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Abstract. Let K be a division ring with a s-derivation d, where s is an endomor-

phism of K and KðX ; s; dÞ be the quotient division ring of the Ore extension K ½X ; s; d�

over K in an indeterminate X . First, we describe non-commutative valuation rings of

KðX ; s; dÞ which contain K½X ; s; d�. Suppose that ðs; dÞ is compatible with V , where V

is a total valuation ring of K , then Rð1Þ ¼ V ½X ; s; d�JðVÞ½X ; s; d�, the localization of V ½X ; s; d�
at JðVÞ½X ; s; d�, is a total valuation ring of KðX ; s; dÞ. Applying the description above,

then, second, we describe non-commutative valuation rings B of KðX ; s; dÞ such that

BVK ¼ V , X A B and BJRð1Þ, which is the aim of this paper. In the end of each

section we give several examples to display some of the various phenomena.

0. Introduction.

Let K be a division ring, s be an endomorphism of K and d be a s-derivation,

i.e., an additive map d : K ! K such that dðabÞ ¼ sðaÞdðbÞ þ dðaÞb for all a; b A K . As

usual, K ½X ; s; d� ¼ f f ðXÞ j f ðXÞ ¼ anX
n þ � � � þ a0; ai A Kg is the Ore extension over K

with Xa ¼ sðaÞX þ dðaÞ for any a A K , where X is an indeterminate. It is a very in-

teresting problem to describe all non-commutative valuation rings of KðX ; s; dÞ, the

left quotient division ring of K ½X ; s; d�. However, the problem seems rather di‰cult

as can be seen in [BT], [BS], [KMP], [XKM1], [XKM2]. Let V be a total valuation

ring of K and ðs; dÞ be compatible with V . Then, in [BT], they proved that Rð1Þ ¼

V ½X ; s; d�JðVÞ½X ;s; d�, the localization of V ½X ; s; d� at JðVÞ½X ; s; d�, is a total valuation ring

of KðX ; s; dÞ such that Rð1Þ VK ¼ V , X A Rð1Þ and we have obtained more detailed re-

sults on Rð1Þ, based on some properties of ðs; dÞ (see [XKM2]).

The aim of this paper is to describe non-commutative valuation rings B of KðX ; s; dÞ

such that Rð1Þ
KB, BVK ¼ V and X A B.

The paper is organized as follows:

In Section 1, we shall study non-commutative valuation rings of KðX ; s; dÞ con-

taining R ¼ K ½X ; s; d�, adopting the methods and results in [C], [LL] and [LM]. If d

is not a quasi-algebraic s-derivation, then there are no proper non-commutative valu-

ation rings of KðX ; s; dÞ containing R (Corollary 1.2). In the case where d is a quasi-

algebraic s-derivation and s A AutðKÞ, the group of all automorphisms of K , we shall

describe all non-commutative valuation rings of KðX ; s; dÞ containing R (Theorem 1.7).

If s B AutðKÞ and d is a quasi-algebraic s-derivation, then there is a monic invariant

polynomial pðX Þ of minimal non-zero degree such that K ½X ; s; d�pðXÞ is a maximal
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ideal. Set K̂K ¼6y

i¼1
pðXÞ�i

KpðX Þ i, a division ring containing K . We can extend s

and d to ŝs and d̂d with ŝs A AutðK̂KÞ and obtain R̂R ¼6y

i¼1
pðXÞ�i

RpðXÞ i ¼ K̂K½X ; ŝs; d̂d� with

a maximal ideal P̂P ¼ R̂RpðX Þ. If K̂K is left algebraic over K and RpðXÞ is completely

prime, then R̂RP̂P is the only proper total valuation ring of KðX ; s; dÞ such that R̂RP̂PKR

(Proposition 1.9). If K̂K is not left algebraic over K , then the circumstances become very

complicated so that we only treat the case where K is a field (Proposition 1.11).

Suppose that V is a total valuation ring of K and ðs; dÞ is compatible with V .

Then s and d naturally induce s and d of V ¼ V=JðVÞ, a division ring and we can

construct the Ore extension V ½X ; s; d� over V . By applying the results in Section 1 to

V ½X ; s; d�, in Section 2, we shall study non-commutative valuation rings B of KðX ; s; dÞ

satisfying the following conditions: BVK ¼ V , X A B, BJRð1Þ. If d is not a quasi-

algebraic s-derivation, then Rð1Þ is the only non-commutative valuation ring of KðX ; s; dÞ

satisfying the conditions. If s A AutðVÞ, then we can describe all non-commutative

valuation rings of KðX ; s; dÞ satisfying the conditions. However, in the case where s B

AutðVÞ and d is a quasi-algebraic s-derivation, we can only describe non-commutative

valuation rings of KðX ; s; dÞ satisfying the additional conditions in Propositions 1.9 and

1.11 respectively.

In the end of each section, we shall give several examples designed to display some

of the various phenomena.

1. The non-commutative valuation rings of KðX ; s; dÞ containing K ½X ; s; d�.

Throughout this paper, K is a division ring, s is an endomorphism of K and d is a

s-derivation.

The aim of this section is to describe non-commutative valuation rings of KðX ; s; dÞ

containing K ½X ; s; d�.

There are three types of non-commutative valuation rings as follows: Let Q be a

simple Artinian ring and let R be an order in Q, i.e., R is a prime Goldie ring. We say

that R is a Dubrovin valuation ring of Q if R is semi-hereditary and R is local, i.e.,

R=JðRÞ is a simple Artinian ring, where JðRÞ is the Jacobson radical of R. Assume

that Q is a division ring. A subring R of Q is said to be a total valuation ring of Q, if

for any non-zero q A Q, either q A R or q�1 A R. Furthermore, a total valuation ring R

of Q is said to be invariant if q�1Rq ¼ R for all non-zero q A Q. It is easy to see that a

total valuation ring R is a Dubrovin valuation ring and the converse is not necessarily

true. We refer to [MMU] for some properties of non-commutative valuation rings.

First, we shall study ideals in K ½X ; s; d� where properties of ðs; dÞ are of critical

importance. Following [LL], a s-derivation d is said to be quasi-algebraic if there exist

an ¼ 1; an�1; . . . ; a0 A K , n > 0 such that
Pn

i¼1 aid
i ¼ Da0;s n , where Da0;s nðaÞ ¼ a0a�

s
nðaÞa0 for all a A K . In [LL], they conjectured that K ½X ; s; d� is not simple if and only

if d is a quasi-algebraic s-derivation. In the case where s A AutðKÞ, Lemonnier gave a

necessary and su‰cient condition for K ½X ; s; d� to be not simple ([L]). In [LLLM], they

gave an a‰rmative answer to the conjecture by using some results in [LL].

Proposition 1.1 ([LLLM, (3.6)]). Let K be a division ring, s be an endomorphism

of K and d be a s-derivation. Then K ½X ; s; d� is not simple if and only if d is a quasi-

algebraic s-derivation.
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A non-commutative valuation ring B of KðX ; s; dÞ is said to be proper if B0

KðX ; s; dÞ. Throughout this section, set R ¼ K ½X ; s; d�, which is a left principal ideal

domain.

Corollary 1.2. If d is not a quasi-algebraic s-derivation, then there are no proper

non-commutative valuation rings of KðX ; s; dÞ containing R.

Proof. Let B be a proper non-commutative valuation ring of KðX ; s; dÞ containing

R. Then JðBÞ0 0 and so JðBÞVR0 0. Hence d is a quasi-algebraic s-derivation by

Proposition 1.1, a contradiction. r

From Corollary 1.2, we may assume that d is a quasi-algebraic s-derivation. The

inner order of s, denoted by �ðsÞ, is defined by the smallest positive integer n such

that sn ¼ Ia, the inner automorphism induced by a, where a A K ; if no such natural

number n exists, then �ðsÞ is y. Note that �ðsÞ ¼ n < y, then s A AutðKÞ. A monic

polynomial pðX Þ with deg pðXÞ ¼ n is said to be invariant if for any a A K , pðXÞa ¼

snðaÞpðXÞ, pðXÞX ¼ ðX þ cÞpðXÞ for some c A K . Note that K½X ; s; d�pðX Þ is an ideal

of K ½X ; s; d� if and only if pðXÞ is invariant.

