1Þ is an isomorphism onto the line FðG1Þ, and r�
lq1 ! Fðr�

lq1Þ is

birational. This is a contradiction, since 2C 0
1 þ G1 þ r�

lq1 þ C 0
2 is supposed to be the

pullback of a conic of P2. Therefore, F : M ! FðMÞ is birational and DFB is non-

hyperelliptic. r
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For B and G above, ðX ;B;GÞ is a minimal triplet satisfying the condition C2. The

separation ðM;D;EÞ is called of Type C2-1. Here, M is an elliptic ruled surface with

Picard number 4.

Case C2-2: Let p : X ! C be the P
1-bundle associated with E. Then we have a

minimal section C0 with C0 @HE � lq. Then �KX @ 2C0. Moreover, j�KX j ¼ f2C0g,

since the exact sequence

0 ! OðqÞ ! E ! OðqÞ ! 0

admits no splitting. We set G :¼ 2C0.

Lemma 2.8. A general member B of jHE � KX j is a smooth non-hyperelliptic curve

of genus 3.

Proof. First, we show that B is a smooth curve of genus 3. Note that

HE � KX @ 3C0 þ lq. Let us consider the following exact sequences:

0 ! OX ð2C0 þ lqÞ ! OX ð3C0 þ lqÞ ! OC0
ðqÞ ! 0;

0 ! OEð1Þ ! OX ð2C0 þ lqÞ ! OC0
ðqÞ ! 0;

0 ! OX ð3C0Þ ! OX ð3C0 þ lqÞ ! Olq
ð3Þ ! 0:

Then H 1ðX ; 2C0 þ lqÞ ¼ 0, h0ðX ; 3C0 þ lqÞ ¼ 4, and the image of H 0ðX ; 3C0 þ lqÞ !

H 0ðlq;Oð3ÞÞ is a 3-dimensional subspace. Hence Bsj3C0 þ lqj consists of only one

point b :¼ lq VC0. Furthermore, a general member B A j3C0 þ lqj intersects C0 and lq

at b. This is because B � C0 ¼ 1 and the image of H 0ðX ; 3C0 þ lqÞ ! H 0ðlq;Oð3ÞÞ is

just the subspace H 0ðlq;Oð3C0 þ lqjlqÞnOð�bÞÞ. Thus B is smooth. The genus gðBÞ

is 3, since ðKX þ BÞ � B ¼ ðC0 þ lqÞ � ð3C0 þ lqÞ ¼ 4.

Next, we shall prove that B is non-hyperelliptic. Let r1 : X1 ! X be the blowing-

up at the point b and G1 the exceptional divisor r�1
1 ðbÞ. We set G1 :¼ r�

1G � G1. Let

B1;C
0
0, and l

0
q be the proper transforms of B;C0, and lq, respectively. Then B1 � G1 ¼ 1.

Thus there is a smooth point b1 of G1 with OG1
ðB1ÞFOG1

ðb1Þ. Now G1 ¼ 2C 0
0 þ G1

and B1 � C
0
0 ¼ 0. Therefore b1 A G1. From the exact sequences

0 ! OC 0
0
ð�r�

1C0ÞFOC 0
0
! O2C 0

0
ð�G1Þ ! OC 0

0
ð�G1Þ ! 0;

0 ! r�
1OCðC0 þ lqÞ ! OX1

ðB1 � G1Þ ! O2C 0
0
ð�G1Þ ! 0;

we infer that h0ðX1;B1 � G1Þ ¼ 3 and hence the image of

H 0ðX1;B1Þ ! H 0ðG1;B1jG1ÞFH 0ðG1;OG1ðb1ÞÞ

is one-dimensional. Thus b1 A BsjB1j. Moreover, we have b1 B l
0
q, since H 0ðX1;B1Þ !

H 0ðl 0
q;Oð2ÞÞ is surjective. Let r2 : M ! X1 be the blowing-up at b1 and G2 the

exceptional curve r�1
2 ðb1Þ. Let C 00

0 ; l
00
q , and G 0

1 be the proper transforms of C 0
0; l

0
q and

G1, respectively. Then we get the separation ðM;D;EÞ ! ðX ;B;GÞ, where D and E

are the proper transforms of B1 and G1, respectively. Here, E ¼ 2C 00
0 þ G 0

1, D@ 3C 00
0 þ

l
00
q þ 3G 0

1 þ 2G2, and D � l 00
q ¼ 2. We have BsjDj ¼ q since h0ðM;DÞ ¼ h0ðX ;BÞ ¼ 4

and H 0ðM;DÞ ! H 0ðD;DjDÞFH 0ðD;KDÞ is surjective. Therefore, it is enough to
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show that the morphism F :¼ FjDj : M ! P
3 is birational onto its image. The divisor

