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Abstract. We consider a simple model which is a caricature of a crystal interacting
with a radiation field. The model has two bands of continuous spectrum and the particle
can pass from the upper one to the lower by radiating a photon, the coupling between the
excited and deexcited states being of a Friedrichs type. Under suitable regularity and
analyticity assumptions we find the continued resolvent and show that for weak enough
coupling it has a curve-type singularity in the lower halfplane which is a deformation of
the upper-band spectral cut. We then find a formula for the decay amplitude and show
that for a fixed energy it is approximately exponential at intermediate times, while the tail
has a power-like behaviour.

1. Introduction.

A mathematical theory of decay and resonance processes in quantum theory has a
long history which started from the well known Friedrichs model [1]. Formulated more
than half a century ago, it was a departure point from which the perturbation theory of
a continuous spectra was developed. Various generalizations of the Friedrichs method,
which we will briefly review below together with alternative approaches to the prob-
lem, dealt mostly with situation when the unperturbed system had discrete eigenvalues
embedded in the continuum. After several decades of fruitful investigations one can say
that this problem is now well understood.

This is not the case for the situation when the unperturbed spectrum has two over-
lapping continuous components and the perturbation couples the corresponding spectral
subspaces. It is the aim of the present paper to investigate such a situation in the frame-
work of a simple and physically interesting model, which can be regarded as a con-
tinuous analogy of the original Friedrichs problem. As the latter, our model is solvable
in the sense that we will be able to find the resolvent of the operator /# in question, and
to study its properties by means of analytic continuation. We will be also able to derive
properties of the corresponding evolution group ¢+ exp(—i#t).

Let us first say a few words about the history. As indicated, it started from
and was pursued later in numerous papers—see, e.g. [2], [3] A systematic study of the
problem started in the seventies. J. Howland and H. Baumgértel with collaborators—
see [4], [5], [6], [7] and the papers quoted there—used operator methods to establish
the existence of resonance poles and to prove the Fermi rule for various systems with
perturbed embedded eigenvalues. At the same time the seminal paper [8] by J. Aguilar
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and J.-M. Combes initiated the development of complex-scaling methods which are now-
adays a very efficient tool to study resonances of Schrodinger operators.

In the eighties many papers dealing with quantum-field decay models appeared. A
phenomenological models based on the Langevin equation were investigated in [9], [10],
and [12]. Moreover a generalization of them was given by A. Arai within the
Hamiltonian formalism. In a last few years the long-time behavior of canonical cor-
relation functions for general Hamiltonians was investigated in by applying the
results of and via a quantum Langevin equation. From the point of view of
virtual transitions, the long-time behavior of a correlation function was studied in [16].
It is also worth noticing that, revisiting the decay problem, Bach, Frohlich, and Sigal
have developed a new manner to analyze the resonance problems for a class of models
in quantum electrodynamics [17], [18].

As we have said, in most of these models the unstable states come from pertur-
bation of eigenvalues, either embedded in the continuous spectrum or isolated as in the
case of Stark effect. Much less attention has been paid to the situation when the states
which should decay belong to the continuous spectrum of the unperturbed Hamiltonian.
It is a sort of surprising because this case is of no less physical interest; an archetypal
example of such a situation is a crystal in which an electron can radiate a photon and
pass to a lower spectral band. A natural model in this case would be a Schrédinger
operator with a periodic potential coupled to a quantized field. This is not easy, how-
ever. To start with a simpler case, we discuss in this paper a model of Friedrichs type
with transitions between two bands of the absolutely continuous spectra which can be
regarded as a one-photon approximation of the more realistic description.

While perturbed embedded eigenvalues typically give rise to resonance poles in the
analytically continued resolvent, we are going to show that in the mentioned model
the cut-like singularity corresponding to the ‘“‘excited” spectral band gets deformed to
the lower complex halfplane. Recall that a similar behavior has been observed in a
completely different type of systems which involve a perturbation of a band spectrum,
namely for scattering in finitely periodic systems [19]. Here we have a situation with
a finite number of resonances which accumulate, however, along curves in the lower
halfplane which are close to the spectral bands of the infinite system when the inter-
action is weak.

Let us describe briefly the contents of the paper. After formulating the model in
the next section we shall compute in Section III the projection of the Hamiltonian
resolvent onto the subspace of excited states corresponding to the upper spectral band
of the ““crystal”. Under natural regularity assumptions we prove the mentioned claim
about the change of the spectral singularity caused by a decay with the radiation of a
“photon”.

Then we turn to the time evolution of the undecayed state and show that its pro-
jection onto the upper-band subspace is—at least for a weak enough coupling—realized
as multiplication by a function which we evaluate explicitly. The rest of the paper is
devoted to properties of this decay amplitude. We show that in the weak-coupling case
the latter is dominated at intermediate times by an exponential function. Hence the
population of the excited spectral band changes in the course of the evolution: the wave-
function components supported in the regions where the deformed singularity is closer
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to the real axis survive longer. On the other hand, similarly to the usual decay theory,
the deexcitation process cannot be purely exponential; we show that the decay amplitude
has a power-like tail at long times.

Before passing to the description of the model, let us say a few words about the
assumptions we will use. Some of them define the model and come from the physical
considerations underlying it. However, most of the assumptions are technical and for-
mulated at appropriate places of the text. They are designed not to be the weakest pos-
sibility but to carry out our considerations with a reasonable degree of brevity. In spite
of that the list of used assumptions is not short. To make the presentation more
reader-friendly, we formulate in the closing section a shorter list of four stronger
hypotheses which imply all of the assumptions (al-13) used throughout the paper.

2. Description of the model.

The “‘crystal part” of our model is assumed to have the simplest nontrivial spec-
trum consisting of a pair of disjoint absolutely continuous bands Iy = [é(()_),é((f)] and
I = [éﬁ,égﬂ] with —o0 < é(()*) < é(()ﬂ < 55*) < fgﬂ < 0. Using the spectral represen-
tation we can assume without loss of generality that the crystal state space is
L*(I U Iy, w(x) dx) with the Hamiltonian H, acting as multiplication by the variable x;
the weight function w is positive almost everywhere, Lebesgue integrable, and satisfies

J w(x)dx = 1.
LUy

As we have said the “field part” is represented by the vacuum and one-photon (or
phonon) states, which coexist with the upper and lower band of the “crystal”, respec-
tively. The photon vacuum is by assumption a single state of zero energy, while the
single-photon states belong to the space L*([v,©),w(z)dz), v>0, on which the free
Hamiltonian H, acts as a multiplication by the variable z. The weight function w is
again Lebesgue integrable, non-negative a.e., and satisfies

JOC o(z)dz = 1.

v

Putting the two components together we get the total state space of our model in the
form

H = Ho @ Ay = L*(I), wi(x) dx) @ [L*(Ip, wo(y) dy) ® L*(K,w(z)dz)], (2.1)

where K = [v,0) and w,:=w [I,, « =0,1. The free Hamiltonian acts as

HO(D B ((Hc®[i]:{®Hp)g)

((5)) () = (s 500nm) 22)

with the arguments xe I}, yel, and z € K.

which means
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Next we have to choose the interaction part of the Hamiltonian. Being inspired by

the Friedrichs model we require

(i) the interaction includes necessarily a single photon emission/absorption, or in
other words, the projections of Hj, on L?(I;, w(x) dx) and its orthogonal com-
plement in # are zero,

(i) the interaction is “minimal” in the sense that the action of Hj, can be written
in terms of multiplication by a ‘“‘formfactor”, integration, and possibly a change
of variables.

It follows from (i) that Hi, = xL with an interaction constant x and an “off-diagonal”
operator L, where L; : #; — A, 1.e.

(n(3)) (=)= (wios) e

Furthermore, in accordance with (ii) the operator Ljy should be chosen in the form

(L10f)(p,2) = Ay, 2)f (u(y, 2)), (2.4)

where A:Iyx K — C and u: Iy x K — I} are measurable functions containing the
dynamical information about the system. This choice in turn restricts Lj; because the
full Hamiltonian (with a real coupling constant x) must be symmetric, which means

|| @ = [| TG0 e dd: - (23)
1 o X

for all f and g from the operator domain. Suppose now that there are functions u, v
such that (y,z) — (u(y,z),v(y,z)) : Iy x K — I} x K is a bijective diffeomorphism which
can be used as a substitution at the right-hand side of (2.5) leading to

D(y,2)
D(u,v)

(Lorg)(x)w (x) = jK 2 29(3.2) wo(y)e(z) dr, (2.6)

the variables y,z being expressed as the inverse of x =u(y,z) and ¢t =v(y,z) at the
right-hand side.