In the remainder of this section, except for Propositons 1.4 and 1.5, we always

assume that d is a quasi-algebraic s-derivation and pðXÞ is a monic invariant poly-

nomial of minimal non-zero degree with deg pðXÞ ¼ n.

If �ðsÞ ¼ m < y, then in [C], Cauchon proved that ZðRÞ ¼ ZðKÞ
s; d

½lpðXÞ l � for

some non-zero l A K and some natural number l, where ZðSÞ stands for the center of S

for any ring S and ZðKÞ
s; d

¼ fa A ZðKÞ j sðaÞ ¼ a and dðaÞ ¼ 0g (also see [LL, (2.8)]).

We note that any non-zero prime ideal of R is maximal.

With this notation, we will describe all maximal ideals of R in the following lemma

which is essentially due to Cauchon.

Lemma 1.3. Suppose that d is a quasi-algebraic s-derivation.

(1) If �ðsÞ ¼ y, then P ¼ K ½X ; s; d�pðXÞ is the only maximal ideal of R.

(2) If �ðsÞ < y, then any maximal ideal of R is one of the following: P ¼

K ½X ; s; d�pðX Þ, M ¼ RwðY Þ, where Y ¼ lpðXÞ l and wðYÞ runs over all irreducible

polynomials of ZðKÞ
s; d

½Y � di¤erent from Y.

Proof. It is clear that P ¼ RpðXÞ is a maximal ideal of R in all cases.

(1) First, we note that if �ðsÞ ¼ y, then ZðRÞJK . To prove this, on the con-

trary, assume that there exists a polynomial cðXÞ ¼ cnX
n þ cn�1X

n�1 þ � � � þ c0 A ZðRÞ

with nb 1, cn 0 0, then it is easy to see that sn is inner induced by c�1
n , a contra-

diction. Hence P is the unique maximal ideal of R by [C, (6.2.13)].

(2) Let M be any maximal ideal of R with M ¼ RqðXÞ for some monic invariant

polynomial qðXÞ in R and M0P. Then qðXÞ ¼ awðYÞpðXÞm (see [LL, (2.8)]), where

a A K , wðY Þ A ZðKÞ
s; d

½Y � and mb 0. Since M0P, m ¼ 0 and wðY Þ must be an irre-

ducible polynomial di¤erent from Y , showing that M ¼ RwðY Þ. Conversely, it is easy

to see that RwðY Þ is a maximal ideal of R, where wðY Þ is an irreducible polynomial of

ZðKÞ
s; d

½Y � di¤erent from Y . r

The following two propositions are remarkable and may be implicitly known.

However we shall give proofs of them for the reader’s convenience.
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Proposition 1.4. d is inner if and only if there exists a monic invariant polynomial

pðXÞ ¼ X � b for some b A K .

Proof. Suppose that d is inner. Then there is an element b A K such that

dðaÞ ¼ ba� sðaÞb for all a A K . Then Xa ¼ sðaÞX þ dðaÞ ¼ sðaÞX þ ba� sðaÞb so that

ðX � bÞa ¼ sðaÞðX � bÞ. It easily follows that ðX � bÞX ¼ ðX � bþ sðbÞÞðX � bÞ by

using dðbÞ ¼ b2 � sðbÞb. This means that X � b is a monic invariant polynomial.

Conversely, suppose that X � b is a monic invariant polynomial. Then ðX � bÞa ¼

sðaÞðX � bÞ and ðX � bÞa ¼ sðaÞX þ dðaÞ � ba for any a A K and so sðaÞðX � bÞ ¼

sðaÞX þ dðaÞ � ba. Hence dðaÞ ¼ ba� sðaÞb, i.e., d is inner. r

Proposition 1.5. Suppose that K is a field and that s0 1. Then d is inner.

Proof. Since s0 1, there exists an element b A K with sðbÞ0 b. For any

a A K , sðaÞdðbÞ þ dðaÞb ¼ dðabÞ ¼ dðbaÞ ¼ sðbÞdðaÞ þ dðbÞa and so ðsðaÞ � aÞdðbÞ ¼

ðsðbÞ � bÞdðaÞ. Let c ¼ �dðbÞ=ðsðbÞ � bÞ A K . Then dðaÞ ¼ ca� sðaÞc for any a A K ,

i.e., d is inner. r

We shall study the proper non-commutative valuation rings of KðX ; s; dÞ containing

R by using Lemma 1.3 and the following lemma which is implicitly known. An order

S in a simple Artinian ring Q is called Dedekind if every one-sided ideal of S is a

progenerator (see [MR, (5.2.10)]). A prime ideal P of S is left localizable if CðPÞ ¼

fc A S j c is regular modPg is a left Ore set and any element in CðPÞ is regular. We

denote by SP the localization of S at P if P is left localizable. If P is left and right

localizable, then we say that P is localizable. If S is a Dedekind order in Q, then any

non-zero prime ideal is a maximal ideal of S (see [MR, (5.4.5)]). Hence the following

lemma follows from [D, Theorems 3 and 4, §2].

Lemma 1.6. Let Q be a simple Artinian ring and S be a Dedekind order in Q. Then

there is a one-to-one correspondence between the set of all proper Dubrovin valuation

rings of Q containing S and the set of all non-zero maximal ideals of S, which is given

by j : B ! JðBÞVS and j�1 : P ! SP, where B is a proper Dubrovin valuation ring of Q

containing S and P is a non-zero maximal ideal of S.

If s A AutðKÞ, then R is a principal ideal domain so that it is a Dedekind order in

KðX ; s; dÞ. Thus the following theorem follows from Lemmas 1.3 and 1.6.

Theorem 1.7. Suppose that s A AutðKÞ and d is a quasi-algebraic s-derivation such

that pðX Þ is a monic invariant polynomial of minimal non-zero degree.

(1) If �ðsÞ ¼ y, then RP is the only proper Dubrovin valuation ring of KðX ; s; dÞ

containing R, where R ¼ K ½X ; s; d� and P ¼ RpðX Þ.

(2) If �ðsÞ ¼ m < y, then any proper Dubrovin valuation ring of KðX ; s; dÞ con-

taining R is one of the following: RP;RM , where M ¼ RwðY Þ is as in Lemma 1.3.

Next we shall study the case where s is not an automorphism. Since P ¼

RpðXÞX pðX ÞR, we have an ascending chain of overrings; RW pðXÞ�1
RpðXÞW � � �W

pðXÞ�m
RpðX Þm W � � � : Set R̂R ¼6y

i¼1
pðX Þ�i

RpðX Þ i. Furthermore, KpðXÞX pðX ÞK

so that we have an ascending chain of division overrings; KW pðXÞ�1
KpðXÞW � � �W
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pðXÞ�m
KpðX Þm W � � � : And we set K̂K ¼6y

i¼1
pðXÞ�i

KpðXÞ i, a division ring containing

K . Let pðXÞ�m
apðXÞm be any element in K̂K where a A K . Define ŝsðpðX Þ�m

apðX ÞmÞ

¼ pðX Þ�m
sðaÞpðXÞm. It is easy to check that ŝs is well-defined and ŝs A AutðK̂KÞ. By

usage of pðXÞ, we have another automorphism t of K̂K defined by tðaÞ ¼ pðXÞapðXÞ�1

for any a A K̂K . We note that we have a descending chain of subdivision rings; KX

tðKÞX � � �X tmðKÞX � � � and sn ¼ tjK , the restriction of t to K , where n ¼ deg pðX Þ.