3C 00
0 þ l

00
q þ 3G 0

1 þ 2G2 is the pullback of an e¤ective Cartier divisor of FðMÞ, since it is

linearly equivalent to D. All the components C 00
0 and G 0

1 are contracted to points by F,

since these are also components of E. The restriction G2 ! FðG2Þ is an isomorphism in

which FðG2Þ is a line of P3, since D � G2 ¼ 1. The restriction Fl
00
q
: l

00
q ! P

3 is a closed

embedding, since H 0ðM;DÞ ! H 0ðl 00
;Oð2ÞÞ is surjective. Therefore, F is birational

onto its image. r

For B and G above, ðX ;B;GÞ is a minimal triplet satisfying the condition C2. The

separation ðM;D;EÞ is called of Type C2-2. Here, M is an elliptic ruled surface with

Picard number 4.

§2.4. Examples of Type D.

Let B and G be a smooth quartic curve and an e¤ective divisor of degree 3 in P
2,

respectively. Then ðP2
;B;GÞ is a minimal triplet satisfying the condition C12. The

separation ðM;D;EÞ is called of Type D. Here, M is a rational surface with Picard

number 13. In particular, E2 ¼ �3.

Next, we consider the defining equation of SHP
3. Let F3ðx; y; zÞ ¼ 0 and

F4ðx; y; zÞ ¼ 0 be the defining equations of G and B, respectively, in P
2 ¼

ProjC ½x; y; z�. Let r : M ! P
2 be the separation. Then

r�F3 ¼ j3e and r�F4 ¼ j4e;

where j3 A H 0ðM;EÞ is a defining equation of E, j4 A H 0ðM;DÞ is a defining equation

of D, and e A H 0ðM;KM � r�K
P

2Þ. The vector space H 0ðM;DÞ is spanned by

x0 :¼ j4; x1 :¼ j3r
�x; x2 :¼ j3r

�y; x3 :¼ j3r
�z:

We have a relation

x0F3ðx1; x2; x3Þ �F4ðx1; x2; x3Þ ¼ j4j
3
3r

�F3 � j4
3r

�F4

¼ j4j
4
3e� j4

3j4e ¼ 0:

Therefore, SHP
3 ¼ ProjC ½X0;X1;X2;X3� is defined by

X0F3ðX1;X2;X3Þ ¼ F4ðX1;X2;X3Þ:

The image sðEÞ of E under s : M ! S consists of the point ð1 : 0 : 0 : 0Þ. The rational

map S ���!P
2 induced by the projection P

3 ���!P
2 from the point is the birational map

S ���!
s�1

M ! X ¼ P
2
:

§3. Theorem.

In what follows, we shall prove the following:

Main Theorem. A normal quartic surface with irrational singularities is obtained

from one of the examples of basic triplets in §2.
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§3.1. Proof in the case of Type A.

Proposition 3.1. Let ðM;D;EÞ be a basic triplet satisfying C such that KM þD

is not nef. Then M is isomorphic to the P
1-bundle PDðOD loDÞ and E ¼ 2C0 for the

negative section C0 of M ! D. Moreover, the corresponding quartic surface S is a cone

over D.

Proof. By the cone theorem [6], there is an extremal curve G such that

ðKM þDÞ � G < 0. If the contraction morphism of G is birational, then G is a (�1)-

curve with D � G ¼ 0; it contradicts the condition C-1. On the other hand, M is not

isomorphic to P
2, since M is a desingularization of a normal quartic surface S.

Therefore, the contraction morphism p : M ! C of G is a P
1-bundle structure over a

curve C. Then D � G ¼ D � l ¼ 1 for a fiber l of p. Therefore DFC and MFPCðEÞ

for the locally free sheaf E :¼ p�OMðDÞ. In view of the exact sequence

0 ! OMðKM þDÞ ! OMðDÞ ! OE ! 0;

we have an isomorphism EF p�OE . Thus EFOC loC by Proposition 1.1. Let C0

be the negative section of p. Then C0 @D� p�KC and E ¼ 2C0, since DVE ¼ q.

Therefore the morphism FjDj : M ! P
3 maps E to a point v and a fiber l of p to a line

of P3. Hence the image S is the join of v and the quartic curve FjDjðDÞ. Thus S is a

cone over D. r

§3.2. Proof in the case of Type B.

Suppose that ðX ;B;GÞ satisfies Cr and 2KX þ B is nef. Then ð2KX þ BÞ � G ¼

�2K 2
X þ rb 0 and ð2KX þ BÞ2 ¼ 4K 2

X � 3rþ 4b 0. Therefore

3r� 4a 4K 2
Xa 2r:

Hence ra 4 and �1aK 2
Xa 2.