ReEMARKS 2.1. (a) For the sake of simplicity, assume that u depends on a single
variable mapping Iy onto /;. This will reduce the dependence of the transition between
a pair of states in I; and Iy, respectively, on the photonic component of the system.

(b) In the same vein we could suppose that

A(y,2) = 20()2k(2) (2.7)

which will turn Hy + Hj,—up to the isomorphism between I; and [y—into a direct
integral of Friedrichs-type Hamiltonians. However, we choose a nontrivial setup and
do not require that the dependence of the interaction strength on the energies of the
excited state and the photon contained in the function A factorizes. In other words, we
will keep a general 4: 1y x K — C.

After this heuristic discussion, let us define the Hamiltonian which we shall consider
in the following. We suppose that
(al) u:1Iy — I is a bijective C'-diffeomorphism,
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then the interaction term Hj, acts according to (2.3) with

(Liof)(y,2) = Ay, 2)f (u(y)),

._ wo(u” ' (x)) A 1(x),2)g(u " (x),2)w(z) dz
(Log)() = T | T D o)z (28)

with xe I}, ye Iy, and ze K. The second expression makes sense because the two fac-
tors in the denominator are positive almost everywhere by assumption. The operator L
defined in this way is formally symmetric and unbounded in general. To get a self-
adjoint Hamiltonian we add a boundedness assumption. Specifically, we assume that

(a2) A is Lebesgue measurable in [y x K and there are positive C,C; such that

JK Ay, 2)Po(z)dz < €, woly) < Cilu' (9)|wi(u())

holds for every y € Iy;
the last inequality means that the Radon-Nikodym derivative appearing as the first
factor in Lg;g is bounded.

PROPOSITION 2.2.  Under the assumptions (al) and (a2), Hiy is bounded and sym-
metric. Consequently,
H = H (k) = Hy+ Hiny = Hy + kL
is self-adjoint on the domain of H,.
ProOOF. It remains to verify the boundedness of Hj,; which amounts to checking

that the operators Lo : #y — | and Ly : #1 — #7 are bounded. This is easily seen
from the following estimates:

|wmm@K:jLKu@Jvawm%mwmaww
ol ()

2
mdx < G C| f]I,

schun

and

gl = [ [ 0D T (9,20 T Ao ]

X UK AT (x), )g(u=" (x), (1) dt] wi(x) dx

2
- JI |u’(yv;T\(szu<y)) 8 {”KMW%ZW% Nllg(y;2)9(y; D]w(z)w(7) dzdt} dy

sahmvmm%@AUJMﬁ%mﬂmmw

2
< C1 |9l x>

where we have used the Fubini theorem in combination with the Schwarz inequality for
the scalar product in L*(K x K, w(z)w(t) dzdt). O
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Before proceeding further let us make a comment on the assumptions, part physical
and part technical, which we will have to make in the following. Since the present
model is rather a motivation study for a more realistic one, we do not strive for the
maximal possible generality. On the other hand, we do not want to impose many
unnecessary restrictions which would correspond to a fully specific system such as the
one given below.

ExampLE 2.3. Let Ej(-), j=0,1 be the lowest two dispersion curves of a one-
dimensional crystal. Since we are discussing a caricature model, we neglect the multi-
plicity of the eigenvalues. In other words, we consider just a half of the Brillouin zone
and regard E; as bijective maps [0,7] — [; with Ej strictly increasing and E; strictly
decreasing. Moreover, both are restrictions to [0, 7] of real-analytic functions with the
first derivatives vanishing at the endpoints of the interval but nonzero in its interior.

To rewrite the band projections of the crystal Hamiltonian in our formalism, we
employ the operators U; : L2([0,7]) — L*(I;, w;(y) dy) defined by (U;f)(y) := f(EJ-*l(y));
the definition makes sense since the inverse functions Ej_1 exist by assumption. The

operators U; are unitary provided we put

wi(y) = [E/(E7 (»)] (2.9)

These functions are C* in I; with singularities at the endpoints but the latter are
integrable. In particular, if E/(3) #0 at 3=0,7 we have w;(y) = O(|y—f}i)|_l/2)
there.

One of the basic ingredients is, of course, the function u. Since the system of the
crystal plus the radiation field is invariant with respect to the discrete group of
translations on a multiple of the lattice constant, it is natural in the present example to
suppose that the interaction does not couple states whose quasimomentum support in the
upper and lower bands are disjoint. This is achieved if we choose

u(y) = E\(Ey' (»)); (2.10)

it is easy to see that it is a C* function and

iy~ 0 o)
E{(E, ')

has finite limits at f(()i) assuming that Ey and E; have the first non-vanishing derivative
at 0 resp. = of the same order. On the other hand we think of the radiation field as of
the electromagnetic field in the rotating wave approximation. In this case we put the
threshold energy v =0 and (z) = x,,,,.1(2) Where vmay is a possible ultraviolet cut-off.
Under these model assumptions (al) is satisfied automatically and the same is true
for the second part of (a2); it follows from (2.9) and (2.11) that it is valid for any C; > 1.
The only remaining restriction is thus the boundedness condition [;™* |A( y,2)?dz < C

for the formfactor.

3. The resolvent.

As usual the spectral information is contained in the resolvent of the Hamiltonian.
Under our assumptions, we can find it explicitly by solving the equation
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=0(;) = (2)

for { in the resolvent set, in particular, for all { € C\R. It is straightforward to check
that

wo(u ' (x))

! (= () P ()

J(x) = r(x, O fi(x) — rer(x, ()

Alu=1(x),z2) B
X Jngl (u'(x),2)ow(2) dz, (3.1)

A(J@Z) gl(y,Z) l(y,Z)
mr(u(y)aé)fl(u(ﬁ) +y+z—C+K2y+Z—C

g(y,z) =K

wo(y) J Ay, )
' (V)i (u(p) Jx ¥y + 5 —

x r(u(y), <) Cg1(y,s)co(s) ds,

where

' (u=t (X)) [wi (x) Jgu ' (x) +2=¢

Let P be the projection onto the subspace #) = L’(I;,w;dx) of “undecayed” states

in A,
N\ _ (A4
/(0)-(5)

By [3.1), the reduced resolvent acts then as multiplication by the function r,

_ - 2 -1
o 0) i {X_C_Kz wo(u” ! (x)) JKli(u 2P dz}_

P(H—-0)'"P=r(-,0)P. (3.2)

For the sake of brevity we introduce the following notation,

£(.2) 1= A(3.2)(2), (33)
)

) ) () 54

G, 0) = L%dz’ (3.5)

so the function r can be written as
r(x,0) = {x = { = w?o(x)%(u" (x),)} (3.6)
for ¢ # 0.

REMARK 3.1. In the particular case of Example 2.3 it follows from (2.9) and (2.11)
that o(x) =1, and moreover, v(y,z) = |A(y, z)|2;([07vm}(z).

To reveal the analytic properties of r(x,-) let us begin with those of %(y,-).
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LemMmaA 3.2. Let v(y,-) have a locally bounded derivative in (v,0). Then for any
vely and a real { > y+ v there exists finite principal value of the integral

I(3,0) = ?Jm%dz. (3.7)

Moreover, for any ke (0,{ — y—v),

J,g_y_kMdZ N J~C—y+k U(y,Z) — U(J@ {— y) dz + JOO Mdz (38)

I(y,0) =
0 y y+z-¢ C—y—k y+z-¢ ey Y Tz2—C

where all the three integrals are Lebesgue convergent.

Proor. Choose any k€ (0,{— y—v). As the integrals

{—y—k 0
J 02) g J v(»,2)
v y+z—¢ g_y_,_ky—i-Z—é

exist due to the assumption (a2) it is sufficient to check the convergence of

S u(y,2)
Ii(y,0) = QJ — . 3.9
A (39)
We employ the identity v(y,z) =v(y,{— y) + [v(y,z) — v(y,{ — y)] together with the
estimate

w(y,z) —o(y,{ =) <caly+z—

with a finite ¢; independent of z. We see that finite

JC—)}-ﬁ-k U(y,Z) B U(yac_ y) dz
{y—k y+z—¢

exists and it is sufficient to check ?ff:;j,f (dz/(y +z —{)) which is easily seen to exist

and to be equal to zero. ]

As usual in similar situations to proceed one needs some analyticity assumption
about the formfactor. In the present case we suppose that
(a3) for all y € I the function v(y,-) can be holomorphically extended to an open
set ©,, o (v,00); we denote the extension again as v(y,-). Let us further
assume that there is an open set 2 in C such that

&7 +v0)cQe () (r+Q,)
yel

Notice that the hypothesis of the previous lemma is satisfied under (a3). Now we can
make the following claim.

LemMmA 3.3. Let yely and (€ (y+v,0). Then

isglggr}Hg(y, 0 =1(y,¢) £ inv(y,¢— ).

