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Abstract. This paper is concerned with positive solutions of the semilinear diffusion
equation u, = Au+u” in 2 under the Neumann boundary condition, where p > 1 is
a constant and Q is a bounded domain in RV with C? boundary. This equation has
the constant solution (p —1)""/?=V (1, — )™=V (0 <t < T)) with the blow-up time
To > 0. It is shown that for any ¢>0 and open cone I' in {f e C(Q)]|f(x) >0},
there exists a positive function ug(x) in Q with dug/dv=0 on 0Q and |Juo(x)—
(p— 1)71/(”71)T071/(”71>ch(é) < & such that the blow-up time of the solution u(x, ) with
initial data u(x,0) = ug(x) is larger than T, and the function u(x, Tj) belongs to the cone
I'. A theorem on the blow-up profile is also given.

1. Introduction.
This paper is concerned with solutions of the nonlinear diffusion equation

u= Au+u’  inQx(t,T),
ou

5:0 on 0Q x (ty, T),

u(x, t9) = up(x) xe€Q,

where Q is a bounded domain in RY with C? boundary, v is the unit outward normal

vector on 022, p > 1 is a constant and uy € C(Q2) is a positive function. The blow-up
time T >ty of the solution u(x, ) of is defined by

T = sup{t > ty|u(x, ) is bounded in Q x (#,7)}.

For the problem [T.T), 7' is finite. Hence, lim,7|[u(x, )¢5 = +oo holds.

The equation has the constant solution (p — 1)""/®=V(T — /)™= ith the
blow-up time 7. Our main theorem states that for any &> 0 and open cone I in
{f e C(Q)] f(x) > 0}, there exists a positive function uy € C*(Q) with duy/0v =0 on 02
and |luo(x) — (p — 1)71/(”71)T_1/(p_1)]\C2(§) < & such that the blow-up time of the solution
u(x,t) of with to = 0 is larger than T and the function u(x,T) belongs to the cone
I'. Precisely, we show the following theorem in this paper.

THEOREM 1. Let f e C(Q) be a positive function, and let 6 and Ty be positive
constants. Then, there exist C and gy > 0 satisfying the following: For any ¢ € (0, ¢,
there exists ué e C*(Q) satisfying ouf/0v =10 on 0Q and
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luf(x) = (p = 1) D

Nlex@ < €'

such that the blow-up time of the solution u®(x,t) of (1.1) with initial data u*(x,0) = u§(x)
is larger than T, and the inequality

Jew (x, To) = £ (%)l <0
holds.

Also, the blow-up set of the solution u(x,?) is defined as the set
{x € Q|there is a sequence (x,,1,) in Q x (t,T) such that
(Xp, ty) — (x,T) and u(x,,t,) — +o0 as n — o0}.

This set is a nonempty closed set in 2. From standard parabolic estimates, we can
obtain the blow-up profile, which is a continuous function defined by

u,(x) = }er% u(x, 1)
outside the blow-up set.

There are a number of results for the nature of the blow-up set. For the Cauchy
problem with (N —2)p < N + 2, Velazquez showed that the (N — 1)-dimensional
Hausdorff measure of the blow-up set is bounded in compact sets of R whenever the
solution is not the constant blow-up one (p — 1)" Y~V (7 — /)=/»=V " For the Cauchy
problem or the Cauchy-Dirichlet problem in a convex domain with (N —2)p < N + 2,
Merle and Zaag showed that for any finite set D < Q, there exists uy such that the
blow-up set is D (See also and [3]). For the Cauchy problem with N = 1, Herrero
and Velazquez showed that for any point X in the blow-up set of a solution # and
¢ > 0, there exists uy with ||ug — #o||o < ¢ such that the blow-up set of u consists of a
single point x with |x —X| <e. For the Cauchy-Dirichlet problem in an ellipsoid
centered at the origin with (N —2)p < N, Filippas and Merle showed that if the
blow-up time is large, then the blow-up set consists of a single point near the origin.
Also, for the Cauchy or Cauchy-Dirichlet problem with (N —2)p < N + 2, Mizoguchi
showed the following. For any continuous function ¢ >0 and ¢ > 0, if ¢ >0 is
small, then any point x in the blow-up set satisfies ¢(x) > max, ¢(y) — 6 for up = ¢~ '¢.
See also [32]. Recently, for the Cauchy-Neumann problem with (N —2)p < N + 2,
Ishige and Mizoguchi obtained the following. Let P be the orthogonal projection
in L?(Q) onto the eigenspace corresponding to the second eigenvalue of the Laplace
operator with the Neumann condition. For any nonnegative function ¢ € L*(Q) and
0>0, if £€>0 is small, then any point x in the blow-up set satisfies (P¢)(x) >
max, (P¢)(y) —J for up = eg.