Lemma 3.2. ðX ;B;GÞ satisfies one of the following conditions:

B1: r ¼ 4 and X is a generalized del Pezzo surface of degree 2 with B@�2KX ;

B2: r ¼ 1 and X is a rational surface with K 2
X ¼ 0;

B3: r ¼ 0 and X is a rational surface with K 2
X ¼ �1.

Proof. Assume that r ¼ 3. Then 5a 4K 2
Xa 6. This is a contradiction. Next

assume that r ¼ 2. Then K 2
X ¼ 1, ð2KX þ BÞ � G ¼ 0, and ð2KX þ BÞ2 ¼ 2. This con-

tradicts the Hodge index theorem. Hence r ¼ 0; 1, or 4.

Case r ¼ 4: Now K 2
X ¼ 2. Since G2 ¼ 2 > 0 and ð2KX þ BÞ � G ¼ ð2KX þ BÞ2 ¼ 0, we

infer that 2KX þ B is numerically trivial by the Hodge index theorem. In particular,

�KX is nef and big. Hence X is a generalized del Pezzo surface of degree 2. Since X

is rational, we have B@�2KX .

Case r ¼ 1: Now K 2
X ¼ 0. Furthermore, ð2KX þ BÞ � G ¼ ð2KX þ BÞ2 ¼ 1. Thus we

have an irreducible component G0 of G such that B � G0 ¼ 1 and BVG1 ¼ q for

the e¤ective divisor G1 :¼ G � G0. Note that G1 is not necessarily a non-zero divisor.

The inequality ð2KX þ BÞ � G0b 0 implies KX � G0b 0 and hence ð2KX þ BÞ � G0b 1.

Another inequality ð2KX þ BÞ � G1b 0 implies ð2KX þ BÞ � G0 ¼ 1, ð2KX þ BÞ � G1 ¼ 0,
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and KX � G0 ¼ KX � G1 ¼ 0. By the Hodge index theorem, every component of G1 is a

(�2)-curve. Now G2
0 ¼ �G1 � G0a 0.

If G2
0 < 0, then G0 is also a (�2)-curve and hence every component of G is a

rational curve. Thus X is rational by Lemma 1.3.

If G2
0 ¼ 0, then G2

1 ¼ 0 and hence G1 ¼ 0 by the Hodge index theorem. Thus

G ¼ G0 is an irreducible and reduced anti-canonical divisor. Therefore, X is rational by

Corollary 1.2.

Case r ¼ 0: Now K 2
X ¼ 0 or �1. If K 2

X ¼ 0, then ð2KX þ BÞ2 ¼ 4 > 0 and

ð2KX þ BÞ � G ¼ 0. Thus G ¼ 0 by the Hodge index theorem. This is a contradic-

tion. Therefore K 2
X ¼ �1. The equality B � G ¼ r ¼ 0 implies that KX � Gb 0 for any

component G of G. Thus, there is an irreducible component G0 of G such that

KX � G0 ¼ 1 and KX � G1 ¼ 0 for the e¤ective divisor G1 :¼ G � G0. We infer that the

intersection matrix of the prime components of G is negative definite by applying the

Hodge index theorem to B � G ¼ 0 and B2 ¼ 4. If G1 0 0, then any component of G1 is

a (�2)-curve. On the other hand, paðG0Þa 1 by ðKX þ G0Þ � G0 < 1.

If paðG0Þ ¼ 0, then X is a rational surface by Lemma 1.3.

If paðG0Þ ¼ 1, then G2
0 ¼ �1, G0 � G1 ¼ 0, and G2

1 ¼ 0. Therefore G1 ¼ 0 and

G ¼ G0 is an irreducible and reduced anti-canonical divisor. Thus X is rational by

Corollary 1.2. r

§3.2.1. Proof in Case B1.

In this case, X is a generalized del Pezzo surface of degree 2, B is a member of

j�2KX j. Hence ðX ;B;GÞ is obtained as Type B1 in §2.

§3.2.2. Proof in Case B2.

In this case, X is a rational surface with K 2
X ¼ 0, r ¼ B � G ¼ 1 and B2 ¼ 5. Since

2KX þ B is nef and big, h0ðX ; 3KX þ BÞ ¼ wðX ; 3KX þ BÞ ¼ 1. Let G be the unique

member of j3KX þ Bj.

Lemma 3.3. G is a ð�1Þ-curve.