PrOOF. Let us write again ¥%(y,{) defined by as a sum of three integrals
over the intervals (v, —y—k), ((—y—k,{—y+k)and (E— y+k,o00) with 0 < k <
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¢ — y—v. The first and the third integral can be interchanged with limit by dominated
convergence. The set €, , is open and contains (v, o0), hence there is k; > 0 such that
any 9 € C satisfying |8 — &+ y| < ky belongs to €, ,. Let us consider only { satisfying
| —¢| <k (so that { — y e Q,,) in the second integral and denote {; = R{, then we
employ the identity v(y,z) = v(y,{; — y) + [v(y,z) — v(»,{; — )] and observe that

v(y,2) — oy, & =) <ay. &k k)ly +z =

The contribution from the difference can be thus also handled by dominated con-
vergence. In view of (3.8) we get

E—y+k dz
lim %(y,0)=1(y,¢)+v(y,&é— limJ —_—
ol SO =100 +u(y,c—y) Jim e,
and the result follows by an easy calculation. OJ

LEMMA 3.4. Define the functions %o : Iy x Q — C and 4% : Iy x Q — C by

(4(p,0) oS>0

Y0(y,0) = 1(y,0) +inv(y,{—y) ... SC=0 (3.10)
(G, () +2imv(y,{—y) ... SC<O,
(g(y,f)—%nv(y,f—y) e S>>0

G2(y,0) = 1(»,0) —imo(p,(=y) ... S(=0 (3.11)
(43,0 .. SC<O.

Under our assumptions (al)—(a3), the functions 9o(y,-) and 9°(y,-) are holomorphic in
Q\(—o0, y+ V] for any fixed y € I.

PrROOF. By and assumption (a3), %, is a finite function. Notice that
(—yeQ,,for{eQand yely. According toLemma 3.3, the function %o (y,-) is con-
tinuous in {{ € Q2|¢ > 0}\(—o0, y + v]—see, e.g., Theorem 146 in [21]. Alternatively,
the continuity of /(y,-) in (y+v,00) can be established directly from the dominated
convergence used in the proof of [Lemma 3.2 Similarly, the continuity in
{{e Q|3 <0}\(—o0, y+v] is seen and thus %o(y,-) is continuous in Q\(—co,y + v].
As it is holomorphic in {{e Q|3 >0}U{{e Q|3 <0} it is also holomorphic in
Q\(—o0, y+v] due to a corollary (dubbed the edge-of-wedge theorem) of the Morera’s
theorem (stating that the continuous function is holomorphic if and only if the integrals
over all rectangles with the edges parallel to the axes are zero—see, e.g., [22, Theorem
168] or [23, Theorem 10.17]). As to ¥“(y,-), we can prove our statement in the same
way as for %o(y,-). O

Now we are in position to show what happens with the upper spectral band under
influence of the perturbation. Let us formulate some further assumptions before.
(a4) The functions o(x)%a(u~'(x),{) and o(x)(0%q(u~'(x),{)/0() are continuous
in the set {(x,{)el; x Q|{¢ (—oo,u(x)+]}.
(a5) For all xe I,

x> u(x) 4.
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REMARKS 3.5. (a) In the particular case of Example 2.3 the factor o(x) =1 can be
dropped in (a4) and the assumption (a5) is satisfied.

(b) While most assumptions we make are of a technical nature, (a5) is a physical
hypothesis saying that in no part of the excited spectral band the decay is prevented by
energy conservation. It is satisfied, of course, if v=0.

Let us denote
Q, = Q\(—oo,u ' (x)+v].

THEOREM 3.6. Assume (al)—(aS). Then the following statements hold.
(@) There exist 4 >0, 6 >0 and a unique function { : I, x (—0,0) — C satisfying

{(x,k)e(x—Ad,x+4)+i(—4,4) < Q,, (3.12)
x —{(x,x) — kK20(x) %o (1 (x),{(x,x)) = 0. (3.13)
The function { is continuous in I} x (—0,0) and {(x,-) € C*(—9,0).
(b) The inequality
S¢(x,x) <0 (3.14)
holds for all x €I, k € (—9,0). Moreover, if
o(x)v(u " (x),x —u"'(x)) #0 (3.15)
for all x from some compact I' < I}, then there exists a 0 € (0,0;] such that
S¢(x,x) <0 (3.16)
holds for all 0 < |k| <d; and xel'.

Proor. (a) Let us denote
D, (x,x,0) :==x—{ —Kk?0(x)%o(u (x),0). (3.17)

The functions D, and 0D, /d{ are continuous in {(x,x,{)|xel;,ke R,{eQ,} by
assumption and D, (x,-,-) € C*(R x Q,) by Lemma 3.4. Furthermore, D, (x,0,x) =0
and

0Dy (x,0,x)

=—1 .
o #0

By the implicit function theorem—see, e.g. [21, Theorem 211]—to any x( € [; there
exist dy, > 0, dy, > 0 and 4, > 0 such that for all x e (xg —dy,,x0+dy,) N1} and x €
(—0x,,0x,) there is just one (. (x,k) € (xo — Ay, X0 + Ay,) +i(—Ay,, Ay,) < 2, (recall
(aS5)) satisfying D, (x,x,(,,(x,x)) =0, i.e. the relation [3.13]. The function (,, is con-
tinuous in ((xo — dy,, X0 + dx,) N11) X (=0x,,0x,) and {, (x,:) € C*(—=0dy,,0y,) for any
fixed x € (xo —dy,,x0+dy,). We put

d; =min(dy,,dy,).

X
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As I} is compact by assumption, the open covering of /; defined in this way has a finite
subcovering, i.e. there exist a finite number of points x; €I, j=1,...,n, such that

n
L= | Kj;
j=1

we employ here the notation

K= (x;—dy,x;+dy), Ji=K+i(-d,d,

Xj? x/>
for j=1,...,n. Let us pick a point xj € K; N K} for given j,k =1,...,n; then there is
0 < Jj <min(d,,,dy,) such that
ij(xjk,ic) EJjﬂJk, ka(xjk,zc) GJjﬂJk (3.18)

for x| <. Moreover, {, (x,x) =, (x,x) for all xe K;N K} and || < Jy; otherwise
the uniqueness of {, and (, would be violated near at least one of the points

Sup{xe K]ﬂKk |X = xjkvng(yJC) = ka()’a K) for Xk <Y =X, ’K| < 5jk}7
inf{x € K;N Ky | x < x, (. (y,1) = (o (y,5) for x < p < xp, || <O}

Choosing a number ¢’ >0 with ¢ < min;<;<,dy, and ¢’ < mingng, g, We con-
clude that there exists a unique {:/; x (—¢’,0’) — C such that {(x,x) e J; for x € K;
and D, (x,x,{(x,x)) =0. The function { is continuous in I} x (—=4',d") and {(x,-) €
C*((—0¢',0")) for any fixed xe ;. Put

hj(x) = min(x — x; + dy , x; +d;, — x).
The function 4; : I} — R defined in this way is continuous and x € K; if and only if

hj(x) > 0. Then

h(x) :== lrgjaé(n h;(x)

specifies a positive continuous function # on ;. Let us denote

D =min /i(x) >0, 4 =min (D, min dé) > 0.
xel I<j<n Y

As { is uniformly continuous on compact subsets of I} x (—d',5') there exists 0 < < 6

such that

{(x,r)e(x—A,x+4)+i(—4,4)

for x eI} and |x| < J; hence the existence of the numbers J,4 and the function { is
demonstrated. )

Finally, to check the uniqueness of { let us assume that { is another function
satisfying
Cx,k) e (x— A, x4+ A)+i(—4,4), Dy(x,r,l(x,x)) =0
for x e I, Kk € (—J,0). Suppose that x € [; and |x| < J are given. There exists an index
j=1,...,n such that



764 J. DittrIicH, P. EXNER and M. HIROKAWA

h() =h(x) = D, xeK, ((x.x)el,
As the inequalities
x—xj+dy =D, xj+d,—-x=D, -D<y-x<D
hold, where y:=R( (x,rx), we have also
y—x+d, >0, xj+di—y>0

and ye K;. Furthermore, |3¢(x,x)| < 4 < d <4y. Then {(x,x)= {(x,x) and the
uniqueness is proven. '

(b) Assume first that 3¢ >0, then % (u'(x),{) = I%(u1(x),{) >0 by
and (3.10), so the right-hand side of (3.17) has negative imaginary part. Consequently,
there are no solutions {(x,x) with positive imaginary parts, in other words holds.
We have checked here only that the open upper half-plane is a part of the resolvent
set for the Hamiltonian. In the lower half-plane, the function D, (x,«x, -)*1 is a mer-
omorphic continuation of r(x,-) and may have singularities.

