Blow-up profile of a solution for a nonlinear heat equation with small diffusion

By Hiroki Yagisita

(Received Nov. 8, 2002) (Revised May 12, 2003)

Abstract. This paper is concerned with positive solutions of semilinear diffusion equations $u_t = \varepsilon^2 \triangle u + u^p$ in Ω with small diffusion under the Neumann boundary condition, where p>1 is a constant and Ω is a bounded domain in \mathbf{R}^N with C^2 boundary. For the ordinary differential equation $u_t = u^p$, the solution u^0 with positive initial data $u_0 \in C(\overline{\Omega})$ has a blow-up set $S^0 = \{x \in \overline{\Omega} \mid u_0(x) = \max_{y \in \overline{\Omega}} u_0(y)\}$ and a blow-up profile

$$u_*^0(x) = \left(u_0(x)^{-(p-1)} - \left(\max_{y \in \bar{\Omega}} u_0(y)\right)^{-(p-1)}\right)^{-1/(p-1)}$$

outside the blow-up set S^0 . For the diffusion equation $u_t = \varepsilon^2 \triangle u + u^p$ in Ω under the boundary condition $\partial u/\partial v = 0$ on $\partial \Omega$, it is shown that if a positive function $u_0 \in C^2(\overline{\Omega})$ satisfies $\partial u_0/\partial v = 0$ on $\partial \Omega$, then the blow-up profile $u_*^{\varepsilon}(x)$ of the solution u^{ε} with initial data u_0 approaches $u_*^0(x)$ uniformly on compact sets of $\overline{\Omega} \backslash S^0$ as $\varepsilon \to +0$.

1. Introduction.

This paper is concerned with the singularly perturbed diffusion equation

(1.1)
$$\begin{cases} u_t = \varepsilon^2 \triangle u + u^p & \text{in } \Omega \times (0, T), \\ \frac{\partial u}{\partial v} = 0 & \text{on } \partial \Omega \times (0, T), \\ u(x, 0) = u_0(x) & x \in \overline{\Omega} \end{cases}$$

with a small constant $\varepsilon > 0$, where Ω is a bounded domain in \mathbb{R}^N with C^2 boundary, v is the unit outward normal vector on $\partial \Omega$, p > 1 is a constant and $u_0 \in C^2(\overline{\Omega})$ is a positive function satisfying $\partial u_0/\partial v = 0$ on $\partial \Omega$. For the solution u(x,t) of (1.1), the blow-up time T is defined by

$$T = \sup\{\tau > 0 \mid u(x, t) \text{ is bounded in } \overline{\Omega} \times (0, \tau)\}.$$

Then, $0 < T < +\infty$ and $\overline{\lim}_{t \to T} \|u(x,t)\|_{C(\bar{\Omega})} = +\infty$ hold. The *blow-up set* of the solution u(x,t) is defined as the set

$$\{x \in \overline{\Omega} \mid \text{there is a sequence } (x_n, t_n) \text{ in } \overline{\Omega} \times (0, T) \text{ such that}$$

 $(x_n, t_n) \to (x, T) \text{ and } u(x_n, t_n) \to +\infty \text{ as } n \to \infty\}.$

²⁰⁰⁰ Mathematics Subject Classification. 35B25, 35B30, 35B40, 35B50. Key Words and Phrases. nonlinear diffusion equation, blow-up profile.

This set is a nonempty closed set in $\overline{\Omega}$. From standard parabolic estimates, we can obtain the *blow-up profile*, which is a continuous function defined by

$$u_*(x) = \lim_{t \to T} u(x, t)$$

outside the blow-up set.

Mizoguchi [6] showed the following for the Cauchy or Cauchy-Dirichlet problem with (N-2)p < N+2. For any nonnegative continuous function u_0 and $\delta > 0$, if $\varepsilon > 0$ is sufficiently small, then any point x in the blow-up set of the solution for the equation $u_t = \varepsilon^2 \triangle u + u^p$ with initial data u_0 satisfies the inequality $u_0(x) \ge \max_y u_0(y) - \delta$. See [2] and [7] on the blow-up time. (We can refer to [4] and [5] for related results on other equations of parabolic type. See also the references of [8] for other studies on singularity formation in blow-up of $u_t = \triangle u + u^p$.)