Proof. We have KX � G ¼ �1, G 2 ¼ �1, and ðKX þ BÞ � G ¼ 1. We can take

a prime component G0 of G with ðKX þ BÞ � G0 ¼ 1. Then ðKX þ BÞ � ðG � G0Þ ¼ 0

and ð2KX þ BÞ � ðG � G0Þb 0. Hence KX � ðG � G0Þb 0, thus KX � G0a�1. By

ð2KX þ BÞ � G0b 0, we have KX � G0 ¼ �1. Therefore, ð2KX þ BÞ � G0 ¼ 0 and G0 is a

(�1)-curve by the Hodge index theorem. Moreover, ð3KX þ BÞ � G0 ¼ G � G0 ¼ �1.

This implies that ðG � G0Þ
2 ¼ 0. Thus G ¼ G0 by the Hodge index theorem. r

Let f : X ! Y be the contraction of G. Then BY :¼ f�B has a singularity at

q :¼ f ðGÞ with multq BY ¼ 2. The push-forward GY :¼ f�G is an anti-canonical divisor

and 3KY þ BY @ f�G ¼ 0. Hence Y is a generalized del Pezzo surface of degree 1.

Therefore dimj�KY j ¼ 1 and Bsj�KY j consists of a unique point b. Let g : Z ! Y be

the blowing-up at b and let X be the exceptional curve g�1ðbÞ. Then j�KZj is base

point free and we have an elliptic fibration p :¼ Fj�KZ j : Z ! P
1 in which X is a section

of p.
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Lemma 3.4. There is a component GY ;0 of GY such that

(1) multGY ; 0
GY ¼ 1,

(2) b and q are not contained in the divisor GY � GY ;0.

Furthermore, b is not contained in BY .

Proof. Let G0 be a component of G with B � G0 ¼ 1 and let G1 :¼ G � G0.

Then 2KX � G0b�B � G0 ¼ �1. Hence KX � G0b 0. Thus ð2KX þ BÞ � G0 ¼ 1 and

ð2KX þ BÞ � G1 ¼ 0. Therefore KX � G0 ¼ KX � G1 ¼ 0. Since ð3KX þ BÞ � G0 ¼ G � G0

¼ 1 and G � G1 ¼ 0, the push-forward GY ;0 :¼ f�G0 is the unique component of GY

containing q, and q is a smooth point of GY . On the other hand, KY � f�G1 ¼ 0, since

KX � G1 ¼ 0 and G1 is away from the (�1)-curve G . In particular, a general member of

j�KY j does not intersect f�G1. Thus the base point b is not contained in f�G1 but

GY ;0. We shall show that b B BY . If b A BY , then the proper transform BZ of BY in Z

is linearly equivalent to g�BY �mX for some mb 1. Thus

ð�KZÞ � BZ ¼ ð�KY Þ � BY �m ¼ 3�ma 2:

This implies that p induces a double-covering BZ ! P
1. This contradicts the assump-

tion: B is non-hyperelliptic. r

Lemma 3.5. Let q 0
; q 0

1, and b 0 be the points of X defined by

fq 0g ¼ GVG ; fq 0
1g ¼ BVG; and fb 0g ¼ f �1ðbÞ;

respectively. Then the following properties hold:

(1) OGðGÞFOGðb
0 � q 0Þ;

(2) OGðGÞVOG and OGð2GÞVOG;

(3) OGð3b
0ÞFOGð2q

0 þ q 0
1Þ.

Proof. Let GZ be the proper transform of GY in Z: GZ ¼ g�GY � X. Then GZ

is a fiber of p. Thus OGZ
ðGZÞFOGZ

. Hence OGY
ðGY ÞFOGY

ðbÞ. Since G@ f �GY �G ,

the isomorphism OGðGÞFOGðb
0 � q 0Þ in (1) follows. The linear equivalences BY @ 3GY

and B@ f �BY � 2G imply the isomorphism OGðBÞFOGðq
0
1ÞFOGð3b

0 � 2q 0Þ. Thus (3)

follows. Since the dualizing sheaf of G is trivial, h0ðG;OGðbÞÞ ¼ wðG;OGðbÞÞ ¼ 1.

Hence b0 q implies OGðGÞVOG. If OGð2GÞFOG, then b 0 ¼ q 0
1 by (3). However,

b 0 0 q 0
1 since b ¼ f ðb 0Þ B BY by Lemma 3.4. Thus (2) follows. r

Therefore, the minimal triplet ðX ;B;GÞ is constructed as Type B2 in §2.

§3.2.3. Proof in Case B3.

Lemma 3.6. The linear system j2KX þ Bj is base point free and it defines a

morphism F : X ! P
1 whose general fibers are rational curves.

Proof. We have h0ðX ; 2KX þ BÞ ¼ wðX ; 2KX þ BÞ ¼ 2, since KX þ B is nef and

big. Thus F ¼ Fj2KXþBj is a rational map into P
1. Let n : X 0 ! X be a proper

birational morphism such that the composite F � n : X 0 ! X ���!P
1 is a morphism.