Suppose now that holds. The expression o(x)0%o(u'(x),{(x,x))/0 is
continuous in (x,x) € I} x (—J,0). It follows that

0%Ga(u='(x),L(x,x))

M = < 00.
(x,,c)e1r/2?}5/2,5/2] o(x) o »

Differentiating the equation defining {(x,x) with respect to x> we get

a 5 _ ag - ) ) a ) 7 \
) 1 ol (), o) gl L) K]
In combination with the previous inequality we conclude that
aC(X, K) — _ Q(x>dj9<u*1(x)’€(x7 K)) (3 20)
0(xc?) 1 4+ x20(x)(0%0(u=1(x),{(x,K))/00) ’

is continuous in (x,x) eI’ x (—min(d/2, M—1/?), min(6/2, M~'/?)) defining M~'/? = o
for M = 0. Furthermore, the assumption together with (3.10) implies ((x,0)/
d(x?)) < 0, hence there is 0 <&, < min(d/2, M~'/?) such that

(x, k)
C\
S 303 <0
for (x,x)el’ x (0,0;) and |3.16) holds. O
REMARKS 3.7. (a) Putting x =0 in (3.19) we obtain
0l(x,0 _
D) ()0l (), ), (3.21)

d(k?)

where right-hand side is given by Lemma 3.4 This relation can be regarded as an
analogue of the Fermi golden rule in the present situation.

(b) Notice that for the factorization (2.7) the term |Ao(u'(x))|* factorizes from
Go(u='(x),{) and {(x,x) = x holds whenever io(u"'(x)) = 0.
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4. Decay of excited states.

In accordance with the physical motivation, we are interested in transitions from a
given state supported in /; into those in Iy. To find the time profile of the de-excitation
probability it is sufficient to know the reduced evolution operator PU(f)P = Pe "'P.
Suppose that the initial state is of the form

(%)

for some vy, € L2(I;, w1 (x) dx) with ||%|* = I Wo(x)|?wi(x)dx = 1. Tts time evolution
is given by the Stone formula,

1 .,
U0 = lim 5| (=& =)™ = (0 = &+ in) e e

according to [20, Theorem VIIL.5], and the projection P can be interchanged with the
limit and the integral being a bounded operator. This yields the reduced evolution

operator,
PU(I>5UO _ (lﬁ(l, ) )7
0
where
) 1 .
b0y = lim 5o [ ot ) = & = iple () (4.1)

and r is given by [3.6). The integral and the limit refer to functions with values in
Ho = L*>(I;,w(x) dx); they are known to be convergent as the Hamiltonian H is self-
adjoint.

Let us now look for conditions under which the interchange of the limit and the
integral in (4.1) is possible. To this end, we need more assumptions.

(a6) v(y,z) < Cy and |0v(y,z)/0z| < Cs holds for some positive constants Cs, Cs

and all yel, ze K.
(a7) wv(y,v) =0 for all yeI.
(a8) There exists a zero-measure set N — I; and a number
v > dy :=sup[x —u"'(x) —v] >0

xel;

such that
o(x)o(u™" (x),€) > 0
for all xe [\N and € (v,v+ ).
Lemma 4.1. Assume (al)—(a7). Then there exists a number Cy such that
9(y,& £in)| < Cy (4.2)
holds for all yely, £€R, and 0 # n € R.
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Proor. Recall the definition

J“ v(y,2) ckzjw y+z—<tin

gyaéil = — v
( ) y Ytz—CFin v (yHz=E) 42

Using the first part of (a6), we get

0

o0
MM%? (hsqj 2W2&:nq.
v (y+z=8&)" 492 w22+

We fix o > 0 and distinguish several cases.
i) {—y=v+oa Then

RSt 4 i) (Ja +J1U+J°") zw(y,z—y+&) -

vt+y—¢

SY(3, & + in)| j

where by (a2) we have

o * Zv(yaZ—Y‘i‘f)
’(J +J ) p—— dz
vHy—¢ o n

Using the mean value theorem,

< lj v(y,z)dz <

v

o * ZU(y,Z— y+é)
J2 = J_a 22 i ;72 dZ

- Jﬁ (¢ = 2) +20:0(3, 83, ¢, 2))] dz

with 9(y, &, z) between & — y and & — y 4+ z.  The integral of the first term is zero due to
the antisymmetry in z while the second term can be estimated by (a6) giving |/;| < 2Csa
and

IRG(y,& + in)| < Ca ! +2C30.

(i) v<&—y<v+oa Then

%g04éiM)=(ffV%+r +¢m)zM%z—y+éLh

2 2
vHy—¢& E—v—y o ze+ n

where

C—v=y
J ;v(y,z—y-l-f)dz <2Ci(E—v—y) <2Cs

vy—£& z? + 772

follows by the same procedure as for the integral J, in case (i) and

< Co!

© oz
L m“(%Z— y+<&)dz

due to (a2). In the remaining integral,

oy 2=y + = Glz—y+L-v)
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by (a6) and (a7). Denoting for a while 4 =& — v — y, we have now

“22 4+ Az
SC:;J 22—|—4de
A n

[ ot sre

A o+’ A
=G [oc—A—l——lna /A |n|(arctani—arctan—>}

2 AT+p? 1] 7|
A o+ n?
£C3|:a+51nm

taking into account that 0 < 4 < « in the last inequality. Let us estimate the maximum
of function

A, o?+n?
A) =2 E
f( ) 2nA2+772

in the mentioned interval of 4. Clearly f(0) = f(«) =0 and f(4) >0 for 0 < 4 < o.
Hence f has a maximum at some point Ay € (0,x) satisfying
1. o +5? A}

"(4g) == In — =

From the last equation,

A3
Ay) =——— <Ay <o
As a result,
” z
——v(y,z—y+&Edz| <2C3a
Jévy22+n2 (y Y f) 3
and

IRG(y, & + in)| < 4Cs00+ Ca .
(i) v—a<&—y<v. Then
. * » z
|§R§5(y;f + l77)| = ‘(Jv+y_é+J“ )mU(J/,Z— y—l—f)dz .

Here the second integral is bounded by Cu~! and the first one we estimate similarly as
in the case (ii). Denoting here B=v+ y — ¢ € (0,0], we obtain

*z(z— B)
< C3 JBde < C3OC

o
z
——v(y,z—y+&)dz
Jv—t—y—fzz +772

and
IRG(y, & + in)| < Cya+ Cal.

(iv) {—ypy<v—oa. Then

NG (y,& £ in)| = J #v(y,z— y+E&)dz| < Cal.

2 2
vpy—EZ +7n
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Summing up the discussion, we have found that in all the cases the inequality
IRG(p,& + in)| < 4C30+ Co™!

holds. Minimizing the right-hand side with respect to o > 0, we get
RG(y,& £ in)| <4/ CCs

and

19(y,¢ + in)| < \/16CC3 + n2C3, (4.3)
what we set out to prove. n

THEOREM 4.2. Assume (al)—(a8). Then there exists dy >0 such that for all 0 <
|k| <0, and te R

lﬁ(% X) = %(la X)lp()(X) (44)
holds for almost every x € I, where
v = W, (45)
v+u~1(x)

Kool (x), — u (x)) |
[ = & = k20001 (x), &) + 72K%(x) 0 (), & — 1 (x)?

Proor. Let 6,4 and {(x,x) = {;(x,k) — i{»(x,x) be as in [Theorem 3.6. We first
verify that {,(x,x) >0 for xe I;\N and

r v1—d1 d
0 < |x| <0, .—mln<5,\/clc4 ’\/C1C4>’

d:= mi}l[x —v—u'(x)]>0

W(X, é) =

(4.6)

where

by assumption (a5). It is sufficient to show that {(x,x) is not real as we know that
{(x, k) = 0. By assumption (a2) and [Lemma 4.1,

|D+(X,K, f)| > ‘f —X| —K2C1 Cy

for real ¢ and there is no solution in (—o0,x —x?>CiCy)U (x +x>C1Cy, 00). If
{(x,x) = ¢ then the imaginary part of reads

iro(x)o(u(x), & —ul(x)) = 0.

Thus there are no real solutions in (v 4+ u~'(x), v+ v; +u 1 (x)) o (x —d,v + vi + u~(x))
by assumption (a8). For the considered values of x the intervals without real solutions
¢ cover the whole real axis.