For the ordinary differential equation $u_t = u^p$, the solution u^0 with positive initial data $u_0 \in C(\overline{\Omega})$ has a blow-up set $S^0 = \{x \in \overline{\Omega} \mid u_0(x) = \max_{y \in \overline{\Omega}} u_0(y)\}$ and a blow-up profile

$$u_*^0(x) = \left(u_0(x)^{-(p-1)} - \left(\max_{y \in \bar{\Omega}} u_0(y)\right)^{-(p-1)}\right)^{-1/(p-1)}$$

outside the blow-up set S^0 . In this paper, we show that the blow-up profile $u_*^{\varepsilon}(x)$ of the solution u^{ε} of (1.1) approaches $u_*^0(x)$ uniformly on compact sets of $\overline{\Omega} \backslash S^0$ as $\varepsilon \to +0$. Precisely, our main result is the following.

Theorem 1. Let $u_0 \in C^2(\overline{\Omega})$ be a positive function satisfying $\partial u_0/\partial v = 0$ on $\partial \Omega$, and let $\delta > 0$ be a constant. Then, there exists $\varepsilon_0 > 0$ such that for any $\varepsilon \in (0, \varepsilon_0]$, the blow-up set of the solution u of (1.1) is contained in the set $S := \{x \in \overline{\Omega} \mid u_0(x) \geq \max_{y \in \overline{\Omega}} u_0(y) - \delta \}$ and the blow-up profile $u_*(x)$ satisfies the inequality

$$\| u_*(x) - \left(u_0(x)^{-(p-1)} - \left(\max_{y \in \bar{\Omega}} u_0(y) \right)^{-(p-1)} \right)^{-1/(p-1)} \|_{C(\bar{\Omega} \setminus S)} \le \delta.$$

2. Preliminaries.

In this section, we prove several lemmas. First, we take a cutoff function $\rho \in C^{\infty}(\mathbf{R})$ satisfying

$$\rho(z) = -1 \ (z \le 1), \quad \rho(z) = 1 \ (4 \le z) \quad \text{and} \quad 0 \le \rho'(z) \le 3/4 \ (z \in \textbf{\textit{R}}).$$

Then, this function $\rho(z)$ satisfies the following.

Lemma 2. Suppose that $f \in C^2(\overline{\Omega})$ is a positive function and that $\alpha \leq \min_{x \in \overline{\Omega}} f(x)/4$ is a positive constant. Then, the positive function $g \in C^2(\overline{\Omega})$ defined by

(2.1)
$$g(x) := f(x) + \alpha \rho \left(\frac{\|f\|_{C(\overline{\Omega})} - f(x)}{\alpha} \right)$$

satisfies

$$\sup_{t \in [0, (p-1)^{-1}(\|f\|_C - \alpha/2)^{-(p-1)}]} \|(g(x)^{-(p-1)} - (p-1)t)^{-1/(p-1)}\|_{C^2(\overline{\Omega})} < +\infty.$$

PROOF. We first note

$$\min_{z \in [a,b]} \left(z + \alpha \rho \left(\frac{\|f\|_C - z}{\alpha} \right) \right) = a + \alpha \rho \left(\frac{\|f\|_C - a}{\alpha} \right)$$

and

$$\max_{z \in [a,b]} \left(z + \alpha \rho \left(\frac{\|f\|_C - z}{\alpha} \right) \right) = b + \alpha \rho \left(\frac{\|f\|_C - b}{\alpha} \right).$$

Then, we see
$$\alpha \le g(x) \le \|f\|_C - \alpha$$
. Hence, we also see $g(x)^{-(p-1)} - (p-1)t \ge (\|f\|_C - \alpha)^{-(p-1)} - (\|f\|_C - \alpha/2)^{-(p-1)} > 0$.

While the following lemma is rather technical, this gives a function \bar{v} such that the inequality $\bar{v}_t \geq \varepsilon^2 \triangle \bar{v} + \bar{v}^p$ holds in the region where $\bar{v}(x,t) \leq 2^{2/(p-1)} C(T-t)^{-1/(p-1)}$. This function \bar{v} plays a key role in Proof of Theorem 6 in the next section.