We also note that R̂R ¼ R if s A AutðKÞ. Using this notation we have the following:

Proposition 1.8. Suppose that s B AutðKÞ and d is a quasi-algebraic s-derivation

such that pðX Þ is the unique monic invariant polynomial of minimal non-zero degree.

(1) R̂R ¼ K̂K½X ; ŝs; d̂d� for some d̂d, a ŝs-derivation.

(2) ŝs A AutðK̂KÞ and �ðŝsÞ ¼ y.

(3) P̂P ¼ R̂RpðXÞ is the unique maximal ideal of R̂R. In particular, RpðX Þ is com-

pletely prime if and only if P̂P is completely prime.

Proof. (1) First, we define d̂d as follows; let a ¼ pðX Þ�l
apðXÞ l be any element of

K̂K , where a A K . Since pðX Þ lX ¼ ðX þ blÞpðXÞ l for some bl A K , we have ðX þ blÞa ¼

sðaÞX þ dðaÞ þ bla ¼ sðaÞðX þ blÞ þ al , where al ¼ dðaÞ þ bla� sðaÞbl A K and

pðXÞ lXa ¼ pðXÞ lXpðX Þ�l
apðX Þ l

¼ ðX þ blÞapðXÞ l

¼ ðsðaÞðX þ blÞ þ alÞpðXÞ l :

So

Xa ¼ pðX Þ�lðsðaÞðX þ blÞ þ alÞpðXÞ l

¼ pðX Þ�l
sðaÞpðXÞ lX þ pðX Þ�l

al pðXÞ l

¼ ŝsðaÞX þ d̂dðaÞ;

where d̂dðaÞ ¼ pðXÞ�l
alpðXÞ l A K̂K .

To show that d̂d is a ŝs-derivation, let a; b A K̂K . Then

Xðaþ bÞ ¼ Xaþ Xb

¼ ŝsðaÞX þ d̂dðaÞ þ ŝsðbÞX þ d̂dðbÞ

¼ ðŝsðaÞ þ ŝsðbÞÞX þ d̂dðaÞ þ d̂dðbÞ

and Xðaþ bÞ ¼ ŝsðaþ bÞX þ d̂dðaþ bÞ, which shows that d̂dðaþ bÞ ¼ d̂dðaÞ þ d̂dðbÞ. Fur-

ther, Xab ¼ ðŝsðaÞX þ d̂dðaÞÞb ¼ ŝsðaÞŝsðbÞX þ ŝsðaÞd̂dðbÞ þ d̂dðaÞb and Xab ¼ ŝsðaÞŝsðbÞX þ

d̂dðabÞ. Thus d̂dðabÞ ¼ ŝsðaÞd̂dðbÞ þ d̂dðaÞb and so d̂d is a ŝs-derivation.

Next we prove that R̂R ¼ K̂K ½X ; ŝs; d̂d�. Since R̂R is a ring, it follows from the defini-

tion that R̂RK K̂K ½X ; ŝs; d̂d�. To prove the converse inclusion, let a¼ pðX Þ�l
f ðX ÞpðX Þ l A R̂R,

where f ðXÞ ¼ SaiX
i and l is a non-negative integer. Since pðX Þ lX ¼ ðX þ blÞpðXÞ l for

some bl in K , we have
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pðXÞ�l
XpðXÞ l ¼ pðXÞ�lðX þ bl � blÞpðXÞ l

¼ pðXÞ�lðX þ blÞpðX Þ l þ pðX Þ�lð�blÞpðXÞ l

¼ X þ pðXÞ�lð�blÞpðXÞ l ;

which belongs to K̂K ½X ; ŝs; d̂d�. Hence a ¼ pðXÞ�l
f ðX ÞpðXÞ l ¼ SpðXÞ�l

ai pðXÞ lpðXÞ�l �

X ipðXÞ l A K̂K ½X ; ŝs; d̂d�.

(2) We have proved that ŝs A AutðK̂KÞ. To prove that �ðŝsÞ ¼ y, on the con-

trary, assume that ŝsm ¼ Ia for some mb 1 and a A K̂K , i.e., ŝsmðbÞ ¼ aba�1 for all b A K̂K .

Write a ¼ pðX Þ�l
apðXÞ l and b ¼ pðXÞ�l

bpðXÞ l for some lb 0 and a; b A K . Then

ŝsmðbÞ ¼ pðXÞ�l
smðbÞpðXÞ l and aba�1 ¼ pðX Þ�l

apðXÞ lpðXÞ�l
bpðX Þ lpðX Þ�l

a�1 pðXÞ l ¼

pðXÞ�l
aba�1 pðXÞ l . Hence smðbÞ ¼ aba�1 for any b A K , contradicting to the assump-

tion s B AutðKÞ and so �ðŝsÞ ¼ y.

(3) For any a ¼ pðX Þ�l
f ðX ÞpðX Þ l A R̂R, we have pðX Þa ¼ pðX Þ�ðl�1Þ

f ðX ÞpðXÞ l�1 �

pðXÞ A P̂P, which implies that P̂P is an ideal of R̂R. We know from Lemma 1.3 that there

is a unique maximal ideal, say, M̂M ¼ R̂Rb, so that pðX Þ ¼ gb for some g A R̂R. Write

g ¼ pðX Þ�m
rðX ÞpðXÞm and b ¼ pðX Þ�m

gðX ÞpðXÞm, where mb 0 and rðX Þ; gðX Þ A R.

So pðX Þ ¼ pðX Þ�m
rðX ÞgðX ÞpðX Þm and thus pðX Þ ¼ rðXÞgðXÞ. Since t is extended to

an automorphism of R̂R which is a conjugation by pðX Þ, we have R̂Rb ¼ tmðR̂RbÞ ¼

R̂RtmðbÞ ¼ R̂RgðXÞ and thus RgðXÞJ R̂RgðX ÞVRJRpðX Þ so that gðXÞ ¼ cðX ÞpðXÞ for

some cðXÞ A R. It follows that P ¼ RpðXÞ ¼ RrðXÞgðXÞJRgðXÞ ¼ RcðXÞpðX ÞJ

RpðXÞ. Hence P̂P ¼ R̂RgðX Þ, which shows that P̂P is the unique maximal ideal of R̂R.

To show the last statement, suppose that P̂P is completely prime, then P is

completely prime, because P ¼ P̂PVR. Conversely, suppose that P is completely prime

and assume that ab A P̂P with a B P̂P, where a; b A R̂R. So ab ¼ gpðXÞ for some g A R̂R.

Write a ¼ pðXÞ�l
f ðX ÞpðXÞ l , b ¼ pðXÞ�l

gðX ÞpðX Þ l and g ¼ pðXÞ�l
rðX ÞpðXÞ l for some

lb 0 and f ðXÞ; gðXÞ; rðXÞ A R. Then we have f ðXÞgðXÞ ¼ rðXÞpðX Þ and so either

f ðX Þ A P or gðXÞ A P. If f ðX Þ A P, then f ðXÞ ¼ cðXÞpðXÞ for some cðXÞ A R. Thus

a ¼ pðX Þ�l
f ðXÞpðX Þ l ¼ pðXÞ�l

cðXÞpðX Þ lpðX Þ A P̂P, a contradiction. Hence gðX Þ A P

and so b A P̂P, proving that P̂P is completely prime. r

K̂K is said to be (left) algebraic over K if for any a A K̂K , there exist ci A K , not all

zero, such that
Pm

i¼0 cia
i ¼ 0.

In the case where P ¼ RpðXÞ is completely prime and K̂K is algebraic over K, we

have the following:

Proposition 1.9. Let d be a quasi-algebraic s-derivation with s B AutðKÞ. Suppose

that K̂K is algebraic over K and P ¼ RpðXÞ is a completely prime ideal, where pðXÞ is the

unique monic invariant polynomial of minimal non-zero degree. Then R̂RP̂P is the unique

proper total valuation ring of KðX ; s; dÞ containing R.

