Classification of normal quartic surfaces with irrational singularities

By Yuji Ishil and Noboru Nakayama

(Received Jul. 29. 2002)
(Revised Apr. 14, 2003)

Abstract

If a normal quartic surface admits a singular point that is not a rational double point, then the surface is determined by the triplet (M, D, E) consisting of the minimal desingularization M, the pullback D of a general hyperplane section, and a nonzero effective anti-canonical divisor E of M. Geometric constructions of all the possible triplets (M, D, E) are given.

Introduction.

The purpose of this paper is to classify the complex normal quartic surfaces in the 3 -dimensional projective space \boldsymbol{P}^{3} with irrational singularities by determining their minimal desingularizations. Let S be a normal quartic surface and let $\sigma: M \rightarrow S$ be the minimal desingularization. Then M is known to be one of the following surfaces (cf. [8]):
(1) a K3 surface;
(2) a \boldsymbol{P}^{1}-bundle over a smooth quartic curve of \boldsymbol{P}^{2};
(3) a ruled surface over an elliptic curve;
(4) a rational surface.

In the case (1), S has only rational double points as singularities. In the case (2), S is nothing but the cone over the quartic curve. Umezu [8] have determined the structure of M and the minimal desingularization $\sigma: M \rightarrow S$ in the case (3).

The classification problem has been studied by a number of algebraic geometers for more than half a century. Umezu $[\mathbf{8}]$ and Urabe [9], [10] considered the problem from a viewpoint of singularities. Umezu studied the singularities of a normal Gorenstein surface with trivial dualizing sheaf in [7]. In our case, the singularities which are not rational double points are studied by the configuration of the effective anti-canonical divisor E of M determined by $K_{M} \sim \sigma^{*} K_{S}-E$. In the next paper $[\mathbf{8]}$, Umezu described the pair (M, E) by determining the blowing-up process from a relative minimal model of M. Urabe [9], [10] applied Looijenga's argument in [5] to the pair (M, E) in which E is irreducible. By using Dynkin diagrams, Urabe determined possible singularities on $S \backslash \sigma(E)$. On the other hand, Degtyarev [2] considered the problem by types of equations of hypersurface singularities listed in [1].

Our approach is different from theirs. We consider a triplet (M, D, E) called a basic triplet which consists of a non-singular projective surface M, a smooth nonhyperelliptic curve D of genus 3 on M, and a non-zero anti-canonical divisor E of

[^0]M. If $\sigma: M \rightarrow S$ is the minimal desingularization of a normal quartic surface S with irrational singularities, then (M, D, E) is a basic triplet for the pullback D of a general hyperplane section of S and for the anti-canonical divisor E with $K_{M} \sim \sigma^{*} K_{S}-E$. The basic triplet satisfies the condition \mathscr{C} in $\S 1$. Conversely, if a basic triplet (M, D, E) satisfies \mathscr{C}, then it is induced from a normal quartic surface with irrational singularities (cf. Proposition 1.4). Therefore, it is enough to determine all the basic triplets satisfying \mathscr{C}. We apply the theory of extremal rays [6] to $K_{M}+D$ and $2 K_{M}+D$. If $K_{M}+D$ is not nef, then we infer that M is a \boldsymbol{P}^{1}-bundle over a smooth non-hyperelliptic curve of genus 3 and S is nothing but the cone over a smooth quartic curve. If $K_{M}+D$ is nef, then we consider an extremal curve Γ with $\left(2 K_{M}+D\right) \cdot \Gamma<0$. If Γ is a (-1) curve and if $\phi: M \rightarrow M^{\prime}$ is the contraction of Γ, then $D^{\prime}=\phi(D)$ is isomorphic to D and $E^{\prime}=\phi_{*} E$ is an anti-canonical divisor with $K_{M}+D \sim \phi^{*}\left(K_{M^{\prime}}+D^{\prime}\right)$. The morphism ϕ is the blowing-up at the unique point $D^{\prime} \cap E^{\prime}$. The new triplet $\left(M^{\prime}, D^{\prime}, E^{\prime}\right)$ satisfies the condition \mathscr{C}_{1} in $\S 1$. Next, we consider another (-1)-curve Γ^{\prime} with $\left(2 K_{M^{\prime}}+D^{\prime}\right) \cdot \Gamma^{\prime}<0$ and its contraction. In this way, we finally have a basic triplet (X, B, G) and a birational morphism $\rho: M \rightarrow X$ such that $K_{M}+D \sim \rho^{*}\left(K_{X}+B\right)$, $D \simeq B$, and $\left(2 K_{X}+B\right) \cdot \Xi \geq 0$ for any (-1)-curve Ξ on X. The basic triplet (X, B, G) is called a minimal basic triplet and M is obtained canonically from (X, B, G) by the method called separation (cf. §1.2). By the structure of (X, B, G), the triplets (M, D, E) are classified into Types A to D in Theorem 1.7.

We shall give examples of the triplets (M, D, E) and (X, B, G) in $\S 2$ and we shall show in $\S 3$ that any basic triplet (M, D, E) satisfying \mathscr{C} is one of the triplets given in §2. For the proof, we need some well-known facts on generalized del Pezzo surfaces, rational elliptic surfaces, elliptic ruled surfaces, double-coverings, and extremal rays.

Our classification is very rough compared to Umezu's work [8]. Because, firstly, it is not the classification modulo isomorphisms. We need a hyperplane section as an additional datum. Secondly, by the use of separation, we avoid studying the configuration of centers (including infinitesimally near points) of related blowings-up. It is related to the description of singular points on S. However, we can give a geometric construction of any normal quartic surface with irrational singularities. It might be useful for the fine classification.

Acknowledgement. This paper is based on the first author's Master's thesis [4] u under the guidance of the second author at Dept. of Math. Sci., Univ. Tokyo in 1993. The original version of this paper which completes the classification in [4] was written in 1993. The authors thank Professors Yumiko Umezu and Tohsuke Urabe for informing kindly the background and the resent progress of the classification problem of quartic surfaces. The first author left the university and became a bank clerk just after finishing the Master course. Seminar talks on the paper were given at several universities in Japan in 1993-1994. The second author moved to RIMS. Kyoto Univ. in 1995 and has kept the manuscript almost unchanged until 2002. The present modified version was written up in July 2002. The second author apologizes for the delay in submitting to a journal and thanks Professor Hiromichi Takagi for his careful reading of an old version. The second author also thanks the referee for the valuable comment.

Notation. Every varieties are defined over the complex number field C. Curves
and surfaces are always assumed to be irreducible, reduced, and projective. These are smooth (over \boldsymbol{C}) if and only if they are non-singular.

Divisors: Let X be a normal surface or a smooth curve.

- $\mathcal{O}_{X}(D)$ denotes the invertible sheaf associated with a Cartier divisor D. We write $H^{p}(X, D)=H^{p}\left(X, \mathcal{O}_{X}(D)\right)$ for short. We write also $h^{p}(X, D)=\operatorname{dim} H^{p}(X, D)$.
- For a non-zero global rational section φ of an invertible sheaf \mathscr{L} of X, we define

$$
\operatorname{div}(\varphi):=\sum \operatorname{ord}_{\Gamma}(\varphi) \Gamma
$$

in which $\operatorname{ord}_{\Gamma}(\varphi)$ is the order of zeros or the minus of the order of poles of φ along a prime divisor $\Gamma \subset X$.

- K_{X} denotes the canonical divisor of X. If K_{X} is Cartier, then X is called Gorenstein. The dualizing sheaf ω_{X} of X is isomorphic to $\mathcal{O}_{X}\left(K_{X}\right)$. A divisor E is called anti-canonical if $E \sim-K_{X}$.
- $|D|$ denotes the complete linear system associated with a divisor D. The associated rational map $X \cdots \rightarrow|D|^{\vee}$ into the dual space $|D|^{\vee}$ is denoted by $\Phi_{|D|}$. If we fix a basis $\left(\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}\right)$ of $H^{0}(X, D)$, then $\Phi_{|D|}$ is equivalent to the map given by

$$
x \mapsto\left(\varphi_{0}(x): \varphi_{1}(x): \cdots: \varphi_{n}(x)\right) .
$$

The base locus of $|D|$ is denoted by $\mathrm{Bs}|D|$.

- A Cartier divisor D of a surface is called nef if the intersection number $D \cdot C$ is non-negative for any curve $C \subset X$. If in addition the self-intersection number D^{2} is positive, then D is called nef and big. Kawamata-Viehweg's vanishing theorem states that $H^{p}\left(X, K_{X}+D\right)=0$ for a nef and big Cartier divisor D and for $p>0$.
- Let D be a Cartier divisor of a surface X. If there is a morphism $f: X \rightarrow Y$ into another variety and if $D \cdot C \geq 0$ for any curves $C \subset X$ contained in fibers of f, then D is called f-nef.
- Let D and A be Cartier divisors on a surface X. If $D \cdot A \leq 0$ and $A^{2}>0$, then $D^{2} \leq 0$, in which $D^{2}=0$ if and only if D is numerically trivial: $D \cdot C=0$ for any curves C. This result is referred as the Hodge index theorem.

Curves: Let C be a curve.

- The arithmetic genus $p_{a}(C)$ is defined as $h^{1}\left(C, \mathcal{O}_{C}\right)$. The genus $g(C)$ is defined as $p_{a}(\tilde{C})$ for the normalization $\tilde{C} \rightarrow C$.
- A rational curve is a curve C with $g(C)=0$. An elliptic curve is a smooth curve with $g(C)=1$.
- A smooth curve C of genus $g(C) \geq 2$ is called hyperelliptic if the image of the canonical map

$$
\Phi_{\left|K_{C}\right|}: C \rightarrow \boldsymbol{P}^{g(C)-1}
$$

is \boldsymbol{P}^{1}. In this case, $C \rightarrow \boldsymbol{P}^{1}$ is a double-covering. If C is a non-hyperelliptic curve, then the canonical map is an embedding of C.

- A quartic curve is a curve $C \subset \boldsymbol{P}^{2}$ with degree 4. A smooth quartic curve is nothing but a non-hyperelliptic curve of genus 3 .
- Let \mathscr{E} be a locally free sheaf on C. We denote by $\boldsymbol{P}_{C}(\mathscr{E})$ the projective bundle associated with \mathscr{E}. The tautological invertible sheaf $\mathcal{O}_{\mathscr{E}}(1)$ associated with \mathscr{E} is defined as the invertible sheaf on $\boldsymbol{P}_{C}(\mathscr{E})$ satisfying $p_{*} \mathcal{O}_{\mathscr{E}}(1) \simeq \mathscr{E}$ for the structure morphism $p: \boldsymbol{P}_{C}(\mathscr{E}) \rightarrow C . \quad$ A tautological divisor $H_{\mathscr{E}}$ is a Cartier divisor with $\mathcal{O}\left(H_{\mathscr{E}}\right) \simeq \mathcal{O}_{\mathscr{E}}(1)$.

Surfaces: Let X be a smooth surface and C a smooth curve.

- $q(X)$ denotes the irregularity of $X: \quad q(X)=h^{1}\left(M, \mathcal{O}_{X}\right)$.
- A (-1)-curve of X is a smooth rational curve $C \subset X$ with $C^{2}=-1$. It is usually called the exceptional curve of the first kind. A smooth rational curve $C \subset X$ with $C^{2}=-2$ is called a (-2)-curve.
- Let $f: X \rightarrow Y$ be a morphism into another variety. If K_{X} is f-nef, then X is called minimal over Y or f is called minimal. If K_{X} is not f-nef, then one of the following cases occurs (cf. [6]):
(1) There is a (-1)-curve contained in a fiber of f;
(2) f is isomorphic to a \boldsymbol{P}^{1}-bundle over a smooth curve C defined over Y;
(3) $f(X)$ is a point and $X \simeq \boldsymbol{P}^{2}$.
- The Hirzebruch surface Σ_{r} of degree $r \geq 0$ is defined as the \boldsymbol{P}^{1}-bundle associated with $\mathcal{O} \oplus \mathcal{O}(r)$ on \boldsymbol{P}^{1}.
- $\quad X$ is called a generalized del Pezzo surface of degree d if $-K_{X}$ is nef and big with $K_{X}^{2}=d$. The following properties are known:
(1) A generalized del Pezzo surface is a rational surface.
(2) If $d=2$, then $\mathrm{Bs}\left|-K_{X}\right|=\varnothing, h^{0}\left(X,-K_{X}\right)=3$, and $\Phi_{\left|-K_{X}\right|}$ is a generically finite surjective morphism onto \boldsymbol{P}^{2} of mapping degree 2.
(3) If $d=1$, then $\mathrm{Bs}\left|-K_{X}\right|$ consists of one point, $h^{0}\left(-K_{X}\right)=2$, and $\Phi_{\left|-K_{X}\right|}$ induces an elliptic fibration $Z \rightarrow \boldsymbol{P}^{1}$ from the blown-up Z of X at $\mathrm{Bs}\left|-K_{X}\right|$.
For the readers' convenience, we shall give a proof.
Proof. (1) We have $H^{i}\left(X, \mathcal{O}_{X}\right)=0$ for $i>0$ by Kawamata-Viehweg's vanishing theorem. In particular, $q(X)=0$. Thus X is rational since the Kodaira dimension $\kappa(X)$ is negative.
(2), (3). We first show that the fixed divisor $F=\left|-K_{X}\right|_{\text {fix }}$ is zero. If $|M|$ is the movable part, i.e., $|M|+F=\left|-K_{X}\right|$, then M is nef and hence $M-K_{X}$ is nef and big. Thus $\chi(M)=h^{0}(M)=h^{0}\left(-K_{X}\right)=\chi\left(-K_{X}\right)=K_{X}^{2}+1=d+1$ by Kawamata-Viehweg's vanishing theorem. This implies $M \cdot\left(M-K_{X}\right)=2 K_{X}^{2}$. We have inequalities

$$
M^{2} \leq M \cdot(M+F)=M \cdot\left(-K_{X}\right) \leq\left(-K_{X}\right)^{2}
$$

Hence, $M \cdot F=\left(-K_{X}\right) \cdot F=F^{2}=0$. The Hodge index theorem implies $F=0$.
Secondly, we show that a general member of $\left|-K_{X}\right|$ is an elliptic curve. Let $f: Y \rightarrow X$ be a succession of blowings-up at points such that $\Phi_{\left|f^{*}\left(-K_{X}\right)\right|}$ is holomorphic. Let $|C|$ and G be the movable part and the fixed divisor of $f^{*}\left|-K_{X}\right|$, respectively. We may assume that $E \leq G$ for the exceptional divisor $E=K_{Y}-f^{*} K_{X}$. Since $C+E-K_{Y}$ is nef and big, we have $\chi(Y, C+E)=\chi\left(-K_{X}\right)$, equivalently, $(C+E) \cdot\left(C+f^{*}\left(-K_{X}\right)\right)=2 K_{X}^{2}$. We infer that $C \cdot(G-E)=0$ from inequalities

$$
(C+E) \cdot C \leq(C+G) \cdot C=f^{*}\left(-K_{X}\right) \cdot(C+E) \leq f^{*}\left(-K_{X}\right)^{2}
$$

Thus a general member C of $|C|$ is a disjoint union of elliptic curves and $C \rightarrow f(C)$ is an isomorphism by

$$
\left.\left(K_{Y}+C\right)\right|_{C}=\left.f^{*}\left(K_{X}+\left(-K_{X}\right)\right)\right|_{C}-\left.(G-E)\right|_{C} \sim 0
$$

For a member D of $\left|-K_{X}\right|$, we have $h^{0}\left(D, \mathcal{O}_{D}\right)=1$ by $q(X)=0$. Thus a general member D is an elliptic curve.