Then n�ð2KX þ BÞ@F þN for a fiber F of F � n and an e¤ective divisor N. The

inequality 0 ¼ ð2KX þ BÞ2b ðF þNÞ � F implies N � F ¼ 0. Hence F : X ! P
1 is a

morphism. Thus we may write 2KX þ B@F þN. Since X is rational, a general fiber
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F of F is irreducible. Moreover, F FP
1 by ð2KX þ BÞ � F ¼ 0 and B � F > 0. Thus

B � F ¼ 4, B �N ¼ 0, and N 2 ¼ 0. Therefore, N ¼ 0 by the Hodge index theorem and

hence 2KX þ B@F . r

Therefore B@F � 2KX @F þ 2G for a fiber F of F : X ! P
1. Since BVG ¼ q,

we have OGðF þ 2GÞFOG.

Claim 3.7. There is a non-singular point b of G such that OGð�GÞFOGðbÞ.

Proof. If G is irreducible and reduced, then H 0ðG;�GjGÞFC and its non-zero

section defines such a point b. Thus we may assume G is reducible or non-reduced.

Note that �2GjG @F jG is nef on G. Thus there exist an irreducible component G0 HG

and an non-zero e¤ective divisor Y such that

(1) G ¼ G0 þY with G0 QY,

(2) �G � G0 ¼ 1,

(3) G �Yi ¼ 0 for any component Yi HY.

We have h0ðG;OGÞ ¼ 1 by h1ðX ;�GÞ ¼ qðXÞ ¼ 0. Thus G is connected. Note that G

is contractible by G � B ¼ 0, where B2 ¼ 4 > 0. It follows that all Yi are ð�2Þ-curves

and ðKX þ G0Þ � G0 ¼ �Y � G0 < 0 implies that G0 is a smooth rational curve with

G2
0 ¼ �3 and Y � G0 ¼ 2. We have OYðKX ÞFOY since the contraction of Y gives a

minimal resolution of rational double points. The exact sequence

0 ! OYð�G0Þ ! OG ! OG0
! 0;

induces h1ðOYð�G0ÞÞ ¼ h1ðOGÞ ¼ 1 since H 0ðG;OGÞ ! H 0ðG0;OG0
Þ is surjective.

Thus h0ðY;OYÞ ¼ h0ðY;oYðG0ÞÞ ¼ h1ðOYð�G0ÞÞ ¼ 1 by duality. From another exact

sequence

0 ! OG0
ð�G �YÞFO

P
1ð�1Þ ! OGð�GÞ ! OYð�GÞFOY ! 0;

we infer that H 0ðG;OGð�GÞÞFC and its non-zero section does not vanish on Y. Thus

OGð�GÞFOGðbÞ for some b A G0nY. r

We consider the following exact sequence:

0 ! OX ðF Þ ! OX ðF þ GÞ ! OGðF þ GÞFOGðbÞ ! 0:

Then BsjF þ Gj ¼ BsjðF þ GÞjGj ¼ fbg. Thus a general member of jF þ Gj is smooth.

Let m : Y ! X be the blowing-up at b and let L be the exceptional divisor m�1ðbÞ.

Then m�G ¼ GY þ L for the proper transform GY of G. We set FY :¼ m�F . Then

FY þ GY @ m�ðF þ GÞ � L and OGY
ðFY þ GY ÞFOGY

. Thus BsjFY þ GY j ¼ q by the

exact sequence:

0 ! OY ðFY Þ ! OY ðFY þ GY Þ ! OGY
! 0:

Let f be the morphism FjFYþGY j : Y ! P
2. Then f is a generically finite surjective

morphism of degree 2, since ðFY þ GY Þ
2 ¼ 2.

Lemma 3.8. Let t : S ! P
2 be the blowing-up at the point f ðGY Þ and let X be the

exceptional curve. Let l be a fiber of the ruling p : S ! P
1 of the Hirzebruch surface

SFS1.
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(1) There is a generically finite morphism l : Y ! S such that f ¼ t � l and

GY ¼ l�X.

Let Y ! V ! S be the Stein factorization of l.

(2) V has only rational double points as singularities.

(3) Y ! V is the minimal desingularization of V.

(4) V is the double-covering of S branched along a reduced divisor D@ 2X þ 6l.