Proof. We know from Theorem 1.7 and Proposition 1.8 that R̂RP̂P is a Dubrovin

valuation ring of KðX ; s; dÞ containing R. Since P̂P is a completely prime ideal, we

have R̂RP̂P is total (see the proof of [MMU, (8.13)]). To show the uniqueness, let B be

any proper total valuation ring of KðX ; s; dÞ containing R. Then we shall prove that
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BK R̂R. It su‰ces to prove that BK K̂K . Let a ¼ pðX Þ�l
apðXÞ l A K̂K for some a A K

and lb 0. Since B is total, we have either a A B or a�1 A B. If a A B, then there is

nothing to do. So we may assume a�1 A B. Since K̂K is algebraic over K , there are a

natural number m and elements ci A K , not all zero, such that
Pm

i¼0 cia
�i ¼ 0. We

may assume that c0 0 0, cm 0 0. Thus t lðc0Þ þ
Pm

i¼1 t
lðciÞa

�i ¼ t lð0Þ ¼ 0 and so 1 ¼

�
Pm

i¼1 t
lðc�1

0 ciÞa
�i. Multiplying a on the both side, we have a ¼ �

Pm
i¼1 t

lðc�1
0 ciÞa

�iþ1.

Hence we have a¼ t�lðaÞ ¼�
Pm

i¼1 c
�1
0 cit

�lða�iþ1Þ ¼�
Pm

i¼1 c
�1
0 cia

�iþ1 AB. Since BKR̂R,

we have B ¼ R̂RP̂P by Theorem 1.7. r

Corollary 1.10. Let d be a quasi-algebraic s-derivation with s B AutðKÞ and d be

inner. Suppose that K̂K is algebraic over K. Then R̂RP̂P is the unique proper total valuation

ring of KðX ; s; dÞ containing R.

Proof. Since d is inner, there exists a monic invariant polynomial pðXÞ ¼ X � b

for some b A K by Proposition 1.4. Hence R ¼ K½Y ; s�, where Y ¼ pðX Þ. This means

that P ¼ RpðXÞ is a completely prime ideal and so R̂RP̂P is the unique proper total valu-

ation ring of KðX ; s; dÞ containing R. r

If K̂K is not algebraic over K , then it becomes very complicated, even in the case

where K is a field. If K is a field, then there exists a monic invariant polynomial

pðXÞ ¼ X � b for some b A K by Propositions 1.4 and 1.5 and so, as in Proposition 1.9,

R̂RP̂P is a proper total valuation ring of KðX ; s; dÞ containing R. But there are many

others proper total valuation rings of KðX ; s; dÞ containing R, as it will be seen in the

following:

Proposition 1.11. Suppose that K is a field with s B AutðKÞ and d is a quasi-

algebraic s-derivation. Let pðX Þ ¼ X � b be an invariant polynomial and P̂P ¼ R̂RpðX Þ.

If K̂K is not algebraic over K, then

(1) tr:degK K̂K ¼ y and

(2) Let B ¼ fti A K̂K j i A Lg be a transcendental basis of K̂K=K , where L is an index

set with a as its ordinal number. Then there exist at least total valuation rings Ai and

Bi ði A LÞ of KðX ; s; dÞ satisfying the following:

(i) R̂RP̂PKAi for all i A L and Ai are incomparable each other.

(ii) B1WB2W � � �W R̂RP̂P.

Proof. (1) Let Ki ¼ pðXÞ�i
KpðX Þ i and assume that K ¼ K0WK1WK2W � � �W

KlWKlþ1 such that Ki is algebraic over Ki�1 for all 0 < ie l and Klþ1 is transcendental

over Kl . If l > 1, then there exists an element t ¼ pðXÞ�ðlþ1Þ
apðX Þ lþ1

A Klþ1 which is

transcendental over Kl , where a A K. Since tðtÞ ¼ pðXÞ�l
apðX Þ l A Kl , it is algebraic

over Kl�1, i.e., there exist bi A Kl�1, not all zero, such that
Pm

i¼0 bitðtÞ
i ¼ 0, which

implies
Pm

i¼0 pðXÞ�1
bi pðXÞt i ¼ 0, i.e., t is algebraic over Kl , a contradiction. So we

may assume that t ¼ pðXÞ�1
apðX Þ is transcendental over K for some a A K . Set t ¼

t1; . . . ; tl ¼ pðXÞ�l
apðX Þ l for any natural number l and Kl ¼ Kðt1; . . . ; tlÞ, the field gen-

erated by K and t1; . . . ; tl . Then it follows from the same method as the above that tl is

transcendental over Kl�1 for any l by induction on l. Hence tr:degK K̂K ¼ y.

(2) Let B ¼ fti A K̂K j i A Lg be a transcendental basis of K̂K=K , where L is an index

set whose ordinal number is a, and let K ¼ KðtiÞi AL be the field extension of K gen-

erated by K and B.
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(i) For any i A L, we define a valuation vi of K as follows; viðaÞ ¼ 0 ¼ viðtjÞ for

any a A K and j A L, j0 i and viðtiÞ ¼ 1. vi naturally determines a valuation of K (see

[G, (18.4)]) and let Vi be the valuation ring of K corresponding to vi. It is clear that

the rings Vi are incomparable to each other. Since K̂K is algebraic over K , there is an

extension Vi of Vi to K̂K for each i A L ([E, (13.2)]), and the rings Vi are incom-

parable. Now, since R̂R ¼ K̂K ½Y ; ŝs� with a maximal ideal P̂P ¼ R̂RY , where Y ¼ pðXÞ, we

have the natural homomorphism j : R̂RP̂P ! K̂KðG R̂RP̂P=JðR̂RP̂PÞÞ. Let Ai ¼ j�1ðViÞ be the

complete inverse image of Vi by j which are total valuation rings of KðX ; s; dÞ such that

R̂RP̂P KAi by [XKM1, Proposition 1.7 (3)] and it is clear that the Ai are incomparable to

each other.

(ii) Let G ¼ 0Z i ði A L and Z i ¼ Z, the ring of integersÞ be a totally ordered

abelian group by anti-lexicographical ordering, where L is consider as a well-ordered

set. We define a valuation w of K as follows; wðaÞ ¼ 0 for all a A K and wðtiÞ ¼ gi ¼

ð. . . ; 0; 1; 0; . . .Þ A G, the i-th component is one and the other components are all zeros.

Let W be the valuation ring of K determined by w. As in [XKM1, Example 2.5], set

Fi ¼ fg A Gþ j either gb gi or gi > g but the i-th component of g is 1 and j-th compo-

nents are all zeros if j > i for each ig, where Gþ ¼ fg A G j gb 0g. Then it is easy

to check that Fi are prime filters (see [G, p. 196]). So, by [G, (17.8)], Pi ¼ fk A K j

wðkÞ A FigU f0g are prime ideals of W . From the definitions we easily see that FiWFj

for any i; j A L with i > j so that PiWPj. Thus we have the valuation rings WPi

ði A LÞ of K which are well ordered; WP1
WWP2

W � � �WK . Hence, as in (i), we have a

set of total valuation rings Bi ði A LÞ of KðX ; s; dÞ such that B1WB2W � � �W R̂RP̂P. r

We end this section with some examples to display some of the various phenomena

we have discussed. We start with the following obtained by [LM, (2.8)]. However we

shall give an elementary proof of it for the reader’s convenience.

Proposition 1.12. Let s A AutðKÞ with sd ¼ ds and charK ¼ 0. If d is not inner,

then it is not a quasi-algebraic s-derivation.