Finally, we show (2) and (3). For a general member $D \in\left|-K_{X}\right|, H^{0}\left(X,-K_{X}\right) \rightarrow$ $H^{0}\left(D,\left.\left(-K_{X}\right)\right|_{D}\right)$ is surjective by $q(X)=0$. Thus if $d \geq 2$, then $\left|-K_{X}\right|$ is base point free. Thus (2) follows. If $d=1$, then $\mathrm{Bs}\left|-K_{X}\right|$ consists of one point which is the intersection of general two members. Thus (3) follows.

The referee pointed out that more systematic argument on generalized del Pezzo surfaces are written in [3].

Desingularization: Let S be a normal surface and let $\sigma: M \rightarrow S$ be a birational morphism from a non-singular surface.

- If $R^{1} \sigma_{*} \mathcal{O}_{M}=0$, then the singularities of S are called rational. If S is Gorenstein in addition, then the singularities are called rational double points. The dual graph defined by the exceptional locus of the minimal desingularization of a rational double point is one of Dynkin diagrams $A_{n}, D_{n}, E_{6}, E_{7}, E_{8}$. Rational double points are also called ADE-singularities, simple singularities, Du Val singularities, and so on.
- If $S \subset \boldsymbol{P}^{3}$ with $\operatorname{deg} S=4$, then S is called a quartic surface. Here, $\omega_{S} \simeq \mathcal{O}_{S}$ and $h^{1}\left(S, \mathcal{O}_{S}\right)=0$. If σ is the minimal desingularization and if M is not a ruled surface, then S has only rational double points as singularities and M is a K3 surface.

§1. Condition \mathscr{C} and separation.

§1.1. Condition \mathscr{C} and quartic surfaces.

Proposition 1.1. Let M be a non-singular projective surface admitting a non-zero effective anti-canonical divisor E. Then $h^{0}\left(E, \mathcal{O}_{E}\right)=q(M)+1$.

Proof. In view of the exact sequence

$$
0 \rightarrow \omega_{M} \rightarrow \mathcal{O}_{M} \rightarrow \mathcal{O}_{E} \rightarrow 0
$$

we infer that $h^{0}\left(E, \mathcal{O}_{E}\right)=1$ when $q(M)=0$. Assume that M contains a (-1)-curve Γ. Let $h: M \rightarrow M^{\prime}$ be the contraction of Γ and let $E^{\prime}=h_{*} E$ be the image of E as a divisor. Then $\mathcal{O}_{E^{\prime}} \simeq h_{*} \mathcal{O}_{E}$ by the vanishing $R^{1} h_{*} \mathcal{O}_{M}(-E)=0$. In particular, $h^{0}\left(E, \mathcal{O}_{E}\right)=h^{0}\left(E^{\prime}, \mathcal{O}_{E^{\prime}}\right)$. Therefore, we may assume that M is an irrational relatively minimal surface. Hence M has a \boldsymbol{P}^{1}-bundle structure $p: M \rightarrow C$ over a smooth curve C with $g(C)=q(M)>0$. Here, we have the following exact sequence:

$$
0 \rightarrow \mathcal{O}_{C} \simeq p_{*} \mathcal{O}_{M} \rightarrow p_{*} \mathcal{O}_{E} \rightarrow R^{1} p_{*} \omega_{M} \simeq \omega_{C} \rightarrow 0
$$

Since some component of E dominates C, there is a splitting of $\mathscr{O}_{C} \rightarrow p_{*} \mathcal{O}_{E}$. Thus $p_{*} \mathcal{O}_{E} \simeq \mathcal{O}_{C} \oplus \omega_{C}$. Therefore $h^{0}\left(E, \mathcal{O}_{E}\right)=1+g(C)=1+q(M)$.

Corollary 1.2 (cf. [7]). A non-singular projective surface admitting an irreducible and reduced anti-canonical divisor is rational.

Lemma 1.3. Let M be a non-singular projective surface admitting a non-zero effective anti-canonical divisor E. If any prime component of E is a rational curve, then M is rational.

Proof. Assume the contrary. Then the Albanese map induces a surjective morphism $\pi: M \rightarrow C$ into a smooth curve C of genus $q(M)>0$ whose general fibers F are rational curves. Since $E \cdot F=-\operatorname{deg} K_{F}=2$, some component of E dominates C. Thus $C \simeq \boldsymbol{P}^{1}$. This is a contradiction.

Definition. A basic triplet (M, D, E) is a triplet consisting of a non-singular projective surface M, a smooth non-hyperelliptic curve D of genus 3 on M, and a nonzero effective anti-canonical divisor E of M. The condition \mathscr{C} for (M, D, E) is the collection of the following two conditions:
\mathscr{C}-1: $D \cdot \Gamma>0$ for any (-1)-curve Γ on M;
\mathscr{C}-2: $\quad D \cap E=\varnothing$.
If (M, D, E) satisfies \mathscr{C}, then

$$
D^{2}=\left(K_{M}+D\right) \cdot D=2 g(D)-2=4 .
$$

Let $\sigma: M \rightarrow S$ be the minimal desingularization of a normal quartic surface S with irrational singularities. Let E be the σ-exceptional anti-canonical divisor such that $K_{M} \sim \sigma^{*} K_{S}-E \sim-E$ and let D be the pullback of a general hyperplane section of S. Then the basic triplet (M, D, E) satisfies the condition \mathscr{C}. Conversely, we have:

Proposition 1.4. If a basic triplet (M, D, E) satisfies the condition \mathscr{C}, then there exist a normal quartic surface S and a birational morphism $\sigma: M \rightarrow S$ such that
(1) S has irrational singular points,
(2) σ is the minimal desingularization of S,
(3) D is the pullback of a general hyperplane section of S,
(4) E is the σ-exceptional divisor satisfying $K_{M} \sim \sigma^{*}\left(K_{S}\right)-E$.

Proof. Since D is a nef and big divisor, $H^{i}\left(M, K_{M}+D\right)=0$ for $i>0$ by Kawamata-Viehweg's vanishing theorem. Hence

$$
\begin{aligned}
h^{0}(M, D) & =h^{0}\left(M, K_{M}+D\right)+h^{0}\left(E, \mathcal{O}_{E}\right) \\
& =\chi\left(M, K_{M}+D\right)+1+q(M) \\
& =g(D)+1=4
\end{aligned}
$$

by Proposition 1.1. In view of the exact sequence

$$
0 \rightarrow \mathcal{O}_{M} \rightarrow \mathcal{O}_{M}(D) \rightarrow \mathcal{O}_{D}(D) \simeq \omega_{D} \rightarrow 0
$$

we infer that $H^{0}(M, D) \rightarrow H^{0}\left(D, K_{D}\right)$ is surjective. Hence $\mathrm{Bs}|D|=\varnothing$. Thus we have a generically finite morphism

$$
\sigma:=\Phi_{|D|}: M \rightarrow \boldsymbol{P}^{3} .
$$

Let S be the image. Then $\operatorname{deg} \sigma=1$ or $\operatorname{deg} \sigma=2$ since $D^{2}=4$. We note that the restriction $\left.\sigma\right|_{D}: D \rightarrow \boldsymbol{P}^{2}$ is the canonical map of D. This is an embedding since D is
non-hyperelliptic. Thus $\operatorname{deg} \sigma=1$. Hence $\sigma: M \rightarrow S$ is a birational morphism and S is a quartic surface. Now $\omega_{S} \simeq \mathcal{O}_{S}, E$ is σ-exceptional, and $K_{M} \sim-E$. Thus S is a normal surface and $\sigma: M \rightarrow S$ is the minimal desingularization by $\mathscr{C}-1$.

Therefore, the classification of normal quartic surfaces with irrational singularities is reduced to that of basic triplets (M, D, E) satisfying the condition \mathscr{C}.

§1.2. Separation.

Let (X, B, G) be a basic triplet with $B \not \subset G$. Let $\rho: Y \rightarrow X$ be a birational morphism from a non-singular projective variety and let B_{Y} and G_{Y} be effective divisors on Y.

Definition. The triplet $\left(Y, B_{Y}, G_{Y}\right)$ or the birational morphism $\rho: Y \rightarrow X$ is called the separation of (X, B, G) if the following conditions are satisfied:
(1) $K_{Y}+B_{Y} \sim \rho^{*}\left(K_{X}+B\right)$;
(2) $K_{Y}+G_{Y} \sim 0$;
(3) $B_{Y} \leq \rho^{*}(B), G_{Y} \leq \rho^{*}(G)$;
(4) $B_{Y} \cap G_{Y}=\varnothing$.

Lemma 1.5. The separation exists and is unique.
Proof. First, we shall show the existence. If $B \cap G=\varnothing$, then the identity mapping $X \rightarrow X$ is the separation. Assume that $B \cap G \neq \varnothing$. Let $\rho_{1}: Y_{1} \rightarrow X$ be the blowing-up at a point $x_{1} \in B \cap G$ and let Γ be the exceptional divisor $\rho_{1}^{-1}\left(x_{1}\right)$. We consider divisors $B_{Y_{1}}:=\rho_{1}^{*}(B)-\Gamma$ and $G_{Y_{1}}:=\rho_{1}^{*}(G)-\Gamma$. Here, $B_{Y_{1}}$ is the proper transform of B and $B \cdot G=B_{Y_{1}} \cdot G_{Y_{1}}+1$. If $B_{Y_{1}} \cap G_{Y_{1}}=\varnothing$, then ρ_{1} is the separation of (X, B, G). If $B_{Y_{1}} \cap G_{Y_{1}} \neq \varnothing$, then we blow up at a point $x_{2} \in B_{Y_{1}} \cap G_{Y_{1}}$, and we define $B_{Y_{2}}$ and $G_{Y_{2}}$ similarly. By continuing this procedure, we finally get the separation.

Next, we shall show the uniqueness. Let $\left(Y, B_{Y}, G_{Y}\right)$ be a separation of (X, B, G). If Γ is a ρ-exceptional curve, then $K_{Y} \cdot \Gamma=-B_{Y} \cdot \Gamma \leq 0$. If $K_{Y} \cdot \Gamma<0$, then Γ is a (-1)-curve. Otherwise, Γ is a (-2 -curve. Let $\pi: Y \rightarrow V$ be the contraction of all the ρ-exceptional (-2)-curves. Then V has only rational double points as singularities, and

$$
B_{Y}=\pi^{*}\left(B_{V}\right) \quad \text { and } \quad G_{Y}=\pi^{*}\left(G_{V}\right)
$$

for effective Cartier divisors B_{V} and G_{V} on V, respectively. There is an effective Cartier divisor E on V such that

$$
B_{V}=\tau^{*}(B)-E \quad \text { and } \quad G_{V}=\tau^{*}(G)-E,
$$

for the induced morphism $\tau: V \rightarrow X$. Here, $-E$ is τ-ample and $B_{V} \cap G_{V}=\varnothing$. Hence, τ is the normalization of the blowing-up of X along the ideal $\mathcal{O}_{X}(-B)+$ $\mathcal{O}_{X}(-G)$. Moreover, $\pi: Y \rightarrow V$ is the minimal desingularization. Therefore, $Y \rightarrow X$ is uniquely determined.

Definition. Let (X, B, G) be a basic triplet and let r be a non-negative integer. The condition \mathscr{C}_{r} for (X, B, G) is the collection of the following two conditions:
$\mathscr{C}_{r}-\mathbf{1}: \quad K_{X}+B$ is nef;
\mathscr{C}_{r}-2: $\quad B \cdot G=r$.

If (X, B, G) satisfies the condition \mathscr{C}_{r}, then

$$
B^{2}=\left(K_{X}+B\right) \cdot B+G \cdot B=2 g(B)-2+r=4+r .
$$

In particular $B \not \subset G$, since $B^{2}>B \cdot G$. Note that the condition \mathscr{C}_{0} implies the condition \mathscr{C}.

Lemma 1.6. Let (X, B, G) be a basic triplet satisfying the condition \mathscr{C}_{r}.
(1) Suppose that $r>0$. Let $\varphi: Y \rightarrow X$ be the blowing-up at a point $x \in B \cap G, \Gamma$ the exceptional divisor $\varphi^{-1}(x), B_{Y}$ the proper transform of B, and $G_{Y}:=$ $\varphi^{*} G-\Gamma$. Then $\left(Y, B_{Y}, G_{Y}\right)$ satisfies the condition \mathscr{C}_{r-1}.
(2) Suppose that there is a (-1)-curve Ξ with $B \cdot \Xi=1$. Let $\phi: X \rightarrow Z$ be the blowing-down of $\Xi, B_{Z}:=\phi(B)$, and $G_{Z}:=\phi_{*} G$. Then $\left(Z, B_{Z}, G_{Z}\right)$ satisfies the condition \mathscr{C}_{r+1}.
Proof. (1) We infer that $B_{Y} \simeq B$ and that G_{Y} is a non-zero effective anti-canonical divisor of Y. Here, $K_{Y}+B_{Y} \sim \varphi^{*}\left(K_{X}+B\right)$ is nef and $B_{Y} \cdot G_{Y}=B \cdot G-1$.
(2) We infer that $B \simeq B_{Z}, G \cdot \Xi=1$, and that G_{Z} is a non-zero effective anticanonical divisor. Here, $\phi^{*}\left(K_{Z}+B_{Z}\right) \sim K_{X}+B$ is nef and $B_{Z} \cdot G_{Z}=B \cdot G+1$.

Definition. A basic triplet (X, B, G) is called minimal if it satisfies the condition \mathscr{C}_{r} for some r and $B \cdot \Gamma>1$ for any (-1)-curve Γ on X.

Theorem 1.7. Let (M, D, E) be a basic triplet satisfying the condition \mathscr{C}. Then one of the following four possibilities occurs:

Type A: $\quad K_{M}+D$ is not nef;
Type B: $\quad(M, D, E)$ is the separation of a minimal basic triplet (X, B, G) in which $2 K_{X}+B$ is nef;
Type C: $\quad(M, D, E)$ is the separation of a minimal basic triplet (X, B, G) in which X has a \boldsymbol{P}^{1}-bundle structure over a smooth curve and $\left(2 K_{X}+B\right) \cdot \ell<0$ for a fiber ℓ;
Type D: $\quad(M, D, E)$ is the separation of a minimal basic triplet (X, B, G) in which $X \simeq \boldsymbol{P}^{2}$ and $\operatorname{deg}\left(2 K_{X}+B\right)<0$.

Proof. If (M, D, E) does not satisfy \mathscr{C}_{0}, then it is of Type A. Thus we assume that the triplet satisfies \mathscr{C}_{0}. By Lemma 1.6, we have a minimal basic triplet (X, B, G) whose separation is (M, D, E). Note that this (X, B, G) is not necessarily uniquely determined by (M, D, E). If $2 K_{X}+B$ is nef, then (M, D, E) is of Type B. If $2 K_{X}+B$ is not nef, then there is an extremal ray R such that $\left(2 K_{X}+B\right) \cdot R<0$ (cf. [6]). Now the contraction of R can not be birational, since $\left(2 K_{X}+B\right) \cdot \Gamma \geq 0$ for any (-1)-curve Γ on X. Thus X has a \boldsymbol{P}^{1}-bundle structure over a smooth curve or $X \simeq \boldsymbol{P}^{2}$.

§2. Examples.

We shall give examples of basic triplets (M, D, E) satisfying the condition \mathscr{C} and examples of minimal basic triplets (X, B, G).

§2.1. Examples of Type A.