To any natural number n there exists an open set N, — R of Lebesgue measure
smaller then 1/n such that N < N,y < N,. Let us denote I = I;\N,. Let ¢ be an
arbitrary vector from #, and ¢, = ¢y;,. The scalar product

(@, ¥(2,-)) = lim lL . 0(X)(Sr(x, & + i))e ™" g (x)wi (x) dxd (4.7)

n—0+ 7T
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with r(x,& 4+ in) given by (3.6). Fubini theorem can be used here as

%Wﬂﬂ£+mﬂsg,hu£+mﬂs

= |-

ISr(x, &+ in)| = (9({‘2) as &£ — +o0

for # > 0 using (a2), (3.5) and (3.6) only. Let us next choose 0 < 4; < 4, 0 <7, < 4,

denote
N 3 / Al
0y = mm(éz, A /2C1 ) (4.8)

and consider further only 0 < |k| < d2, 0 <y <#,;. Now
) 1
()G (! (x),& + in)| < 541

by Lemma 4.1. We divide the integration range I; x R of (4.7) into the parts where
| — x| = 4; and | — x| < 4, respectively, and construct the integrable majorant allow-
ing us to use the dominated convergence in (4.7).

For [£ — x| = 4, clearly

n + (1/2)4, < At 24,
(€= = (1/24)" 4
Let us define function ¢g: R — R as (recall that I} = [éﬁ’),éﬁ)])

( oA\ 4 _
<5—4>+§Q <m+§0 ooE<ET g

dn, +24 .
g(&) = % o8 <ce<E 14 (49)
1

-2
(é—éﬁ)—%) (n1+%> e EM L.
\

Then (x,&) — g(&)|e(x)| [Yo(x)|wi(x) is the sought majorant.
For |£ — x| < 4, we can consider only x € I] as ¢,(x) = 0 elsewhere. By Theorem
3.6,

1Sr(x, &+ in)| <

my. , = min|D, (x,x, & + in)| > 0

where D, is defined in (3.17) and the minimum is taken over the considered set of
variables x e I, (€ [x — 4;,x+ 4], n € [0,7,] and a fixed value of 0 < |x| < J, (notice
that & + in € Q, due to our choice of 4;,#, and the inclusion in (3.12)). The majorant
can be now chosen as

P ()] W (x) w1 (%)

Interchanging the limit with the integral in (4.7), using and realizing
that the integrand limit vanishes for ¢ < v+ u~!(x), we obtain

e ‘))1,; = (¢, (1, ‘)‘ﬁo)l,; (4.10)
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with % given by [4.5)-(4.6) and scalar products in the space L*(I],wi(x)dx). Here
U(t, )Wy e L*(I),wi(x)dx) as % is bounded in R x I/ which can be seen using the
majorant constructed above. As ¢, € L?(I/,w;(x) dx) may be arbitrary, follows
for almost every x € I|. Now we see for almost every x € I} in the limit n — oo.

[

5. Exponential decay at intermediate times.

Recall that decays of unstable quantum systems are nonexponential at very short
and very long times, however, they are usually exponential in a very good approxi-
mation over a wide range of intermediate times. Our aim here is to show that the pre-
sent models exhibits a similar behaviour in the sense that the function %(-, x) appearing
in the restricted time evolution operator can be approximated by an exponential for
almost every fixed x € I;.

The way to prove that is inspired by [3]. We employ the fact that the continued
resolvent is for any fixed x a meromorphic function and show that for a sufficiently
weak coupling the time evolution is dominated by the contribution from the residue term
in [4.5).

In addition to the hypotheses made above, let us assume that there exists a constant
Cs such that

(29) *v(y,2)

72 < (s holds for all yely and z € K.
yA

LEMMA 5.1.  For any o> —v, x € I, and & > u™'(x) + v the following estimates hold:

ut(x —u(x)—v
'%a%( af( m‘ = (acijQ) #Cjin® oz—l—(v> TGE - @ =y, (5D)
u N (x
Proor. Let us estimate
G ' (x),0)  [* v '(x),2) .
ac - Jv (l/l_l(X) 4z C)Zd (53)

for { = &+ iy, n > 0, and get the result on the real axis by taking the limit # — 0" using
[Cemma 3.4, We rewrite the derivative as

&%WIWLO_JW 22 —n* + 2inz
o vl w-e (224 n?)?
and denote for a moment
p=C—u'l(x)—v, p=¢—ul(0)+y (5.5)
by assumption we have 0 < f < y.
In the expression for the imaginary part of (5.4) we separate the integrals over
(—=p,p) and (f,00). In the second integral the limit # — O gives zero as it can be seen

easily by the dominated convergence. In the integral over (—f,f8), we insert the Taylor
expansion

v (x),z+E—u(x)dz (5.4)
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o (%), 2+ ¢ —u () = v (x),E — T (x))

do(u ! (x), & —u'(x)) L1 o (x),& —u'(x) + 0) .2

+ 0z : 2 0z2

(5.6)

where 0 in the error term lies between 0 and z. The contribution of the z° term to
the integral vanishes because it gives rise to an odd function. The contribution of the
second term is bounded by nCj in the limit # — 0 as it follows from assumption (a6)
and an explicit calculation. The z? term again does not contribute in view of assump-
tion (a9) and an explicit calculation. In this way, inequality (5.2) is proved.

As for the real part of (5.4), we proceed similarly. Inserting the expansion (5.6)
into the integral over (—f,) we obtain from the z* term

—Zo(™ ! (x), ¢ —ul (x))
B

where the assumptions (a6) and (a7) were used in the last inequality. The term with z
does not contribute and the term with z? is estimated by Csf in the limit # — 0. The
integral over (f,y) in (5.4) can be handled by means of (a6) and (a7),

' 2 < 2Cj,

y 22 . }72
L mv(u“(x),z +&— u_l(x)) dz

JV 22— ov(ul(x),00)

e e A L

7 —y! —
SCgJ z+¢& u2 (x) vdz:C{ln(l—l—a—I_v)—l—a—i_q
B z B Y

where we have employed v < 0; <z+ & —u!(x) and the inequality In(1 +x) <1+
[Inx|. Finally, we have

nf—u_l(x)—v
o+ v

1

SC3{2+

ooZZ_2
J = o (), 2+ E—u () d

SCQJ d—jﬁ & ;
y (224 n?)

, Z o4 v’

putting all these estimates together, we arrive at (5.1). ]

LEMMA 5.2. There is 03 > 0 such that for all 0 < |k| < d3 and almost every x € I,
the function W(x,-) defined by formula (4.6) for & > v+ u~'(x) and extended by zero to

the rest of the real axis, W(x,&) =0 for & <v+u~'(x), is absolutely continuous in any
compact subinterval of R.

Proor. From the proof of Theorem 4.2 we know that

1 .. )
W(x,¢) = - }}ggl+ Sr(x, &+ in),
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and therefore

W (x,€) = - Sra(x,). (5.7)
o 1 _ -1
ro(x,¢) == x— & — k20(X)%o(u1(x), &) = [D(x, 1, E)] (5-8)
for ¢>v+ul(x). Let § and 4 be the numbers from [Theorem 3.6, For x? <

ACTICY, Dy has no zeros if |€ — x| > 4 (see Lemmas B.4 and B and assumption (a2)).
On the other hand, for | — x| < 4 and 0 < || < J, real zeros can exist for at most zero-
measure set of x which we neglect (see the proof of Theorem 4.2). Apart of it W (x,")
has a continuous derivative in (v +u !'(x), ) and therefore it is absolutely continuous
in any compact subinterval. Let us denote
d .= 131€i1r11[x —v—u(x)] >0,

where the positivity follows from assumption (a5). Then |Di(x,x,¢)|>d/3 for
v+ul(x) <é<vt+ul(x)+d/3, kK <d/(3C\Cy), and oW (x,&)/0¢ is bounded by
an expression similar to the right-hand side of (5.1) in the considered interval of £&.  Due
to the integrability of |In(¢ —v —u~!(x))| and the estimate

37TC3
Cud

(W (x Ol < (&—v—u'(x)

(see assumptions (a6)—(a7) and (3.10)) W(x,-) is absolutely continuous in [v+u~!(x),
v+u'(x) +d/3]. Consequently, it is absolutely continuous in any compact subinterval

of R. Choosing
| A [ d
03 =min| 0,6

we get the desired result. ]

LEMMA 5.3. There exists 04 > 0 such that

M= max |o(x)%a(u ' (x),l(x,K))| < o0, (5.9)

xel, |k| <d4

Llil X X, K
g(x)a%( (az:)’C( ’ >>‘ < 0, (5.10)

and for all |k| < s := min(dy, (2M2)_1/2), x eIy, we have

M, := max
x6117|IC|S§4

161 (x, ) — x| < 2M1K*, 0 < &o(x,x) < 2M K2,

ol (x, k)
o2

C(x, ) — x| < 2M K2, ‘ <2M,,

where {(x,x) = {i(x,k) — i(5(x,K) is the function from Theorem 3.6.