Proof. Assume that d is a quasi-algebraic s-derivation. Let pðXÞ be a monic

invariant polynomial of minimal non-zero degree, say, pðXÞ ¼ X n þ an�1X
n�1 þ � � �

þ a0 ðn > 1; ai A KÞ. Since pðXÞa ¼ snðaÞpðXÞ for all a A K , we have snðaÞan�1 ¼

ndðsn�1ðaÞÞ þ an�1s
n�1ðaÞ by comparison of the coe‰cients of X n�1. Hence sðaÞan�1

¼ ndðaÞ þ an�1a for all a A K , because s A AutðKÞ and so dðaÞ ¼ ð�n�1an�1Þa�

sðaÞð�n�1an�1Þ, an inner derivation which is a contradiction. r

We start o¤ with the case s ¼ 1 and we immediately have the following from

Proposition 1.12.

Example 1.1. Let F be a field with charF ¼ 0, K ¼ FðtÞ be a rational function

field over F in an indeterminate t, s ¼ 1 and d be the formal di¤erentiation with respect

to t. Then d is not quasi-algebraic.

A. Leory provided us with the following result:

Example 1.2. Let F be a field with charF ¼ p > 0, K ¼ FðtÞ, where t is an in-

determinate over F , s ¼ 1 and let d be the formal di¤erentiation with respect to t.

Then d is quasi-algebraic and not inner.
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Proof. Since d p ¼ 0 and charF ¼ p, it follows that X p is invariant. For any

monic polynomial pðXÞ ¼ X n þ an�1X
n�1 þ � � � þ a0 with n < p, if pðXÞ is invariant,

then we have d is inner as in Proposition 1.12, a contradiction. Hence, X p is a monic

invariant polynomial of minimal non-zero degree. Thus d is quasi-algebraic and not

inner by Proposition 1.4. r

Example 1.3 ([Le]). There exists a division ring with automorphism s such that

�ðsÞ < y and a quasi-algebraic s-derivation d which is not inner. In fact, s2 ¼ 1,

d2 ¼ 0, sd0 ds for an example in [Le].

To give examples of division rings such that �ðsÞ ¼ y and d is a quasi-algebraic s-

derivation (or, d is not a quasi-algebraic s-derivation), let F be a field with s A AutðF Þ

and K ¼ F ððt; sÞÞ, the quotient ring of the skew formal power series ring F ½½t; s��.

We can naturally extend s to an automorphism of K which is given by sðSant
nÞ ¼

SðsðanÞt
nÞ for any Sant

n A K . Now we define a map d from K to K as follows;

dðSant
nÞ ¼ SnsðanÞt

nþ1. Then we easily have the following properties;

(1) d is a s-derivation.

(2) sd ¼ ds.

Example 1.4. Under the same notation as in the above, suppose that �ðsÞ ¼ y for

s A AutðF Þ and sðaÞ0 a� 1 for all a A F .

(1) �ðsÞ ¼ y as s A AutðKÞ and d is not inner.

(2) If charF ¼ 0, then d is not a quasi-algebraic s-derivation.

(3) If charF ¼ p > 0, then d is a quasi-algebraic s-derivation.

Proof. (1) It is easily checked that �ðsÞ ¼ y. To prove that d is not inner, on

the contrary, assume that d is inner. Then there is an element b ¼ ð
P

y

n¼k bnt
nÞ ðbn A F ;

bk 0 0; n A Z) such that dðaÞ ¼ ba� sðaÞb for all a A K . So for any a A F , we have

0 ¼ dðaÞ ¼ ba� sðaÞb ¼ ð
P

y

n¼k bnt
nÞa� sðaÞð

P
y

n¼k bnt
nÞ. By comparison of degrees in

the equation, we have bns
nðaÞ ¼ sðaÞbn for all n ¼ k; k þ 1; . . . : Hence, b ¼ b1t, and

t2 ¼ dðtÞ ¼ b1tt� tb1t ¼ ðb1 � sðb1ÞÞt
2 and thus sðb1Þ ¼ b1 � 1, a contradiction. Hence

d is not inner.

(2) This follows from Proposition 1.12 and (1).

(3) We easily see from the definition of d that d p ¼ 0, i.e., d is quasi-algebraic.

r

Next we will give an example of a field K such that K̂K is algebraic over K .

Example 1.5. Let K ¼ FðtÞ and let s be an endomorphism of K determined by

sðaÞ ¼ a for all a A F and sðtÞ ¼ t2. Since pðXÞ ¼ X is a monic invariant polynomial

of minimal non-zero degree in the skew polynomial ring K ½X ; s�, K̂K ¼6y

i¼1
X�iKX i and

K̂K is algebraic over K .

Proof. Since sðtÞ ¼ t2, it easily follows that ðX�1tX Þ2 ¼ X�1t2X ¼ t, algebraic

over K . Inductively, we have ðX�ntX nÞ2
n

¼ X�ðn�1ÞðX�1t2XÞ � � � ðX�1t2XÞX n�1 ¼

X�ðn�1Þt2
n�1

X n�1 ¼ t, algebraic over K . And it is easy to check that K̂K is generated by

K and X�ntX n. Hence K̂K is algebraic over K . r

Finally we will give an example of a field K such that K̂K is not algebraic over K .
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Example 1.6. Let K ¼ Fðt0; t1; t2; . . .Þ, where t0; t1; t2; . . . are indeterminates. Let

s be an endomorphism of K determined by sðaÞ ¼ a for all a A F , sðtiÞ ¼ tiþ1 for all

ib 0 and d ¼ 0. Then K̂K ¼6y

i¼1
X�iKX i is not algebraic over K and K̂K ¼ F ð. . . ; t�1;

t0; t1; . . .Þ, where t�n ¼ X�1t�nþ1X for any natural number n.

Proof. Let K�n ¼ F ðt�n; . . . ; t�1; t0; t1; t2; . . .Þ, a field generated by t�n; . . . ; t�1; t0;

t1; t2; . . . over F . Since s induces an automorphism ŝs of K̂K which is a conjugation by

X , we have ŝsðt�nÞ ¼ t�nþ1 for all natural number and so ŝsðK�nÞ ¼ K�nþ1. We shall

prove that t�n is transcendental over K�nþ1 for any n. Assume that t�1 is algebraic over

K0, say, t l�1 þ al�1t
l�1
�1 þ � � � þ a0 ¼ 0, where ai A K0 and lb 1. Then t l0 þ sðal�1Þt

l�1
0

þ � � � þ sða0Þ ¼ sð0Þ ¼ 0, where sðaiÞ A K1, and so t0 is algebraic over K1, a contradic-

tion. We can prove that t�n is transcendental over K�nþ1 by the same way. In par-

ticular, K̂K is transcendental over K . The second statement is clear, because t�n ¼

X�nt0X
n for any natural number n. r

2. Non-commutative valuation rings of KðX ; s; dÞ contained in Rð1Þ.

Let K be a division ring, s be an endomorphism of K, d be a s-derivation and V

be a total valuation ring of K . Throughout this section, we assume that ðs; dÞ is

compatible with V , i.e., sðVÞJV , sðJðVÞÞJ JðVÞ, dðVÞJV , dðJðVÞÞJ JðVÞ. In

[BT], they proved that JðVÞ½X ; s; d� is left localizable and Rð1Þ ¼ V ½X ; s; d�JðVÞ½X ;s; d�,

the localization of V ½X ; s; d� at JðVÞ½X ; s; d�, is a total valuation ring of KðX ; s; dÞ

with Rð1Þ VK ¼ V , X A Rð1Þ and we studied some properties of Rð1Þ (see [XKM2]). In

this section we shall study non-commutative valuation rings B of KðX ; s; dÞ such that

BVK ¼ V , BJRð1Þ and X A B, which are the purpose of this paper. This will be done

by combining the results in Section 1 and Proposition 2.1.

A left order S in a simple Artinian ring Q is said to be left Prüfer if any finitely

generated left S-ideal in Q is a progenerator of S-Mod, the category of left S-modules

([MMU, §2]). We shall start with the following general case.

