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Abstract. This paper is concerned with positive solutions of semilinear diffusion
equations u, = &> Au+uP in Q with small diffusion under the Neumann boundary
condition, where p > 1 is a constant and @ is a bounded domain in RY with C2
boundary. For the ordinary differential equation u, = u”, the solution u® with positive
initial data uo € C(2) has a blow-up set S = {x € Q|u(x) = max _suo(y)} and a blow-
up profile
=1/(p-1)

—(p-1)
u (x) = (w(x)‘“"“ - (mazs Mo(y)) )
yeQ

outside the blow-up set S°. For the diffusion equation u, = ¢ Au + u? in Q under the
boundary condition du/dv =0 on 09, it is shown that if a positive function ug € C?(Q)
satisfies dug/0v =0 on 0Q, then the blow-up profile u’(x) of the solution u* with initial
data uo approaches u(x) uniformly on compact sets of Q\S° as & — +0.

*

1. Introduction.

This paper is concerned with the singularly perturbed diffusion equation

u =& Au+u” inQx(0,T),
ou

5=
u(x,0) =up(x) xe

(1.1) 0 on Q2 x (0,7),

with a small constant ¢ > 0, where © is a bounded domain in R" with C? boundary,
v is the unit outward normal vector on 02, p > 1 is a constant and uy e C?*(Q) is a
positive function satisfying duo/dv =0 on 092. For the solution u(x,¢) of [I.1}, the
blow-up time T is defined by

T = sup{t > 0| u(x, ) is bounded in Q x (0,7)}.

Then, 0 < T < +oo0 and lim,_7|Ju(x, t)Hc(é) = +o0 hold. The blow-up set of the solu-
tion u(x,t) is defined as the set

{x € Q|there is a sequence (X,,t,) in Q x (0,T) such that

(Xn,ty) — (x,T) and u(xy,t,) — +o0 as n — oo}.
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This set is a nonempty closed set in Q. From standard parabolic estimates, we can
obtain the blow-up profile, which is a continuous function defined by

u,(x) = }er% u(x, 1)
outside the blow-up set.

Mizoguchi [6] showed the following for the Cauchy or Cauchy-Dirichlet prob-
lem with (N —2)p < N +2. For any nonnegative continuous function u, and ¢ > 0,
if ¢ >0 is sufficiently small, then any point x in the blow-up set of the solution for
the equation u, =&?Au+ uP with initial data wuo satisfies the inequality wuo(x) >
max, uo(y) —d. See [2] and [7] on the blow-up time. (We can refer to [4] and [5] for
related results on other equations of parabolic type. See also the references of for
other studies on singularity formation in blow-up of u, = Au+ u?.)

For the ordinary differential equation u, = u”, the solution #° with positive initial
data uy e C(2) has a blow-up set S* = {xe Q|up(x) = max, 5 uo(y)} and a blow-up
profile
—1/(p—1)

—(p-1)
u(x) = | uo(x)" " - (ma2< uo(y)>

yeQ

outside the blow-up set S°. In this paper, we show that the blow-up profile u(x) of the
solution u® of approaches u®(x) uniformly on compact sets of Q\S° as & — +0.
Precisely, our main result is the following.

THEOREM 1. Let ug € C*(Q) be a positive function satisfying oug/0v = 0 on 0K, and
let 0 > 0 be a constant. Then, there exists &y > 0 such that for any ¢ € (0, &|, the blow-up
set of the solution u of (1.1) is contained in the set S := {x € Q|up(x) > max,, s uo(y) —
0} and the blow-up profile u.(x) satisfies the inequality

—(p—D)\" V(=1
wy(x) = | up(x)" PV — (mazi uo(y)> <.
yeR
C(Q\S)

2. Preliminaries.

In this section, we prove several lemmas. First, we take a cutoff function
p e C*(R) satisfying

pz)=-1(z<1), pz)=1(4<z) and 0<p'(z)<3/4 (zeR).
Then, this function p(z) satisfies the following.