We take a hyperplane H in \boldsymbol{P}^{3} and a smooth quartic curve C in $H \simeq \boldsymbol{P}^{2}$. For a point $v \notin H$, let $S:=S_{v}$ be the union of all lines through v and a point of C. Then S
is a normal quartic surface and v is the unique singular point. Let $\sigma: M \rightarrow S$ be the blowing-up at v. Then σ is the minimal desingularization of S and M is isomorphic to the \boldsymbol{P}^{1}-bundle $\boldsymbol{P}_{C}\left(\mathcal{O}_{C} \oplus \omega_{C}\right)$ over the curve C. In this case, $\sigma^{*} H$ is a tautological divisor with respect to $\mathcal{O}_{C} \oplus \omega_{C}$, thus $K_{M}+\sigma^{*} H$ is not nef. Let C_{0} be the minimal section of the \boldsymbol{P}^{1}-bundle. If we take a general member D of $\left|\sigma^{*} H\right|$, then the basic triplet $\left(M, D, 2 C_{0}\right)$ does not satisfy the condition \mathscr{C}_{0} but \mathscr{C}. Thus it is of Type A.

Next, we consider the defining equation of S. Let $\Phi_{4}(x, y, z) \in \boldsymbol{C}[x, y, z]$ be a homogeneous polynomial of degree 4 defining C in $\boldsymbol{P}^{2}=\operatorname{Proj} \boldsymbol{C}[x, y, z]$. Then $S=S_{v}$ is defined as

$$
\Phi_{4}\left(X_{1}, X_{2}, X_{3}\right)=0
$$

in $\boldsymbol{P}^{3}=\operatorname{Proj} \boldsymbol{C}\left[X_{0}, X_{1}, X_{2}, X_{3}\right]$ in which v corresponds to the point $(1: 0: 0: 0)$. The projection $\boldsymbol{P}^{3} \cdots \rightarrow \boldsymbol{P}^{2}$ from v induces the rational map

$$
S \stackrel{\sigma^{-1} \rightarrow M}{\rightarrow}=\boldsymbol{P}_{C}\left(\mathcal{O}_{C} \oplus \omega_{C}\right) \rightarrow C \subset \boldsymbol{P}^{2} .
$$

§2.2. Examples of Type B.

§2.2.1. A generalized del Pezzo surface of degree two.

Let X be a generalized del Pezzo surface of degree 2. Then $\left|-K_{X}\right|$ has no base points and defines a generically finite morphism $\tau: X \rightarrow \boldsymbol{P}^{2}$ of degree 2 .

Lemma 2.1. A general member of $\left|-2 K_{X}\right|$ is a non-hyperelliptic curve of genus 3.
Proof. A general member B of $\left|-2 K_{X}\right|$ is a smooth curve of genus 3 . In view of the exact sequence

$$
0 \rightarrow \mathcal{O}_{X}\left(K_{X}\right) \rightarrow \mathcal{O}_{X}\left(-K_{X}\right) \rightarrow \mathcal{O}_{B}\left(-K_{X}\right) \simeq \omega_{B} \rightarrow 0
$$

we infer that the restriction of τ to B is the canonical mapping of B. If $B \in\left|-2 K_{X}\right|$ is a smooth hyperelliptic curve, then $\tau(B)$ is a smooth conic of \boldsymbol{P}^{2} and $B=\tau^{*}(\tau(B))$. Now $\quad h^{0}\left(\boldsymbol{P}^{2}, \mathcal{O}(2)\right)=6 \quad$ and $\quad h^{0}\left(X,-2 K_{X}\right)=\chi\left(X,-2 K_{X}\right)=7$. Thus the pullback $H^{0}\left(\boldsymbol{P}^{2}, \mathcal{O}(2)\right) \rightarrow H^{0}\left(X,-2 K_{X}\right)$ is not surjective. Therefore, a general member B is nonhyperelliptic.

Let $B \in\left|-2 K_{X}\right|$ be a non-hyperelliptic curve of genus 3 and let G be a member of $\left|-K_{X}\right|$. Then (X, B, G) satisfies the condition \mathscr{C}_{4} and $2 K_{X}+B \sim 0$. For the separation $(M, D, E), M$ is a rational surface with the Picard number 12. In particular, $E^{2}=-2$. The triplet (M, D, E) is called of Type B1.

We shall give a defining equation of S as follows: Let $\tau: X \rightarrow V \rightarrow \boldsymbol{P}^{2}$ be the Stein factorization of τ. Then V has only rational double points as singularities and $\tau_{*} \mathcal{O}_{X} \simeq \mathcal{O}_{\boldsymbol{P}^{2}} \oplus \mathcal{O}_{\boldsymbol{P}^{2}}(-2)$. The $\mathcal{O}_{\boldsymbol{P}^{2}}$-algebra structure of $\tau_{*} \mathcal{O}_{X}$ is given by an element $\delta \in H^{0}\left(\boldsymbol{P}^{2}, \mathcal{O}(4)\right)$ in such a way that

$$
\left(u_{1}, v_{1}\right) \cdot\left(u_{2}, v_{2}\right)=\left(u_{1} u_{2}+v_{1} v_{2} \delta, u_{2} v_{1}+u_{1} v_{2}\right)
$$

for local holomorphic sections u_{1}, u_{2} of $\mathcal{O}_{\boldsymbol{P}^{2}}$ and v_{1}, v_{2} of $\mathcal{O}_{\boldsymbol{P}^{2}}(-2)$. Let $\eta \in$ $H^{0}\left(X,-2 K_{X}\right)$ be an element corresponding to $(0,1)$ under the isomorphism

$$
H^{0}\left(X,-2 K_{X}\right) \simeq H^{0}\left(\boldsymbol{P}^{2}, \mathcal{O}(2)\right) \oplus H^{0}\left(\boldsymbol{P}^{2}, \mathcal{O}\right)
$$

Then $\eta^{2}=\tau^{*} \delta$ in $H^{0}\left(X,-4 K_{X}\right)$. The smooth curve B is defined as $\operatorname{div}\left(\eta+\tau^{*} q\right)$ for some $q \in H^{0}\left(\boldsymbol{P}^{2}, \mathcal{O}(2)\right)$. The effective divisor G is defined as $\operatorname{div}\left(\tau^{*} l\right)$ for some $l \in H^{0}\left(\boldsymbol{P}^{2}, \mathcal{O}(1)\right)$. For a suitable choice of homogeneous coordinate system $(x: y: z)$ of \boldsymbol{P}^{2}, we may assume that $l=x$. Then

$$
\xi_{0}=\eta+\tau^{*} q, \quad \xi_{1}=\tau^{*}\left(x^{2}\right), \quad \xi_{2}=\tau^{*}(x y), \quad \xi_{3}=\tau^{*}(x z)
$$

form a basis of the vector subspace $H^{0}(M, D) \subset H^{0}\left(X,-2 K_{X}\right)$. We have the following relation:

$$
\xi_{0} \xi_{1}-q\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=\eta \xi_{1}
$$

By taking square, we have

$$
\left(\xi_{0} \xi_{1}-q\left(\xi_{1}, \xi_{2}, \xi_{3}\right)\right)^{2}=\delta\left(\xi_{1}, \xi_{2}, \xi_{3}\right)
$$

Therefore, S is defined in $\boldsymbol{P}^{3}=\operatorname{Proj} \boldsymbol{C}\left[X_{0}, X_{1}, X_{2}, X_{3}\right]$ by

$$
\left(X_{0} X_{1}-q\left(X_{1}, X_{2}, X_{3}\right)\right)^{2}-\delta\left(X_{1}, X_{2}, X_{3}\right)=0
$$

in which $\operatorname{deg} q=2$ and $\operatorname{deg} \delta=4$. The conditions required for q and δ are as follows:
(1) $\operatorname{div}(\delta)$ is a reduced divisor;
(2) the double-covering branched along $\operatorname{div}(\delta)$ has only rational double points as singularities;
(3) $\operatorname{div}\left(\delta-q^{2}\right)$ is a smooth curve.

The image $\sigma(E)$ of E under $\sigma: M \rightarrow S$ is just the point ($1: 0: 0: 0$). The projection $\boldsymbol{P}^{3} \cdots \rightarrow \boldsymbol{P}^{2}$ from the singular point gives the composite

$$
S \stackrel{\sigma^{-1}}{\rightarrow} M \rightarrow X \rightarrow \boldsymbol{P}^{2}
$$

§2.2.2. Blowing-up of a generalized del Pezzo surface of degree one at one point.

Let Y be a generalized del Pezzo surface of degree one and let G_{Y} be a member of $\left|-K_{Y}\right|$. It is well-known that $\left|-K_{Y}\right|$ has a unique base point b and the linear system induces a minimal elliptic fibration $\pi: Z \rightarrow \boldsymbol{P}^{1}$ from the blown-up Z of Y at b. Thus b is a smooth point of G_{Y}. Let $G_{Y, 0}$ be the irreducible component of G_{Y} containing b. Here, we take a point $q \in G_{Y, 0}$ such that
(1) q is a smooth point of G_{Y},
(2) $\mathcal{O}_{G_{Y}}(b-q) \not \approx \mathcal{O}_{G_{Y}}$ and $\mathcal{O}_{G_{Y}}(2 b-2 q) \not \not \mathcal{O}_{G_{Y}}$.

There exists uniquely a point $q_{1} \in G_{Y, 0}$ satisfying $\mathcal{O}_{G_{Y}}\left(q_{1}\right) \simeq \mathcal{O}_{G_{Y}}(3 b-2 q)$. Then $q_{1} \neq b$ by the condition (2) above. Let $f: X \rightarrow Y$ be the blowing-up at $q, \Gamma=f^{-1}(q)$, and G the proper transform of G_{Y} in X. Then we have the following:

Lemma 2.2. A general member of the linear system $|3 G+\Gamma|$ is a smooth nonhyperelliptic curve of genus 3. In particular, (X, B, G) satisfies the condition \mathscr{C}_{1} for a general member $B \in|3 G+\Gamma|$.

Proof. We consider the exact sequence:

$$
0 \rightarrow \mathcal{O}_{X}(2 G+\Gamma) \rightarrow \mathcal{O}_{X}(3 G+\Gamma) \rightarrow \mathcal{O}_{G}(3 G+\Gamma) \simeq \mathcal{O}_{G}\left(3 b^{\prime}-2 q^{\prime}\right) \rightarrow 0
$$

where $b^{\prime}=f^{-1}(b)$ and $\left\{q^{\prime}\right\}=G \cap \Gamma$. Note that b^{\prime} and q^{\prime} are contained in the proper transform G_{0} of $G_{Y, 0}$. There is a smooth point $q_{1}^{\prime} \in G$ with $\mathcal{O}_{G}\left(3 b^{\prime}-2 q^{\prime}\right) \simeq \mathcal{O}_{G}\left(q_{1}^{\prime}\right)$, since $\operatorname{deg} \mathcal{O}_{G}\left(3 b^{\prime}-2 q^{\prime}\right)=1$. Then $q_{1}^{\prime} \in G_{0}, \quad f\left(q_{1}^{\prime}\right)=q_{1}$, and $q_{1}^{\prime} \in \operatorname{Bs}|3 G+\Gamma|$. The divisor $3 G+\Gamma$ is nef and big, since the restrictions of $3 G+\Gamma$ to any component of G and Γ are nef and since $(3 G+\Gamma)^{2}=5>0$. Hence, $H^{i}(X, 2 G+\Gamma)=$ $H^{i}\left(X, K_{X}+3 G+\Gamma\right)=0$ for $i>0$. Therefore $h^{0}(X, 2 G+\Gamma)=3$ and $h^{0}(X, 3 G+\Gamma)=$ 4. We can calculate $h^{0}(X, G)=h^{0}(X, 2 G)=1$ and $h^{1}(X, G)=h^{1}(X, 2 G)=0$ from the following three exact sequences:

$$
\begin{aligned}
& 0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}(G) \rightarrow \mathcal{O}_{G}(G) \simeq \mathcal{O}_{G}\left(b^{\prime}-q^{\prime}\right) \rightarrow 0, \\
& 0 \rightarrow \mathcal{O}_{X}(G) \rightarrow \mathcal{O}_{X}(2 G) \rightarrow \mathcal{O}_{G}(2 G) \simeq \mathcal{O}_{G}\left(2 b^{\prime}-2 q^{\prime}\right) \rightarrow 0, \\
& 0 \rightarrow \mathcal{O}_{X}(2 G) \rightarrow \mathcal{O}_{X}(3 G) \rightarrow \mathcal{O}_{G}(3 G) \simeq \mathcal{O}_{G}\left(3 b^{\prime}-3 q^{\prime}\right) \rightarrow 0 .
\end{aligned}
$$

We consider the following two cases:
B2-1: $\quad h^{0}(X, 3 G)=1$;
B2-2: $h^{0}(X, 3 G)>1$.
In Case B2-2, $3 b^{\prime} \sim 3 q^{\prime}$ and equivalently, $q_{1}^{\prime}=q^{\prime}$. Thus $h^{0}(X, 3 G)=2$. In Case B2-1, $3 b^{\prime} \nsucc 3 q^{\prime}$ and equivalently, $q_{1}^{\prime} \neq q^{\prime}$.

Claim 2.3. $\quad\left\{q_{1}^{\prime}\right\}=\mathrm{Bs}|3 G+\Gamma|$. In particular, a general member of $|3 G+\Gamma|$ is a smooth curve of genus 3 .

Proof. Case B2-1: In view of the exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(3 G) \rightarrow \mathcal{O}_{X}(3 G+\Gamma) \rightarrow \mathcal{O}_{\Gamma}(3 G+\Gamma) \simeq \mathcal{O}_{\boldsymbol{P}^{1}}(2) \rightarrow 0
$$

we infer that $H^{0}(X, 3 G+\Gamma) \rightarrow H^{0}\left(\Gamma, \mathcal{O}_{\Gamma}(3 G+\Gamma)\right) \quad$ is surjective. Therefore $\Gamma \cap \mathrm{Bs}|3 G+\Gamma|=\varnothing$. Hence Bs $|3 G+\Gamma|=\left\{q_{1}^{\prime}\right\}$.

Case B2-2: The image of

$$
H^{0}(X, 3 G+\Gamma) \rightarrow H^{0}\left(\Gamma, \mathscr{O}_{\Gamma}(3 G+\Gamma)\right) \simeq C^{3}
$$

is contained in the two-dimensional subspace

$$
H^{0}\left(\Gamma, \mathcal{O}_{\Gamma}(3 G+\Gamma) \otimes \mathcal{O}_{\Gamma}\left(-q^{\prime}\right)\right)
$$

since $q^{\prime}=q_{1}^{\prime}$. Hence $\mathrm{Bs}|3 G+\Gamma|=\left\{q_{1}^{\prime}\right\}$ by $h^{0}(X, 3 G)=2$.
We shall show a general member B of $|3 G+\Gamma|$ is non-hyperelliptic. Let $\rho: M \rightarrow X$ be the blowing-up at q_{1}^{\prime}. Then ρ is the separation of (X, B, G). Let D and E be the proper transforms of B and G, respectively. Since $h^{0}(M, D)=h^{0}(X, B)=4$, the homomorphism $H^{0}(X, D) \rightarrow H^{0}\left(D,\left.D\right|_{D}\right) \simeq H^{0}\left(D, K_{D}\right)$ is surjective. Thus $\mathrm{Bs}|D|=$ \varnothing. If the morphism $\Phi_{|D|}: M \rightarrow \boldsymbol{P}^{3}$ is a birational morphism onto its image, then $D \simeq B$ is a non-hyperelliptic curve. Let Ξ be the ρ-exceptional divisor $\rho^{-1}\left(q_{1}^{\prime}\right)$ and let Γ^{\prime} be the proper transform of Γ.

Case B2-1: We have $D \sim 3 E+\Gamma^{\prime}+2 \Xi$. Thus $3 E+\Gamma^{\prime}+2 \Xi$ is the pullback of a hyperplane section. Now $\Phi_{|D|}$ maps E to a point and Ξ to a line of \boldsymbol{P}^{3} isomorphically.

