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Abstract. Let K be a division ring with a o-derivation J, where ¢ is an endomor-
phism of K and K(X;0,0) be the quotient division ring of the Ore extension K[X;a,d]
over K in an indeterminate X. First, we describe non-commutative valuation rings of
K(X;0,0) which contain K[X;0,5]. Suppose that (¢,d) is compatible with V', where V
is a total valuation ring of K, then RV = V[X; 0, 5]](1/)[)(; 0,0) the localization of V[X;0,d]
at J(V)[X;0,d], is a total valuation ring of K(X;0,5). Applying the description above,
then, second, we describe non- commutative valuation rings B of K(X;o,0) such that
BNK =V, XeB and B< R, which is the aim of this paper. In the end of each
section we give several examples to display some of the various phenomena.

0. Introduction.

Let K be a division ring, ¢ be an endomorphism of K and ¢ be a o-derivation,
i.e., an additive map 0 : K — K such that d(ab) = a(a)d(b) +d(a)b for all a,be K. As
usual, K[X;0,0] ={f(X)|f(X)=a,X"+---+ap,a; € K} is the Ore extension over K
with Xa = g(a)X +d(a) for any a € K, where X is an indeterminate. It is a very in-
teresting problem to describe all non-commutative valuation rings of K(X;a,d), the
left quotient division ring of K[X;0,0]. However, the problem seems rather difficult
as can be seen in [BT], [BS], [KMP], [XKM;|, [XKM,]. Let V' be a total valuation
ring of K and (0,0) be compatible with V. Then, in , they proved that R() =

VIX;0,0]50)x.0,6> the locahzatlon of V[X;o 5] at J(V)[X;o 5] is a total valuation ring
of K(X;o 5) such that RUNK =V, X e RV and we have obtained more detailed re-
sults on R, based on some properties of (a,0) (see [XKM,)).

The aim of this paper is to describe non-commutative valuation rings B of K(X;a,0)
such that R 2 B, BNK =V and X € B.

The paper is organized as follows:

In Section 1, we shall study non-commutative valuation rings of K(X;a,0) con-
taining R = K[X;0,0], adopting the methods and results in [C], and [LM]. If 6
i1s not a quasi-algebraic g-derivation, then there are no proper non-commutative valu-
ation rings of K(X;a,d) containing R (Corollary 1.2). In the case where J is a quasi-
algebraic o-derivation and ¢ € Aut(K), the group of all automorphisms of K, we shall
describe all non-commutative valuation rings of K(X;o,d) containing R (Theorem 1.7).
If 0 ¢ Aut(K) and ¢ is a quasi-algebraic o-derivation, then there is a monic invariant
polynomial p(X) of minimal non-zero degree such that K[X;o,0]p(X) is a maximal
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ideal. Set K =), p(X ) 'Kp(X)', a division ring containing K. We can extend o
and J to ¢ and 0 with 6 € Aut(K) and obtain R = | J;°, p(X)'Rp(X)' = K[X;4,9] with
a maximal ideal P = Rp(X). If K is left algebraic over K and Rp(X) is completely
prime, then ﬁp is the only proper total valuation ring of K(X;0,0) such that f%p o R
(Proposition 1.9). If K is not left algebraic over K, then the circumstances become very
complicated so that we only treat the case where K is a field (Proposition 1.11).

Suppose that V7 is a total valuation ring of K and (o,0) is compatible with V.
Then ¢ and J naturally induce & and 6 of ¥V = V/J(V), a division ring and we can
construct the Ore extension V[X;&,J] over V. By applying the results in Section 1 to
V[X;@,6], in Section 2, we shall study non-commutative valuation rings B of K(X;a,6)
satisfying the following conditions: BNK =V, XeB, B< RW. 1If § is not a quasi-
algebraic g-derivation, then R is the only non-commutative valuation ring of K(X;a,0)
satisfying the conditions. If e Aut(V), then we can describe all non-commutative
valuation rings of K(X;a,0) satisfying the conditions. However, in the case where G ¢
Aut(¥V) and J is a quasi-algebraic G-derivation, we can only describe non-commutative
valuation rings of K(X;0,0) satisfying the additional conditions in Propositions and
[LI1 respectively.

In the end of each section, we shall give several examples designed to display some
of the various phenomena.

1. The non-commutative valuation rings of K(X;0,0) containing K[X;a,J].

Throughout this paper, K is a division ring, ¢ is an endomorphism of K and o is a
g-derivation.

The aim of this section is to describe non-commutative valuation rings of K(X;a,0)
containing K[X;a,0].

There are three types of non-commutative valuation rings as follows: Let Q be a
simple Artinian ring and let R be an order in Q, i.e., R is a prime Goldie ring. We say
that R is a Dubrovin valuation ring of Q if R is semi-hereditary and R is local, i.e.,
R/J(R) is a simple Artinian ring, where J(R) is the Jacobson radical of R. Assume
that Q is a division ring. A subring R of Q is said to be a total valuation ring of Q, if
for any non-zero ¢q € Q, either g€ R or ¢~' € R. Furthermore, a total valuation ring R
of Q is said to be invariant if g"'Rq = R for all non-zero ¢ € Q. It is easy to see that a
total valuation ring R is a Dubrovin valuation ring and the converse is not necessarily
true. We refer to for some properties of non-commutative valuation rings.

First, we shall study ideals in K[X;0,0] where properties of (g,0) are of critical
importance. Following [LL], a o-derivation J is said to be quasi-algebraic if there exist
ay =1,a,_1,...,a0€ K, n>0 such that > ", a;0' = Dy, o, Where Dy ,n(a) = apa —
o"(a)ay for all a e K. In[LL], they conjectured that K[X;a,d] is not simple if and only
if 0 is a quasi-algebraic o-derivation. In the case where o € Aut(K), Lemonnier gave a
necessary and sufficient condition for K[X;0,d] to be not simple (L]). In[LLLM], they
gave an affirmative answer to the conjecture by using some results in [LL].

ProposiTioN 1.1 ([LLLM, (3.6)]). Let K be a division ring, a be an endomorphism
of K and 6 be a o-derivation. Then K[X;0,0| is not simple if and only if 6 is a quasi-
algebraic o-derivation.
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A non-commutative valuation ring B of K(X;0,0) is said to be proper if B #
K(X;0,0). Throughout this section, set R = K[X;0,0], which is a left principal ideal
domain.

COROLLARY 1.2. If 0 is not a quasi-algebraic g-derivation, then there are no proper
non-commutative valuation rings of K(X;a,0) containing R.