Proposition 2.1. Let S be a Dubrovin valuation ring of a simple Artinian ring Q

and j : S ! S ¼ S=JðSÞ be the natural homomorphism. Suppose that R is a left order in

S and let R ¼ j�1ðRÞ be the complete inverse image of R. Then:

(1) R is a left order in Q.

(2) R is a left Prüfer order in Q if and only if R is a left Prüfer order in S.

(3) Suppose that R is left Prüfer. Let } be a prime ideal of R and P ¼ j�1ð}Þ,

a prime ideal of R. Then } is left localizable if and only if P is left localizable.

Furthermore RP ¼ j�1ðR}Þ.

(4) R is a Dubrovin valuation ring if and only if R is a Dubrovin valuation ring.

(5) Suppose that Q is a division ring and S is a total valuation ring of Q. Then R

is a total valuation ring if and only if R is a total valuation ring.

Proof. (1) First, we shall prove that for any s A S, there exists a c A UðSÞVR

with cs A R, where UðSÞ is the group of units in S. If s A JðSÞ, then there is nothing

to do, because JðSÞJR. So we may assume that s B JðSÞ, then s ¼ c�1r for some

c; r A R with c A CRð0Þ ¼ ft A R j t is regularg, equivalently, cS ¼ S. So by Nakayama’s

Lemma, c A UðSÞ and c A R, because c A R. Let C ¼ fc A R j c A CSð0Þg, which is not

empty.
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Second, we shall prove that, for any q A Q, there is a c A C with cq A R. Since

there is an element d A CSð0Þ with dq A S, there exists d1 A UðSÞVR with d1dq A R. For

this d1d, there is a c1 A UðSÞVR with c1d1d A R. Hence c ¼ c1d1d A C and cq A R.

Now, for any r A R and c A C, there is a d A C such that drc�1 ¼ t A R and so

dr ¼ tc, showing that C is a left Ore set of R. Now it is clear that RC ¼ fc�1r j c A C

and r A Rg ¼ Q.

(2) This is proved by the exactly same method as in [M, (3.1)].

(3) It is easy to see that CRðPÞ ¼ CRð}Þ and CRðPÞ ¼ fc A R j c A CRð}Þg.

Furthermore, by the same way as in [MMU, (22.6)], we have CRðPÞJCRð0Þ and

CRð}ÞJCRð0Þ. Suppose that P is left localizable. Then it is easy to see that } is

left localizable. To see that jðRPÞ ¼ R}, let c A CRðPÞ. Then cS ¼ S and so c A UðSÞ.

Thus it follows that SKRP and so jðRPÞ ¼ R} follows easily. Conversely, suppose

that } is left localizable. For any c A CRðPÞ and r A R, there are t A R and d A CRðPÞ

with dr ¼ tc. So dr� tc ¼ m A JðSÞ. Since c A UðSÞ, we have m ¼ nc for some n A

JðSÞ. Hence dr ¼ ðtþ nÞc, showing that P is left localizable. It is easy to see that

RP ¼ j�1ðR}Þ.

(4) By [M, (3.1)], R is Prüfer if and only if R is Prüfer. So in both directions,

it su‰ces to prove that JðRÞ ¼ j�1ðJðRÞÞ. To prove this, let I be a maximal right

ideal of R. Then it is enought to prove that I K JðSÞ. On the contrary, suppose that

I Z JðSÞ. Then I þ JðSÞ ¼ R and so IS þ JðSÞ ¼ S. Hence IS ¼ S and thus I ¼

IRP IJðSÞ ¼ ISJðSÞ ¼ JðSÞ, a contradiction. Hence we have R=JðRÞGR=JðRÞ, i.e.,

R is local if and only if R is local. Therefore R is a Dubrovin valuation ring if and

only if R is a Dubrovin valuation ring.

(5) This follows from (4) and the proof of [MMU, (8.13)]. r

Remark. (1) The statement (1) in Proposition 2.1 is valid if S is a left order in Q

and S ¼ S=JðSÞ is a simple Artinian ring.

(2) It is tempting to conclude that R is an invariant valuation ring of a division

ring Q if and only if R and S are invariant. However, this is not necessarily true as it

will be seen in Example 2.5.

Now let j : Rð1Þ ¼ V ½X ; s; d�JðV ½X ;s; d�Þ ! Rð1Þ ¼ Rð1Þ=JðRð1ÞÞGVðX ; s; dÞ be the

natural homomorphism, where sðvÞ ¼ ½sðvÞ þ JðVÞ� and dðvÞ ¼ ½dðvÞ þ JðVÞ� for any

v ¼ ½vþ JðVÞ� A V . Set R ¼ j�1ðV ½X ; s; d�Þ ¼ V ½X ; s; d� þ JðRð1ÞÞ, a left Prüfer order

by Proposition 2.1, because V ½X ; s; d� is a left principal ideal domain.

We shall study non-commutative valuation rings B of KðX ; s; dÞ such that

BVK ¼ V , Rð1Þ
KB and X A B by applying the results of Section 1 and Proposition

2.1 to the situation above. For simplicity, we denote by D the set of all Dubrovin

valuation rings B of KðX ; s; dÞ such that BVK ¼ V , Rð1Þ
KB and X A B.

Proposition 2.2. There is a one-to-one correspondence between D and the set of all

Dubrovin valuation rings B of VðX ; s; dÞ with BKV ½X ; s; d�, which is given by jðBÞ ¼ B

and j�1ðBÞ ¼ B, where B A D.

Proof. Let B A D with B0Rð1Þ. Then BX JðRð1ÞÞ and jðBÞ ¼ B=JðRð1ÞÞ is a

Dubrovin valuation ring of Rð1Þ (see [MMU, (6.6)]).
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Conversely, let B be a Dubrovin valuation ring of VðX ; s; dÞ containing V ½X ; s; d�.

Then it is easy to see that B ¼ j�1ðBÞ A D and jðBÞ ¼ B by Proposition 2.1. r

Proposition 2.3. If d is not a quasi-algebraic s-derivation, then D ¼ fRð1Þg.

Proof. Let B A D with B0Rð1Þ. Then B ¼ jðBÞ is a proper Dubrovin valuation

ring of VðX ; s; dÞ containing V ½X ; s; d� and so JðBÞVV ½X ; s; d� is a non-zero ideal of

V ½X ; s; d� which is a contradiction to Proposition 1.1. r

In the remainder of this section, we assume that d is a quasi-algebraic s-derivation

and let pðX Þ A V ½X ; s; d� is a monic polynomial such that pðX Þ A V ½X ; s; d� is a monic

invariant polynomial of mininal non-zero degree (the existence of such pðXÞ is guaran-

teed by Proposition 1.1). In the case s A AutðVÞ, we shall give a complete description

of D as follows:

Theorem 2.4. Suppose that d is a quasi-algebraic s-derivation and s A AutðVÞ.

(1) If �ðsÞ ¼ y, then D ¼ fRð1Þ;RPg, where P ¼ RpðX Þ.

(2) If �ðsÞ ¼ m < y, then D ¼ fRð1Þ;RP;RM jP ¼ RpðX Þ;M ¼ RwðX Þ, where

wðXÞ A V ½X ; s; d� such that wðXÞ is an irreducible polynomial of ZðVÞ
s; d½Y �ðY ¼ lpðX Þ l

for some l A V and lb 1 as in Lemma 1.3Þg. In particular, JðRPÞ ¼ RPpðXÞ ¼ pðXÞRP

and JðRMÞ ¼ RMwðX Þ ¼ wðX ÞRM .