Since $H^{0}(M, D) \rightarrow H^{0}\left(\Gamma^{\prime},\left.D\right|_{\Gamma^{\prime}}\right) \simeq H^{0}\left(\Gamma,\left.B\right|_{\Gamma}\right)$ is surjective, the restriction of $\Phi_{|D|}$ to Γ^{\prime} is an isomorphism to a conic in \boldsymbol{P}^{3}. Therefore $\Phi_{|D|}$ is birational.

Case B2-2: We have $D \sim 3 E+\Gamma^{\prime}+3 \Xi$. Thus Γ^{\prime} and Ξ are mapped to lines in \boldsymbol{P}^{3} by $\Phi_{|D|}$. Therefore $\Phi_{|D|}$ is birational.

Therefore, (X, B, G) satisfies the condition \mathscr{C}_{1} and M is a rational surface with the Picard number 11. In particular, $E^{2}=-1$. The basic triplet (M, D, E) is called of Type B2; more precisely, of Type B2-1 or Type B2-2.

§2.2.3. Blowing-down from a double-covering over Σ_{1}.

Let $\Sigma:=\Sigma_{1}$ be the Hirzebruch surface $\boldsymbol{P}_{\boldsymbol{P}^{1}}(\mathcal{O} \oplus \mathcal{O}(1))$. We denote the ruling by $p: \Sigma \rightarrow \boldsymbol{P}^{1}$ and a fiber of p by ℓ. Let Ξ be the unique (-1)-curve of Σ and let $v: \Sigma \rightarrow \boldsymbol{P}^{2}$ be the blowing-down of Ξ. We now fix a point $x_{0} \in \Xi$ and we denote by ℓ_{0} the fiber of p passing through x_{0}.

Lemma 2.4. There is an effective divisor $\Delta \in|2 \Xi+6 \ell|$ satisfying the following conditions:
(b-1) Δ is reduced and if $V \rightarrow \Sigma$ is the double covering branched just along Δ, then V has only rational double points as singularities.
(b-2) $\Xi \not \subset \Delta$.
(b-3) $x_{0} \in \Delta \cap \Xi$ and $\operatorname{mult}_{x_{0}}\left(\left.\Delta\right|_{\Xi}\right)=1$.
(b-4) $\ell_{0} \not \subset \Delta$ and $\ell_{0} \cap \Delta=\left\{x_{0}\right\}$.
Proof. Let $\mu_{0}: S_{0} \rightarrow \Sigma$ be the blowing-up at x_{0} and let Γ_{0} be the exceptional curve $\mu_{0}^{-1}\left(x_{0}\right)$. Let ℓ_{0}^{\prime} be the proper transforms of ℓ_{0}. We next blow-up S_{0} at $x_{1}:=\ell_{0}^{\prime} \cap \Gamma_{0}$. Let $\mu_{1}: S_{1} \rightarrow S_{0}$ be the blowing-up and let $\ell_{0}^{\prime \prime}$ be the proper transform of ℓ_{0}^{\prime}. We look at the linear system $\left|\mu_{1}^{*} \mu_{0}^{*}(2 \Xi+5 \ell)+\ell_{0}^{\prime \prime}\right|$. Let us consider the exact sequence:

$$
0 \rightarrow \mathcal{O}\left(\mu_{1}^{*} \mu_{0}^{*}(2 \Xi+5 \ell)\right) \rightarrow \mathcal{O}\left(\mu_{1}^{*} \mu_{0}^{*}(2 \Xi+5 \ell)+\ell_{0}^{\prime \prime}\right) \rightarrow \mathcal{O}_{\ell_{0}^{\prime \prime}} \rightarrow 0
$$

Since $H^{1}(\Sigma, 2 \Xi+5 \ell)=0$ and $\mathrm{Bs}|2 \Xi+5 \ell|=\varnothing$, we see that $\operatorname{Bs}\left|\mu_{1}^{*} \mu_{0}^{*}(2 \Xi+5 \ell)+\ell_{0}^{\prime \prime}\right|=$ \varnothing. Let $\Delta^{\prime \prime}$ be a general member of the linear system $\left|\mu_{1}^{*} \mu_{0}^{*}(2 \Xi+5 \ell)+\ell_{0}^{\prime \prime}\right|$ and let $\Delta:=\mu_{0 *} \mu_{1 *} \Delta^{\prime \prime}$. Then Δ satisfies the conditions above.

We fix a divisor $\Delta \in|2 \Xi+6 \ell|$ satisfying (b-1) to (b-4). Let $\lambda: Y \rightarrow \Sigma$ be the minimal desingularization of the double covering of Σ branched just along Δ. Then we have $K_{Y} \sim \lambda^{*}\left(K_{\Sigma}+\Xi+3 \ell\right) \sim \lambda^{*}(-\Xi)$. We set $G_{Y}:=\lambda^{*} \Xi$. We infer that Y is a rational surface by $h^{1}(Y, \mathcal{O})=h^{1}(\Sigma, \mathcal{O} \oplus \mathcal{O}(-\Xi-3 \ell))=0$. By the conditions (b-2) and (b-3), there is an irreducible component $G_{Y, 0} \subset G_{Y}$ such that the induced morphism $G_{Y, 0} \rightarrow \Xi$ is a double covering. Then other components of G_{Y} are contracted to points of Ξ by λ. Furthermore, λ is a finite morphism over an open neighborhood of x_{0} and $\lambda^{-1}\left(x_{0}\right)$ consists of only one point, which we denote by $b^{\prime} \in G_{Y, 0}$. Moreover, we can write $\lambda^{*} \ell_{0}=F_{1}+F_{2}$ for (-1)-curves F_{1} and F_{2} such that $\left\{b^{\prime}\right\}=F_{1} \cap F_{2}$. Since $\left.(\Xi+\ell)\right|_{\Xi} \sim 0$, we have $\left.\left(\lambda^{*} \ell+G_{Y}\right)\right|_{G_{Y}} \sim 0$ and $\mathcal{O}_{G_{Y}}\left(G_{Y}\right) \simeq \lambda^{*} \mathcal{O}_{\Xi}\left(-x_{0}\right) \simeq \mathcal{O}_{G_{Y}}\left(-2 b^{\prime}\right)$.

Let $\mu: Y \rightarrow M$ be the blowing-down of F_{1}. We set $E:=\mu_{*} G_{Y} \sim-K_{M}, F:=\mu_{*} F_{2}$, and $b:=\mu\left(b^{\prime}\right)$. Then $\mu^{*} E=G_{Y}+F_{1}$ and $\lambda^{*} \ell \sim \mu^{*} F$. Hence, $\left.(F+2 E)\right|_{E} \sim 0$.

Lemma 2.5. $\quad|F+2 E|$ is base point free and its general members are non-hyperelliptic curves of genus 3 .

Proof. We consider the following two exact sequences:

$$
\begin{aligned}
& 0 \rightarrow \mathcal{O}(F) \rightarrow \mathcal{O}(F+E) \rightarrow \mathcal{O}_{E}(F+E) \simeq \mathcal{O}_{E}(b) \rightarrow 0, \\
& 0 \rightarrow \mathcal{O}(F+E) \rightarrow \mathcal{O}(F+2 E) \rightarrow \mathcal{O}_{E}(F+2 E) \simeq \mathcal{O}_{E} \rightarrow 0 .
\end{aligned}
$$

Since F is a fiber of the ruling $p \circ \lambda \circ \mu^{-1}: M \rightarrow \boldsymbol{P}^{1}$ and since b is a smooth point of the anti-canonical divisor E, we infer that $h^{0}(M, F+2 E)=4$ and $H^{0}(M, F+2 E) \rightarrow$ $H^{0}\left(E, \mathcal{O}_{E}\right)$ is surjective. Thus $\mathrm{Bs}|F+2 E|=\varnothing$. Let D be a general member of the linear system. Then D is a smooth curve of genus 3 . We have only to show that D is non-hyperelliptic.

We set $B_{Y}:=\mu^{*} D$. Then $B_{Y} \simeq D$, since $b \notin D$. Here we have an isomorphism $H^{0}\left(Y, K_{Y}+B_{Y}\right) \simeq H^{0}\left(B_{Y}, K_{B_{Y}}\right) \simeq C^{\oplus 3}$. Now $K_{Y}+B_{Y} \sim \lambda^{*} \ell+G_{Y}+2 F_{1}$. Since

$$
H^{0}\left(Y, \lambda^{*} \ell+G_{Y}\right) \simeq H^{0}\left(Y, \lambda^{*}(\Xi+\ell)\right) \simeq H^{0}(\Sigma, \mathcal{O}(\Xi+\ell) \oplus \mathcal{O}(-2 \ell)) \simeq \boldsymbol{C}^{\oplus 3}
$$

we infer that $2 F_{1}$ is the fixed part of $\left|K_{Y}+B_{Y}\right|$ and that $\left|K_{Y}+B_{Y}-2 F_{1}\right|$ is a base point free linear system inducing the morphism $v \circ \lambda: Y \rightarrow \boldsymbol{P}^{2}$. Thus its restriction $B_{Y} \rightarrow \boldsymbol{P}^{2}$ is the canonical map of B_{Y}. Let $\tau: Y \rightarrow Y$ be a generator of the Galois group of λ. If B_{Y} is hyperelliptic, then B_{Y} must be τ-invariant. However, $\tau_{*} B_{Y} \sim$ $\tau_{*}\left(\lambda^{*}(\ell+2 \Xi)+2 F_{1}\right) \sim \lambda^{*}(\ell+2 \Xi)+2 F_{2}$. Since $2 F_{1} \nsim 2 F_{2}$, we infer that $B_{Y} \simeq D$ is non-hyperelliptic.

Therefore, the triplet (M, D, E) is satisfying the condition \mathscr{C}_{0} and M has the Picard number 11 in which $E^{2}=-1$. The triplet (M, D, E) is called of Type B3.

§2.3. Examples of Type C.

§2.3.1. Minimal triplet (X, B, G) satisfying \mathscr{C}_{4}.

Let C be an elliptic curve with an ample divisor A of degree 2 . Let X be the \boldsymbol{P}^{1}-bundle $\boldsymbol{P}_{C}\left(\mathcal{O}_{C} \oplus \mathcal{O}_{C}(A)\right)$ and let $p: X \rightarrow C$ be the structure morphism. Then $\left|-K_{X}\right|$ is non-empty. We take an effective divisor $G \sim-K_{X}$. Note that $h^{0}\left(G, \mathcal{O}_{G}\right)=2$ by Proposition 1.1.

Lemma 2.6. A general member B of $\left|p^{*} A-K_{X}\right|$ is a smooth non-hyperelliptic curve of genus 3.

Proof. Let C_{0} be the negative section of $p: X \rightarrow C$. Then $p^{*} A-K_{X} \sim$ $2\left(p^{*} A+C_{0}\right),\left.\left(p^{*} A+C_{0}\right)\right|_{C_{0}} \sim 0$, and $\mathrm{Bs}\left|p^{*} A+C_{0}\right|=\varnothing$. Thus $\left|p^{*} A-K_{X}\right|$ is also base point free. Hence, B is smooth with $B \cap C_{0}=\varnothing$. Since $\left.\left.K_{B} \sim\left(K_{X}+B\right)\right|_{B} \sim p^{*} A\right|_{B} \sim$ $\left.\left(p^{*} A+C_{0}\right)\right|_{B}$, we have $g(B)=3$ and an exact sequence:

$$
0 \rightarrow \mathcal{O}_{X}\left(K_{X}+C_{0}\right) \rightarrow \mathcal{O}_{X}\left(p^{*} A+C_{0}\right) \rightarrow \mathcal{O}_{B}\left(K_{B}\right) \rightarrow 0 .
$$

This induces an isomorphism $H^{0}\left(X, p^{*} A+C_{0}\right) \simeq H^{0}\left(B, K_{B}\right)$, since $H^{1}\left(X, K_{X}+C_{0}\right)=$ 0 . Hence, for the morphism $\Phi:=\Phi_{\left|p^{*} A+C_{0}\right|}: X \rightarrow \boldsymbol{P}^{2}$, the restriction $\left.\Phi\right|_{B}: B \rightarrow \boldsymbol{P}^{2}$ is the canonical map. Here $B \sim p^{*} A-K_{X} \sim 2\left(p^{*} A+C_{0}\right) \sim \Phi^{*} \mathcal{O}(2)$. Hence, B is hyperelliptic if and only if B is the pullback of a conic by Φ. However, we have $h^{0}\left(\boldsymbol{P}^{2}, \mathcal{O}(2)\right)=6$ and $h^{0}(X, B)=h^{0}(C, \mathcal{O} \oplus \mathcal{O}(A) \oplus \mathcal{O}(2 A))=7$. Therefore, B is nonhyperelliptic.

Thus we obtain a minimal triplet (X, B, G) with $B \sim p^{*} A-K_{X}$ and $G \sim-K_{X}$. Since $B \cdot G=4$, the condition \mathscr{C}_{4} is satisfied. Let (M, D, E) be the separation of (X, B, G). Then M is an elliptic ruled surface with Picard number 6. The basic triplet (M, D, E) is called of Type C 1 .
§2.3.2. Minimal triplet (X, B, G) satisfying \mathscr{C}_{2}.
Let C be an elliptic curve and let \mathscr{E} be one of the following locally free sheaves:
C2-1: $\mathscr{E}=\mathcal{O}_{C}\left(q_{1}\right) \oplus \mathcal{O}_{C}\left(q_{2}\right)$ for two points $q_{1} \neq q_{2}$ of C with $2 q_{1} \nsim 2 q_{2}$.
C2-2: There is a non-splitting exact sequence:

$$
0 \rightarrow \mathcal{O}_{C}(q) \rightarrow \mathscr{E} \rightarrow \mathcal{O}_{C}(q) \rightarrow 0
$$

for a point q of C.
Case C2-1: Let $p: X \rightarrow C$ be the \boldsymbol{P}^{1}-bundle associated with \mathscr{E}. For a point $q \in C$, we denote the fiber $p^{-1}(q)$ by ℓ_{q}. Then we have two sections C_{1} and C_{2} with $C_{1} \sim H_{\mathscr{E}}-\ell_{q_{1}}$ and $C_{2} \sim H_{\mathscr{E}}-\ell_{q_{2}}$, respectively. Here $H_{\mathscr{E}}$ denotes a tautological divisor with respect to \mathscr{E}. Then $C_{1} \cap C_{2}=\varnothing$. Furthermore, $\left|-K_{X}\right|=\left\{C_{1}+C_{2}\right\}$, since $\left.C_{1}\right|_{C_{1}} \sim q_{2}-q_{1}$ and $\left.C_{2}\right|_{C_{2}} \sim q_{1}-q_{2}$. We set $G:=C_{1}+C_{2}$.

Lemma 2.7. A general member B of $\left|H_{\mathscr{E}}-K_{X}\right|$ is a smooth non-hyperelliptic curve of genus 3.

Proof. First, we shall prove that B is a smooth curve of genus 3. From the exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathscr{E}}(1) \rightarrow \mathcal{O}_{X}\left(H_{\mathscr{\delta}}-K_{X}\right) \rightarrow \mathcal{O}_{C_{1}}\left(2 q_{2}-q_{1}\right) \oplus \mathcal{O}_{C_{2}}\left(2 q_{1}-q_{2}\right) \rightarrow 0
$$

we infer that $h^{0}\left(X, H_{\mathscr{E}}-K_{X}\right)=4$ and

$$
\mathrm{Bs}\left|H_{\mathscr{E}}-K_{X}\right|=\left(\ell_{q_{3}} \cap C_{1}\right) \sqcup\left(\ell_{q_{4}} \cap C_{2}\right),
$$

where q_{3} and q_{4} are points of C determined by $q_{3} \sim 2 q_{2}-q_{1}$ and $q_{4} \sim 2 q_{1}-q_{2}$, respectively. Therefore, $B \in\left|H_{\mathscr{E}}-K_{X}\right|$ must intersect C_{1} and C_{2}, transversally. Thus B is smooth. The genus $g(B)$ is 3 , since $\left(K_{X}+B\right) \cdot B=H_{\mathscr{E}} \cdot\left(H_{\mathscr{E}}-K_{X}\right)=4$.