ProOF. Let B be a proper non-commutative valuation ring of K(X;a,d) containing
R. Then J(B) #0 and so J(B)NR # 0. Hence J is a quasi-algebraic g-derivation by
IProposition 1.1, a contradiction. (]

From [Corollary 1.2, we may assume that 0 is a quasi-algebraic o-derivation. The
inner order of o, denoted by o(g), is defined by the smallest positive integer n such
that ¢” = I,, the inner automorphism induced by a, where a € K; if no such natural
number 7 exists, then o(g) is co. Note that o(g) =n < o0, then ¢ € Aut(K). A monic
polynomial p(X) with deg p(X) =n is said to be invariant if for any a e K, p(X)a =
a"(a)p(X), p(X)X = (X 4+ ¢)p(X) for some c € K. Note that K[X;07,0]p(X) is an ideal
of K[X;0,0] if and only if p(X) is invariant.

In the remainder of this section, except for Propositons 1.4 and 1.5, we always
assume that 0 is a quasi-algebraic o-derivation and p(X) is a monic invariant poly-
nomial of minimal non-zero degree with deg p(X) = n.

If o(6) =m < oo, then in [C], Cauchon proved that Z(R) = Z(K)J_(;[/lp(X)l] for
some non-zero A € K and some natural number /, where Z(S) stands for the center of S
for any ring S and Z(K), ; = {a € Z(K)|g(a) = a and d(a) = 0} (also see [LL, (2.8)]).
We note that any non-zero prime ideal of R is maximal.

With this notation, we will describe all maximal ideals of R in the following lemma
which is essentially due to Cauchon.

LemMA 1.3. Suppose that o is a quasi-algebraic a-derivation.

(1) If o(o) = o0, then P=K[X;0,0|p(X) is the only maximal ideal of R.

(2) If o(o) < w0, then any maximal ideal of R is one of the following: P =
K[X:6,0]p(X), M = Rw(Y), where Y =p(X)' and w(Y) runs over all irreducible
polynomials of Z(K), ;[ Y] different from Y.

Proor. It is clear that P = Rp(X) is a maximal ideal of R in all cases.

(1) First, we note that if o(¢) = co, then Z(R) =< K. To prove this, on the con-
trary, assume that there exists a polynomial ¢(X) = ¢, X" 4+ ¢, 1 X" ' 4+ --- + ¢y € Z(R)
with n>1, ¢, # 0, then it 1s easy to see that ¢” is inner induced by c, I a contra-
diction. Hence P is the unique maximal ideal of R by [C, (6.2.13)].

(2) Let M be any maximal ideal of R with M = Rg(X) for some monic invariant
polynomial ¢(X) in R and M # P. Then ¢(X) =aw(Y)p(X)" (see [LL, (2.8)]), where
acK, w(Y)eZ(K), ;Y] and m > 0. Since M # P, m =0 and w(Y) must be an irre-
ducible polynomial different from Y, showing that M = Rw(Y). Conversely, it is easy
to see that Rw(Y') is a maximal ideal of R, where w(Y) is an irreducible polynomial of
Z(K), s1Y] different from Y. ]

The following two propositions are remarkable and may be implicitly known.
However we shall give proofs of them for the reader’s convenience.
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PROPOSITION 1.4. 0 is inner if and only if there exists a monic invariant polynomial
p(X) =X —b for some beK.

PrOOF. Suppose that 6 is inner. Then there is an element b€ K such that
o(a) =ba —a(a)b for all ae K. Then Xa = a(a)X +d(a) = a(a)X + ba — a(a)b so that
(X —b)a=oa(a)(X —b). It easily follows that (X —b)X = (X —b+a(b))(X —b) by
using 6(h) = b*> — o(b)b. This means that X — b is a monic invariant polynomial.

Conversely, suppose that X — b is a monic invariant polynomial. Then (X — b)a =
og(a)(X —b) and (X —b)a=oa(a)X +J(a) —ba for any ae K and so a(a)(X —b) =
g(a)X +9J(a) —ba. Hence d(a) = ba — ag(a)b, i.e., J is inner. O

ProprosITION 1.5. Suppose that K is a field and that o # 1. Then 0 is inner.

Proor. Since o # 1, there exists an element be K with o(b) #b. For any
ae K, o(a)d(b)+d(a)b=05(ab) =d(ba) = a(b)d(a)+d(b)a and so (o(a)—a)d(b) =
(a(b) — b)o(a). Let ¢ =—0d(b)/(a(b) —b) e K. Then d(a) = ca— a(a)c for any a e K,
i.e., 0 is inner. U]

We shall study the proper non-commutative valuation rings of K(X;a,0) containing
R by using [Lemma 1.3 and the following lemma which is implicitly known. An order
S in a simple Artinian ring Q is called Dedekind if every one-sided ideal of S is a
progenerator (see [MR, (5.2.10)]). A prime ideal P of S is left localizable if €(P) =
{c e S|c is regular mod P} is a left Ore set and any element in %(P) is regular. We
denote by Sp the localization of S at P if P is left localizable. If P is left and right
localizable, then we say that P is localizable. 1f S is a Dedekind order in Q, then any
non-zero prime ideal is a maximal ideal of S (see [MR, (5.4.5)]). Hence the following
lemma follows from [D, Theorems 3 and 4, §2].

LEMMA 1.6. Let Q be a simple Artinian ring and S be a Dedekind order in Q. Then
there is a one-to-one correspondence between the set of all proper Dubrovin valuation
rings of Q containing S and the set of all non-zero maximal ideals of S, which is given
by ¢: B— J(B)NS and ¢~' : P — Sp, where B is a proper Dubrovin valuation ring of Q
containing S and P is a non-zero maximal ideal of S.

If 0 € Aut(K), then R is a principal ideal domain so that it is a Dedekind order in
K(X;0,0). Thus the following theorem follows from Lemmas and [L.6.

THEOREM 1.7.  Suppose that o € Aut(K) and 0 is a quasi-algebraic o-derivation such
that p(X) is a monic invariant polynomial of minimal non-zero degree.

(1) If o(o) = oo, then Rp is the only proper Dubrovin valuation ring of K(X;a,0)
containing R, where R = K[X;0,0] and P = Rp(X).

(2) If o(o) =m < oo, then any proper Dubrovin valuation ring of K(X;a,0) con-
taining R is one of the following: Rp, Ry, where M = Rw(Y) is as in Lemma 1.3.