LEMMA 2. Suppose that [ € C*(Q) is a positive function and that « < min__5 f(x)/
4 is a positive constant. Then, the positive function g e C*(Q) defined by

1/l - f(X)>

o

(2.1) g(x) == f(x) +ocp<
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satisfies

sup 1(g(x)" """ — (p— 1)ry P~V Hc ) < too.
tef0, (p=1) (I flle—a/2)" "7V

Proor. We first note

min (2+ ap(M)) _ a+o<p<||fllﬂ>
z€|a,b] o o
max (Z+ap(m£)) :b+ap(w)_
z€(a,b] o o

Then, we see a<g(x) < ||f||c - oc Hence, we also see g(x) " V—(p—1)>

(Sl =™ = (1f e —e/2)777V > 0. O

While the following lemma is rather technical, this gives a function # such that the
inequality &, > &2A%+ " holds in the region where #(x,7) < 2%(P-VC(T — )"V,
This function # plays a key role in Proof of Theorem @ in the next section.

In this paragraph, we intuitively and informally explain the reason why the function
v plays a key role, as it is the central idea of this paper. From in the next
section, we would have the Type-I estimate u(x,t) < C(T — t)*l/ (»=) for some constant
C > 0. Then, we define a map 4 :[0,+o0) x [0,T) — [—o0,+00) by

i el

and

—oo  (otherwise)

and consider the diffusion equation
v =& Av+ h(v,t).

Obviously, u(x,?) is also a solution of v, =&>Av+h(v,f). On the other hand,
because the function 2V/P-DC(T —1)~"?=V is a super-solution of v, = &> Av + h(v, 1)
and the inequality o, >&>/AD+ h(p,f) holds in the region where o(x,?) <2%(P~1.
C(T — )"V the function

(x, 1) (5(x,7) < 2Y/-De(T — 1)1y
/=T — 1) VP~ (otherwise)
is a super-solution of v, = &> Av + h(v,t). Therefore, if ug(x) < w(x,0) holds, we would
eventually have u(x,t) < w(x,?) for 1€ [0,7). Now, we should note that w(x, ¢) is not a
super-solution of because 2P~V C(T — t)*l/ (=1 is not a super-solution of [I.TJ.
We end the intuitive and informal explanation here, and we give the strict argument in

Step 3 of Proof of [Theorem 6.

LemMA 3. Suppose that [ € C*(Q) is a positive function and that « < min__5 f(x)/
4 is a positive constant. Let g € C*(Q) be defined by (2.1). Then, for any C > 0, there
exist D and ﬁo > 0 such that for any positive constants f <y, e < and T < (p — 1)_1
(S lle = a/2)" PV the following holds:

Let ©(x,t) be a positive function defined by

00, 1) = (00" = (p = 1)) Y 4 20D ()Y — o)) Y - P

w(x, t) := ’
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on the set {(x,1) €2 x[0,T)|g(x)"""V > w(t)}, where we C'([0,T)) is defined by
(1) = (lgllc =22~V 42D~ V(T2 — (T = 1)'/?).

Then, the mequallty U, > &2 Ao+ 0P holds in the set {(x,t)e Q x[0,T)|g(x)" (p=1) _
(1) = (1/2)C- VAT — 1)),

ProOF. Throughout this proof, we denote the positive constant (p — 1)_1
AN e — oc/2)_(p_1) by Ty and choose D > 1 larger if necessary. Then, let f, > 0 be a
constant defined by e?70f2 = 1.

From [Cemma 2,

(2.2) L+ ((g(x) "V = (p— 1)) VD 4 1yt < pls

holds. Because (a+b)! —a? = j()l pla+ob)'bdo < pla+b)~'b< p2r-Y(a?' +br~1)b
< p2P~Y(1 + a?~1)(b + b?) holds, by using and eP'? < ePTofs =1, we get

o(x, 1) — ((g(x)‘(l"l) —(p— 1)1)—1/(17—1) + eD1p2yP
< p2r ' DVB (2 (=N (g(x)" P~V — gp(5)) M 2D
+ 82p/(p—1)(g(x)—(p—1) _ w(l))—hﬂ/(p—l))
and
((g(x)*(l’*l) . (p . 1)071/(]’*1) + eDtﬂz)p . <g(x)f(p71) _ (p B 1)[)7[)/(‘”71)
< p2/D'3eP' B2,

Hence, we obtain
(2.3) B(x, )" = (g(x) "V = (p - 1>z>*P/<P*”

D1/4( 2/(p-1) (g(x) w<l))—2/([7—1)

+ 2/ (0= (g(x)"P7Y — ()T PD L o Pig?y,

Also, from [Lemma 2,
(24) 826«‘@%;‘ (X, l)

< ( sup [[(g(x)"""V = (p = )TV g >82

[E[O,To]