Next, we shall prove that B is non-hyperelliptic. Here, we note that $\left\{q_{3}, q_{4}\right\} \cap$ $\left\{q_{1}, q_{2}\right\}=\varnothing$ by assumption. We consider the separation $\rho:(M, D, E) \rightarrow(X, B, G)$. Since B intersects C_{1} and C_{2} transversally at points $x_{1}:=\ell_{q_{3}} \cap C_{1}$ and $x_{2}:=\ell_{q_{4}} \cap C_{2}, \rho$ is just the blowing-up at $\left\{x_{1}, x_{2}\right\}$. Let $\Gamma_{i}=\rho^{-1}\left(x_{i}\right)$ and let C_{i}^{\prime} be the proper transform of C_{i} in M for $i=1,2$, respectively. Then $D=\rho^{*} B-\Gamma_{1}-\Gamma_{2}$ and $E=\rho^{*} G-\Gamma_{1}-\Gamma_{2}=$ $C_{1}^{\prime}+C_{2}^{\prime}$. The linear system $|D|$ is base point free by the proof of Proposition 1.4. Let Φ be the morphism $\Phi_{|D|}: M \rightarrow \boldsymbol{P}^{3}$. Suppose that $M \rightarrow \Phi(M)$ is not birational. Then this is a generically finite morphism of degree 2 and $\Phi(M)$ is a quadric surface in \boldsymbol{P}^{3}. Now $D \cap E=\varnothing, D \cdot \Gamma_{1}=D \cdot \Gamma_{2}=1$, and $D \cdot \rho^{*} \ell_{q_{1}}=D \cdot \rho^{*} \ell_{q_{2}}=3$. Thus $\Phi\left(C_{1}^{\prime}\right)$ is a point, $\left.\Phi\right|_{\Gamma_{1}}: \Gamma_{1} \rightarrow \Phi\left(\Gamma_{1}\right)$ is an isomorphism onto the line $\Phi\left(\Gamma_{1}\right)$, and $\rho^{*} \ell_{q_{1}} \rightarrow \Phi\left(\rho^{*} \ell_{q_{1}}\right)$ is birational. This is a contradiction, since $2 C_{1}^{\prime}+\Gamma_{1}+\rho^{*} \ell_{q_{1}}+C_{2}^{\prime}$ is supposed to be the pullback of a conic of \boldsymbol{P}^{2}. Therefore, $\Phi: M \rightarrow \Phi(M)$ is birational and $D \simeq B$ is nonhyperelliptic.

For B and G above, (X, B, G) is a minimal triplet satisfying the condition \mathscr{C}_{2}. The separation (M, D, E) is called of Type C2-1. Here, M is an elliptic ruled surface with Picard number 4.

Case C2-2: Let $p: X \rightarrow C$ be the \boldsymbol{P}^{1}-bundle associated with \mathscr{E}. Then we have a minimal section C_{0} with $C_{0} \sim H_{\mathscr{E}}-\ell_{q}$. Then $-K_{X} \sim 2 C_{0}$. Moreover, $\left|-K_{X}\right|=\left\{2 C_{0}\right\}$, since the exact sequence

$$
0 \rightarrow \mathcal{O}(q) \rightarrow \mathscr{E} \rightarrow \mathcal{O}(q) \rightarrow 0
$$

admits no splitting. We set $G:=2 C_{0}$.
Lemma 2.8. A general member B of $\left|H_{\mathscr{E}}-K_{X}\right|$ is a smooth non-hyperelliptic curve of genus 3.

Proof. First, we show that B is a smooth curve of genus 3. Note that $H_{\mathscr{E}}-K_{X} \sim 3 C_{0}+\ell_{q}$. Let us consider the following exact sequences:

$$
\begin{aligned}
& 0 \rightarrow \mathcal{O}_{X}\left(2 C_{0}+\ell_{q}\right) \rightarrow \mathcal{O}_{X}\left(3 C_{0}+\ell_{q}\right) \rightarrow \mathcal{O}_{C_{0}}(q) \rightarrow 0, \\
& 0 \rightarrow \mathcal{O}_{\mathscr{E}}(1) \rightarrow \mathcal{O}_{X}\left(2 C_{0}+\ell_{q}\right) \rightarrow \mathcal{O}_{C_{0}}(q) \rightarrow 0, \\
& 0 \rightarrow \mathcal{O}_{X}\left(3 C_{0}\right) \rightarrow \mathcal{O}_{X}\left(3 C_{0}+\ell_{q}\right) \rightarrow \mathcal{O}_{\ell_{q}}(3) \rightarrow 0 .
\end{aligned}
$$

Then $H^{1}\left(X, 2 C_{0}+\ell_{q}\right)=0, h^{0}\left(X, 3 C_{0}+\ell_{q}\right)=4$, and the image of $H^{0}\left(X, 3 C_{0}+\ell_{q}\right) \rightarrow$ $H^{0}\left(\ell_{q}, \mathcal{O}(3)\right)$ is a 3 -dimensional subspace. Hence $\mathrm{Bs}\left|3 C_{0}+\ell_{q}\right|$ consists of only one point $b:=\ell_{q} \cap C_{0}$. Furthermore, a general member $B \in\left|3 C_{0}+\ell_{q}\right|$ intersects C_{0} and ℓ_{q} at b. This is because $B \cdot C_{0}=1$ and the image of $H^{0}\left(X, 3 C_{0}+\ell_{q}\right) \rightarrow H^{0}\left(\ell_{q}, \mathcal{O}(3)\right)$ is just the subspace $H^{0}\left(\ell_{q}, \mathcal{O}\left(3 C_{0}+\left.\ell_{q}\right|_{\ell_{q}}\right) \otimes \mathcal{O}(-b)\right)$. Thus B is smooth. The genus $g(B)$ is 3 , since $\left(K_{X}+B\right) \cdot B=\left(C_{0}+\ell_{q}\right) \cdot\left(3 C_{0}+\ell_{q}\right)=4$.

Next, we shall prove that B is non-hyperelliptic. Let $\rho_{1}: X_{1} \rightarrow X$ be the blowingup at the point b and Γ_{1} the exceptional divisor $\rho_{1}^{-1}(b)$. We set $G_{1}:=\rho_{1}^{*} G-\Gamma_{1}$. Let B_{1}, C_{0}^{\prime}, and ℓ_{q}^{\prime} be the proper transforms of B, C_{0}, and ℓ_{q}, respectively. Then $B_{1} \cdot G_{1}=1$. Thus there is a smooth point b_{1} of G_{1} with $\mathcal{O}_{G_{1}}\left(B_{1}\right) \simeq \mathcal{O}_{G_{1}}\left(b_{1}\right)$. Now $G_{1}=2 C_{0}^{\prime}+\Gamma_{1}$ and $B_{1} \cdot C_{0}^{\prime}=0$. Therefore $b_{1} \in \Gamma_{1}$. From the exact sequences

$$
\begin{aligned}
& 0 \rightarrow \mathcal{O}_{C_{0}^{\prime}}\left(-\rho_{1}^{*} C_{0}\right) \simeq \mathcal{O}_{C_{0}^{\prime}} \rightarrow \mathcal{O}_{2 C_{0}^{\prime}}\left(-\Gamma_{1}\right) \rightarrow \mathcal{O}_{C_{0}^{\prime}}\left(-\Gamma_{1}\right) \rightarrow 0, \\
& 0 \rightarrow \rho_{1}^{*} \mathcal{O}_{C}\left(C_{0}+\ell_{q}\right) \rightarrow \mathcal{O}_{X_{1}}\left(B_{1}-\Gamma_{1}\right) \rightarrow \mathcal{O}_{2 C_{0}^{\prime}}\left(-\Gamma_{1}\right) \rightarrow 0,
\end{aligned}
$$

we infer that $h^{0}\left(X_{1}, B_{1}-\Gamma_{1}\right)=3$ and hence the image of

$$
H^{0}\left(X_{1}, B_{1}\right) \rightarrow H^{0}\left(\Gamma_{1},\left.B_{1}\right|_{\Gamma_{1}}\right) \simeq H^{0}\left(\Gamma_{1}, \mathcal{O}_{\Gamma_{1}}\left(b_{1}\right)\right)
$$

is one-dimensional. Thus $b_{1} \in \mathrm{Bs}\left|B_{1}\right|$. Moreover, we have $b_{1} \notin \ell_{q}^{\prime}$, since $H^{0}\left(X_{1}, B_{1}\right) \rightarrow$ $H^{0}\left(\ell_{q}^{\prime}, \mathcal{O}(2)\right)$ is surjective. Let $\rho_{2}: M \rightarrow X_{1}$ be the blowing-up at b_{1} and Γ_{2} the exceptional curve $\rho_{2}^{-1}\left(b_{1}\right)$. Let $C_{0}^{\prime \prime}, \ell_{q}^{\prime \prime}$, and Γ_{1}^{\prime} be the proper transforms of $C_{0}^{\prime}, \ell_{q}^{\prime}$ and Γ_{1}, respectively. Then we get the separation $(M, D, E) \rightarrow(X, B, G)$, where D and E are the proper transforms of B_{1} and G_{1}, respectively. Here, $E=2 C_{0}^{\prime \prime}+\Gamma_{1}^{\prime}, D \sim 3 C_{0}^{\prime \prime}+$ $\ell_{q}^{\prime \prime}+3 \Gamma_{1}^{\prime}+2 \Gamma_{2}$, and $D \cdot \ell_{q}^{\prime \prime}=2$. We have $\mathrm{Bs}|D|=\varnothing$ since $h^{0}(M, D)=h^{0}(X, B)=4$ and $H^{0}(M, D) \rightarrow H^{0}\left(D,\left.D\right|_{D}\right) \simeq H^{0}\left(D, K_{D}\right)$ is surjective. Therefore, it is enough to
show that the morphism $\Phi:=\Phi_{|D|}: M \rightarrow \boldsymbol{P}^{3}$ is birational onto its image. The divisor $3 C_{0}^{\prime \prime}+\ell_{q}^{\prime \prime}+3 \Gamma_{1}^{\prime}+2 \Gamma_{2}$ is the pullback of an effective Cartier divisor of $\Phi(M)$, since it is linearly equivalent to D. All the components $C_{0}^{\prime \prime}$ and Γ_{1}^{\prime} are contracted to points by Φ, since these are also components of E. The restriction $\Gamma_{2} \rightarrow \Phi\left(\Gamma_{2}\right)$ is an isomorphism in which $\Phi\left(\Gamma_{2}\right)$ is a line of \boldsymbol{P}^{3}, since $D \cdot \Gamma_{2}=1$. The restriction $\Phi_{\ell_{q}^{\prime \prime}}: \ell_{q}^{\prime \prime} \rightarrow \boldsymbol{P}^{3}$ is a closed embedding, since $H^{0}(M, D) \rightarrow H^{0}\left(\ell^{\prime \prime}, \mathcal{O}(2)\right)$ is surjective. Therefore, Φ is birational onto its image.

For B and G above, (X, B, G) is a minimal triplet satisfying the condition \mathscr{C}_{2}. The separation (M, D, E) is called of Type C2-2. Here, M is an elliptic ruled surface with Picard number 4.

§2.4. Examples of Type D.

Let B and G be a smooth quartic curve and an effective divisor of degree 3 in \boldsymbol{P}^{2}, respectively. Then $\left(\boldsymbol{P}^{2}, B, G\right)$ is a minimal triplet satisfying the condition \mathscr{C}_{12}. The separation (M, D, E) is called of Type D. Here, M is a rational surface with Picard number 13. In particular, $E^{2}=-3$.

Next, we consider the defining equation of $S \subset \boldsymbol{P}^{3}$. Let $\Phi_{3}(x, y, z)=0$ and $\Phi_{4}(x, y, z)=0$ be the defining equations of G and B, respectively, in $\boldsymbol{P}^{2}=$ Proj $\boldsymbol{C}[x, y, z]$. Let $\rho: M \rightarrow \boldsymbol{P}^{2}$ be the separation. Then

$$
\rho^{*} \Phi_{3}=\varphi_{3} e \quad \text { and } \quad \rho^{*} \Phi_{4}=\varphi_{4} e
$$

where $\varphi_{3} \in H^{0}(M, E)$ is a defining equation of $E, \varphi_{4} \in H^{0}(M, D)$ is a defining equation of D, and $e \in H^{0}\left(M, K_{M}-\rho^{*} K_{P^{2}}\right)$. The vector space $H^{0}(M, D)$ is spanned by

$$
\xi_{0}:=\varphi_{4}, \quad \xi_{1}:=\varphi_{3} \rho^{*} x, \quad \xi_{2}:=\varphi_{3} \rho^{*} y, \quad \xi_{3}:=\varphi_{3} \rho^{*} z .
$$

We have a relation

$$
\begin{aligned}
\xi_{0} \Phi_{3}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)-\Phi_{4}\left(\xi_{1}, \xi_{2}, \xi_{3}\right) & =\varphi_{4} \varphi_{3}^{3} \rho^{*} \Phi_{3}-\varphi_{3}^{4} \rho^{*} \Phi_{4} \\
& =\varphi_{4} \varphi_{3}^{4} e-\varphi_{3}^{4} \varphi_{4} e=0
\end{aligned}
$$

Therefore, $S \subset \boldsymbol{P}^{3}=\operatorname{Proj} \boldsymbol{C}\left[X_{0}, X_{1}, X_{2}, X_{3}\right]$ is defined by

$$
X_{0} \Phi_{3}\left(X_{1}, X_{2}, X_{3}\right)=\Phi_{4}\left(X_{1}, X_{2}, X_{3}\right)
$$

The image $\sigma(E)$ of E under $\sigma: M \rightarrow S$ consists of the point $(1: 0: 0: 0)$. The rational map $S \cdots \rightarrow \boldsymbol{P}^{2}$ induced by the projection $\boldsymbol{P}^{3} \cdots \rightarrow \boldsymbol{P}^{2}$ from the point is the birational map

$$
S \stackrel{\sigma^{-1}}{\rightarrow} M \rightarrow X=\boldsymbol{P}^{2} .
$$

§3. Theorem.

In what follows, we shall prove the following:
Main Theorem. A normal quartic surface with irrational singularities is obtained from one of the examples of basic triplets in $\S 2$.

§3.1. Proof in the case of Type A.

Proposition 3.1. Let (M, D, E) be a basic triplet satisfying \mathscr{C} such that $K_{M}+D$ is not nef. Then M is isomorphic to the \boldsymbol{P}^{1}-bundle $\boldsymbol{P}_{D}\left(\mathcal{O}_{D} \oplus \omega_{D}\right)$ and $E=2 C_{0}$ for the negative section C_{0} of $M \rightarrow D$. Moreover, the corresponding quartic surface S is a cone over D.