Next we shall study the case where ¢ is not an automorphism. Since P =
Rp(X) 2 p(X)R, we have an ascending chain of overrings; R < p(X) 'Rp(X) < - &
p(X)"Rp(X)" < ---. Set R=J", p(X)'Rp(X)". Furthermore, Kp(X) 2 p(X)K
so that we have an ascending chain of division overrings; K < p(X)'Kp(X) < - &
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p(X)"Kp(X)" < ---. And we set K =), p(X)'Kp(X)', a division ring containing
K. Let p(X)™"ap(X)" be any element in K where a € K. Define 6(p(X) "ap(X)™)
= p(X)"a(a)p(X)". Tt is easy to check that & is well-defined and ¢ € Aut(K). By
usage of p(X), we have another automorphism 7 of K defined by 7(a) = p(X)ap(X)™"
for any « € K. We note that we have a descending chain of subdivision rings; K 2
7(K)2---21"(K) 2 --- and ¢" = 1|g, the restriction of 7 to K, where n = deg p(X).

We also note that R = R if ¢ € Aut(K). Using this notation we have the following:

ProposITION 1.8.  Suppose that o ¢ Aut(K) and J is a quasi-algebraic o-derivation
such that p(X) is the unique monic invariant polynomial of minimal non-zero degree.

(1) R=K[X;6,0] for some b, a é-derivation.

(2) &eAut(K) and o(6) = 0.

(3) P = Rp(X) is the unique maximal ideal of R. In particular, Rp(X) is com-
pletely prime if and only if P is completely prime.

Proor. (1) First, we define 6 as follows; let o = p(X) 'ap(X)’ be any element of
K, where a € K. Since p(X)lX = (X—i—b,)p(X)l for some b; € K, we have (X + b))a =
og(a)X +d(a) + bja = o(a)(X + b;) + a;, where a; =d(a) + bja — o(a)b; € K and

P(X) Xo = p(X)'Xp(X) 'ap(X)’
= (X +bp)ap(X)'
= (a(a)(X + b)) + ar)p(X)".
So

Xo

p(X) ™ (a(a)(X + b)) + ap) p(X)'

p(X)o(@)p(X)'X + p(X) " ap(x)’

6(0) X + (),

where 6(x) = p(X) ap(X) e K.
To show that ¢ is a ¢-derivation, let o, € K. Then

X(a+p)=Xa+ Xp
— ()X + () + G(B)X +5(B)
= (6(2) + ()X +8(2) + ()

and X(x+p) =6(a+ B)X + (o + f), which shows that d(o + f) = (at) + (). Fur-
ther, Xofi = (6(2)X +3(2))f = 6(2)6(B) X + 6(2)(B) +(2)f and Xof = 6(x)6(f)X +
8(af). Thus o(af) = 6(2)0(f) + () and so & is a é-derivation.

Next we prove that R = K[X;6,6]. Since R is a ring, it follows from the defini-
tion that R 2 K[X;6,6]. To prove the converse inclusion, let o = p(X)'f(X)p(X)' e R,
where f(X) = Za;X' and [ is a non-negative integer. Since p(X)'X = (X + b;)p(X)l for
some b; in K, we have
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PX) " Xp(X)" = p(X) (X + by — by) p(X)'
= p(X)'(X + b)) p(X)" + p(X)~ (=) p(X)'
=X + p(X)" (=b)p(X)',

which belongs to K[X;6,6]. Hence o= p(X) " f(X)p(X) = Zp(X) a;p(X)'p(x)~"-
Xip(X) e K[X;6,6].

(2) We have proved that 6 Aut(K). To prove that o(¢) = oo, on the con-
trary, assume that 6" = I, for some m > 1 and a € K, i.e., " () = afo! for all B e K.
Write a = p(X) 'ap(X)’ and ,b’:p(X)flbp(X)l for some />0 and a,be K. Then
6" () = p(X) o™ (b)p(X)" and apa! = p(X)ap(X)'p(X)'bp(X)'p(X)'a p(X)' =
p(X)aba'p(X)'. Hence o™ (b) = aba~" for any b e K, contradicting to the assump-
tion o ¢ Aut(K) and so o(G) = 0.

(3) For any o= p(X)"'f(X)p(X)" € R, we have p(X)a= p(X)"""Vr(x)p(x)""
p(X) € P, which implies that P is an ideal of R. We know from that there
is a unique maximal ideal, say, M = Rp, so that p(X) = yp for some y e R. Write
y=p(X)""r(X)p(X)" and p = p(X) "g(X)p(X)", where m >0 and r(X),g9(X) € R.
So p(X) = p(X) "r(X)g(X)p(X)™ and thus p(X) =r(X)g(X). Since 7 is extended to
an automorphism of R which is a conjugation by p(X), we have RS =1"(Rf)=
Rt"(f) = Rg(X) and thus Rg(X) < Rg(X)NR < Rp(X) so that g(X) = ¢(X)p(X) for
some c¢(X)eR. It follows that P = Rp(X)= Rr(X)g(X) < Rg(X)= Re(X)p(X) <
Rp(X). Hence P = Rg(X), which shows that P is the unique maximal ideal of R.

To show the last statement, suppose that P is completely prime, then P is
completely prime, because P = PN R. Conversely, suppose that P is completely prime
and assume that «ff € P with « ¢ P, where o,fe R. So aff = yp(X) for some y € R.
Write o = p(X) "/ (X)p(X)', B = p(X)'g(X)p(X)" and y = p(X)"'r(X)p(X)' for some
[>0 and f(X),9(X),r(X)e R. Then we have f(X)g(X)=r(X)p(X) and so either
f(X)ePorg(X)eP. If f(X)eP, then f(X)=c(X)p(X) for some ¢(X) e R. Thus
o= p(X) (X)) p(X) = p(X)"e(X)p(X)'p(X) € P, a contradiction. Hence g(X)e P

~

and so e P, proving that P is completely prime. ]

K is said to be (left) algebraic over K if for any o € K, there exist ¢; € K, not all
zero, such that > ¢’ = 0.

In the case where P = Rp(X) is completely prime and K is algebraic over K, we
have the following:

PROPOSITION 1.9.  Let 0 be a quasi-algebraic o-derivation with o ¢ Aut(K). Suppose
that K is algebraic over K and P = Rp(X) is a completely prime ideal, where p(X) is the
unique monic invariant polynomial of minimal non-zero degree. Then fzp is the unique
proper total valuation ring of K(X;0,0) containing R.