In this paragraph, we intuitively and informally explain the reason why the function \bar{v} plays a key role, as it is the central idea of this paper. From Proposition 7 in the next section, we would have the Type-I estimate $u(x,t) \leq C(T-t)^{-1/(p-1)}$ for some constant C > 0. Then, we define a map $h: [0, +\infty) \times [0, T) \to [-\infty, +\infty)$ by

$$h(v,t) := \begin{cases} v^p & (v \le C(T-t)^{-1/(p-1)}), \\ -\infty & (\text{otherwise}) \end{cases}$$

and consider the diffusion equation

$$v_t = \varepsilon^2 \triangle v + h(v, t).$$

Obviously, u(x,t) is also a solution of $v_t = \varepsilon^2 \triangle v + h(v,t)$. On the other hand, because the function $2^{1/(p-1)}C(T-t)^{-1/(p-1)}$ is a super-solution of $v_t = \varepsilon^2 \triangle v + h(v,t)$ and the inequality $\bar{v}_t \ge \varepsilon^2 \triangle \bar{v} + h(\bar{v},t)$ holds in the region where $\bar{v}(x,t) \le 2^{2/(p-1)} \cdot C(T-t)^{-1/(p-1)}$, the function

$$w(x,t) := \begin{cases} \bar{v}(x,t) & (\bar{v}(x,t) \le 2^{1/(p-1)}C(T-t)^{-1/(p-1)}), \\ 2^{1/(p-1)}C(T-t)^{-1/(p-1)} & (\text{otherwise}) \end{cases}$$

is a super-solution of $v_t = \varepsilon^2 \triangle v + h(v,t)$. Therefore, if $u_0(x) \le w(x,0)$ holds, we would eventually have $u(x,t) \le w(x,t)$ for $t \in [0,T)$. Now, we should note that w(x,t) is not a super-solution of (1.1) because $2^{1/(p-1)}C(T-t)^{-1/(p-1)}$ is not a super-solution of (1.1). We end the intuitive and informal explanation here, and we give the strict argument in Step 3 of Proof of Theorem 6.

Lemma 3. Suppose that $f \in C^2(\overline{\Omega})$ is a positive function and that $\alpha \leq \min_{x \in \overline{\Omega}} f(x)/4$ is a positive constant. Let $g \in C^2(\overline{\Omega})$ be defined by (2.1). Then, for any C > 0, there exist D and $\beta_0 > 0$ such that for any positive constants $\beta \leq \beta_0$, $\varepsilon \leq \beta$ and $T \leq (p-1)^{-1} \cdot (\|f\|_C - \alpha/2)^{-(p-1)}$, the following holds:

Let $\bar{v}(x,t)$ be a positive function defined by

$$\bar{v}(x,t) := (g(x)^{-(p-1)} - (p-1)t)^{-1/(p-1)} + \varepsilon^{2/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-2/(p-1)} + e^{Dt}\beta^2$$

on the set $\{(x,t) \in \overline{\Omega} \times [0,T) \mid g(x)^{-(p-1)} > \omega(t)\}$, where $\omega \in C^1([0,T))$ is defined by $\omega(t) := (\|g\|_C - 2\alpha)^{-(p-1)} + 2D\beta^{-(p-1)}\varepsilon(T^{1/2} - (T-t)^{1/2}).$

Then, the inequality $\bar{v}_t \ge \varepsilon^2 \triangle \bar{v} + \bar{v}^p$ holds in the set $\{(x,t) \in \overline{\Omega} \times [0,T) \mid g(x)^{-(p-1)} - \omega(t) \ge (1/2)C^{-(p-1)/2}(T-t)^{1/2}\varepsilon\}$.

PROOF. Throughout this proof, we denote the positive constant $(p-1)^{-1}$ $(\|f\|_C - \alpha/2)^{-(p-1)}$ by T_0 and choose $D \ge 1$ larger if necessary. Then, let $\beta_0 > 0$ be a constant defined by $e^{DT_0}\beta_0^2 = 1$.