Proof. By the cone theorem [6], there is an extremal curve Γ such that $\left(K_{M}+D\right) \cdot \Gamma<0$. If the contraction morphism of Γ is birational, then Γ is a (-1) curve with $D \cdot \Gamma=0$; it contradicts the condition $\mathscr{C}-1$. On the other hand, M is not isomorphic to \boldsymbol{P}^{2}, since M is a desingularization of a normal quartic surface S. Therefore, the contraction morphism $p: M \rightarrow C$ of Γ is a \boldsymbol{P}^{1}-bundle structure over a curve C. Then $D \cdot \Gamma=D \cdot \ell=1$ for a fiber ℓ of p. Therefore $D \simeq C$ and $M \simeq \boldsymbol{P}_{C}(\mathscr{E})$ for the locally free sheaf $\mathscr{E}:=p_{*} \mathcal{O}_{M}(D)$. In view of the exact sequence

$$
0 \rightarrow \mathcal{O}_{M}\left(K_{M}+D\right) \rightarrow \mathcal{O}_{M}(D) \rightarrow \mathcal{O}_{E} \rightarrow 0
$$

we have an isomorphism $\mathscr{E} \simeq p_{*} \mathcal{O}_{E}$. Thus $\mathscr{E} \simeq \mathcal{O}_{C} \oplus \omega_{C}$ by Proposition 1.1. Let C_{0} be the negative section of p. Then $C_{0} \sim D-p^{*} K_{C}$ and $E=2 C_{0}$, since $D \cap E=\varnothing$. Therefore the morphism $\Phi_{|D|}: M \rightarrow \boldsymbol{P}^{3}$ maps E to a point v and a fiber ℓ of p to a line of \boldsymbol{P}^{3}. Hence the image S is the join of v and the quartic curve $\Phi_{|D|}(D)$. Thus S is a cone over D.

§3.2. Proof in the case of Type B.

Suppose that (X, B, G) satisfies \mathscr{C}_{r} and $2 K_{X}+B$ is nef. Then $\left(2 K_{X}+B\right) \cdot G=$ $-2 K_{X}^{2}+r \geq 0$ and $\left(2 K_{X}+B\right)^{2}=4 K_{X}^{2}-3 r+4 \geq 0$. Therefore

$$
3 r-4 \leq 4 K_{X}^{2} \leq 2 r
$$

Hence $r \leq 4$ and $-1 \leq K_{X}^{2} \leq 2$.
Lemma 3.2. (X, B, G) satisfies one of the following conditions:
B1: $r=4$ and X is a generalized del Pezzo surface of degree 2 with $B \sim-2 K_{X}$;
B2: $r=1$ and X is a rational surface with $K_{X}^{2}=0$;
B3: $r=0$ and X is a rational surface with $K_{X}^{2}=-1$.
Proof. Assume that $r=3$. Then $5 \leq 4 K_{X}^{2} \leq 6$. This is a contradiction. Next assume that $r=2$. Then $K_{X}^{2}=1,\left(2 K_{X}+B\right) \cdot G=0$, and $\left(2 K_{X}+B\right)^{2}=2$. This contradicts the Hodge index theorem. Hence $r=0,1$, or 4.

Case $r=4$: Now $K_{X}^{2}=2$. Since $G^{2}=2>0$ and $\left(2 K_{X}+B\right) \cdot G=\left(2 K_{X}+B\right)^{2}=0$, we infer that $2 K_{X}+B$ is numerically trivial by the Hodge index theorem. In particular, $-K_{X}$ is nef and big. Hence X is a generalized del Pezzo surface of degree 2 . Since X is rational, we have $B \sim-2 K_{X}$.

Case $r=1$: Now $K_{X}^{2}=0$. Furthermore, $\left(2 K_{X}+B\right) \cdot G=\left(2 K_{X}+B\right)^{2}=1$. Thus we have an irreducible component G_{0} of G such that $B \cdot G_{0}=1$ and $B \cap G_{1}=\varnothing$ for the effective divisor $G_{1}:=G-G_{0}$. Note that G_{1} is not necessarily a non-zero divisor. The inequality $\left(2 K_{X}+B\right) \cdot G_{0} \geq 0$ implies $K_{X} \cdot G_{0} \geq 0$ and hence $\left(2 K_{X}+B\right) \cdot G_{0} \geq 1$. Another inequality $\left(2 K_{X}+B\right) \cdot G_{1} \geq 0$ implies $\left(2 K_{X}+B\right) \cdot G_{0}=1,\left(2 K_{X}+B\right) \cdot G_{1}=0$,
and $K_{X} \cdot G_{0}=K_{X} \cdot G_{1}=0$. By the Hodge index theorem, every component of G_{1} is a (-2)-curve. Now $G_{0}^{2}=-G_{1} \cdot G_{0} \leq 0$.

If $G_{0}^{2}<0$, then G_{0} is also a (-2)-curve and hence every component of G is a rational curve. Thus X is rational by Lemma 1.3.

If $G_{0}^{2}=0$, then $G_{1}^{2}=0$ and hence $G_{1}=0$ by the Hodge index theorem. Thus $G=G_{0}$ is an irreducible and reduced anti-canonical divisor. Therefore, X is rational by Corollary 1.2.

Case $\quad r=0$: Now $K_{X}^{2}=0$ or -1 . If $K_{X}^{2}=0$, then $\left(2 K_{X}+B\right)^{2}=4>0$ and $\left(2 K_{X}+B\right) \cdot G=0$. Thus $G=0$ by the Hodge index theorem. This is a contradiction. Therefore $K_{X}^{2}=-1$. The equality $B \cdot G=r=0$ implies that $K_{X} \cdot \Gamma \geq 0$ for any component Γ of G. Thus, there is an irreducible component G_{0} of G such that $K_{X} \cdot G_{0}=1$ and $K_{X} \cdot G_{1}=0$ for the effective divisor $G_{1}:=G-G_{0}$. We infer that the intersection matrix of the prime components of G is negative definite by applying the Hodge index theorem to $B \cdot G=0$ and $B^{2}=4$. If $G_{1} \neq 0$, then any component of G_{1} is a (-2)-curve. On the other hand, $p_{a}\left(G_{0}\right) \leq 1$ by $\left(K_{X}+G_{0}\right) \cdot G_{0}<1$.

If $p_{a}\left(G_{0}\right)=0$, then X is a rational surface by Lemma 1.3.
If $p_{a}\left(G_{0}\right)=1$, then $G_{0}^{2}=-1, G_{0} \cdot G_{1}=0$, and $G_{1}^{2}=0$. Therefore $G_{1}=0$ and $G=G_{0}$ is an irreducible and reduced anti-canonical divisor. Thus X is rational by Corollary 1.2 .

§3.2.1. Proof in Case B1.

In this case, X is a generalized del Pezzo surface of degree $2, B$ is a member of $\left|-2 K_{X}\right|$. Hence (X, B, G) is obtained as Type B1 in $\S 2$.

§3.2.2. Proof in Case B2.

In this case, X is a rational surface with $K_{X}^{2}=0, r=B \cdot G=1$ and $B^{2}=5$. Since $2 K_{X}+B$ is nef and big, $h^{0}\left(X, 3 K_{X}+B\right)=\chi\left(X, 3 K_{X}+B\right)=1$. Let Γ be the unique member of $\left|3 K_{X}+B\right|$.

Lemma 3.3. $\quad \Gamma$ is $a(-1)$-curve.
Proof. We have $K_{X} \cdot \Gamma=-1, \Gamma^{2}=-1$, and $\left(K_{X}+B\right) \cdot \Gamma=1$. We can take a prime component Γ_{0} of Γ with $\left(K_{X}+B\right) \cdot \Gamma_{0}=1$. Then $\left(K_{X}+B\right) \cdot\left(\Gamma-\Gamma_{0}\right)=0$ and $\left(2 K_{X}+B\right) \cdot\left(\Gamma-\Gamma_{0}\right) \geq 0$. Hence $K_{X} \cdot\left(\Gamma-\Gamma_{0}\right) \geq 0$, thus $K_{X} \cdot \Gamma_{0} \leq-1$. By $\left(2 K_{X}+B\right) \cdot \Gamma_{0} \geq 0$, we have $K_{X} \cdot \Gamma_{0}=-1$. Therefore, $\left(2 K_{X}+B\right) \cdot \Gamma_{0}=0$ and Γ_{0} is a (-1)-curve by the Hodge index theorem. Moreover, $\left(3 K_{X}+B\right) \cdot \Gamma_{0}=\Gamma \cdot \Gamma_{0}=-1$. This implies that $\left(\Gamma-\Gamma_{0}\right)^{2}=0$. Thus $\Gamma=\Gamma_{0}$ by the Hodge index theorem.

Let $f: X \rightarrow Y$ be the contraction of Γ. Then $B_{Y}:=f_{*} B$ has a singularity at $q:=f(\Gamma)$ with mult $_{q} B_{Y}=2$. The push-forward $G_{Y}:=f_{*} G$ is an anti-canonical divisor and $3 K_{Y}+B_{Y} \sim f_{*} \Gamma=0$. Hence Y is a generalized del Pezzo surface of degree 1 . Therefore $\operatorname{dim}\left|-K_{Y}\right|=1$ and $\mathrm{Bs}\left|-K_{Y}\right|$ consists of a unique point b. Let $g: Z \rightarrow Y$ be the blowing-up at b and let Ξ be the exceptional curve $g^{-1}(b)$. Then $\left|-K_{Z}\right|$ is base point free and we have an elliptic fibration $\pi:=\Phi_{\left|-K_{Z}\right|}: Z \rightarrow \boldsymbol{P}^{1}$ in which Ξ is a section of π.

Lemma 3.4. There is a component $G_{Y, 0}$ of G_{Y} such that
(1) $\operatorname{mult}_{G_{Y, 0}} G_{Y}=1$,
(2) b and q are not contained in the divisor $G_{Y}-G_{Y, 0}$.

Furthermore, b is not contained in B_{Y}.
Proof. Let G_{0} be a component of G with $B \cdot G_{0}=1$ and let $G_{1}:=G-G_{0}$. Then $2 K_{X} \cdot G_{0} \geq-B \cdot G_{0}=-1$. Hence $K_{X} \cdot G_{0} \geq 0$. Thus $\left(2 K_{X}+B\right) \cdot G_{0}=1$ and $\left(2 K_{X}+B\right) \cdot G_{1}=0$. Therefore $K_{X} \cdot G_{0}=K_{X} \cdot G_{1}=0$. Since $\left(3 K_{X}+B\right) \cdot G_{0}=\Gamma \cdot G_{0}$ $=1$ and $\Gamma \cdot G_{1}=0$, the push-forward $G_{Y, 0}:=f_{*} G_{0}$ is the unique component of G_{Y} containing q, and q is a smooth point of G_{Y}. On the other hand, $K_{Y} \cdot f_{*} G_{1}=0$, since $K_{X} \cdot G_{1}=0$ and G_{1} is away from the (-1)-curve Γ. In particular, a general member of $\left|-K_{Y}\right|$ does not intersect $f_{*} G_{1}$. Thus the base point b is not contained in $f_{*} G_{1}$ but $G_{Y, 0}$. We shall show that $b \notin B_{Y}$. If $b \in B_{Y}$, then the proper transform B_{Z} of B_{Y} in Z is linearly equivalent to $g^{*} B_{Y}-m \Xi$ for some $m \geq 1$. Thus

$$
\left(-K_{Z}\right) \cdot B_{Z}=\left(-K_{Y}\right) \cdot B_{Y}-m=3-m \leq 2
$$

This implies that π induces a double-covering $B_{Z} \rightarrow \boldsymbol{P}^{1}$. This contradicts the assumption: $\quad B$ is non-hyperelliptic.

Lemma 3.5. Let $q^{\prime}, q_{1}^{\prime}$, and b^{\prime} be the points of X defined by

$$
\left\{q^{\prime}\right\}=G \cap \Gamma, \quad\left\{q_{1}^{\prime}\right\}=B \cap G, \quad \text { and } \quad\left\{b^{\prime}\right\}=f^{-1}(b)
$$

respectively. Then the following properties hold:
(1) $\mathcal{O}_{G}(G) \simeq \mathcal{O}_{G}\left(b^{\prime}-q^{\prime}\right)$;
(2) $\mathscr{O}_{G}(G) \not \not \not \mathcal{O}_{G}$ and $\mathcal{O}_{G}(2 G) \not \approx \mathcal{O}_{G}$;
(3) $\mathcal{O}_{G}\left(3 b^{\prime}\right) \simeq \mathcal{O}_{G}\left(2 q^{\prime}+q_{1}^{\prime}\right)$.

Proof. Let G_{Z} be the proper transform of G_{Y} in $Z: \quad G_{Z}=g^{*} G_{Y}-\Xi$. Then G_{Z} is a fiber of π. Thus $\mathcal{O}_{G_{Z}}\left(G_{Z}\right) \simeq \mathcal{O}_{G_{Z}}$. Hence $\mathcal{O}_{G_{Y}}\left(G_{Y}\right) \simeq \mathcal{O}_{G_{Y}}(b)$. Since $G \sim f^{*} G_{Y}-\Gamma$, the isomorphism $\mathcal{O}_{G}(G) \simeq \mathcal{O}_{G}\left(b^{\prime}-q^{\prime}\right)$ in (1) follows. The linear equivalences $B_{Y} \sim 3 G_{Y}$ and $B \sim f^{*} B_{Y}-2 \Gamma$ imply the isomorphism $\mathcal{O}_{G}(B) \simeq \mathscr{O}_{G}\left(q_{1}^{\prime}\right) \simeq \mathcal{O}_{G}\left(3 b^{\prime}-2 q^{\prime}\right)$. Thus (3) follows. Since the dualizing sheaf of G is trivial, $h^{0}\left(G, \mathcal{O}_{G}(b)\right)=\chi\left(G, \mathcal{O}_{G}(b)\right)=1$. Hence $b \neq q$ implies $\mathcal{O}_{G}(G) \neq \mathcal{O}_{G}$. If $\mathcal{O}_{G}(2 G) \simeq \mathcal{O}_{G}$, then $b^{\prime}=q_{1}^{\prime}$ by (3). However, $b^{\prime} \neq q_{1}^{\prime}$ since $b=f\left(b^{\prime}\right) \notin B_{Y}$ by Lemma 3.4. Thus (2) follows.

Therefore, the minimal triplet (X, B, G) is constructed as Type B 2 in $\S 2$.

§3.2.3. Proof in Case B3.

Lemma 3.6. The linear system $\left|2 K_{X}+B\right|$ is base point free and it defines a morphism $\Phi: X \rightarrow \boldsymbol{P}^{1}$ whose general fibers are rational curves.

Proof. We have $h^{0}\left(X, 2 K_{X}+B\right)=\chi\left(X, 2 K_{X}+B\right)=2$, since $K_{X}+B$ is nef and big. Thus $\Phi=\Phi_{\left|2 K_{X}+B\right|}$ is a rational map into \boldsymbol{P}^{1}. Let $v: X^{\prime} \rightarrow X$ be a proper birational morphism such that the composite $\Phi \circ v: X^{\prime} \rightarrow X \cdots \rightarrow \boldsymbol{P}^{1}$ is a morphism. Then $v^{*}\left(2 K_{X}+B\right) \sim F+N$ for a fiber F of $\Phi \circ v$ and an effective divisor N. The inequality $0=\left(2 K_{X}+B\right)^{2} \geq(F+N) \cdot F$ implies $N \cdot F=0$. Hence $\Phi: X \rightarrow \boldsymbol{P}^{1}$ is a morphism. Thus we may write $2 K_{X}+B \sim F+N$. Since X is rational, a general fiber
F of Φ is irreducible. Moreover, $F \simeq \boldsymbol{P}^{1}$ by $\left(2 K_{X}+B\right) \cdot F=0$ and $B \cdot F>0$. Thus $B \cdot F=4, B \cdot N=0$, and $N^{2}=0$. Therefore, $N=0$ by the Hodge index theorem and hence $2 K_{X}+B \sim F$.