Proor. We know from Theorem 1.7 and [Proposition 1.§ that R, is a Dubrovin
valuation ring of K(X;0,0) containing R. Since P is a completely prime ideal, we
have R; is total (see the proof of [MMU, (8.13)]). To show the uniqueness, let B be
any proper total valuation ring of K(X;a,0) containing R. Then we shall prove that
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B2 R. 1t suffices to prove that B2 K. Let o= p(X) 'ap(X)' € K for some ae K
and /> 0. Since B is total, we have either o € B or «~! € B. If o e B, then there is
nothing to do. So we may assume o~ ! € B. Since K is algebraic over K, there are a
natural number m and elements ¢; € K, not all zero, such that > " co “=0. We
may assume that ¢y # 0, ¢, #0. Thus t/(co) + 37", t/(¢;)a" =7'(0) =0 and so 1 =
— 2% 7'(cgte)a™. Multiplying @ on the both side, we have a = — 37" /(¢j ' er)a™"*.
Hence we have a =1t/ (a) = — 3.7 cg et (@) = =327 ¢glcia ' e B.  Since B2 R,

we have B = R; by Theorem 1.7. O

COROLLARY 1.10. Let 0 be a quasi-algebraic a-derivation with o ¢ Aut(K) and 6 be
inner. Suppose that K is algebraic over K. Then f?f, is the unique proper total valuation
ring of K(X;0,0) containing R.

Proor. Since ¢ is inner, there exists a monic invariant polynomial p(X) =X —5
for some b € K by [Proposition 1.4, Hence R = K[Y,q], where Y = p(X). This means

that P = Rp(X) is a completely prime ideal and so f%i, is the unique proper total valu-
ation ring of K(X;0,0) containing R. O

If K is not algebraic over K, then it becomes very complicated, even in the case
where K is a field. If K is a field, then there exists a monic invariant polynomial
p(X) =X — b for some b € K by Propositions L4 and and so, as in [Proposition 1.9,
fip is a proper total valuation ring of K(X;,0) containing R. But there are many
others proper total valuation rings of K(X;o0,0) containing R, as it will be seen in the
following:

ProrosiTiON 1.11.  Suppose that K is a field with o ¢ Aut(K) and 6 is a quasi-
algebraic o-derivation. Let p(X)= X —b be an invariant polynomial and P = Rp(X).
If K is not algebraic over K, then

(1) trdegy K = oo and

(2) Let B={t;cK|ie A} be a transcendental basis of K/K, where A is an index
set with o as its ordinal number. Then there exist at least total valuation rings A; and
B; (ie A) of K(X;0,0) satisfying the following:

(1) fip 2 A; for all ie A and A; are incomparable each other.

(11) B1 _C,_Bzg--- EIAQI;.

Proor. (1) Let K; = p(X) 'Kp(X)" and assume that K =Ko S K| S Kr S - &
K; < K;,; such that K; is algebraic over K; ;| for all 0 < i </ and K;,; is transcendental
over K;. If /> 1, then there exists an element 7 = p(X) ™ap(X)"™ € K, which is
transcendental over K, where a e K. Since 7(7) = p(X) 'ap(X)' € K, it is algebraic
over K |, i.., there exist §; € K;_j, not all zero, such that ., f;7(¢)" = 0, which
implies Zi’iop(X)*lﬂ,-p(X)t" =0, 1.e., ¢ 1s algebraic over K, a contradiction. So we
may assume that 1 = p(X )_lap(X ) is transcendental over K for some ae K. Set ¢t =
t,..., 1 = p(X)'ap(X)' for any natural number / and K; = K(1,,..., ), the field gen-
erated by K and ¢#1,...,#. Then it follows from the same method as the above that ¢; is
transcendental over K;_; for any / by induction on /. Hence tr.degKK = 0.

(2) Let B={r,eK|ie A} be a transcendental basis of K/K, where A is an index
set whose ordinal number is o, and let K = K(#;);., be the field extension of K gen-
erated by K and B.
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(i) For any ie A, we define a valuation v; of K as follows; v;(a) = 0 = v;(¢;) for
any ae K and je A, j#iand v;(t;) = 1. v; naturally determines a valuation of K (see
[G, (18.4)]) and let V; be the valuation ring of K corresponding to v;. It is clear that
the rings ¥; are incomparable to each other. Since K is algebraic over K, there is an
extension ¥; of ¥V, to K for each ie A ([E, (13.2)]), and the rings V; are incom-
parable. Now, since R = K[V, 6] with a maximal ideal P = RY, where Y = p(X), we
have the natural homomorphism ¢ : Ry — K(= Rp/J(Rp)). Let 4; = ¢ (V;) be the
complete inverse image of V; by ¢ which are total valuation rings of K(X;a,0) such that
Rj 2 A; by [XKMy, Proposition 1.7 (3)] and it is clear that the 4; are incomparable to
each other.

(i) Let G=EPZ; (ieA and Z; = Z, the ring of integers) be a totally ordered
abelian group by anti-lexicographical ordering, where A is consider as a well-ordered
set. We define a valuation w of K as follows; w(a) =0 for all e € K and w(t;) = g; =
(...,0,1,0,...) € G, the i-th component is one and the other components are all zeros.
Let W be the valuation ring of K determined by w. As in [XKMj, Example 2.5], set
F; ={g € G, |either g > g; or g; > g but the i-th component of ¢ is 1 and j-th compo-
nents are all zeros if j > i for each i}, where G. ={ge G|g >0}. Then it is easy
to check that F; are prime filters (see [G, p. 196]). So, by [G, (17.8)], P, ={ke K|
w(k) e F;} U{0} are prime ideals of . From the definitions we easily see that F; < F;
for any i,je A with i> j so that P, & P, Thus we have the valuation rings Wp,
(i € A) of K which are well ordered; Wp, & Wp, < --- < K. Hence, as in (i), we have a
set of total valuation rings B; (i e A) of K(X;0,0) such that By S B, & --- & Rp. [

We end this section with some examples to display some of the various phenomena
we have discussed. We start with the following obtained by [LM, (2.8)]. However we
shall give an elementary proof of it for the reader’s convenience.

PrROPOSITION 1.12.  Let 0 € Aut(K) with 66 = do and char K = 0. If 0 is not inner,
then it is not a quasi-algebraic a-derivation.