Proof. (1) Let p be the composite F � m : Y ! X ! P
1. Then E :¼ p�OY ðGY Þ is

a locally free sheaf of P
1 of rank 3 and there is the following exact sequence on P

1:

0 ! O
P

1ð1Þ ! EnO
P

1ð1Þ ! p�OGY
! 0:

Since h0ðOGY
Þ ¼ 1, by pulling back the injection O

P
1 ,! p�OGY

, we have a subsheaf F of

E and an exact sequence

0 ! O
P

1ð1Þ ! FnO
P

1ð1Þ ! O
P

1 ! 0:

Furthermore, we have a surjection p�
F ! OY ðGY Þ, since BsjFY þ GY j ¼ q. There-

fore, we have a morphism l : Y ! SFP
P

1ðFÞ over P
1 such that l�

l@FY and

l�X ¼ GY . In particular, f ¼ t � l.

(2)–(4) We have KY � l�KS @ l�ðX þ 3lÞ by (1). Therefore, V ! S is the

double-covering branched along a reduced divisor D@ 2X þ 6l. Moreover, V has only

rational double points and Y ! S is the minimal desingularization, since KY is rela-

tively trivial over V . r

The point b 0 ¼ GY VL is a smooth point of GY . Thus b 0 is contained in a unique

component GY ;0 of GY . We have an isomorphism OGY
ðFY ÞFOGY

ð�GY ÞFOGY
ð2b 0Þ by

GY @ m�G � L and OGðGÞFOGð�bÞ. Thus l induces a double-covering GY ;0 ! X and

contracts the other components of GY to points of X. We set x0 :¼ lðb 0Þ A X.

Then l is a finite morphism over a neighborhood of x0, and x0 is contained in the

branch locus. Hence x0 is a smooth point of D. Let l0 be the fiber of p : S ! P
1

passing through x0. Note that La l�
l0. In particular, l�

l0 is reducible. Since

L � l�X ¼ �L � KY ¼ 1, we infer that L ! l0 is an isomorphism.

Lemma 3.9. l0 is not a component of D.

Proof. Assume the contrary. Then l�
l0 ¼ 2Lþ J for a non-zero e¤ective divisor

J. Here any component G of J is a (�2)-curve contracted to a point by l, since

G � KY ¼ �G � l�X ¼ 0. Now J � L ¼ l�
l � L� 2L2 ¼ 2. If G � L ¼ 2, then m�ðm�GÞ ¼

G þ 2L and thus ðm�GÞ
2 ¼ 2 > 0. This is a contradiction, since m�G is contained in a

fiber of F : X ! P
1. Hence we have G � La 1. Let G1 be a component of J with

G1 � L ¼ 1 and let C1 :¼ m�G1. Then C1 is a (�1)-curve on X . By Proposition 1.4,

BsjBj ¼ BsjF þ 2Gj ¼ q and FjBj is a birational morphism into a normal quartic sur-

face in P
3. Now B � C1 ¼ ðF þ 2GÞ � C1 ¼ 2. Hence FjBjðC1Þ is a conic of P

3. On

the other hand, we have H 0ðX ;F þ GÞFH 0ðX ;B� GÞFC
l3. Thus the rational map

FjFþGj : X ���!P
2 is the composite of FjBj : X ! P

3 and the projection P
3 ���!P

2 from

the point FjBjðGÞ. The image of C1 under FjFþGj : X ! P
2 is the point f ðG1Þ of P

2.

Therefore FjBjðC1Þ is a line of P
3. This is a contradiction. r
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The divisor Dj
l0

on l0 is 2x0, since l0 � D ¼ 2. In other words, D intersects l0 only

at x0 and the intersection is tangential. Hence, D and l0 satisfy the conditions (b-1) to

(b-4) of Lemma 2.4. Thus the triplet ðX ;B;GÞ is obtained as Type B3 in §2.

§3.3. Proof in the case of Type C.

Let ðX ;B;GÞ be a minimal basic triplet satisfying Cr such that X has a P
1-bundle

structure p : X ! C in which �ð2KX þ BÞ is relatively ample. Let us denote a fiber of

p by l. Since KX þ B is nef, we have ðKX þ BÞ2b 0 and ðKX þ BÞ � Gb 0. These

imply

r� 4aK 2
Xa r:

Furthermore, ðKX þ BÞ � lb 0 and ð2KX þ BÞ � l < 0. Hence one of the following two

cases occurs:

C1: B � l ¼ 2;

C2: B � l ¼ 3.

§3.3.1. Proof in Case C1.

In this case, we have ðKX þ BÞ � l ¼ 0. Thus there is a divisor A on C such that

KX þ B@ p�A. Then ðKX þ BÞ2 ¼ 0 and K 2
X ¼ r� 4 hold. Hence, ðKX þ BÞ � G ¼

r� K 2
X ¼ 4. This implies degA ¼ 2.

Now p : B ! C is a double-covering. Hence C is not rational since B is non-

hyperelliptic. We have K 2
X ¼ 8ð1� gðCÞÞ, since p : X ! C is a P

1-bundle. Thus

K 2
X ¼ r� 4b�4 implies that gðCÞ ¼ 1 and r ¼ 4. In particular, C is an elliptic curve.