Therefore $B \sim F-2 K_{X} \sim F+2 G$ for a fiber F of $\Phi: X \rightarrow \boldsymbol{P}^{1}$. Since $B \cap G=\varnothing$, we have $\mathcal{O}_{G}(F+2 G) \simeq \mathcal{O}_{G}$.

Claim 3.7. There is a non-singular point b of G such that $\mathcal{O}_{G}(-G) \simeq \mathcal{O}_{G}(b)$.
Proof. If G is irreducible and reduced, then $H^{0}\left(G,-\left.G\right|_{G}\right) \simeq \boldsymbol{C}$ and its non-zero section defines such a point b. Thus we may assume G is reducible or non-reduced. Note that $-\left.\left.2 G\right|_{G} \sim F\right|_{G}$ is nef on G. Thus there exist an irreducible component $G_{0} \subset G$ and an non-zero effective divisor Θ such that
(1) $G=G_{0}+\Theta$ with $G_{0} \not \subset \Theta$,
(2) $-G \cdot G_{0}=1$,
(3) $G \cdot \Theta_{i}=0$ for any component $\Theta_{i} \subset \Theta$.

We have $h^{0}\left(G, \mathcal{O}_{G}\right)=1$ by $h^{1}(X,-G)=q(X)=0$. Thus G is connected. Note that G is contractible by $G \cdot B=0$, where $B^{2}=4>0$. It follows that all Θ_{i} are (-2)-curves and $\left(K_{X}+G_{0}\right) \cdot G_{0}=-\Theta \cdot G_{0}<0$ implies that G_{0} is a smooth rational curve with $G_{0}^{2}=-3$ and $\Theta \cdot G_{0}=2$. We have $\mathcal{O}_{\Theta}\left(K_{X}\right) \simeq \mathcal{O}_{\Theta}$ since the contraction of Θ gives a minimal resolution of rational double points. The exact sequence

$$
0 \rightarrow \mathcal{O}_{\Theta}\left(-G_{0}\right) \rightarrow \mathcal{O}_{G} \rightarrow \mathcal{O}_{G_{0}} \rightarrow 0
$$

induces $h^{1}\left(\mathcal{O}_{\Theta}\left(-G_{0}\right)\right)=h^{1}\left(\mathcal{O}_{G}\right)=1 \quad$ since $\quad H^{0}\left(G, \mathcal{O}_{G}\right) \rightarrow H^{0}\left(G_{0}, \mathcal{O}_{G_{0}}\right) \quad$ is surjective. Thus $h^{0}\left(\Theta, \mathcal{O}_{\Theta}\right)=h^{0}\left(\Theta, \omega_{\Theta}\left(G_{0}\right)\right)=h^{1}\left(\mathcal{O}_{\Theta}\left(-G_{0}\right)\right)=1$ by duality. From another exact sequence

$$
0 \rightarrow \mathcal{O}_{G_{0}}(-G-\Theta) \simeq \mathcal{O}_{P^{1}}(-1) \rightarrow \mathcal{O}_{G}(-G) \rightarrow \mathcal{O}_{\Theta}(-G) \simeq \mathcal{O}_{\Theta} \rightarrow 0,
$$

we infer that $H^{0}\left(G, \mathcal{O}_{G}(-G)\right) \simeq \boldsymbol{C}$ and its non-zero section does not vanish on Θ. Thus $\mathcal{O}_{G}(-G) \simeq \mathcal{O}_{G}(b)$ for some $b \in G_{0} \backslash \Theta$.

We consider the following exact sequence:

$$
0 \rightarrow \mathcal{O}_{X}(F) \rightarrow \mathcal{O}_{X}(F+G) \rightarrow \mathcal{O}_{G}(F+G) \simeq \mathcal{O}_{G}(b) \rightarrow 0
$$

Then $\mathrm{Bs}|F+G|=\mathrm{Bs}|(F+G)|_{G} \mid=\{b\}$. Thus a general member of $|F+G|$ is smooth. Let $\mu: Y \rightarrow X$ be the blowing-up at b and let Λ be the exceptional divisor $\mu^{-1}(b)$. Then $\mu^{*} G=G_{Y}+\Lambda$ for the proper transform G_{Y} of G. We set $F_{Y}:=\mu^{*} F$. Then $F_{Y}+G_{Y} \sim \mu^{*}(F+G)-\Lambda$ and $\mathcal{O}_{G_{Y}}\left(F_{Y}+G_{Y}\right) \simeq \mathcal{O}_{G_{Y}}$. Thus $\mathrm{Bs}\left|F_{Y}+G_{Y}\right|=\varnothing$ by the exact sequence:

$$
0 \rightarrow \mathcal{O}_{Y}\left(F_{Y}\right) \rightarrow \mathcal{O}_{Y}\left(F_{Y}+G_{Y}\right) \rightarrow \mathcal{O}_{G_{Y}} \rightarrow 0 .
$$

Let f be the morphism $\Phi_{\left|F_{Y}+G_{Y}\right|}: Y \rightarrow \boldsymbol{P}^{2}$. Then f is a generically finite surjective morphism of degree 2, since $\left(F_{Y}+G_{Y}\right)^{2}=2$.

Lemma 3.8. Let $\tau: \Sigma \rightarrow \boldsymbol{P}^{2}$ be the blowing-up at the point $f\left(G_{Y}\right)$ and let Ξ be the exceptional curve. Let ℓ be a fiber of the ruling $p: \Sigma \rightarrow \boldsymbol{P}^{1}$ of the Hirzebruch surface $\Sigma \simeq \Sigma_{1}$.
(1) There is a generically finite morphism $\lambda: Y \rightarrow \Sigma$ such that $f=\tau \circ \lambda$ and $G_{Y}=\lambda^{*} \Xi$.
Let $Y \rightarrow V \rightarrow \Sigma$ be the Stein factorization of λ.
(2) V has only rational double points as singularities.
(3) $Y \rightarrow V$ is the minimal desingularization of V.
(4) V is the double-covering of Σ branched along a reduced divisor $\Delta \sim 2 \Xi+6 \ell$.

Proof. (1) Let π be the composite $\Phi \circ \mu: Y \rightarrow X \rightarrow \boldsymbol{P}^{1}$. Then $\mathscr{E}:=\pi_{*} \mathcal{O}_{Y}\left(G_{Y}\right)$ is a locally free sheaf of \boldsymbol{P}^{1} of rank 3 and there is the following exact sequence on \boldsymbol{P}^{1} :

$$
0 \rightarrow \mathcal{O}_{\boldsymbol{P}^{1}}(1) \rightarrow \mathscr{E} \otimes \mathcal{O}_{\boldsymbol{P}^{1}}(1) \rightarrow \pi_{*} \mathcal{O}_{G_{Y}} \rightarrow 0
$$

Since $h^{0}\left(\mathcal{O}_{G_{Y}}\right)=1$, by pulling back the injection $\mathcal{O}_{\boldsymbol{P}^{1}} \hookrightarrow \pi_{*} \mathcal{O}_{G_{Y}}$, we have a subsheaf \mathscr{F} of \mathscr{E} and an exact sequence

$$
0 \rightarrow \mathcal{O}_{\boldsymbol{P}^{1}}(1) \rightarrow \mathscr{F} \otimes \mathcal{O}_{\boldsymbol{P}^{1}}(1) \rightarrow \mathcal{O}_{\boldsymbol{P}^{1}} \rightarrow 0
$$

Furthermore, we have a surjection $\pi^{*} \mathscr{F} \rightarrow \mathcal{O}_{Y}\left(G_{Y}\right)$, since $\mathrm{Bs}\left|F_{Y}+G_{Y}\right|=\varnothing$. Therefore, we have a morphism $\lambda: Y \rightarrow \Sigma \simeq \boldsymbol{P}_{\boldsymbol{P}^{1}}(\mathscr{F})$ over \boldsymbol{P}^{1} such that $\lambda^{*} \ell \sim F_{Y}$ and $\lambda^{*} \Xi=G_{Y}$. In particular, $f=\tau \circ \lambda$.
(2)-(4) We have $K_{Y}-\lambda^{*} K_{\Sigma} \sim \lambda^{*}(\Xi+3 \ell)$ by (1). Therefore, $V \rightarrow \Sigma$ is the double-covering branched along a reduced divisor $\Delta \sim 2 \Xi+6 \ell$. Moreover, V has only rational double points and $Y \rightarrow \Sigma$ is the minimal desingularization, since K_{Y} is relatively trivial over V.

The point $b^{\prime}=G_{Y} \cap \Lambda$ is a smooth point of G_{Y}. Thus b^{\prime} is contained in a unique component $G_{Y, 0}$ of G_{Y}. We have an isomorphism $\mathcal{O}_{G_{Y}}\left(F_{Y}\right) \simeq \mathcal{O}_{G_{Y}}\left(-G_{Y}\right) \simeq \mathcal{O}_{G_{Y}}\left(2 b^{\prime}\right)$ by $G_{Y} \sim \mu^{*} G-\Lambda$ and $\mathcal{O}_{G}(G) \simeq \mathcal{O}_{G}(-b)$. Thus λ induces a double-covering $G_{Y, 0} \rightarrow \Xi$ and contracts the other components of G_{Y} to points of Ξ. We set $x_{0}:=\lambda\left(b^{\prime}\right) \in \Xi$. Then λ is a finite morphism over a neighborhood of x_{0}, and x_{0} is contained in the branch locus. Hence x_{0} is a smooth point of Δ. Let ℓ_{0} be the fiber of $p: \Sigma \rightarrow \boldsymbol{P}^{1}$ passing through x_{0}. Note that $\Lambda \leq \lambda^{*} \ell_{0}$. In particular, $\lambda^{*} \ell_{0}$ is reducible. Since $\Lambda \cdot \lambda^{*} \Xi=-\Lambda \cdot K_{Y}=1$, we infer that $\Lambda \rightarrow \ell_{0}$ is an isomorphism.

Lemma 3.9. ℓ_{0} is not a component of Δ.
Proof. Assume the contrary. Then $\lambda^{*} \ell_{0}=2 \Lambda+J$ for a non-zero effective divisor J. Here any component Γ of J is a (-2)-curve contracted to a point by λ, since $\Gamma \cdot K_{Y}=-\Gamma \cdot \lambda^{*} \Xi=0$. Now $J \cdot \Lambda=\lambda^{*} \ell \cdot \Lambda-2 \Lambda^{2}=2$. If $\Gamma \cdot \Lambda=2$, then $\mu^{*}\left(\mu_{*} \Gamma\right)=$ $\Gamma+2 \Lambda$ and thus $\left(\mu_{*} \Gamma\right)^{2}=2>0$. This is a contradiction, since $\mu_{*} \Gamma$ is contained in a fiber of $\Phi: X \rightarrow \boldsymbol{P}^{1}$. Hence we have $\Gamma \cdot \Lambda \leq 1$. Let Γ_{1} be a component of J with $\Gamma_{1} \cdot \Lambda=1$ and let $C_{1}:=\mu_{*} \Gamma_{1}$. Then C_{1} is a (-1)-curve on X. By Proposition 1.4, $\mathrm{Bs}|B|=\mathrm{Bs}|F+2 G|=\varnothing$ and $\Phi_{|B|}$ is a birational morphism into a normal quartic surface in \boldsymbol{P}^{3}. Now $B \cdot C_{1}=(F+2 G) \cdot C_{1}=2$. Hence $\Phi_{|B|}\left(C_{1}\right)$ is a conic of \boldsymbol{P}^{3}. On the other hand, we have $H^{0}(X, F+G) \simeq H^{0}(X, B-G) \simeq \boldsymbol{C}^{\oplus 3}$. Thus the rational map $\Phi_{|F+G|}: X \cdots \rightarrow \boldsymbol{P}^{2}$ is the composite of $\Phi_{|B|}: X \rightarrow \boldsymbol{P}^{3}$ and the projection $\boldsymbol{P}^{3} \cdots \rightarrow \boldsymbol{P}^{2}$ from the point $\Phi_{|B|}(G)$. The image of C_{1} under $\Phi_{|F+G|}: X \rightarrow \boldsymbol{P}^{2}$ is the point $f\left(\Gamma_{1}\right)$ of \boldsymbol{P}^{2}. Therefore $\Phi_{|B|}\left(C_{1}\right)$ is a line of \boldsymbol{P}^{3}. This is a contradiction.

The divisor $\left.\Delta\right|_{\ell_{0}}$ on ℓ_{0} is $2 x_{0}$, since $\ell_{0} \cdot \Delta=2$. In other words, Δ intersects ℓ_{0} only at x_{0} and the intersection is tangential. Hence, Δ and ℓ_{0} satisfy the conditions (b-1) to (b-4) of Lemma 2.4. Thus the triplet (X, B, G) is obtained as Type B3 in $\S 2$.

§3.3. Proof in the case of Type \mathbf{C}.

Let (X, B, G) be a minimal basic triplet satisfying \mathscr{C}_{r} such that X has a \boldsymbol{P}^{1}-bundle structure $p: X \rightarrow C$ in which $-\left(2 K_{X}+B\right)$ is relatively ample. Let us denote a fiber of p by ℓ. Since $K_{X}+B$ is nef, we have $\left(K_{X}+B\right)^{2} \geq 0$ and $\left(K_{X}+B\right) \cdot G \geq 0$. These imply

$$
r-4 \leq K_{X}^{2} \leq r
$$

Furthermore, $\left(K_{X}+B\right) \cdot \ell \geq 0$ and $\left(2 K_{X}+B\right) \cdot \ell<0$. Hence one of the following two cases occurs:

C1: $\quad B \cdot \ell=2$;
C2: $B \cdot \ell=3$.

§3.3.1. Proof in Case C1.

In this case, we have $\left(K_{X}+B\right) \cdot \ell=0$. Thus there is a divisor A on C such that $K_{X}+B \sim p^{*} A$. Then $\left(K_{X}+B\right)^{2}=0$ and $K_{X}^{2}=r-4$ hold. Hence, $\left(K_{X}+B\right) \cdot G=$ $r-K_{X}^{2}=4$. This implies $\operatorname{deg} A=2$.

Now $p: B \rightarrow C$ is a double-covering. Hence C is not rational since B is nonhyperelliptic. We have $K_{X}^{2}=8(1-g(C))$, since $p: X \rightarrow C$ is a \boldsymbol{P}^{1}-bundle. Thus $K_{X}^{2}=r-4 \geq-4$ implies that $g(C)=1$ and $r=4$. In particular, C is an elliptic curve.

We may assume that X is isomorphic to $\boldsymbol{P}_{C}(\mathscr{E})$ for one of the following locally free sheaves \mathscr{E} of rank 2 :
(a): $\mathscr{E} \simeq \mathcal{O}_{C} \oplus \mathscr{L}$ for an invertible sheaf \mathscr{L} of $\operatorname{deg} \mathscr{L} \leq 0$;
($\boldsymbol{\beta}$): \mathscr{E} has a non-splitting exact sequence:

$$
0 \rightarrow \mathcal{O}_{C} \rightarrow \mathscr{E} \rightarrow \mathcal{O}_{C} \rightarrow 0
$$

$(\gamma): \mathscr{E}$ has a non-splitting exact sequence:

$$
0 \rightarrow \mathcal{O}_{C} \rightarrow \mathscr{E} \rightarrow \mathcal{O}_{C}(x) \rightarrow 0
$$

for a point $x \in C$.
The case (γ) does not occur by the following:
Lemma 3.10. In the case $(\gamma),\left|-K_{X}\right|=\varnothing$.
Proof. Let G be a member of $\left|-K_{X}\right|$. Then $G=G_{1}+G_{2}$ for a horizontal prime divisor G_{1} and a non-zero effective divisor G_{2} by Corollary 1.2. Then G_{1} and G_{2} are nef, since \mathscr{E} is stable. Thus we have $G_{1}^{2}=G_{2}^{2}=G_{1} \cdot G_{2}=0$ from $K_{X}^{2}=0$. The divisor G_{1} is not a section, since \mathscr{E} is stable. Hence $G_{1} \rightarrow C$ is a double-covering and G_{2} is contained in fibers. Since some ample divisor of X is written as a combination of G_{1} and G_{2}, we infer that $G_{2}=0$ by the Hodge index theorem. This is a contradiction.