Proor. By [Theorem 3.6 { is uniformly continuous in I x [~6/2,6/2]. Hence
there is 0 < d4 <0/2 such that for || <d4 and all xe I} we have |{(x,x)— x| <d.
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Then {(x,x) > v+ u~!(x) and the functions in the right-hand side of [5.9), are
continuous. Consequently, M, M, are finite. For |x| <Js we now have

l(x,x) _ 0(x)%o (=" (x),¢(x,K)) - M, <M
o2 I+ x20(x) (0% (w1 (x), {(x, 1)) J00)| = T—wx2My — 7
and the sought estimates on {(x,x) — x follow. ]
LemMmA 5.4. Let o be a number such that
O<a<d:= in§ (x —u'(x) =), a<dist(l;, C\Q),
and let us denote
Ny :={3eC||3—x| < a},
N, ={(x,9) el xC|xel,|%— x| <a}.
Then
i) Nyc{(x,9ell xC|Je\(—oo,u(x)+ ]},
(i) if xel, and 3 € Ny then (x,9) € N,,
(iii) N, is closed in R x C,
(iv) the numbers
M;() == ( rrgl)aXN lo(X)%a(u ' (x),9)| < oo, (5.11)
. 0%a(u! (x), 9)
My(o) := (;g)ztha o(x) 59 < (5.12)

are finite,
(V)  there exists an o' > o such that for any xe€li, 3 € Ny x, and |k| < d¢(a) :=
min(Js, \/a/4M,) (see Lemma 5.3) we have

gg(u_l(x), 3 = %Q(u_l(x), {(x,K))

n agg(u_l<a)2, C(xv K))

where F (x,-) is a function holomorphic in the interior of Ny . and

(9= L) + Z (x99 — LK) (513)

0(x) 7 (x,9)| < 8{632(“) =2 m3(2), (5.14)
'Q(x) Még’ 9)‘ < 16M) ) (5.15)

holds for & in the interior of N, ..

Proor. The claims (i)—(iii) trivially follow from the definitions, the claim (iv) fol-
lows from the assumption (a4) and the claims (i), (iii). Under our assumptions there
exists o > o satisfying all the assumptions of the lemma. Then for any x € I, the func-
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tion %o(u~'(x),-) is holomorphic in the interior of N, ,, the function # defined by
(5.13) exists and # (x,-) is holomorphic in the interior of Ny . For |k| < Jd¢(a) now
{(x,x) is in the interior of N, , and for all & in the interior of N, , we have

” 1 o(X)%o(u”'(x),2)
0(x)7 (¥, 9) = %LNH (z = (x,6) (z = 9) %

(
0F(x,8) 1 o) %o(u ' (x),2)
o() 09 _2mLNﬂ( (x,1)) % (z — s)zd'

If |x| <J(xr) and § € N, «, then

2= e n)| = |z — x| — ¥ — Cn k)| = o — 2MK2 > g (5.16)
|z—9|2|z—x|—|x—9|2% (5.17)
by Lemma 5.3, and the inequalities (5.14), (5.15) follow immediately. O

THEOREM 5.5. Assume (al)—(a9). Then there exist finite constants &' >0 and
Cs > 0 such that for all |k| <5' and t >0 we have

C6K2
t

(1, x) — A(x, i)e” 1 0m=0lon)| < (5.18)

for almost every x € I where {(x,x) = {y(x,x) — i{y(x,x) is the singularity location (with
{y real, {, > 0—cf. Theorem 3.6) and

u ' (x), E (o 10))]
A(x,K) = {1+K29(x)6%9( (), (x, ))] :

74
Proor. If k¥ = 0 we have {(x,0) = x by and %(t,x) = e™™ (see (2.2)) so the
theorem holds with any Cg. Let us further suppose that k # 0. By and

assumption (a8), {(x,x) >0 for almost every x e[ if |x| <dJ2. Let us exclude the
remaining zero-measure set of x’s from our considerations. Then the integral

0 R
| eevmgac= pim | v ac (5.19)
—% —©J_R
where
14
V&) = Ly C(x(;cc;’c—)é’ (5.20)

exists in the generalized sense [5.19). While the Lebesgue integral does not exist due
to the behavior at large |&|, the existence of generalized integral is well known and will
be in fact seen from our calculations below. We shall estimate the difference between
U(t,x) in and the integral (5.19).

Let us recall from the proof of Theorem 4.2 that

1 1. 1
W(x,&) = nlir{)l+ Sr(x, ¢ i) = S —— G (). (5.21)
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where the last equality should be used for ¢ > v +u~'(x) only. Combining this with
(4.6), assumptions (a2), (a6) and we arrive at the estimate

K2C1C2
(f — X — K2C1 C4)2

[W(x,8)| < (5.22)

for & > x+x2C;C4. Due to we can integrate by parts for |x| < Js,

J: W (x, &) — Vi(x,&)|dé = —ZJZ e-"fta%[W(x, &)~ V(x.0)de.

Let us choose an o > 0 satisfying the assumptions of [Lemma 5.4 and consider only the
values of the coupling constants such that

. 1
0 < |x| < min (53,56(05),51 /&). (5.23)

To calculate 0W (x,¢&)/0¢ let us denote for a while
D+ = D+<x> K, f) =X = é - KZQ(-x)g.Q(uil(x); é)a
Dy =RD, = x— & —1o(x)R%a (1 (x),8),

Dy = SD, = —i20(x)S%(u~" (x), &),

0 0
Df = 2 = 1= ()R £ ol (4).),
oD 0
D; = 5—; = —KZQ(X)%a—égQ(”A(X)a ¢).
Then
0

52 W(x.6) =~ |Dy[ (D} ~ D3)D} 201D} Dy,

If now | — x| > «/2 the assumption (a2) together with Lemmas .1 and 5.1 (where we
denote the constant as Cj) imply

1D, | > | — x| — K2C\ Cy >%>o,

|
D2 5E - al,

|D1| < |f — x| +K2C1C4 < 2|f — X|,
o
4’
|Dj| < C; + K2C Cs|In(é — u ' (x) —v)| + k2 C1Cs(E — u 1 (x) — ),

|D2| < K2C1 Cy <

|D}| < k*rC) Cs.
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From here we get

0
e W(x, f)‘ dé < Cix?,

J(v—i—ul (x), x—0/2)U(x+0/2, 0)

where the explicit value of the constant C; can be expressed from the above estimates
if necessary. What is important is that C; can be chosen independent of x in the
considered range.

Let us consider the term V(x,&) now. We have the bounds

1 1
1 —|—IC2M2 - |A(X,K)’ - 1- KZMZ
by [Lemma 3.3, so
2
3 <|A(x,x)| <2 (5.24)
holds for
| < min(dy, (2M,)""3). (5.25)

Denoting for a while 4; = RA(x, k), A» = SA(x,x), we have
Ai| < [A(x, &) <2, |Aa] <K Ma|A(x,K)|* < 4> M,

and

A[(& = L1 (x, %)) = Galx,0)] = 24165 (x,6) (€ — L1 (x, &) '

0 1
"=z (=GR + Gon) P

If |&— x| >a/2 and
k| < min (55, 8;;‘4) (5.26)

we have |¢€ —{ (x,x)| > /4 by [Lemma 3.3, and therefore

0
J — V(x, f)‘ dé < Cgi?
(—o0,x—0a/2)U(x+a/2, ) aé

with a x-independent finite constant Cg which can be given explicitly if necessary.
Let us now turn to € (x —a/2,x+ o/2). Using the expansion (5.13),

_ lo KZA(x, K)Zg(x)%(x, <)
W(x,&) —V(x, &) = _—r AR — T D)

O ey — v e = Laa gie o2 )OF (x,9)/08) — kK2 A(x, K)o(x)*F (x,&)’
oz Wne) = Vel =5 {A(’) 1+ k24 (x, 1) 0(x) (¢ — E(x, 1)) F (x, E)]? }

Using (5.24), (5.14), (5.15) together with [Lemma 5.3, and assuming that

. I [« 1
|k| < min (56(00,5 \/_]\_1—:’ W) , (5.27)
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we obtain

2 W) - V5,0 < o,

where
Cy := 1—: (my () + 206 () *m3(2)?).