On the other hand, from the results by Baras and Cohen and Lacey and
Tzanetis [20], we might see that it was natural to interpret the value of the solution after
the blow-up time as infinity at all points in the domain (See also [4] and [29]). See, e.g.,
the references in this paper for related results or other studies on blow-up formation in
u, = Au+ub.

The following theorem shows that for any positive constant ¢ and positive function
f e C*(Q) satisfying 0f/0v =0 on 0, there exists a sequence {ugtico1) = C%(Q) with
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ou§/0v =0 on 02 and lim,_o||uf; — c||C2(§) = 0 such that eut(x) approaches (f(x) "~V —
(max, 5 £ PNV yniformly on compact sets of {x e Q| f(x) < max 5 f()}
as ¢ — 0, where the function u? is the blow-up profile of the solution u® of [1.1) with initial
data uj. This means that the constant blow-up solution has very variable instability.

TueEOREM 2. Let f € C*(Q) be a positive function satisfying 0f /0v =0 on 0Q, and
let & and c be positive constants. Then, there exist C and &y > 0 satisfying the following:
For any ¢ e (0,8), there exists ul e C*(Q) with oul/dv =0 on 0Q and ||uf — C”cZ(Ez) <
Cel~! such that the blow-up set of the solution u® of (1.1) with initial data uf is contained
in the set S:={xeQ]f(x)> max, 5 f(y) — 6} and the blow-up profile u; satisfies the
inequality

—(p-1) -1/(p-1)
aui(x) = | flx) ) - <maz< f(y>> <0.

yegQ
C(R\S)

2. Proof of Theorems 1 and 2.

The following lemma shows that the actual solution of for the early stage is
well approximated by the solution of the linearized equation of [I.1), when the initial
data is well done by a constant.

LemMA 3.  There exists C > 0 such that for any D > 0, there exists ty < 0 satisfy-

ing the following: Suppose that 7 € [19,0) and ty <t are constants, and that ¢ € C(Q)
satisfies |||l o5y < D.  Then, the blow-up time T of the solution u(x, 1) of (1.1) with initial
data

T2
ut.0) = (p = 17 )0 (14 E i)

is larger than t and the inequality

=10 0 V) - (142 g

Q)

'L'4 2
< C[_2||¢HC(!_2)
holds for all t € [ty,1].
Proor. We first note

(2.1) SUPHemWHC((g) = HW||C(_(_2)7
>0
in virtue of the maximum principle. Let C be a positive constant satisfying

-1
(2.2) (1+w)? —1— pw| < ‘”TC|W|2

for all we[-1/2,1/2].
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Let D > 0. Throughout this proof, we choose —7¢p > 0 smaller if necessary. By
choosing —7¢ > 0 sufficiently small, we have

u(x, 1) = (p— 1) V(=) P V(1 + D) > 0

and

2
u(x, 10) < (p— 1)V (L) V2D (1 _ lD)

Io
<(p— 1)V (ty — (p— 1)F?D) VD,

Hence, the blow-up time 7 of u satisfies 7 > —(p — 1)7°D > 7.
Take functions v and U on Q X [ty, 7] such that

u(x,t) = (p = 1)/ (=701 4 ol 1)

and
2

o(x, 1) = % (€20 g)(x) + Ul(x, 1)

hold. Then, we can see U(#) =0 and

1 1 Pl
U, — <A+ t) :7(1)_1)(_0((1—#0) 1 — pv).
Hence,
U0 = gy ), €406 =1 = pote) s
holds. Let
R = sup{r € (to, 7] ||| U(¢ )||C ||¢5||C for all t € [to,r ]}

Then, by [2.1), [2.2) and choosing —7¢ > 0 sufficiently small, we obtain

Uz < — j Jo()2a,

t

< gt [ Las< g
<C— e | 9= CiI4lcaq

o

for t€[ty, R]. Also,
2
||U(t)||c(§) < ——2t”¢||c(9)

holds for all 7€ [ty, R]. Hence, we see R = . O

Lemmas 4 and 5 show that the actual solution of (1.1) until a little before the blow-
up time is well approximated by the solution of the ordinary differential equation
u; = u”, when the initial data is well done by a large constant. Lemma 4 gives a super-
solution #(x, ) of (1.1).
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LeMMA 4. Suppose that a positive function ¢ € C*(Q) satisfies 0p/0v =0 on 02Q.
Let D, be a constant defined by

D, := rg;g(@ = DI(Ap))]+2

Xk |¢x,.<x>|2>.

|o(x)]
Then, the positive function ii e C*(Q x [0,¢]) defined by
a(x, 1) = (p— 1)/ Ve(1 + (p = Dp(x)e) — 1(1 + Dye?)) /7Y
is a super-solution for all ¢ > 0 satisfying 2D,e < (p — 1)min__g5 ¢(x).
Proor. We have

i(x,1)

i(x, )" (1 + D,e?),

iy, (x, 1) = —a(x, 1) (p — D, (x)e?