2 - - — —
+FHQ(X) (p 1)||c2(9 e2r/(p— 1(g<x) — w(?)) (p+1)/(p—1)
2(p+ 1) - B o

lg) ™7V G e 7 P (g(x) ™Y — () Y

c1(@)®

(=17
< DY3(e? 4+ &2/ =D(g(x)~ (p=1) w(t))f(pﬂ)/(pfl)

+ 82p/(p—1)(g(x)—(p—1) _ w(t))—2p/(p—1)>
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holds. From (2.3) and (2.4), we obtain
(2.5) & AB(x, 1)+ 0(x, 1) — (g(x)f(”’l) —(p— 1);)’1’/(1’*1)
< DVAE D (g(x)"P7D = oo(£)) TP 4 2/ (g (x) 7D gp(g)) T2/ 0D
+ 2/ (g (x)"P7Y o)) TPV D g2 o D2y

In the region where g(x) "V —w(r) <p P Ve, because of & !(g(x) "V —
o) <p "V and T,'? < (T - 1),

I (g7 — ()07

< ﬁ—(p—l)g(pﬂ)/(pfl)(g(x)—(p—l) _ w(t))—(pﬂ)/(p—l)

< Tol/zﬁ_(p—l)g(PH)/(pfl)(Q(x)—(p—l) _ w(t))—(PH)/(P—l)(T _ t)—1/2
holds. In the region where g(x)" "™V —w(r) > B » Ve, because of e(g(x) "V —
o) <pr,

2D (g0 Y — o) Y < 2
holds. Therefore, we obtain
26) (gl ) — ()
< D'VA(B Dt/ (=) () =P _ g(g)) "D/l )T o Deg2y,
Because
e(g(x)" "V —o(1) " <2V — )72
holds from g(x)""™Y — w(s) > (1/2)C~»~V/2(T — 1)"/%¢ and
DAel(=D/ATD . pl/ag=(p-1)

holds from f < 8, and eP7o3 =1, we have
(7)) — ()Y

< 2C(p—l)/28(p+1)/(p—l)(g(x)*(]’*l) _ w(n)*(l’“)/(ﬁ*l)(T _ t)*l/z

<D'*p~ (p=1) o(p+1)/(p— 1( (x) (t))—(PH)/(P—l)(T_t)—1/2_
Because we see
e<f< e~ (1/2ToD D1/4e((p—1)/2)ToDT0—1/2 < D1/4ﬁ*(”’1)(T— t)fl/2

by using f < f, and e?Tf5 =1,
(2.8) e/ (p— l(g( )~ (p=1) w(t>>—(1?+1)/(l’—1)

< DVAR= =Dt/ (=1 (g (x)=(P=D) _ ()~ P/ 0=l _ py1/2
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holds. From ¢ < f, we also have

(2.9) &2 £D1/4eD’ﬁ2,
We see
bi(x, 1) — (g(x)""D = (p— 1)ny?/ 77
= %ﬁ—(p—l)g(pﬂ)/(p—l)(g(x)(pl) B w(f)),(,,ﬂ)/(p,l)(T B t)*l/z L DD,

Hence, by combining the inequalities (2.5), (2.6), (2.7), (2.8) and {2.9),

e Ao(x, 1) + B(x, 1)” < ,(x, 1)
holds. N
The following gives a sub-solution of [I.I}.

LEMMA 4. Suppose that a positive function f € C*(Q) satisfies 0f /v =0 on 02Q.
Let Dy be a constant defined by

min f xel
xeQ

p
2
(2.10) Lv:((@) max |(A/) ()]
Then, for any constant &> 0 and function uge C(Q) satisfying 2Dre* <1 and
2|jug — fl|c <min__5 f(x), the positive function u(x,t) defined by
u(x, 1) = ((f(x) = lluo = fll )" = (p = 1)(1 = D)) V7
in the set

2x[0,(p =) (1= Dy2) (IS e = lluo = Sl )"
is a sub-solution of (1.1).

Proor. Let wv(x,?) denote the function Awu+ Dru”. Then, because u, =
(1 — Dpe?)u? and (u), . = pu’~'uy., + p(p — 1)uP~?u? hold, we see

(2.11) v, = Auy+ Dppu’ " uy = (1 — Dre?)(AuP + pu”~' DpuP)
> (1 - Dre?)pu? ™ (Au+ D) = (1 — Dpe?) pu” v,

Also, we have

(2.12) o(x,0) = (AF)(x) + Dr(f (x) = lluo = fllc)”
min f(x)\"
= —max [(Af)(¥)| +Df | *45— ] =0.
Because

Au+Du’ =v=>0
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holds by and (2.12), we obtain
& Au+ul —u; = &*(Au+ Dyu’) > 0.