PrOOF. Assume that J is a quasi-algebraic o-derivation. Let p(X) be a monic
invariant polynomial of minimal non-zero degree, say, p(X)=X"+a, (X" ' + ...
+ap (n>1,a;€K). Since p(X)a=ad"(a)p(X) for all ae K, we have ¢"(a)a,_; =

né(a"'(a)) + a,_16" 1 (a) by comparison of the coefficients of X"~!. Hence o(a)a, i
=nd(a) +a,_1a for all aeK, because oecAut(K) and so d(a) = (—n"'a, 1)a—
o(a)(—n~'a, 1), an inner derivation which is a contradiction. O

We start off with the case ¢ =1 and we immediately have the following from
IProposition 1.12,

ExampLE 1.1. Let F be a field with char ¥ =0, K = F(¢) be a rational function
field over F in an indeterminate #, ¢ = 1 and 0 be the formal differentiation with respect
to t. Then 0 is not quasi-algebraic.

A. Leory provided us with the following result:

ExampPLE 1.2. Let F be a field with charF = p > 0, K = F(t), where ¢ is an in-
determinate over F, ¢ =1 and let 0 be the formal differentiation with respect to ¢.
Then ¢ is quasi-algebraic and not inner.
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Proor. Since 0” =0 and char F = p, it follows that X7 is invariant. For any
monic polynomial p(X) = X"+ a, 1 X" ' +---+ay with n < p, if p(X) is invariant,
then we have ¢ is inner as in [Proposition 1.12, a contradiction. Hence, X7 is a monic
invariant polynomial of minimal non-zero degree. Thus ¢ is quasi-algebraic and not
inner by [Proposition 1.4, ]

ExampLE 1.3 ([Le]). There exists a division ring with automorphism ¢ such that
o(6) < oo and a quasi-algebraic o-derivation & which is not inner. In fact, ¢*> = I,
9% =0, 00 # do for an example in [Le].

To give examples of division rings such that o(¢) = oo and J is a quasi-algebraic o-
derivation (or, J is not a quasi-algebraic o-derivation), let F be a field with ¢ € Aut(F)
and K = F((t,0)), the quotient ring of the skew formal power series ring FI[t,q]l.
We can naturally extend ¢ to an automorphism of K which is given by o(Xa,t") =
2(o(a,)t") for any Za,t" € K. Now we define a map ¢ from K to K as follows;
d(Xant") = Zno(a,)t"*!. Then we easily have the following properties;

(1) o is a o-derivation.

(2) 00 =da.

ExamPLE 1.4. Under the same notation as in the above, suppose that o(g) = oo for
geAut(F) and og(a) #a—1 for all aeF.

(1) o(o) =0 as g€ Aut(K) and ¢ is not inner.

(2) If char F =0, then ¢ is not a quasi-algebraic o-derivation.

(3) If charF = p >0, then ¢ is a quasi-algebraic g-derivation.

Proor. (1) It is easily checked that o(¢) = co. To prove that ¢ is not inner, on
the contrary, assume that J is inner. Then there is an element = (3.7, b,t") (b, € F,
biy #0,n e Z) such that d(a) = o — o(a)f for all o€ K. So for any a € F, we have
0=0(a) =pa—oca(@)p =", but")a—a(a)(>,-, but"). By comparison of degrees in
the equation, we have b,6"(a) = a(a)b, for all n=k,k+1,.... Hence, f = bt, and
t*> = 6(t) = bytt — thit = (by — a(b1))t*> and thus o(h;) = b; — 1, a contradiction. Hence
0 1s not inner.
(2) This follows from |[Proposition 1.12] and (1).
(3) We easily see from the definition of § that 67 =0, i.e., J is quasi-algebraic.
]

Next we will give an example of a field K such that K is algebraic over K.

ExampLE 1.5. Let K = F(t) and let ¢ be an endomorphism of K determined by
o(a) = a for all ae F and o(f) = t>. Since p(X) = X is a monic invariant polynomial
of minimal non-zero degree in the skew polynomial ring K[X;o], K = J°, X 'KX ' and
K is algebraic over K.

PrOOF. Since o(f) = 12, it easily follows that (X~ 'tX)* = X '/2X =1, algebraic
over K. Inductively, we have (X X" =X =D(x-12X)...(x '2x)x"! =
X (=02 xn=l — ¢ algebraic over K. And it is easy to check that K is generated by
K and X "tX". Hence K is algebraic over K. ]

Finally we will give an example of a field K such that K is not algebraic over K.
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ExampLE 1.6. Let K = F(to,1,1,...), where fy,t1,1,... are indeterminates. Let
o be an endomorphism of K determined by a(a) =a for all ae F, a(t;) = t;4; for all
i>0and 6=0. Then K = U, X 'KX' is not algebraic over K and K=F(..  t,
to,t1,...), where t_, = X~'t_,,1 X for any natural number n.

ProoOF. Let K , = F(t_p,...,t_1,t,t1,t2,...), a field generated by 7_,,...,7_1, to,
f,t,... over F. Since o induces an automorphism ¢ of K which is a conjugation by
X, we have 6(t_,) = t_,41 for all natural number and so o(K_,) = K_,;;. We shall
prove that ¢_, is transcendental over K_, ;| for any n. Assume that ¢_; is algebraic over
Ko, say, t' +a1t'7' +---+ay =0, where a;e Ky and /> 1. Then )+ a(a;_1)t}!
+---4a(ay) = a(0) =0, where a(a;) € K;, and so 1, is algebraic over K;, a contradic-
tion. We can prove that 7_, is transcendental over K ,,; by the same way. In par-
ticular, K is transcendental over K. The second statement is clear, because 7_, =
X "tpX" for any natural number n. O

2. Non-commutative valuation rings of K(X;o,6) contained in R().

Let K be a division ring, ¢ be an endomorphism of K, ¢ be a og-derivation and V
be a total valuation ring of K. Throughout this section, we assume that (g,0) is
compatible with V', ie., a(V) <V, a(J(V)) =J(V), o(V)< V, o(J(V)) = J(V). In
[BT], they proved that J(¥)[X;0,0] is left localizable and R = V[X;0,6],1)1x.0.)
the localization of V[X;o,0] at J(V)[X;0,d], is a total valuation ring of K(X;a,0)
with ROUNK =V, X e RV and we studied some properties of RV (see [XKM;]). In
this section we shall study non-commutative valuation rings B of K(X;0,0) such that
BNK =V, B< RWY and X e B, which are the purpose of this paper. This will be done
by combining the results in Section 1 and [Proposition 2.1.

A left order S in a simple Artinian ring Q is said to be left Priifer if any finitely
generated left S-ideal in Q is a progenerator of S-Mod, the category of left S-modules
(IMMU, §2]). We shall start with the following general case.