and
tyx; (X, 1)
= —il(x, 1) (p = 1)y, (x)&?
+a(x, 1)’ p(p — 1)(py,(x)*(e(1+ (p — Dop(x)e) — 1(1 + D,e?)) e,
Hence,
i, — (Ad+a)
e

N
—p(p—1) (Z |«px,.<x>|2) (61 + (p = Dp(x)2) = (1 + Dype?)'e?

holds. From 7 <e¢ and 2D,¢ < (p — 1)min__5¢(x), we also have

(e(1+ (p = Do(x)e) — 1(1 + Dye?))™'e?

<(p=1ol) = Do) < s
Therefore,
i — (ANu+uf)
il e?
N 2
=Dy +(p—1)(L9) = 2p Z"—l(p'f;;(x)' >0
holds. 0

gives a sub-solution u(x,7) of [L.TJ.
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LEMMA 5. Suppose that a positive function ¢ € C*(Q) satisfies dp/0v =0 on 02Q.
Let D, be a constant defined by

Dy = (p — 1) max|(Ag)(x)]

Then, the positive function ue C*(Q x [0,¢]) defined by
u(x,1) = (p = 1)V D1+ (p = Dp(x)e) — (1 — Dye)) D
is a sub-solution for all ¢ > 0.
ProOF. We have

u(x,1) = u(x, ) (1 — D,e?)

and
U, (X, 1)
= —u(x, )" (p = 1)y, (x)&7
+u(x, 0" p(p = 1) (9, (x)*(e(1 + (p — D(x)e) — (1 — Dpe”)) "™
Hence,
(B ) e by (p - 1)(29) 20
holds. u

The following theorem is the main technical result in this paper. By using Lemmas
3, 4 and 5, we prove this theorem.

THEOREM 6. For any D > 0 and d > 0, there exist Cy > 0 and &y > 0 satisfying the
following:

Suppose that ¢ (0,e0] and ty < —e are constants and that ¢ € C(Q) satisfies | :=
e 2G> d in Q and 16llc@) + ¥l 2@ < D- Then, the blow-up time T of the
solution u(x,t) of (1.1) with initial data

82
u(x, o) = (p — 1)V (—gg) VD (1 +5¢<x>)

is larger than 0 and the inequality
[(p = Y720 Du(x,0) — ()] < Coe
holds in Q.

Proor. Let C > 0 be the constant given by Lemma 3. Also, let D > 0 and d > 0.
Throughout this proof, we choose Cp > 0 larger and &, > 0 smaller, respectively, if
necessary.

Put 1 = —&. Then, by Lemma 3, we obtain

(2.3) 1(p = VP DM =Dy (x, —e) — (1 — Y(x)e)ll e < CD?¢*.
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Hence, as we put @, = — CD?¢ for &,
u(x, ) < (p— 1)~/ Ve V(1 — g, (x)e)
< (p =)DV (p = D (x)e) Y

holds. Since min__s@,(x) >d/2 and D; < (p—1)ND +4pN(D?/d) also hold, we
have

u(x, 0) < (p B 1)—1/(P—1)872/(p*1)((p . 1)@5()6) . D@S)_l/(p_l)
from [Lemma 4. Hence, we get

4pND2 _1/(17_1)
w—mﬁ%

u(x,0) < (p— 1)/ P=g=2/(r-1) <tp(x) — (CD2 + ND +
<(p- 1)*2/(17*1)8—2/(1)—1)(lp(x)*l/(pfl) + Coe).
We can see
(1 — (Y(x) + CD%)e) PV
<1+ (p = D(W(x) + CD%)e+ 2p(p — D)(W(x) + CD%)%"
<1+ (p—1)Y(x)+ (C+8p)D%)e.
Hence, from (2.3), we have
u(x,—e) = (p— 1)/ Ve VD1 — (Y (x) + CD%)e)
> (p— 1)—1/(17—1)8_1/(1;—1)(1 +(p— 1)98()6)8)—1/(;9—1)’
as we put g, =y + (C+8p)D% for &. By [Lemma 3,
u(x,0) > (p— 1)—1/(10—1)8—2/(17—1)((]9 - l)gg(x) + Q%g)—l/(p—l)
> (p— 1) Vg2V (y(x) + ((C + 8p)D* + ND)e) /(771