Putting all the estimates together, we get

Jm e’f’%[W(x, &) — V(x, )] dé| < Cerc?,

where
Co = C7+ Cs + Con
and
|| <0

0’ being the minimum of 6,d, and the right-hand side in (5.23), (5.25)—(5.27). Eval-
uating the generalized integral

J v e (x, &) dE = A(x, K)eEx)

by closing the integration contour in the lower half-plane for # > 0 the inequality (5.18)
is obtained. [

The theorem is apparently useless for very short and very large times when the error
estimate O(x?t~') is much larger than the amplitude value ~ exp(—{>(x,x)t). On the
other hand, we get a nontrivial bound for the times when

C6K2

« e~ (5.28)

where we take into account that A(x,x) ~ 1. Let us write

C2<x7 K) = K2772(X, K)7
ny(x, k) = ng(x)v(u’l(x),x — u’l(x)) + 0(x?) (5.29)

for small coupling x. In the subsequent formulas we do not write the arguments of
11,, however, its x-dependence should be kept in mind in general. The relation
is valid for T} « t « T, where Ty, T, are two solutions of the equation

KznzTie’Kz’hT" = Cex*n,, i=1,2. (5.30)

If 2T is small we can approximate the equation by replacing the exponential with one
obtaining

T ~ C6K2.
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On the other hand, if x?7,T> > 1 we do not enlarge the range (T}, T>) by dropping the
linear factor in (5.30). Then we obtain

1
Tz ~———1In C6K4I’] .
K2172 ( 2)

The right-hand side here is an decreasing function of 7, in the interval (0, Cg'x~*). By
(5.29) and assumptions (a2), (a6) we have

0< 175 < nC]CZ

in the x° approximation. Restricting ourselves then to the coupling constant values
with

|K| < (nC1 C2C6)_1/4,
we can safely use

1

o~
2 nC1 Cykc2

111(7'[C1C2C6K4).
Hence we see that the announced approximately exponential behaviour of (-, x)

holds in the weak-coupling regime over wide time range, roughly speaking from
e eVt to ClCy 2

6. Long time behavior.

The fact that the bound given by becomes useless at very large times is
not coincidental, because the decay rate is indeed slower there. To illustrate this claim,
for instance, let x € I; be such that by [Lemma 3.4, [Theorem 3.6(b), Theorem 4.2 and
assumptions (a6)—(a8), we have

W (x,&) is finite and continuous with respect to & e [v+u~!(x), o0) (6.1)

for 0 < |x| < J,, where J; is the number from Theorem 4.2. This holds for almost every
X € 11.
By (a6) and (4.6), we get

K20(x)Cy o
= &= k() (x), O
Since limg ., I(u~!(x),&) =0 by (3.8), we get
N K2 0(x)Cy
e (x=8
Thus, g(<) = Xpiu-1(x), ) () W(x,<) is in L*(R), but its support is not the whole R, and

W (x, )] < 7).

(6.2)

o0

U(t,x) = J g(&)e < dé

v+u~(x)
by [4.5). Applying now [13, Corollary C2], we find that for almost every x e I; and
‘K ‘ < 52
u(t,x) does not decay exponentially as |f] — oo. (6.3)
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To learn more about the long-time asymptotic behavior of %(¢,x), we adopt the con-
ditions (al0)—(al3) below, and employ the results of and in the same way as in
[14, Theorem 3.2(ii)].

Given v >0 and 0 € (0,7/2), we define D, by

D,y:={{eC|R{>v,—0<arg{ <O0}. (6.4)
If v< v/, we have therefore
D, g D,y. (6.5)
Let us denote
Q@) = (@~ . (6.6)
yely

Notice that Q(v) = () _, Q. by (a3). We shall assume:
Y€l )
(al0) There exists 0y € (0,7/4) such that D, 4 < Q(v).
(all) wv(y,¢) >0 holds for each yely and & > v.
(al2) Given y € Iy, there exists C, >0 and ¢, > 0 such that

v(3, Ol < GIE™

holds for any { € Q(v).
Notice that for v which is continuous by (a3), the assumption (all) implies, in par-
ticular, that for each xe/; and o, f € (v,0) we have

— 7 -1
My o p = a;rgt;ﬁv(u (x),&) > 0. (6.7)

For fixed x e I} and { € Q\(—o0,u"'(x) +v], we have defined D, (x,x,{) by (3.17). In
a similar way, we define three other functions, D_(x,x,{), W(x,{), and g.({) by
D_(x,5,0) i= x — { = 0(x) %2 (" (x),0), (6.8)

_ Kro(x)u(u (%), { —u ! (x))
W(x,{) = D xr 0D D) (6.9)

9x(8) = W(x,{+u'(x))

_ ool (1), 0) |
D, (x,ic,{ +u N (x)D_(x, k5, +u1(x))’

(6.10)

in the last case (e Q(v)\(—o0,v]. Then, for almost every xel; and x e R with
0 < |x| < da,

g» can be regarded as measurable with g, e L'((v, 0),d¢&) (6.11)
by (6.1) and [6.2), and we can write the time evolution as follows,

o0

UL, x) = ei“l(x)lj ge(E)e < dé, (6.12)

v

by and (4.6).

Next we need several lemmas. The first of them follows from (a3), (al0), and
Lemma 3.4
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LemMa 6.1. g, ({) is meromorphic in D, g, for every x €l and k € R.

LEMMA 6.2. For every x el with o(x) #0, £€ R with £ > v, and k € R with 0 <
‘K| < 52,
811%1 gx(é - ig) = gx(f)' (613)
Proor. Let &' =¢+u'(x). By [Lemma 3.4 we have

D, (x,x,&") = 5,11>I(l)’£ D, (x,1c,E" — ie)

=x =& =1 {I(u ' (x),&") + ino(u (x), &)}, (6.14)
D_(x,x,&") = 8111(1)1+ D _(x,1c,E" —ie)

= x— & —iPo(x){I(u " (x),&") — imv(u! (x), &)} (6.15)
for & >u~!(x) +v (¢ >v), which implies that
D (x,x,&")D_(x,x,¢")
=[x — & = o) I(u"(x), &) + n?rto(x) v(u " (x), &), (6.16)
Then lim,_o+ W (x,& —ig) = W(x, &) follows from (4.6) giving (6.13). ]

LEMMA 6.3.  For every x € I}, with o(x) # 0, all sufficiently small ¢ > 0, every o, [} €
(v,0) with o < 8, and every k € R with 0 < |k| < 0, there exists a constant Cy ,p >0
independent of ¢ such that

sup [gx(& —ie)| < Cyap- (6.17)

a<é<p
Proor. Let us choose 0 < 0; < 6 and set
Sy g ={leC|p<R{<q,—vtanl; < I < 0}.

Fix ¢’ e R with 0 < ¢ < 1 arbitrarily. v(u!(x),-) is uniformly continuous in S, s by
(a3) and (al0) since S, 3 = Q(v). So there exists a constant ¢ = ¢(x,¢’) > 0 such that

o(u™! (x), & — ie) — v(u™(x), &) < &lo(u" (x), &)
for « <& <f and 0 <& <ée and we have
(! (x), & —ig)] < (1 + &)o' (x), &) (6.18)

fora <é<pBand 0 <e<eg. Since Di(x,x,-) is holomorphic in Q\(—oo,u"!(x) + ]
by [Lemma 3.4, D (x,x,-) is uniformly continuous in S, s+ u~!(x). In view of [6.14)
and there exists & = &(x,&’) > 0 such that

’Di(xﬂ K, él - ig) - Di(x> Kvé,)‘ < 8/‘Di(x> K, f/)’
for &' =&+ u(x) with « <& < and 0 <e<e. Hence we have

(1 —&")|Di(x, K, &+ u’l(x))| < |Di(x,kx,&+ u’l(x) —ig)| (6.19)



A model of interband radiative transition 781

ifao<&<pfand 0<e<e. Using further [6.7), [6.10), (6.16), (6.18) and (6.19), we get
(1 +&)r?o(x)|ou ! (x), )|

|gx(& —ie)] < (1= 2Dy (e, &+ ()D_ (5,00, &+ 1 (x)]
(1+ &) o(x) ou! (%), &)
T (1= ) racto(x) o(u! (x), )|
(1+¢")
- (1- 8/)2/1)67%57'52":29()6)
for a < ¢ < f and 0 < & < ¢ = min{e;, &}, which implies the desired result. O

LemMA 6.4.  For every x € I,, all sufficiently large |{| with { € D, g,, and every k € R
satisfying 0 < |k| < 62,

C
9:(0)] < m—“

with a constant Cig > 0 independent of { € D, y,.
PrROOF. In this proof, we set y = u~!(x), &' =&+ u~!(x), and let ¢ > v > 0. Since
D_(x,rk,& —ig) =x — (&' —ie) — k?0(x)9(p, & — ie)
for every ¢ >0, we get
D (x5, &+ u™! (%) = ig)|* = (& + A,x(9),
where
A5 (&) = k20(x)RG(y, &' —ie) +u ' (x) — x.
Set
B, = 1%0(x)Cy + |u~' (X)| + |x] > 0.