Proof. Since pðX Þ;wðXÞ A UðRð1ÞÞ, we easily have P ¼ j�1ðV ½X ; s; d�pðXÞÞ ¼

RpðXÞ ¼ pðXÞR and M ¼ j�1ðV ½X ; s; d�wðX ÞÞ ¼RwðXÞ ¼wðX ÞR, where R¼V ½X ; s; d�

þ JðRð1ÞÞ. Hence the theorem follows from Propositions 2.1, 2.2 and Theorem 1.7.

r

Remark. Under the same notation and assumptions as in Theorem 2.4, JðRð1ÞÞ ¼

7y

m¼1
RPpðXÞm ¼7y

m¼1
RMwðXÞm.

Proof. Since JðRð1ÞÞ is a prime ideal of RP, we have JðRð1ÞÞJ7y

m¼1
RP pðXÞm.

So 0¼ jðJðRð1ÞÞÞJ7y

m¼1
jðRPÞpðXÞm ¼ 0, because jðRPÞ is a Noetherian Dubrovin val-

uation ring. Hence JðRð1ÞÞ ¼7y

m¼1
RP pðXÞm and similarly, JðRð1ÞÞ ¼7y

m¼1
RMwðXÞm.

r

The property in the Remark above will characterize RP and RM as follows:

Theorem 2.5. Suppose that d is a quasi-algebraic s-derivation and s A AutðVÞ. If

B is a Dubrovin valuation ring of KðX ; s; dÞ such that BVK ¼ V , X A B and JðBÞ ¼

BgðXÞ ¼ gðX ÞB for some gðX Þ A V ½X ; s; d� with JðRð1ÞÞ ¼7y

m¼1
BgðXÞm, then either

B ¼ RP or B ¼ RM , where P and M are as in Theorem 2.4.

Proof. First note that if S is a Dubrovin valuation ring of KðX ; s; dÞ such that

S VK ¼ V , SKRð1Þ, then S ¼ Rð1Þ. Assume that SXRð1Þ. Then JðSÞW JðRð1ÞÞ, and

so JðVÞS ¼ JðVÞRð1ÞS ¼ JðRð1ÞÞS ¼ S. Write 1¼ vs for some v A JðVÞ and s A S. Then

s ¼ v�1 A K VS ¼ V , a contradiction. Hence S ¼ Rð1Þ follows. Now, let B be a Du-

brovin valuation ring of KðX ; s; dÞ satisfying the conditions in Theorem 2.5. Then by

[BMO, theorem 5], JðRð1ÞÞ is Goldie prime, i.e., a prime ideal of B such that B=JðRð1ÞÞ

is a Goldie ring. So BJðRð1ÞÞ is a Dubrovin valuation ring by [MMU, (14.5)]. Since
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any cðXÞ A V ½X ; s; d�nJðVÞ½X ; s; d� is a unit in Rð1Þ, it easily follows that CBðJðR
ð1ÞÞÞK

V ½X ; s; d�nJðVÞ½X ; s; d� and so BJðRð1ÞÞ KRð1Þ. Let W ¼ BJðRð1ÞÞ VK and we want to show

that V ¼W . BKJðBJðRð1ÞÞÞ implies that JðBJðRð1ÞÞÞ ¼ JðRð1ÞÞ. Thus JðVÞ ¼ JðRð1ÞÞVK

¼ JðBJðRð1ÞÞÞVK ¼ JðWÞ and so V ¼ W follows. Hence Rð1Þ ¼ BJðRð1ÞÞ KB. Thus we

have either B ¼ RP or B ¼ RM , because BKR ¼ V ½X ; s; d� þ JðRð1ÞÞ. r

If s B AutðVÞ, then as in Section 1, let ^VV ¼ 6y

m¼1
pðXÞ�mV pðXÞm, a division ring

containing V and ^RR ¼ 6y

m¼1
pðXÞ�mRpðXÞm, where R ¼ jðRÞ ¼ V ½X ; s; d�. Then ^RR ¼

^VV ½X ; ŝs;
^
dd� for some ŝs A Autð ^VVÞ; and ^

dd is a ŝs-derivation by Proposition 1.8. Since

RpðX ÞX pðXÞR, we have RpðX Þ ¼ V ½X ; s; d�pðXÞ þ JðRð1ÞÞX pðX ÞR and so we can

construct R̂R ¼ 6y

m¼1
pðX Þ�m

RpðX Þm, an over ring of R. It is easy to see that R̂R ¼

j�1ð ^RRÞ, a Prüfer order in KðX ; s; dÞ by Proposition 2.1. It follows from Proposition 1.8

that ^PP ¼ ^RRpðXÞ is the unique maximal ideal of ^RR and so R̂RP̂P A D, by Propositions 2.1

and 2.2, where P̂P ¼ j�1ð ^PPÞ. Hence we have:

Theorem 2.6. Suppose that d is a quasi-algebraic s-derivation and s B AutðVÞ.

(1) R̂RP̂P A D.

(2) If ^VV is algebraic over V and ^PP is completely prime, then Rð1Þ and R̂RP̂P are only

total valuation rings of KðX ; s; dÞ in D.

(3) If ^VV is not algebraic over V and V is a field with a ¼ tr:degV
^VV , then there are

fAig; fBigJD satisfying;

(i) R̂RP̂P XAi for any i A L and Ai are incomparable each other, where L is an index

set as in Proposition 1.11.

(ii) B1 WB2 W � � �W R̂RP̂P.

Proof. (1) This was proved in the paragraph before Theorem 2.6.

(2) This follows from Propositions 1.9 and 2.2.

(3) This follows from Propositions 1.11 and 2.2. r

Let K0 be a division ring and let d be a s-derivation with sd ¼ ds, where s is

an endomorphism of K0. Further, let R ¼ K0½t� be the polynomial ring over K0 in

an indeterminate t with at ¼ ta for any a A K0, P ¼ tK0½t�, a maximal ideal of R and

V ¼ K0½t�P, the localization of R at P, is a Noetherian total valuation ring. We natu-

rally extend s; d to K ¼ K0ðtÞ as follows; sð f ðtÞÞ ¼ sða0Þ þ sða1Þtþ � � � þ sðanÞt
n and

dð f ðtÞÞ ¼ dða0Þ þ dða1Þtþ � � � þ dðanÞt
n for any f ðtÞ ¼ a0 þ a1tþ � � � þ ant

n A K0½t�.

Proposition 2.7. Under the same notation and assumptions as the above, ðs; dÞ is

compatible with V and V GK0 naturally.

Proof. Since sd ¼ ds, it is easily checked that d is a s-derivation on K . It

is also clear that sðK0½t�ÞJK0½t�, sðtK0½t�ÞJ tK0½t�, dðK0½t�ÞJK0½t�, dðtK0½t�ÞJ tK0½t�.

So, to prove that ðs; dÞ is compatible with V , it su‰ces to prove that dðcðtÞ�1Þ A V for

any cðtÞ A K0½t�ntK0½t�, because JðVÞ ¼ tV . Since 0 ¼ dðcðtÞcðtÞ�1Þ ¼ sðcðtÞÞdðcðtÞ�1Þþ

dðcðtÞÞcðtÞ�1, we have dðcðtÞ�1Þ ¼ �sðcðtÞ�1ÞdðcðtÞÞcðtÞ�1
A V . The last statement is

clear. r

As all examples in Section 1 satisfies sd ¼ ds except for Example 1.3, applying

Proposition 2.7, we have:
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Example 2.1. Let K0 be a division ring which is one of the examples in Section 1,

except for Example 1.3, K ¼ K0ðtÞ be the non-commutative rational function ring in an

indeterminate t with at ¼ ta for any a A K0 and let V be as in Proposition 2.7. Then

ðs; dÞ satisfies the same properties as that of ðs; dÞ in Section 1.