Hence, because du/dv =0 on dQ and u(x,0) < up(x) also hold, the function u(x, ) is a

sub-solution of [1.1). ]

The following gives a estimate of the blow-up time.

LEMMA 5. Suppose that a positive function f € C*(Q) satisfies df /ov =10 on 02Q.
Let Dy be the constant defined by (2.10). Then, for any constant ¢ >0 and function
ug € C(Q) satisfying 2Dge* < 1 and 2||lug — f||o < min__g f(x), the blow-up time T of the
solution u(x,t) of (1.1) satisfies

(P =D Uflle+ llwo = flle) PV <7
<(p—=1"' (1= D) (IS lle = lluo = flle) "V

ProoF.  Because min,_g f(y)/2 <uo(x) <||f|[¢c + [[uo — f|c holds, we have T" >
(=D (Iflle + lluo = flle) """ Also, from Lemmad, 7 < (p—1)"'(1 - Dye?)™"-
(e = llwo = flle)™"™" holds. O

3. Proof of Theorem 1.

The following theorem is the main technical result in this paper. In Proofs of not
only but also Theorem 2 of [8], this theorem is made essential use of.

THEOREM 6. Let f € C*(Q) be a positive function satisfying 0f/0v =0 on 0Q, and
let 0 and C be positive constants. Then, there exists gy > 0 satisfying the following:

Suppose that a positive constant ¢ and a function uge C(Q) satisfy ¢ < ey and
luo = fllcg) < 0. If the solution u(x,1) of (1.1) with the blow-up time T satisfies the
Type-I estimate u(x,t) < C(T — 1) "7V in @ x [0, T), then the blow-up set is contained
in the set S:={xeQ|f(x)> max, g f(y) —0} and the blow-up profile u.(x) satisfies
the inequality

—(p—D\~ V(=1
w(x) — | fx)" P - (maz< f(y)> <.

yeQ
C(2\S)

PrOOF. [Step 1] In this step, we take positive constants &', a, D, fy, 3,1, Ty and
Ty satisfying [Lemma 3 and several inequalities below. Then, we fix these constants
through Steps 2 and 3.

Put 6’ = min{J, || f||o}. By a, we denote the positive constant

_Jo DA .
ming & ((Hfllc —5) — 71 ”)

p/(p=1) min f(x)

. ’ 5/ xeQ
(i 12, 8

xeQ
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We take D and f, >0 such that holds for f,a and C. We also take
p € (0,p,] such that the inequality

(3.1) ePTop? <

ST

holds, where 7, is defined by
(p=1)
n=0-1"(fle-3) -

Then, let a constant & > 0 be sufficiently small such that the inequalities

(3.2) & < min{a, S},

min f(x)
(33) a< rnin{(ZDf)l/zjer2 }’
(34) T < TO;
1y pq—(p-1) _ O s\~ s\ (=D NP/ (7D
() vap—anm@‘sZ<va‘ - (m1e-5) ) |
(3.6) 28 P Ve T < (11l — 490" = (/]| — 32) "
and

. S\ s\~ P 2/(p=1)
sn s (va——) - (11e-%) )

hold, where Dy and T are defined by (2.10) and

Ti=p- 0" =Dred)  (Iflle —e) "7,

respectively.

[Step 2] In this step, we show the following.

Let ¢€(0,¢)] and T € (0, Ty] be constants, and let g e C*(Q), we C'([0,T)) and a
positive function B(x,1) on the set {(x,1)e Q% [0,T)|g(x) """V > w(t)} be defined as
well as [Lemma 3. Then,

o(x,0) < ()7 =l T o

holds for all (x,t) e (Q\S) x [0, T).
From (3.4) and [3.1),

(3.8) ePip? <

A~

holds. Also, from x ¢ .S, we have
(3.9) £ < IS Nle -
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Because f(x) < | f|o — 16a holds, p((||f|lc — f(x))/x) =1 holds. Hence, we have

(3.10) o) = )+
From (3.9), we also have

5/
(3.11) 909 < 1/ le -5

Because (1) < (||f]lc —0'/4)" (P~ holds by using (3.4) and (3.6), from [3.11) and
3.7),