ProrosiTiON 2.1.  Let S be a Dubrovin valuation ring of a simple Artinian ring Q
and ¢ : S — S = S/J(S) be the natural homomorphism. Suppose that R is a left order in
S and let R = ¢ '(R) be the complete inverse image of R. Then:

(1) R is a left order in Q.

(2) R is a left Priifer order in Q if and only if R is a left Priifer order in S.

(3) Suppose that R is left Priifer. Let @ be a prime ideal of R and P = ¢~ '(p),
a prime ideal of R. Then ¢ is left localizable if and only if P is left localizable.
Furthermore Rp = ¢~ 1(R,).

(4) R is a Dubrovin valuation ring if and only if R is a Dubrovin valuation ring.

(5) Suppose that Q is a division ring and S is a total valuation ring of Q. Then R
is a total valuation ring if and only if R is a total valuation ring.

Proor. (1) First, we shall prove that for any se S, there exists a ce U(S)NR
with ¢s € R, where U(S) is the group of units in S. If s e J(S), then there is nothing
to do, because J(S) < R. So we may assume that s¢ J(S), then §= ¢~ !'7 for some
c¢,r € R with ¢ € 65(0) = {f e R |7 is regular}, equivalently, ¢S = S. So by Nakayama’s
Lemma, ¢ e U(S) and ¢ € R, because ce R. Let ¥ ={ce R|ce ¥s(0)}, which is not
empty.
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Second, we shall prove that, for any ¢ € Q, there is a c€ % with ¢qg e R. Since
there is an element d € €5(0) with dg € S, there exists d; € U(S) N R with didg € R. For
this d,d, there is a ¢; € U(S)N R with ¢;did e R. Hence ¢ = c;did € ¢ and cq € R.

Now, for any re€ R and ce @, there is a d € % such that dre”' =te R and so
dr = tc, showing that € is a left Ore set of R. Now it is clear that Ry = {c¢"'r|ce @
and re R} = Q.

(2) This is proved by the exactly same method as in [M, (3.1)].

(3) It is easy to see that @gr(P) = Gn(p) and Gr(P) ={ce R|ce Cxn(p)}.

Furthermore, by the same way as in [MMU, (22.6)], we have %x(P) = %x(0) and
En(p) = €x(0). Suppose that P is left localizable. Then it is easy to see that p is
left localizable. To see that p(Rp) = R, let c € Gr(P). Then ¢S = S and so c e U(S).
Thus it follows that S = Rp and so ¢(Rp) = R, follows easily. Conversely, suppose
that @ is left localizable. For any c € éx(P) and r € R, there are t € R and d € ér(P)
with di = . So dr—tc=me J(S). Since c e U(S), we have m = nc for some n e
J(S). Hence dr = (t+ n)c, showing that P is left localizable. It is easy to see that
Rp = ¢~ (Ry).

(4) By [M, (3.1)], R is Priifer if and only if R is Priifer. So in both directions,
it suffices to prove that J(R) = ¢~ '(J(R)). To prove this, let I be a maximal right
ideal of R. Then it is enought to prove that / = J(S). On the contrary, suppose that
I2J(S). Then I+ J(S)=R and so IS+ J(S)=S. Hence IS =S and thus 7 =
IR 2 1J(S) = ISJ(S) = J(S), a contradiction. Hence we have R/J(R) = R/J(N), i.e.,
R is local if and only if R is local. Therefore R is a Dubrovin valuation ring if and
only if R is a Dubrovin valuation ring.

(5) This follows from (4) and the proof of [MMU, (8.13)]. O

REMARK. (1) The statement (1) in [Proposition 2.1 is valid if S is a left order in Q
and S = S/J(S) is a simple Artinian ring.

(2) It is tempting to conclude that R is an invariant valuation ring of a division
ring Q if and only if R and S are invariant. However, this is not necessarily true as it
will be seen in Example 2.5.

Now let ¢: R =V[X;0,0], 5.9 — RV = RW/J(RV) = V(X;5,0) be the
natural homomorphism, where () = [o(v) +J(V)] and o(v) = [6(v) + J(V)] for any
i=[w+J(V)]eV. Set R=¢ (V[X;5,0]) = V[X;0,6] + J(RY), a left Priifer order
by [Proposition 2.1, because V[X;& ] is a left principal ideal domain.

We shall study non-commutative valuation rings B of K(X;0,0) such that
BNK =V, RY 2B and X € B by applying the results of Section 1 and
2.1 to the situation above. For simplicity, we denote by & the set of all Dubrovin
valuation rings B of K(X;,0) such that BNK =V, RV 2 B and X € B.

PROPOSITION 2.2. There is a one-to-one correspondence between & and the set of all
Dubrovin valuation rings B of V(X;6,6) with B = V[X;&,0], which is given by ¢(B) = B
and ¢~ (B) = B, where Be .

Proor. Let Be 2 with B# RY. Then B2 J(RY) and ¢(B) = B/J(RY) is a
Dubrovin valuation ring of R() (see [MMU, (6.6)]).
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Conversely, let B be a Dubrovin valuation ring of ¥ (X;&,4) containing V[X;a,J].
Then it is easy to see that B= ¢ !(B) e Z and ¢(B) = B by [Proposition 2.1.

PROPOSITION 2.3. If 6 is not a quasi-algebraic G-derivation, then 2 = {RW}.

ProOF. Let Be & with B # R(). Then B = ¢(B) is a proper Dubrovin valuation
ring of V(X;&,6) containing V[X;&,0] and so J(B)N V[X;5,06] is a non-zero ideal of
V[X;5,5] which is a contradiction to [Proposition 1.1. ]

In the remainder of this section, we assume that J is a quasi-algebraic G-derivation
and let p(X) e V[X;0,0] is a monic polynomial such that p(X) e V[X;&,d] is a monic
invariant polynomial of mininal non-zero degree (the existence of such p(X) is guaran-
teed by [Proposition 1.1)). In the case & e Aut(V), we shall give a complete description
of & as follows:

THEOREM 2.4.  Suppose that 6 is a quasi-algebraic G-derivation and & e Aut(V).

(1) If o(¢) = oo, then 9 = {RW Rp}, where P = Rp(X).