Next we will give some examples of total valuation rings such that ðs; dÞ is com-

patible with V but ðs; dÞ have di¤erent properties from ðs; dÞ. Let K0 be a division ring

with s A AutðK0Þ, K ¼ K0ðtÞ and V ¼ K0½t�P, where P ¼ tK0½t�, as before. For any

f ðtÞ ¼ a0 þ a1tþ � � � þ ant
n A K0½t�, we define sð f ðtÞÞ ¼ sða0Þ þ sða1Þt

2 þ � � � þ sðanÞt
2 n

,

dð f ðtÞÞ ¼ tf ðtÞ � sð f ðtÞÞt, an inner s-derivation and extend s; d to K naturaly. It is

easy to check that s is an endomorphism of K but not automorphism and that ðs; dÞ is

compatible with V . Since V GK0 naturally, we have s A AutðVÞ and �ðsÞ ¼ n < y if

�ðsÞ ¼ n as an automorphism of K0. To show that d ¼ 0, let g�1 f A V , where f A K0½t�

and g A K0½t�ntK0½t�. Since dðg�1 f Þ ¼ sðg�1Þdð f Þ þ dðg�1Þ f and sðg�1Þdð f Þ A JðVÞ, it

su‰ces to prove that dðg�1Þ A JðVÞ. However, 0 ¼ dðgg�1Þ ¼ sðgÞdðg�1Þ þ dðgÞg�1 im-

plies dðg�1Þ ¼ �sðgÞ�1
dðgÞg�1 A JðVÞ, because dðgÞ A JðVÞ and sðgÞ�1

A V . Hence d¼ 0.

Summarizing we have

Example 2.2. Under the same notation and assumptions as the above, we have

(1) ðs; dÞ is compatible with V .

(2) s B AutðVÞ but s A AutðVÞ and d0 0 but d ¼ 0. In particular, �ðsÞ ¼ n < y

if �ðsÞ ¼ n < y as an automorphism of K0.

Let K0 be a division ring with s A AutðK0Þ and �ðsÞ ¼ y (or s0 1 if K0 is a

field) and let d be a s-derivation of K0 with sd ¼ ds. Further, let K ¼ K0ððt; sÞÞ be

the quotient division ring of the skew formal power series ring V ¼ K0½½t; s�� which is a

Noetherian total valuation ring such that V GK0. As in Proposition 2.7, we extend

s; d to K as follows;

sðSant
nÞ ¼ SsðanÞt

n

and

dðSant
nÞ ¼ SdðanÞt

n for any Sant
n A K :

It is easily checked that sd ¼ ds and that ðs; dÞ is compatible with V . Suppose that d is

inner as a derivation of K0, i.e., dðaÞ ¼ a0a� sðaÞa0 for all a A K0 and some a0 A K0.

Then we will prove that d is inner in K if and only if sða0Þ ¼ a0. If sða0Þ ¼ a0, then it

is easily checked that d is inner in K induced by a0. Conversely, assume that there is

an element a0 ¼ Sbnt
n A K such that dðaÞ ¼ a0a� sðaÞa0 for all a A K . For all a A K ,

we have a0a� sðaÞa0 ¼ dðaÞ ¼ a0a� sðaÞa0 ¼ Snðbns
nðaÞ� sðaÞbnÞt

n. Thus a0a� sðaÞa0
¼ b0a� sðaÞb0 and so ða0 � b0Þa ¼ sðaÞða0 � b0Þ. Hence a0 ¼ b0 follows, because

�ðsÞ ¼ y (or s0 1 if K0 is a field). Similarly, 0 ¼ bns
nðaÞ � sðaÞbn implies bn ¼ 0 for

any n0 0, n0 1 and b1sðaÞ ¼ sðaÞb1. So a0 ¼ a0 þ b1t follows. Hence, in particular,

ða0a� sðaÞa0Þt ¼ dðaÞt ¼ dðatÞ ¼ ða0 þ b1tÞat � sðaÞtða0 þ b1tÞ ¼ ða0a� sðaÞsða0ÞÞt þ

ðb1sðaÞ � sðaÞsðb1ÞÞt
2 and so sða0Þ ¼ a0 follows. Hence we have:

Example 2.3. Under the same notation and assumptions as the above, we take

a0 A K0 with sða0Þ0 a0. Then ðs; dÞ is compatible with V and d is not inner but d is

inner.
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We will give an example of a valuation ring V of a field K such that K̂K is tran-

scendental over K but ^VV is algebraic over V .

Example 2.4. Let K ¼ Fðt; t0; t1; t2; . . .Þ be a rational function field over a field F

in indeterminates t; t0; t1; t2; . . . ; let s be an endomorphism of K determined by sðaÞ ¼ a

for all a A F , sðtÞ ¼ t2, sðtiÞ ¼ tiþ1 for all ib 0 and d ¼ 0. Further, let G ¼ 0Z i

ðZ i ¼ Z; i ¼ 0; 1; 2 . . .Þ be the totally ordered abelian group ordered by lexicographical

ordering and define vðtÞ ¼ 0 ¼ vðaÞ for all non-zero a A F and vðtiÞ ¼ ð0; . . . ; 0; 1; 0; . . .Þ,

the i-th component is one and the other components are all zeros. Let V be a valu-

ation ring of K determined by v (see [G, (18.4)]). We shall prove that V GK0 ¼ FðtÞ.

Let a ¼ fg�1 be any element of K , where f ¼ a0 þ a1t1 þ � � � þ akt
k; g ¼ b0 þ b1t1 þ � � �

þ bkt
k, ai; bi A K0 (some ai; bi may be zeros if necessary) and ti are monomials, e.g.,

ti ¼ t l00 � � � t lmm . Now assume that vðaÞ ¼ 0, equivalently, vð f Þ ¼ vðgÞ. Thus, by definition

of v, we have a0 0 0 if and only if b0 0 0. In the case where a0 ¼ 0, since vð f Þ ¼

minfvðtiÞg, we may assume that vð f Þ ¼ vðt1Þ. Then f t�1
1 ¼ a1 þ a2t2t

�1
1 þ � � � þ aktkt

�1
1

with vðtit
�1
1 Þ > 0 for any i0 1 and a ¼ ð f t�1

1 Þðgt�1
1 Þ�1. Thus, in any case, we may

assume that f ¼ f0 þ f1 and g ¼ g0 þ g1, where f0; g0 A K0, f0 0 0, g0 0 0 and f1; g1 A

JðVÞ. Since g� g0 ¼ g1 A JðVÞ and g0 A UðVÞ, it follows that gg�1
0 � 1 A JðVÞ and

so g A UðVÞ. Thus in particular, g�1
0 � g�1

A JðVÞ. Hence a� f0g
�1
0 ¼ ð f � f0Þg

�1 þ

f0ðg
�1 � g�1

0 Þ A JðVÞ and so ½aþ JðVÞ� ¼ ½ f0g
�1
0 þ JðVÞ�. It is clear that, for any

a; b A K0, ½aþ JðVÞ� ¼ ½b þ JðVÞ� if and only if a ¼ b. Hence it easily follows that

V GFðtÞ with sð½tþ JðVÞ�Þ ¼ ½t2 þ JðVÞ� and so ^VV is algebraic over V by Example

1.5. Further, let t�1 ¼ X�1t0X as in Example 1.6. Then we have t�1 is transcendental

over K by the exactly same way as in Example 1.6. Hence K̂K is transcendental over K .

As we have noticed in the remark to Proposition 2.1, R is not necessarily invariant

despite S and R are invariant. Finally we shall give such an example.

Example 2.5. Let F be a field with s A AutðF Þ and V be a valuation ring of F

with either sðVÞUV or sðVÞWV (see [XKM1, Examples 2.2, 2.3, 2.5, 2.6 and 2.7]).

Then S ¼ F ½X ; s�ðX Þ, the localization of F ½X ; s� at the maximal ideal ðXÞ ¼ XF ½X ; s�, is

an invariant valuation ring of F ðX ; sÞ. Let j : S ! S ¼ S=JðSÞ ðGF Þ be the natural

homomorphism and let R ¼ j�1ðVÞ. Then R is not invariant by [XKM1, (1.7)], though

S and V are both invariant.
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Thèse, Poitiers, 1984.
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