Then we get |4, «(&)| < By by [Lemma 4.1. Since we now take £ > 0, we get for every
C_ with 0 < C_ <1,

(E+ A, (&) = C2* = & —2BE — C2 &2

B. \ B2
_ 2 . X . X
= C—)(é 1—C2) 1-C?’

Thus there exists C_ with 0 < C_ <1 and ¢_ =¢_(x) > 0 independent of & > 0 such
that

|D_(x,x, &+ ut(x) —ig)| > C_¢& (6.20)
for every ¢ >¢_. As for D, (x,k,& —ig), we have
D, (x,x,& —ig) = D_(x,x,& — ig) — 2i*o(x)mo(p, & — ie)
for any ¢ > 0. Moreover, by (al2) we get
G G

lv(y, ¢ —ie)| < W = &
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for £ —ice Q(v). Thus there exists é:_ > 0 independent of & > 0 such that if & > éﬁr,
then

) C_
lv(y, & —ig)| < dmo(x)
Together we get
D (x5, & +u ' (x) —ie)| = [D_(x,,,& +u" (x) — ie)| — %

2Cé—%>0

for & > max{¢_, &}, 1} =: &, by (6.20); notice that &, is independent of ¢ > 0. On the
other hand, we get

c. _ C
> —
c-< 2 2 <
for £ >¢&,. Now we set C, :=C_/2; then 0 < C; <1 and
|D(x,5,& +u (x) —ie)| > Cy & (6.21)

for every & > &, Put £ = R{ and —y = 3¢ so that # > 0. Then, having & > 7, we get
282 — (2 +92) =& —5? > 0. Hence by (6.20) and (6.21) we obtain

Cil  _ |De(x(+u' ()

Cs
25 Jaey §
for { =¢ —in with & > max(&y,n). If (e D, g, with R > max(&y, [SC]), we have
Ul = Dl Lt () (6.22)

Using then (6.10), (al2) and (6.22), we arrive at

2
l9x(O)] < 2 o(v) g~

C,.C_
for sufficiently large |{| with (e D, y,. (]
Next we set for any x e [}
1 2 “o(u ' (x),2)
d'=x—(v+u (x) —« Q(X)J ﬁdz. (6.23)

REMARK 6.5. Recall that by (a5) d° is positive for sufficiently small |k]|.

Let us finally state the last assumption:
(al3) Given x € I, there are numbers A4, , # 0 and p, , >0 such that

lim v(u ' (x),¢+v)

{—0 Z:Pv, X
{eDy g,

=A4, .

This is a new assumption for u~!(x) = f(()_) only, the existence of 4, , and p,
follows from the holomorphicity and (al3) only fixes the notation for other values of x.
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If we would require the closure Dy g, to be a part of 2(v) in (al0) then (al3) would hold

automatically.
We set
2 x—v—ul(x)
P () (u ! (x), v+ u ! (x)
© o(u N (x),z !
= (x—v—u_l(x)){g(x)J %‘2’)0’2} . (6.24)

By (a5), this quantity satisfies x; . >0 and d # 0 for x* # ] .
LEMMA 6.6. Assume (al)—(a3), (a6), (a7), (al0) and (al3). Then
lim  Dy(x,x,&—in+u'(x)) =d, (6.25)

E—vt, =0+
where for u='(x) = f(()_) the limit is taken with & —in—ve Dy, only.
Proor. By (3.17), (6.8) and Lemma 3.4

D, (x,x,&—in4+ul(x)=x—&—ul(x)+in
— 20() [ (%), & — i+ 1 (x)) + i (), & — i),
D (x,k,& — in + 7 (¥)) = x — & — (%) + i — 120(¥)F (! (%), & — i + 1 (x)
for n > 0, £ —in € D, y, which is the sufficient range of variables due to (a3) and (al0).

Under assumption (a3), for u~'(x) > &\ there exists 4 >0 such that v(u~'(x),) is
holomorphic in the set {{ e C||{ —v| < 24}. Taking into account (a7) then

lim  o(u'(x),&—in) = v(u ' (x),v) =0.

c—=vhn—0"
The same holds by (a6), (a7), (al0) and (al3) for u~!(x) = éf;) taking the limit with
E—in—veDyy. Let us write
(! (x),2) — o(w ! (%), €)
v Z = f + ”7
Az JOO v(u(x),2)
v Zmotin Ju 2=CH 0y

dz

G (), & — i+ u” (x)) = j

—|—v(u1(x),é)J dz  (6.26)
with a fixed 4 > 0. For the first and third integral, dominated convergence theorem
can be used giving (recall (a7))

[t

. z—v

as the limit of their sum as & — v", # — 0. The second integral

v+A4 d 1 A — 2 2
J 7Z.=—ln(v+ f) | —|—i<arctanL+arctan 7 —n)

y Z—¢+in 2 (E—v)" +7n? v+A4-¢ E—v
forv<é<v+4,7>0. As |o(u!(x),&)| < C3(¢ — v) with constant C; from (a6), the
limit of the second term in (6.26) is zero. Now is seen. O
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LemMa 6.7. Let 0 < || <62, x€ I} and d} #0. Then the function {+— g (v + ()
has no poles in {{ e Dy, ||l| <eo} with a constant ey > 0 and the limit

. gx(v+9)
WV.X L .
’ {=0,0eDyq, (P
20(x) Ay« 20(x) Ay, x
_ K=o(x) 4y, _K Q(X)2 X (6.27)
Dy, v+ uw ()D_(x kv +u ' (x)  d»

Proor. The poles of g,({) come only from the zeroes of D (x,x,{+u"'(x)). If
d} #0 then
lim v+ =0 6.28
ol 9 v+ (6.28)
by and Lemma 6.6 By [Lemma 6.1, g, is meromorphic in v+ Dy 4, so its only
possible singularities there are isolated poles; they also do not accumulate at v due to
(6.28). Thus g, (v+{) has no poles in a small neighborhood of {=0 in Dy,,. By
(al3), we therefore have

N K%Q(X)wa
(=0 dx?

gx(v+0) G O

Now we can formulate the main theorem of this section:

THEOREM 6.8. Assume (al)—(a7), (al0)—(al3). Then for every xel; and k€ R
satisfying o(x) >0, d #0, 0 < |k| <2 we have the following asymptotic behaviour:

%(t, x) o~ mee*i[v#»u*l(X)]tefin(Pv‘xﬂLl)/z['(pwx + l)f(m,xﬂ),

where I is the gamma function.

Proor. 1t is sufficient to apply [13, Theorem 2.1] to with the help of Lemmas
6.1-6.7 and we obtain the desired result. ]

7. Alternative assumptions.

Our results rely on a number of assumptions. Some of them, such as (al) and (a5),
have a physical content and define the model we are investigating. The same applies to
a certain extent to the assumption (a3) which allows us to use techniques based on
analytic continuation without which the solution would be hardly possible. Most of the
other assumptions represent natural mathematical requirements which allow us to carry
our considerations through. Without any doubt some of them can be weakened at
the expense of making the reasoning more cumbersome and technically involved. The
assumption (all) strengthens (a8), the assumption (al0) requires the set Q from (a3) to
be large enough. The boundedness of first derivative in (a6) follows from boundedness
of function v in (a6) and second derivative in (a9). With these exceptions, the assump-
tions are mutually independent.

On the other hand, the reader may rightly feel that some assumptions such as (a4)
are rather implicit and the whole set is not easy to oversee. This is why we present
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in conclusion a shorter list of stronger hypotheses which imply all of (al)—(al3) used
throughout the paper. Let us first remind the notation of the intervals involved:

IO - [é(()_)7é(()+)]7 Il = [ég_)aé§+)]a K = [V7 00)7 V= 0.

The simplified set of assumptions then reads as follows:

(bl) The inequalities
—o <& el <y <l <l <o
hold and u: Iy — I, is a C!-bijection of closed intervals.
(b2) The weight functions wy,w; are continuous and strictly positive in Iy, I,
respectively.

(b3) There exist numbers 6y € (0,7/4), C, >0, ¢ > 1, an open set Q, = C, and a
function v : I x 2, — C such that

{zeC|Rz>v—& +&70>32> Rz + &7 — &) tan(6y)} < @,
for every y € Iy, the function z — v(y,z) is holomorphic in Q, and has a zero
at z=v, 1i.e.,

v(y,v) =0,
the function v satisfies the estimate
o(y,2)] < Colz|™*
for every yely and ze Q,. The equality
o(y,2) = [A(y,2)[w(z) > 0

holds for y e Iy and z > v, where the measurable function A and the weight
factor w are functional parameters of the model introduced in Section 2.

(b4) The functions v(y,z) and 0v(y,z)/0z are continuous in [y x K. There exist a
constant Cs >0 and a function /e L!'(K) such that

*v(y, ) dv(y,z)
0z2 0z

< C5a

< h(z)

for every yely, ze K.
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