2) If o(@)=m< o, then % ={RY Rp, Ry |P=Rp(X),M = Rw(X), where
w(X) € V[X;0,0] such that w(X) is an irreducible polynomial of 2(7)575[Y](Y = p(X)!
for some 2 eV and [ > 1 as in Lemma 1.3)}. In particular, J(Rp) = Rpp(X) = p(X)Rp
and J(Ry) = Ryw(X) = w(X)Ry.

ProoF. Since p(X),w(X)e URWY), we easily have P=¢ (V[X;5,0]p(X)) =
Rp(X)=p(X)R and M =¢ '(V[X;5,0]w(X))=Rw(X)=w(X)R, where R=V[X;0,d]
+J(RW). Hence the theorem follows from Propositions 2.1, and Theorem 1.7.

O

REMARK. Under the same notation and assumptions as in [Theorem 2.4, J(RW) =
(Vo1 Rep(X)™ = () Ragw(X)"™.

Proor. Since J(RW) is a prime ideal of Rp, we have J(RW) = ("_ Rpp(X)".

So 0=gp(J(RV)) =\ _, ¢(Rp)p(X)™ =0, because p(Rp) is a Noetherian Dubrovin val-
uation ring. Hence J(RV) = (\*_| Rpp(X)™ and similarly, J(RV) = ()"_, Ryw(X)".
L]

The property in the Remark above will characterize Rp and Rj, as follows:

THEOREM 2.5. Suppose that J is a quasi-algebraic G-derivation and & e Aut(V). If
B is a Dubrovin valuation ring of K(X;a,0) such that BNK =V, X € B and J(B) =
Bg(X) = g(X)B for some g(X)e V[X;a,6] with J(RV) = (\"_ Bg(X)", then either
B = Rp or B= Ry, where P and M are as in Theorem 2.4.

Proor. First note that if S is a Dubrovin valuation ring of K(X;0,0) such that
SNK=V,S2RWY, then S = RWY. Assume that S 2 R(). Then J(S) < J(RM), and
so J(V)S=J(V)RDS =J(RM)S=S5. Write 1 =us for some veJ(V) and se S. Then
s=v'e KNS =V, a contradiction. Hence S = R") follows. Now, let B be a Du-
brovin valuation ring of K(X;a,0) satisfying the conditions in [Theorem 2.3. Then by
[BMO, theorem 5], J(RW) is Goldie prime, i.e., a prime ideal of B such that B/J(R)
is a Goldie ring. So By is a Dubrovin valuation ring by [MMU, (14.5)]. Since
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any ¢(X) e V[X;0,0)\J(V)[X;0,0] is a unit in R, it easily follows that €z(J(RV)) =
V(X;0,0\J(V)[X;0,0] and so B 2 RV, Let W = Bj gy N K and we want to show
that V= W. B2 J(Bygw) implies that J(Byzwy) = J(RWV). Thus J(V) =J(RV)NK
= J(Byrny) NK =J(W) and so V' = W follows. Hence R = Bjrny 2 B. Thus we
have either B= Rp or B = Ry, because B2 R = V|[X;0,6] + J(RW). O

If 5 ¢ Aut(V), then as in Section 1, let V= Ur_, p(X)™Vp(X)™, a division ring
contalmng 7 and R = U, 1 DS p(X) ’”Rp( )™, where R 9(R) = V[X;5,6]. Then R =
V([X;5,0] for some e Aut(¥), and § is a G-derivation by [Proposition 1.8 Since
Rp(X) 2 p(X)R, we have Rp(X) = V[X;0,0]p(X)+J(RV) 2 p(X)R and so we can
construct R =) p(X)"Rp(X)", an over ring of R. It is easy to see that R =
g ! (R) a Priifer order in K(X;0,0) by |Pr0position 2.1. It follows from [Proposition 1.§|

that P= Rp( ) is the unique maximal ideal of R and so R € 9, by Propositions 2.1
and 22, where P = ¢~'(P). Hence we have:

THEOREM 2.6. Suppose that 6 is a quasi-algebraic G-derivation and & ¢ Aut(V).

(1) Rp €Y.

(2) If V is algebraic over V and Pis completely prime, then R and f{p are only
total valuation rings of K(X;0,0) in 9.

3) If V is not algebraic over V and V is a field with o = tr. deg V then there are
{4}, {B} < 9 satisfying,;

(i) Rp 2 A; for any i€ A and A; are incomparable each other, where A is an index
set as in Proposition 1.11.

(11) Bl_c,_Bzg'-'gfep.

Proor. (1) This was proved in the paragraph before Theorem 2.6.

(2) This follows from Propositions and 2.2

(3) This follows from Propositions [L11 and 2.2 m

Let Ky be a division ring and let 6 be a og-derivation with ¢d = da, where o is
an endomorphism of Kj,. Further, let R = Kj[t] be the polynomial ring over K, in
an indeterminate ¢ with at = ta for any a € K, P = tKy[tf], a maximal ideal of R and
V' = Ky[t]p, the localization of R at P, is a Noetherian total valuation ring. We natu-
rally extend 0,0 to K = K((¢) as follows; o(f(¢)) = a(ap) + o(ar)t+ -+ a(a,)t" and
o(f(t)) =0d(ap) +(ay)t+---+(ay)t" for any f(1) =ap+ ajt+---+ a,t" € Kolt].

PROPOSITION 2.7.  Under the same notation and assumptions as the above, (¢,0) is
compatible with V and V =~ K, naturally.

ProOOF. Since g0 =do, it is easily checked that ¢ is a o-derivation on K. It
is also clear that o(Ky[t]) < Ko[t], o(tKo[t]) < tKo[t], 6(Kolt]) < Ko[t], 6(¢Ko[t]) = tKo]t].
So, to prove that (¢,0) is compatible with ¥, it suffices to prove that d(c(s)™"') e V' for
any ¢(f) € Ko[f]\tKol], because J(V) = tV. Since 0 =d(c(1)e(r)™) = a(c(1)d(e(t) ™) +
S(c())e(n)™", we have 8(c(r)™") = —a(c() )o(c(t))e(r)™ e V. The last statement is
clear. ]

As all examples in Section 1 satisfies g0 = Jdg except for Example 1.3, applying
IProposition 2.7, we have:
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ExampLE 2.1. Let K be a division ring which is one of the examples in Section 1,
except for Example 1.3, K = K(¢) be the non-commutative rational function ring in an
indeterminate ¢ with at = ta for any a € Ky and let V' be as in [Proposition 2.7. Then
(7,0) satisfies the same properties as that of (¢,d) in Section 1.