> (p— 1)—2/(19—1)8—2/(17—1)<¢(x>—l/(p—1) — Coe)

holds. ]
Now, we prove [Theorem 1 by [Theorem 6l
ProoF OF THEOREM 1. Let §'=min{d,min__5/(x)}. We take g; € W>*N(Q)

with dg;/dv =0 on 02 and ¢; > 0 such that
17 = (g™ Ve

</ =917 Vg +llg /D = (e g) Y g < 07/4
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holds. We also take 4 >0 and Y, € H*(Q) (k=1,2,...,n) satisfying —Ay, = A,

in Q and dy,/0v =10 on Q2 such that [e®“g; — >}, Yyl yow (g is sufficiently small.
Then, we have

N Y
(2.4) S - (Z %)
k=1

<|f=(*g)""" Vg

(@)

=1/(p-1)
+ (eAq -1/(p—-1) (Z lp}() 35//2.

c(@)

We put  => Y, D=>,_,(1+ eikTO)Hlpkﬂcz(é) and d = min__s(x). Then,
by with 7y := — Ty, there exist Cyp > 0 and &) > 0 such that for any &’ € (0, &),
the blow-up time of the solution u(x,?) of with initial data

12 n

u(x,0) = (p — 1)*1/(P*1)TO—1/(19—1) (1 _ ST_O e/lk(To—Sl)lpk(x)>
k=1

is larger than 7, and the inequality

-1/(p-1)

(@)

holds. Hence, from [2.4), the conclusion of [Theorem 1 follows with & :=
(p— ¥ Vmin{g),6'/2C}7 "D and C:= (p—1) VD=2 V= U-lp n

We prove [Theorem 2 by combining Theorem 1 with of [32].

PrOOF OF THEOREM 2. [Step 1] In this step, we show the following.
Let Co=((p—1)/2)" V=) " Then, for any uge C%(Q) satisfying Oug/ov =0 on
02 and

cP
[Juo(x) — CHCZ( = mm{z 2p+1N}

the solution u(x,t) of with the blow-up time T satisfies
u(x, 1) < Co(T — 1)/~

in Qx [ty, T).

Let v(x,7) denote the function 2Au(x,t)+ u(x,¢)’. Then, we have v(x, 1)) =
2 Aug(x) + up(x)” = —=2N|luo — ¢l 2z + (¢ — [luo — ¢ll23))” = 0. As well as Proof
of Proposition 7 in [32], we can also see dv/0v=0 on 02 and v, > Av+ pul~'v
Therefore, we have 2u, —u” = v > 0. Because 1/2 < u,/u” holds, we obtain (T — ?) /2
< J(12yds < [ite (1w du < u(e, 0”07 f(p - 1),

[Step 2] By m in [32], we have the following.
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There exists ¢, > 0 such that for any positive constant &' and function vy € C(Q2) with
¢’ <&y and |lvo — f|lcz) < &, if the solution v(x,T) of

ve=¢e?Av+v? in Qx(0,T),
ov

==
v(x,0) =vp(x) xeQ

(2.5) 0 on 02 x (0,T"),

with the blow-up time T’ satisfies v(x,7) < Co(T' — 7)YV in @ x[0,T"), then the
blow-up set is contained in the set S := {x e Q| f(x) > max, 5 f(v) — 6} and the blow-up
profile v.(x) satisfies

1/(p=1)

—(p—1)\~
0. (x) — (f(X)(’”) - (mag f(y)) ) <9.

C(Q\S)

[Step 3] In this step, we prove by Steps 1, 2 and MTheorem 1.

By [Theorem 1|, the following holds. There exist C and ¢ > 0 such that for any
g€ (0,e1], there exists uf € C*(Q) with duf/dv =0 on 02 and [[uj(x) — ¢||c2g < Ce’™!
such that the blow-up time of the solution u‘(x,?) of with initial data u®(x,0) =
uj(x) is larger than Ty := (p — 1)"'e= (=) and the inequality

lew®(x, To) — f (X)) < £

holds.

Now, we take a constant g >0 such that ¢y < ¢, eé’*l S862 and Cegfl <
min{c/2,c?/2P*'N} hold. Let 0 < & < &.

Then, by Step 1 and [[u§(x) — ¢l|c2g < Ce?~!, the inequality

ué(x,1) < Co(T — 1) VP71

holds in Q x [0,T), where T is the blow-up time of u®(x,7). Hence, as we put & =
eP=D/2 and v(x, 1) = eu’(x, Ty + &'%1),

(26) v(x’ T) < C()(T, _ T)—l/([)—l)

holds in Q x [0,T’), where T'=¢&2(T — Tp) is the blow-up time of v(x,7). The
function v also satisfies the equation with vg(x) = eu®(x, Tp). Therefore, by Step
2 and (2.6), the blow-up set of v = eu® is contained in the set S:= {xe Q| f(x)>
max, s f (y) — 0} and the inequality

—(p—n\~ V(=1
e (x) - (f(X)(”” - (maz< f(y)> ) <9
yeQ
C

(2\5)

holds. O
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