We may assume that X is isomorphic to PCðEÞ for one of the following locally free

sheaves E of rank 2:

(a): EFOC lL for an invertible sheaf L of degLa 0;

(b): E has a non-splitting exact sequence:

0 ! OC ! E ! OC ! 0;

(g): E has a non-splitting exact sequence:

0 ! OC ! E ! OCðxÞ ! 0

for a point x A C.

The case (g) does not occur by the following:

Lemma 3.10. In the case (g), j�KX j ¼ q.

Proof. Let G be a member of j�KX j. Then G ¼ G1 þ G2 for a horizontal prime

divisor G1 and a non-zero e¤ective divisor G2 by Corollary 1.2. Then G1 and G2 are

nef, since E is stable. Thus we have G2
1 ¼ G2

2 ¼ G1 � G2 ¼ 0 from K 2
X ¼ 0. The divisor

G1 is not a section, since E is stable. Hence G1 ! C is a double-covering and G2 is

contained in fibers. Since some ample divisor of X is written as a combination of G1

and G2, we infer that G2 ¼ 0 by the Hodge index theorem. This is a contradiction.

r

Case (b): We have a unique member C0 of the linear system jHEj which corresponds to

the injection OC ! E. Therefore KX @�2C0. Since the exact sequence

0 ! E ! Sym2ðEÞ ! OC ! 0
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does not split, 2C0 is a unique member of j�KX j. Thus G ¼ 2C0. Now B is a

member of jp�A� KX j. Hence BjC0
@ p�AjC0

. Let us take a point x A C0 VB and

let m : X 0 ! X be the blowing-up at x. Let l
0 be the proper transform of the fiber

p�1ðpðxÞÞ, B 0 the proper transform of B, X the m-exceptional curve m�1ðxÞ, and

G 0
:¼ m�G � X. Then the basic triplet ðX 0;B 0;G 0Þ satisfies the condition C3 and l

0

is also a (�1)-curve with B 0 � l 0 ¼ 1. We can contract l
0 and obtain another triplet

ðX 00;B 00;G 00Þ. The separations of ðX ;B;GÞ and ðX 00;B 00;G 00Þ are identical. Therefore,

we can reduce to the Case (a) with degL ¼ �1.

Case (a): If LFOCð�AÞ, then ðX ;B;GÞ is constructed as Type C1 in §2. Thus it is

enough to show the following:

Lemma 3.11. In the case (a), we can reduce to the case: LFOCð�AÞ.

Proof. Step 1: Suppose that LFOC . Then OX ð�KX ÞF p�
O
P

1ð2Þ for the first

projection p : X FP
1 � C ! P

1. Thus G ¼ p�ðb1 þ b2Þ for some points b1; b2 A P
1.

We have B � p�ðb1Þ ¼ 2 by B@ p�A� KX . Let us take a point q in BV p�ðb1Þ and

let n : Y ! X be the blowing-up at q. Here we consider the separation ðM;D;EÞ !

ðX ;B;GÞ. Then the morphism M ! X factors through the blowing-up Y ! X . Let

G be the exceptional curve n�1ðqÞ, BY the proper transform of B, GY :¼ n�G � G , and l

the proper transform of the fiber p�1ðpðqÞÞ. Then l is a (�1)-curve with BY � l ¼ 1.

Let ðY ;BY ;GY Þ ! ðX 0;B 0;G 0Þ be the contraction of l. Then ðM;D;EÞ is also the

separation of ðX 0;B 0;G 0Þ. Hence we can reduce to the case degL < 0.

Step 2: Suppose that LVOC but degL ¼ 0. Then we have two mutually dis-

joint sections C0 and C1 of the ruling p : X ! C such that C0 @HE and C1 @

HE � p�
L. Since L is not trivial, C0 þ C1 is a unique member of j�KX j. Hence

G ¼ C0 þ C1. Now B � C0 ¼ 2. Let us take a point q in BVC0 and consider the

elementary transformation of X at q. Then as in the previous argument, we can reduce

to the case degL < 0.

Step 3: Suppose that degL ¼ �1. Then we have two mutually disjoint sections C0

and C1 such that C0 @HE and C1 @HE � p�
L. Then G ¼ C0 þ G1 for an e¤ective

divisor G1 with G1 @C1. Now B � C0 ¼ 1. Let q be the point BVC0. By taking the

elementary transformation of X at q, we can reduce to the case degLa�2.

Step 4: Suppose finally that degLa�2. We have two mutually disjoint sections

C0 and C1 such that C0 @HE and C1 @HE � p�
L. We have BjC0

@ p�ðAþLÞjC0
.