From Lemma 2,

$$(2.2) 1 + ((g(x)^{-(p-1)} - (p-1)t)^{-1/(p-1)} + 1)^{p-1} \le D^{1/8}$$

holds. Because $(a+b)^p - a^p = \int_0^1 p(a+\sigma b)^{p-1}b \, d\sigma \le p(a+b)^{p-1}b \le p2^{p-1}(a^{p-1}+b^{p-1})b \le p2^{p-1}(1+a^{p-1})(b+b^p)$ holds, by using (2.2) and $e^{Dt}\beta^2 \le e^{DT_0}\beta_0^2 = 1$, we get

$$\begin{split} \bar{v}(x,t)^p - & ((g(x)^{-(p-1)} - (p-1)t)^{-1/(p-1)} + e^{Dt}\beta^2)^p \\ & \leq p2^{p-1}D^{1/8}(\varepsilon^{2/(p-1)}(g(x)^{-(p-1)} - \omega(t))^{-2/(p-1)} \\ & + \varepsilon^{2p/(p-1)}(g(x)^{-(p-1)} - \omega(t))^{-2p/(p-1)}) \end{split}$$

and

$$((g(x)^{-(p-1)} - (p-1)t)^{-1/(p-1)} + e^{Dt}\beta^2)^p - (g(x)^{-(p-1)} - (p-1)t)^{-p/(p-1)}$$

$$\leq p2^p D^{1/8} e^{Dt}\beta^2.$$

Hence, we obtain

(2.3)
$$\bar{v}(x,t)^{p} - (g(x)^{-(p-1)} - (p-1)t)^{-p/(p-1)}$$

$$\leq D^{1/4} (\varepsilon^{2/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-2/(p-1)}$$

$$+ \varepsilon^{2p/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-2p/(p-1)} + e^{Dt} \beta^{2}).$$

Also, from Lemma 2,

$$(2.4) \varepsilon^2 \bar{v}_{x_i x_i}(x,t)$$

$$\leq \left(\sup_{t \in [0, T_0]} \|(g(x)^{-(p-1)} - (p-1)t)^{-1/(p-1)}\|_{C^2(\overline{\Omega})}\right) \varepsilon^2 \\
+ \frac{2}{p-1} \|g(x)^{-(p-1)}\|_{C^2(\overline{\Omega})} \varepsilon^{2p/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-(p+1)/(p-1)} \\
+ \frac{2(p+1)}{(p-1)^2} \|g(x)^{-(p-1)}\|_{C^1(\overline{\Omega})}^2 \varepsilon^{2p/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-2p/(p-1)} \\
\leq D^{1/4} (\varepsilon^2 + \varepsilon^{2p/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-(p+1)/(p-1)} \\
+ \varepsilon^{2p/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-2p/(p-1)})$$

holds. From (2.3) and (2.4), we obtain

$$(2.5) \quad \varepsilon^{2} \triangle \bar{v}(x,t) + \bar{v}(x,t)^{p} - (g(x)^{-(p-1)} - (p-1)t)^{-p/(p-1)}$$

$$\leq D^{1/4} (\varepsilon^{2/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-2/(p-1)} + \varepsilon^{2p/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-2p/(p-1)}$$

$$+ \varepsilon^{2p/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-(p+1)/(p-1)} + \varepsilon^{2} + e^{Dt} \beta^{2}).$$

In the region where $g(x)^{-(p-1)} - \omega(t) \le \beta^{-(p-1)} \varepsilon$, because of $\varepsilon^{-1}(g(x)^{-(p-1)} - \omega(t)) \le \beta^{-(p-1)}$ and $T_0^{-1/2} \le (T-t)^{-1/2}$,

$$\begin{split} \varepsilon^{2/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-2/(p-1)} \\ & \leq \beta^{-(p-1)} \varepsilon^{(p+1)/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-(p+1)/(p-1)} \\ & \leq T_0^{1/2} \beta^{-(p-1)} \varepsilon^{(p+1)/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-(p+1)/(p-1)} (T-t)^{-1/2} \end{split}$$

holds. In the region where $g(x)^{-(p-1)} - \omega(t) \ge \beta^{-(p-1)} \varepsilon$, because of $\varepsilon(g(x)^{-(p-1)} - \omega(t))^{-1} \le \beta^{p-1}$,

$$\varepsilon^{2/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-2/(p-1)} \le \beta^2$$

holds. Therefore, we obtain

$$(2.6) \quad \varepsilon^{2/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-2/(p-1)}$$

$$\leq D^{1/4} (\beta^{-(p-1)} \varepsilon^{(p+1)/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-(p+1)/(p-1)} (T - t)^{-1/2} + e^{Dt} \beta^2).$$