Case ($\boldsymbol{\beta}$): We have a unique member C_{0} of the linear system $\left|H_{\mathscr{E}}\right|$ which corresponds to the injection $\mathscr{O}_{C} \rightarrow \mathscr{E}$. Therefore $K_{X} \sim-2 C_{0}$. Since the exact sequence

$$
0 \rightarrow \mathscr{E} \rightarrow \operatorname{Sym}^{2}(\mathscr{E}) \rightarrow \mathcal{O}_{C} \rightarrow 0
$$

does not split, $2 C_{0}$ is a unique member of $\left|-K_{X}\right|$. Thus $G=2 C_{0}$. Now B is a member of $\left|p^{*} A-K_{X}\right|$. Hence $\left.\left.B\right|_{C_{0}} \sim p^{*} A\right|_{C_{0}}$. Let us take a point $x \in C_{0} \cap B$ and let $\mu: X^{\prime} \rightarrow X$ be the blowing-up at x. Let ℓ^{\prime} be the proper transform of the fiber $p^{-1}(p(x)), B^{\prime}$ the proper transform of B, Ξ the μ-exceptional curve $\mu^{-1}(x)$, and $G^{\prime}:=\mu^{*} G-\Xi$. Then the basic triplet $\left(X^{\prime}, B^{\prime}, G^{\prime}\right)$ satisfies the condition \mathscr{C}_{3} and ℓ^{\prime} is also a (-1)-curve with $B^{\prime} \cdot \ell^{\prime}=1$. We can contract ℓ^{\prime} and obtain another triplet $\left(X^{\prime \prime}, B^{\prime \prime}, G^{\prime \prime}\right)$. The separations of (X, B, G) and $\left(X^{\prime \prime}, B^{\prime \prime}, G^{\prime \prime}\right)$ are identical. Therefore, we can reduce to the Case (a) with $\operatorname{deg} \mathscr{L}=-1$.

Case (a): If $\mathscr{L} \simeq \mathscr{O}_{C}(-A)$, then (X, B, G) is constructed as Type C 1 in $\S 2$. Thus it is enough to show the following:

Lemma 3.11. In the case (a), we can reduce to the case: $\mathscr{L} \simeq \mathcal{O}_{C}(-A)$.
Proof. Step 1: Suppose that $\mathscr{L} \simeq \mathcal{O}_{C}$. Then $\mathcal{O}_{X}\left(-K_{X}\right) \simeq \pi^{*} \mathcal{O}_{\boldsymbol{P}^{1}}(2)$ for the first projection $\pi: X \simeq \boldsymbol{P}^{1} \times C \rightarrow \boldsymbol{P}^{1}$. Thus $G=\pi^{*}\left(b_{1}+b_{2}\right)$ for some points $b_{1}, b_{2} \in \boldsymbol{P}^{1}$. We have $B \cdot \pi^{*}\left(b_{1}\right)=2$ by $B \sim p^{*} A-K_{X}$. Let us take a point q in $B \cap \pi^{*}\left(b_{1}\right)$ and let $v: Y \rightarrow X$ be the blowing-up at q. Here we consider the separation $(M, D, E) \rightarrow$ (X, B, G). Then the morphism $M \rightarrow X$ factors through the blowing-up $Y \rightarrow X$. Let Γ be the exceptional curve $v^{-1}(q), B_{Y}$ the proper transform of $B, G_{Y}:=v^{*} G-\Gamma$, and ℓ the proper transform of the fiber $p^{-1}(p(q))$. Then ℓ is a (-1)-curve with $B_{Y} \cdot \ell=1$. Let $\left(Y, B_{Y}, G_{Y}\right) \rightarrow\left(X^{\prime}, B^{\prime}, G^{\prime}\right)$ be the contraction of ℓ. Then (M, D, E) is also the separation of $\left(X^{\prime}, B^{\prime}, G^{\prime}\right)$. Hence we can reduce to the case $\operatorname{deg} \mathscr{L}<0$.

Step 2: Suppose that $\mathscr{L} \not \not \mathcal{O}_{C}$ but $\operatorname{deg} \mathscr{L}=0$. Then we have two mutually disjoint sections C_{0} and C_{1} of the ruling $p: X \rightarrow C$ such that $C_{0} \sim H_{\mathscr{E}}$ and $C_{1} \sim$ $H_{\mathscr{E}}-p^{*} \mathscr{L}$. Since \mathscr{L} is not trivial, $C_{0}+C_{1}$ is a unique member of $\left|-K_{X}\right|$. Hence $G=C_{0}+C_{1}$. Now $B \cdot C_{0}=2$. Let us take a point q in $B \cap C_{0}$ and consider the elementary transformation of X at q. Then as in the previous argument, we can reduce to the case $\operatorname{deg} \mathscr{L}<0$.

Step 3: Suppose that $\operatorname{deg} \mathscr{L}=-1$. Then we have two mutually disjoint sections C_{0} and C_{1} such that $C_{0} \sim H_{\mathscr{E}}$ and $C_{1} \sim H_{\mathscr{E}}-p^{*} \mathscr{L}$. Then $G=C_{0}+G_{1}$ for an effective divisor G_{1} with $G_{1} \sim C_{1}$. Now $B \cdot C_{0}=1$. Let q be the point $B \cap C_{0}$. By taking the elementary transformation of X at q, we can reduce to the case $\operatorname{deg} \mathscr{L} \leq-2$.

Step 4: Suppose finally that $\operatorname{deg} \mathscr{L} \leq-2$. We have two mutually disjoint sections C_{0} and C_{1} such that $C_{0} \sim H_{\mathscr{E}}$ and $C_{1} \sim H_{\mathscr{E}}-p^{*} \mathscr{L}$. We have $\left.\left.B\right|_{C_{0}} \sim p^{*}(A+\mathscr{L})\right|_{C_{0}}$. The inequality $B \cdot C_{0} \geq 0$ implies that $\operatorname{deg} \mathscr{L}=-2$ and $B \cap C_{0}=\varnothing$. In particular, $\mathscr{L} \simeq \mathcal{O}_{C}(-A)$.

§3.3.2. Proof in Case C2.

In this case, we have $\left(K_{X}+B\right) \cdot \ell=1$ and $\left(2 K_{X}+B\right) \cdot \ell=-1$. Thus $X \simeq \boldsymbol{P}_{C}(\mathscr{E})$ for $\mathscr{E}:=p_{*} \mathcal{O}_{X}\left(K_{X}+B\right)$. Since $K_{X}^{2} \geq-4$, the genus $g(C)$ is 0 or 1 .

Case $g(C)=0$: Now X is isomorphic to the Hirzebruch surface Σ_{d} for some $d \geq 0$. Thus $K_{X}^{2}=8$ and hence $8 \leq r \leq 12$. Let C_{0} be the minimal section. Then we can
write $K_{X}+B \sim C_{0}+m \ell$ for some $m \geq d$, since $K_{X}+B$ is nef. We have $-K_{X} \sim 2 C_{0}+$ $(d+2) \ell$. Thus $B \sim 3 C_{0}+(m+d+2) \ell$. Hence

$$
4=\left(K_{X}+B\right) \cdot B=\left(C_{0}+m \ell\right) \cdot\left(3 C_{0}+(m+d+2) \ell\right)=-2 d+4 m+2 .
$$

Thus $2 m=1+d$, which implies $m=d=1$. Therefore X is the Hirzebruch surface Σ_{1} and C_{0} is the unique (-1)-curve in which $B \cdot C_{0}=1$. Let $X \rightarrow \boldsymbol{P}^{2}$ be the blowing-down of C_{0} and let B^{\prime} and G^{\prime} be the image of B and G, respectively. Then the separation of (X, B, G) is also that of $\left(\boldsymbol{P}^{2}, B^{\prime}, G^{\prime}\right)$. Thus we are reduced to the Type D .

Case $g(C)=1$: We have $-K_{X} \sim 2 H_{\mathscr{E}}-p^{*}(\operatorname{det} \mathscr{E})$ and $B \sim H_{\mathscr{E}}-K_{X}$. Thus $r=B$. $G=\left(H_{\mathscr{E}}-K_{X}\right) \cdot\left(-K_{X}\right)=\operatorname{deg} \mathscr{E}$. Hence $4=\left(K_{X}+B\right) \cdot B=H_{\mathscr{E}} \cdot\left(H_{\mathscr{E}}-K_{X}\right)=2 \operatorname{deg} \mathscr{E}$. Therefore $\operatorname{deg} \mathscr{E}=r=2$. The locally free sheaf \mathscr{E} is one of the following:

C2-0: $\mathscr{E} \simeq \mathscr{O}_{C} \oplus \mathscr{A}$ for an invertible sheaf \mathscr{A} on C of $\operatorname{deg} \mathscr{A}=2$;
C2-1: $\mathscr{E} \simeq \mathcal{O}_{C}\left(q_{1}\right) \oplus \mathcal{O}_{C}\left(q_{2}\right)$ for two points q_{1}, q_{2} of C;
C2-2: There is a non-split exact sequence

$$
0 \rightarrow \mathcal{O}_{C}(q) \rightarrow \mathscr{E} \rightarrow \mathcal{O}_{C}(q) \rightarrow 0
$$

for a point $q \in C$.
Case C2-0: Let C_{0} be the negative section of $p: X \rightarrow C$. Then $C_{0} \sim H_{\mathscr{E}}-p^{*} \mathscr{A}$ and $-K_{X} \sim 2 C_{0}+p^{*} \mathscr{A}$. Thus $B \sim 3 C_{0}+2 p^{*} \mathscr{A}$. Hence $B \cdot C_{0}=-\operatorname{deg} \mathscr{A}=-2$. This is a contradiction.

Case C2-1: First assume that $q_{1}=q_{2}$. Then $X \simeq \boldsymbol{P}^{1} \times C$. Let $\pi: X \rightarrow \boldsymbol{P}^{1}$ be the first projection and let ℓ be the fiber $p^{-1}\left(q_{1}\right)=p^{-1}\left(q_{2}\right)$. Then $B \sim H_{\mathscr{E}}-K_{X} \sim$ $\pi^{*} \mathcal{O}_{\boldsymbol{P}^{1}}(3)+\ell$. Thus

$$
p_{*} \mathscr{O}_{X}(B) \simeq p_{*}\left(\pi^{*} \mathcal{O}_{\boldsymbol{P}^{1}}(3) \otimes \mathcal{O}_{X}(\ell)\right) \simeq \mathscr{O}_{C}^{\oplus 4} \otimes \mathcal{O}_{C}\left(q_{1}\right)
$$

Therefore, ℓ is a fixed component of the linear system $|B|$. This is a contradiction. Thus $q_{1} \neq q_{2}$.

Let ℓ_{i} be the fiber $p^{-1}\left(q_{i}\right)$ for $i=1,2$. Let C_{1} and C_{2} be the minimal sections of $p: X \rightarrow C$ with $C_{1} \sim H_{\mathscr{E}}-\ell_{1}$ and $C_{2} \sim H_{\mathscr{E}}-\ell_{2}$, respectively. Then $C_{1} \cap C_{2}=\varnothing$, $\mathcal{O}_{C_{1}}\left(C_{1}\right) \simeq \mathcal{O}_{C_{1}}\left(\ell_{2}-\ell_{1}\right), \quad \mathcal{O}_{C_{2}}\left(C_{2}\right) \simeq \mathcal{O}_{C_{2}}\left(\ell_{1}-\ell_{2}\right), \quad$ and $-K_{X} \sim C_{1}+C_{2}$. Since $\left.G\right|_{C_{1}} \sim$ $\left.\left(\ell_{2}-\ell_{1}\right)\right|_{C_{1}}$ is non-trivial, G contains C_{1} and also C_{2}. Thus $G=C_{1}+C_{2}$.

Suppose that $2 q_{1} \sim 2 q_{2}$ on C. Then $2 C_{1} \sim 2 C_{2}$. Thus the base point free linear system $\left|2 C_{1}\right|$ defines a morphism $\phi: X \rightarrow \boldsymbol{P}^{1}$. Now $B \sim H_{\mathscr{E}}+G$ and $B \cdot C_{1}=1$. Thus ϕ induces a double-covering $B \rightarrow \boldsymbol{P}^{1}$. This is a contradiction. Hence $2 q_{1} \nsim 2 q_{2}$. Therefore the (X, B, G) is obtained as Type C2-1 in $\S 2$.

Case C2-2: We have $K_{X}+B \sim C_{0}+\ell$ and $-K_{X} \sim 2 C_{0}$ for the minimal section C_{0}. Hence $G=2 C_{0}$ and $B \sim 3 C_{0}+\ell$. Thus the (X, B, G) is constructed as Type C2-2 in $\S 2$.

§3.4. Proof in the case of Type \mathbf{D}.

Let (X, B, G) be a minimal basic triplet satisfying \mathscr{C}_{r} such that $X \simeq \boldsymbol{P}^{2}$ and that $-\left(2 K_{X}+B\right)$ is ample. Then B is a smooth quartic curve, since $g(B)=3$. Therefore $r=12$. Hence (X, B, G) is obtained as Type D in $\S 2$. This completes the proof of Main Theorem.

References

[1] V. I. Arnol'd, S. M. Gusě̆n-Zade and A. N. Varchenko, Singularities of differentiable maps. Vol. I, Nauka, Moscow, 1982; Vol. II, Nauka, Moscow, 1984; English transl. Monogr. Math., 82 (1985), 83 (1988), Birkhäuser.
[2] A. I. Degtyarev, Classification of surfaces of degree four having a nonsimple singular point, Izv. Akad. Nauk SSSR, 53 (1989), 1269-1290; English transl. Math. USSR Izvestiya, 35 (1990), 607-627.
[3] M. Demazure, Surfaces de del Pezzo II-V, In: Séminaire sur les Singularités des Surfaces (eds. M. Demazure, H. Pinkham and B. Teissier), Lecture Notes in Math., 777 (1980), pp. 23-69.
[4] Y. Ishii, Classification of normal quartic surfaces, Master's thesis, Dept. of Math. Sci. Univ. Tokyo, 1993.
[5] E. Looijenga, Rational surfaces with an anticanonical cycle, Ann. of Math., 114 (1981), 267-322.
[6] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math., 116 (1982), 133-176.
[7] Y. Umezu, On normal projective surfaces with trivial dualizing sheaf, Tokyo J. Math., 4 (1981), 343-354.
[8] Y. Umezu, Quartic surfaces of elliptic ruled type, Trans. Amer. Math. Soc., 283 (1984), 127-143.
[9] T. Urabe, On quartic surfaces and sextic curves with singularities of type $\tilde{E}_{8}, T_{2,3,7}, E_{12}$. Publ. Res. Inst. Math. Sci., 20 (1984), 1185-1245.
[10] T. Urabe, Singularities in a certain class of quartic surfaces and sextic curves and Dynkin graphs, In: Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc., 6, Amer. Math. Soc., 1986, pp. 477-497.

Yuji Ishis
The Bank of Tokyo-Mitsubishi, Ltd. Tokyo Japan

Noboru NaKayama

Research Institute for Mathematical Sciences
Kyoto University
Kyoto 606-8502
Japan
E-mail: nakayama@kurims.kyoto-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. 14J25, 14J26, 14J70, 14E30.
 Key Words and Phrases. quartic surface, ruled surface, extremal ray.