(312) 82/(P—1)(g(x>—([’—1) o w([))—2/(p—l) <

NS

holds. Also, because

(9(x) "™ — (a+ b)) — (g(x) PV — )Y

= Jl(p _ 1)—1(g(x)—(17—1) _ (Cl + O.b))—p/(p—l)bdo_
0

< (p= 1) (900 " = (@t b)) b
holds, from [3.11), (3.4) and (3.5), we have
(313)  (g) "V = (p— 1)y Y — (g(x) " i p 1) V=l
< (gx) "V = (p = 1))V — (g () D — | p) D) D

< (009" = (5= )T PO = (p— 1) )

s\~ 5\~ (7D —p/(p=1)
S((!Ifl!c—g) - (171e-35) )

< (Ty = (p = )71

<

-lleo

By (3.10) and [3.9), we also have
(3.14) <g<x>—“’—‘> A R VA C e V] PR R

() + o) ) — A1) D (£ (x) + o) Pado
-p/(p-1)

0
o —(p—-1) o ) P
(“f”c - 3) - ||f||c(p 1)> (mll_l f(x)) o
xeQ

From (3.13), (3.14), and [3.8), we obtain the conclusion of Step 2.
[Step 3] In thls step, we show the following by Steps 1 and 2.

A
/ N

IA
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Let ¢ € (0,e1] be a constant, and let ug € C(Q) satisfy ||uo — flle@) <e1. Suppose
that the solution u(x,t) of [1.1) with the blow-up time T satisfies u(x, ) < C(T 7~/ =)
in Qx[0,T). Then,

u(,0) < ()7 =AY 4

holds for all (x,t) e (2\S) x [0,T).
By and (3.3), we see
(3.15) T<T,.

We take a cutoff function ye C*(R) satisfying y(z) =1/4 (z<0), y(z) =z
(1/2<z) and 0<y'(z) <1. Let ge C*Q), we C!([0,T)) and a positive function
#(x, ) on the set {(x,7) e Q x [0, T) 1g(x)"" D > (s )} be defined as well as Lemma 3.

Also, by u(x,t), we denote the positive functlon

(p— =2/(p-1)
(g(x)_(p_l) —(p— 1)[)—1/(19—1) +C(T - t)_l/(p_l))( g(x) - (1) +eDip?
C-(r-D/2(T — )%

in (x,7)e 2 x[0,T). Then, we show that the inequality

)
)
1

(3.16) u(x, t) < ia(x,t)

holds for all (x,7) e Q x [0, T).
In order to show [3.16), we first define Ge C(Q2 x [0,T)) by

G(x,1) = i,(x, 1) — (2 Aa(x, 1) + a(x, 1)").
Then, because p(u?~!/(CP~Y(T —1)"')) = —1 holds from u(x,?) < C(T — 1)~/

1 ub=1
3.17 =& A Py = 1]G(x,¢
(3.17) uy =& Auu +2(p<CP—1(T—t)1>+ ) (x,7)

holds. Also, in the region where g(x)~ "’ a)(t) (1/2)C~(r=V/2(T — 1)!/%¢, because
i =10 holds and T < T and ¢ < f hold from [3.15), (3.4) and (3.2), by virtue of [Lemmal

>

98]

i, > AN+ i

holds. 1In the region where g(x) "~V — w(r) < (1/2)C~(r=D/2(T — 1)!?%¢, because i >
40T = )77V holds from y((g(x)" "7V — w(2))/(C~P=D2(T — 1)) < 1/2,

we also have
a1
p —|=1
Cr-Y(T —1)
Therefore, we obtain

1 Tl
3.18 —i, N Nu+ P 4= 1]G(x,t
( ) U+ ANu—+u +2<p(Cl’1(T—t)_]>+ ) (x,1)

_! 1 - w! (=i, + 2 A+ a’) <0
2 p Cr-(T — 1) ! =
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In the region where f(x) > ||f|lc — 4o, because g(x)” """ < w(0) holds by

(Hch — (Al = 40<)>

9(x) = ([[fllc = 42) +op = llgllc = 2,

we have

—(p-1) =2/(p-1)
] “ip-n, [9) —(0)
u(X, 0) >CT 1/(p 1)X< Cf(pfl)/le/zg

— 160N > eV 5 g (x).