Next we will give some examples of total valuation rings such that (g,0) is com-
patible with ¥ but (,5) have different properties from (,6). Let K, be a division ring
with ¢ € Aut(Ky), K = Ko(t) and V = Ky[f]p, where P = tK[t], as before. For any
f(t)=ao+art+ --- + a,t" € Ko[t], we define a(f (1)) = a(ag) + a(a1)t® + - - - + a(a,)t*",
o(f (1) =tf(t) —a(f(¢))t, an inner o-derivation and extend 0,0 to K naturaly. It is
easy to check that ¢ is an endomorphism of K but not automorphism and that (g,0) is
compatible with V. Since V' =~ K, naturally, we have & € Aut(V) and o(¢) =n < oo if
o(¢) = n as an automorphism of K,. To show that 6 =0, let g~' f € V, where f € Kyl{]
and g e Ko[7\tKo[]. Since d(g~"f) = a(g~")o(f) +d(g~")/f and a(g~")o(f) € J(V), it
suffices to prove that d(g~!) e J(V). However, 0 =d(gg~") = a(9)d(g™") +(g)g~! im-
plies 5(g~1) = —a(g) '6(g)g~' e J(V), because d(g) € J(V) and 6(g) "' € V. Hence 6 = 0.
Summarizing we have

ExampLE 2.2. Under the same notation and assumptions as the above, we have

(1) (o,0) is compatible with V.

(2) o ¢ Aut(V) but e Aut(¥) and § # 0 but § = 0. In particular, o(5) =n < o
if o(6) =n < o0 as an automorphism of Kj.

Let Ky be a division ring with ¢ € Aut(Ky) and o(g) = o (or ¢ #1 if Ky is a
field) and let 0 be a o-derivation of K, with g0 =da. Further, let K = Ky((z,0)) be
the quotient division ring of the skew formal power series ring V' = Ky|[[¢,0]] which is a
Noetherian total valuation ring such that V' =~ K,. As in [Proposition 2.7, we extend
0,0 to K as follows;

a(Zayt") = Xo(a,)t"
and
o(Zayt") = Xo(a,)t" for any Xa,t" € K.

It is easily checked that 6d = do and that (g,d) is compatible with V. Suppose that o is
inner as a derivation of Ky, i.e., é(a) = apa — a(a)ay for all a € Ky and some ay € K.
Then we will prove that J is inner in K if and only if a(ay) = ap. If a(ag) = ay, then it
is easily checked that ¢ is inner in K induced by @;. Conversely, assume that there is
an element oy = Xb,t" € K such that d(a) = apax — () for all x € K. For all a € K,
we have apa — a(a)ay =d(a) = apa — a(a)oy = 2, (byo"(a) — a(a)b,)t". Thus apa — a(a)ag
= boa — a(a)by and so (ap — bo)a = a(a)(ap — by). Hence ay = by follows, because
o(e) = o0 (or o # 1 if Ky is a field). Similarly, 0 = b,6"(a) — a(a)b, implies b, = 0 for
any n #0, n # 1 and bjo(a) = ag(a)b;. So ay = ap + bt follows. Hence, in particular,
(apa — a(a)ag)t = d(a)t = 6(at) = (ao + bit)at — a(a)t(ap + bit) = (apa — a(a)a(ap))t +
(bo(a) — a(a)a(by))t> and so a(ay) = ag follows. Hence we have:

ExamMpLE 2.3. Under the same notation and assumptions as the above, we take
ap € Ko with a(ag) # ap. Then (g,0) is compatible with V' and J is not inner but J is
inner.
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We will give an example of a valuation ring V' of a field K such that K is tran-
scendental over K but V is algebraic over V.

ExampLE 2.4. Let K = F(t,ty,t,t,...) be a rational function field over a field F
in indeterminates ¢, ¢, 1, f2, ..., let 0 be an endomorphism of K determined by ag(a) = a
for all ae F, a(f) =1, o(t;) = t;+1 for all i >0 and 6 =0. Further, let G =P Z;
(Z;=Z,i=0,1,2...) be the totally ordered abelian group ordered by lexicographical
ordering and define v(¢) = 0 = v(a) for all non-zero a € F and v(t;) = (0,...,0,1,0,...),
the i-th component is one and the other components are all zeros. Let V' be a valu-
ation ring of K determined by v (see [G, (18.4)]). We shall prove that V =~ K, = F().
Let « = fg~! be any element of K, where f =ag +ait, + --- + art’, g = by + byt; + - --
+bktk, a;,b; € Ky (some a;,b; may be zeros if necessary) and t; are monomials, e.g.,
t; = t(l)" -+t Now assume that v(x) = 0, equivalently, v(f) = v(g). Thus, by definition
of v, we have ap # 0 if and only if by # 0. In the case where ay =0, since v(f) =
min{o(t;)}, we may assume that v(f) = v(t;). Then ft;' =a; + axbt;' + - + artet;!
with v(tt;') >0 for any i# 1 and «= (ft;')(gt;")"". Thus, in any case, we may
assume that f = fo + fi and g = go + g1, where fy,g0 € Ko, fo #0, go #0 and fi,g; €
J(V). Since g—go=g1€J(V) and goe U(V), it follows that ggy' — 1€ J(V) and
so ge U(V). Thus in particular, g;' —g~' e J(V). Hence o — fogy' = (f — fo)g~ ' +
folgt —go) edJ(V) and so [a+J(V)]=[fogs' +J(V)]. It is clear that, for any
o, feKo, [0+ J(V)]=[f+J(V)] if and only if o = . Hence it easily follows that
V > F(t) with ¢([t+J(V)]) = [f>+ J(V)] and so V is algebraic over ¥ by Example
1.5. Further, let z_; = X 'toX as in Example 1.6. Then we have 7_; is transcendental
over K by the exactly same way as in Example 1.6. Hence K is transcendental over K.

As we have noticed in the remark to |Proposition 2.1, R is not necessarily invariant
despite S and R are invariant. Finally we shall give such an example.

ExamPpLE 2.5. Let F be a field with ¢ € Aut(F) and V' be a valuation ring of F
with either a(V) &£ V or a(V) & V (see [XKMy, Examples 2.2, 2.3, 2.5, 2.6 and 2.7)).
Then S = F[X, 0]y, the localization of F[X, o] at the maximal ideal (X) = XF[X ], is
an invariant valuation ring of F(X,0). Let ¢p: S — S=S/J(S) (= F) be the natural
homomorphism and let R = ¢~!(¥). Then R is not invariant by [XKMj, (1.7)], though
S and V are both invariant.
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