The inequality B � C0b 0 implies that degL ¼ �2 and BVC0 ¼ q. In particular,

LFOCð�AÞ. r

§3.3.2. Proof in Case C2.

In this case, we have ðKX þ BÞ � l ¼ 1 and ð2KX þ BÞ � l ¼ �1. Thus X FPCðEÞ

for E :¼ p�OX ðKX þ BÞ. Since K 2
Xb�4, the genus gðCÞ is 0 or 1.

Case gðCÞ ¼ 0: Now X is isomorphic to the Hirzebruch surface Sd for some db 0.

Thus K 2
X ¼ 8 and hence 8a ra 12. Let C0 be the minimal section. Then we can
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write KX þ B@C0 þml for some mb d, since KX þ B is nef. We have �KX @ 2C0 þ

ðd þ 2Þl. Thus B@ 3C0 þ ðmþ d þ 2Þl. Hence

4 ¼ ðKX þ BÞ � B ¼ ðC0 þmlÞ � ð3C0 þ ðmþ d þ 2ÞlÞ ¼ �2d þ 4mþ 2:

Thus 2m ¼ 1þ d, which implies m ¼ d ¼ 1. Therefore X is the Hirzebruch surface S1

and C0 is the unique (�1)-curve in which B � C0 ¼ 1. Let X ! P
2 be the blowing-down

of C0 and let B 0 and G 0 be the image of B and G, respectively. Then the separation of

ðX ;B;GÞ is also that of ðP2
;B 0

;G 0Þ. Thus we are reduced to the Type D.

Case gðCÞ ¼ 1: We have �KX @ 2HE � p�ðdetEÞ and B@HE � KX . Thus r ¼ B �

G ¼ ðHE � KX Þ � ð�KX Þ ¼ degE. Hence 4 ¼ ðKX þ BÞ � B ¼ HE � ðHE � KX Þ ¼ 2 degE.

Therefore degE ¼ r ¼ 2. The locally free sheaf E is one of the following:

C2-0: EFOC lA for an invertible sheaf A on C of degA ¼ 2;

C2-1: EFOCðq1ÞlOCðq2Þ for two points q1; q2 of C;

C2-2: There is a non-split exact sequence

0 ! OCðqÞ ! E ! OCðqÞ ! 0

for a point q A C.

Case C2-0: Let C0 be the negative section of p : X ! C. Then C0 @HE � p�
A and

�KX @ 2C0 þ p�
A. Thus B@ 3C0 þ 2p�

A. Hence B � C0 ¼ �degA ¼ �2. This is a

contradiction.

Case C2-1: First assume that q1 ¼ q2. Then X FP
1 � C. Let p : X ! P

1 be the

first projection and let l be the fiber p�1ðq1Þ ¼ p�1ðq2Þ. Then B@HE � KX @

p�
O
P

1ð3Þ þ l. Thus

p�OX ðBÞF p�ðp
�
O
P

1ð3ÞnOX ðlÞÞFO
l4
C nOCðq1Þ:

Therefore, l is a fixed component of the linear system jBj. This is a contradiction.

Thus q1 0 q2.

Let li be the fiber p�1ðqiÞ for i ¼ 1; 2. Let C1 and C2 be the minimal sections

of p : X ! C with C1 @HE � l1 and C2 @HE � l2, respectively. Then C1 VC2 ¼ q,

OC1
ðC1ÞFOC1

ðl2 � l1Þ, OC2
ðC2ÞFOC2

ðl1 � l2Þ, and �KX @C1 þ C2. Since GjC1
@

ðl2 � l1ÞjC1
is non-trivial, G contains C1 and also C2. Thus G ¼ C1 þ C2.

Suppose that 2q1 @ 2q2 on C. Then 2C1 @ 2C2. Thus the base point free linear

system j2C1j defines a morphism f : X ! P
1. Now B@HE þ G and B � C1 ¼ 1. Thus

f induces a double-covering B ! P
1. This is a contradiction. Hence 2q1 S 2q2.

Therefore the ðX ;B;GÞ is obtained as Type C2-1 in §2.

Case C2-2: We have KX þ B@C0 þ l and �KX @ 2C0 for the minimal section C0.

Hence G ¼ 2C0 and B@ 3C0 þ l. Thus the ðX ;B;GÞ is constructed as Type C2-2 in §2.

§3.4. Proof in the case of Type D.

Let ðX ;B;GÞ be a minimal basic triplet satisfying Cr such that X FP
2 and that

�ð2KX þ BÞ is ample. Then B is a smooth quartic curve, since gðBÞ ¼ 3. Therefore

r ¼ 12. Hence ðX ;B;GÞ is obtained as Type D in §2. This completes the proof of

Main Theorem.
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