In the region where f(x) < | f|—4a, because p((||f]lc — f(x))/x) =1 holds and
luo — fll¢ < o holds from (3.2), we also have

i(x,0) = g(x) = f(x) + o = up(x).
Therefore, we obtain
up(x) < i(x,0).

Hence, because we also see dit/0v = 0 on 02, working the comparison theorem by (3.17)
and (3.18), we eventually get (3.16), i.e., the inequality

u(x,t) < u(x,t)

holds for all (x,7) e Q x [0, T).

Because # < ¢ holds, we obtain the conclusion of Step 3 by Step 2, and
3.16).

[Step 4] In this step, we prove [Theorem 6.

We take a constant & > 0 as in Step 3. Then, let a constant ¢ € (0,&] be suf-
ficiently small such that

. | min /)
(3.19) g0 < mm{(sz)l/pY 5 },
5 o min f/(x)\”
(3.20) 0= 2 (Il — 8y P — 7Ny (92>
and
(3:21) A1 = (1= D) (1l +20) 47"
< 20— DUl =3y 0 e/

hold, where Dy is defined by (2.10).
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Because f(x )< |/]lc —0 holds from x ¢S and min g5 f(y)/2 < f(x) — & holds
from (3.19), by [3.20),

(3:22) (ST = AT = () = o) = Y)Y

1
= J (f(x) = 0.80)—(17—1) _ Hf”E(Pfl))—,v/(p—l)(f(x) — oe9) Peodo

0

min f(x)\™
< ((If e =8~ =1 fY eyl <92> £

<

N

holds. Because f

—~

x) — &0 < ||f]lc —J holds from x ¢S, by [3.21), we have
(3.23) (@) =) ) =y
—((f(x) = 20)™ "V = (1 = Dyeg) (/]| c +20) ") V07D
< (=17 (S lle =0 "V = |lflIr )y /oD
< (1A = (1= Dred) (1 f e +20) ")

<

l\)IQq

Also because T > (p— 1) "' (|lf]l¢ +¢0)"”"Y holds from [Cemma 3 and (3.19), by
Lemma 4 and (3.19), we see

u.(x) = ((f(x) = 80)""™" = (1 = Dreg) (|| fllc + o) "~) V70,
Hence, from and (3.23),
() 2 ()7 =T =

holds for all x e Q\S. Therefore, we obtain the conclusion of by Step 3.
L]

According to Friedman and McLeod [3] and Chen [1], we prove that there exists a
constant C > 0 such that if ¢ > 0 is suﬂic:1ently small, then the solution u of [1.1) satisfies
the Type-I estimate u(x,7) < C(T — 1)~ "/7=,

PROPOSITION 7. Let ug € C*(Q) be a positive function satisfying duy/0v =0 on 02Q.
Then, there exist C > 0 and &y > 0 such that for any ¢ € (0, ¢, the solution u(x,t) of (1.1)
with the blow-up time T satisfies u(x,t) < C(T — 1)71/(”71) in Qx1[0,T).

ProOF. We define C >0 by C=((p— 1)/2)_1/(”_1). We also define ¢y > 0 by
e =min__5uo(x)”/2| Aug(x)|. Let v(x, 1) denote the function 2&® Au(x, ) + u(x,t)’.
Then, we have

(3.24) v(x,0) > 0.
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Because of v = 2u, — u”,

ov
3.25 —=0
(3.25) .
holds on 9Q. Also, because u; = (v+u”)/2 and Au? > puP~!' Au hold, we have
(3.26) vtzszA(v-l-up)-l-gup_l(v—l—up)

> azﬁv—i—gu”_lv—l—gul’_l(ZazAu—i— u?)

=2 Ao+ puP .
Because 2u, —u” =v >0 holds from (3.24), and (3.26), 1/2 <u,/u? holds.

Hence, we have
T —t JTds J”(X’T) du  u(x,t)" "7
—=| 5 =< — <
2 t 2 u(x, 1) ur p_l
Therefore, u(x,t) < C(T — 1)~V holds. O
Now, we prove [Theorem 1.

Proor oF THEOREM 1. We fix a constant C > 0 such that holds for
up. Let a constant ¢y > 0 be sufficiently small. Then, by [Proposition 7, for any
¢ € (0, &), the solution u of [T.1) satisfies u(x, ) < C(T —¢)~"/»"Y " Hence, by MTheoren
6 with f :=uy, we obtain the conclusion of [Theorem 1. ]
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