Because

$$\varepsilon (g(x)^{-(p-1)} - \omega(t))^{-1} \le 2C^{(p-1)/2}(T-t)^{-1/2}$$

holds from $g(x)^{-(p-1)} - \omega(t) \ge (1/2)C^{-(p-1)/2}(T-t)^{1/2}\varepsilon$ and

$$D^{1/4}e^{((p-1)/2)T_0D} \leq D^{1/4}\beta^{-(p-1)}$$

holds from $\beta \leq \beta_0$ and $e^{DT_0}\beta_0^2 = 1$, we have

$$(2.7) \qquad \varepsilon^{2p/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-2p/(p-1)}$$

$$\leq 2C^{(p-1)/2} \varepsilon^{(p+1)/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-(p+1)/(p-1)} (T-t)^{-1/2}$$

$$\leq D^{1/4} \beta^{-(p-1)} \varepsilon^{(p+1)/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-(p+1)/(p-1)} (T-t)^{-1/2} .$$

Because we see

$$\varepsilon \leq \beta \leq e^{-(1/2)T_0D} \leq D^{1/4}e^{((p-1)/2)T_0D}T_0^{-1/2} \leq D^{1/4}\beta^{-(p-1)}(T-t)^{-1/2}$$

by using $\beta \leq \beta_0$ and $e^{DT_0}\beta_0^2 = 1$,

(2.8)
$$\varepsilon^{2p/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-(p+1)/(p-1)}$$

$$\leq D^{1/4} \beta^{-(p-1)} \varepsilon^{(p+1)/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-(p+1)/(p-1)} (T-t)^{-1/2}$$

holds. From $\varepsilon \leq \beta$, we also have

We see

$$\overline{v}_t(x,t) - (g(x)^{-(p-1)} - (p-1)t)^{-p/(p-1)}
= \frac{2D}{p-1} \beta^{-(p-1)} \varepsilon^{(p+1)/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-(p+1)/(p-1)} (T-t)^{-1/2} + De^{Dt} \beta^2.$$

Hence, by combining the inequalities (2.5), (2.6), (2.7), (2.8) and (2.9),

$$\varepsilon^2 \triangle \bar{v}(x,t) + \bar{v}(x,t)^p \le \bar{v}_t(x,t)$$

holds.

The following gives a sub-solution of (1.1).

Lemma 4. Suppose that a positive function $f \in C^2(\overline{\Omega})$ satisfies $\partial f/\partial v = 0$ on $\partial \Omega$. Let \underline{D}_f be a constant defined by

(2.10)
$$\underline{D}_f := \left(\frac{2}{\min_{x \in \overline{\Omega}} f(x)}\right)^p \max_{x \in \overline{\Omega}} |(\triangle f)(x)|.$$

Then, for any constant $\varepsilon > 0$ and function $u_0 \in C(\overline{\Omega})$ satisfying $2\underline{D}_f \varepsilon^2 \le 1$ and $2\|u_0 - f\|_C \le \min_{x \in \overline{\Omega}} f(x)$, the positive function $\underline{u}(x,t)$ defined by

$$\underline{u}(x,t) := ((f(x) - \|u_0 - f\|_C)^{-(p-1)} - (p-1)(1 - \underline{D}_f \varepsilon^2)t)^{-1/(p-1)}$$

in the set

$$\overline{\Omega} \times [0, (p-1)^{-1} (1 - \underline{D}_f \varepsilon^2)^{-1} (\|f\|_C - \|u_0 - f\|_C)^{-(p-1)})$$

is a sub-solution of (1.1).

PROOF. Let v(x,t) denote the function $\triangle \underline{u} + \underline{D}_f \underline{u}^p$. Then, because $\underline{u}_t = (1 - \underline{D}_f \varepsilon^2) \underline{u}^p$ and $(\underline{u}^p)_{x_i x_i} = p \underline{u}^{p-1} \underline{u}_{x_i x_i} + p(p-1) \underline{u}^{p-2} \underline{u}_{x_i}^2$ hold, we see

$$(2.11) v_t = \triangle \underline{u}_t + \underline{D}_f p \underline{u}^{p-1} \underline{u}_t = (1 - \underline{D}_f \varepsilon^2) (\triangle \underline{u}^p + p \underline{u}^{p-1} \underline{D}_f \underline{u}^p)$$

$$\geq (1 - \underline{D}_f \varepsilon^2) p \underline{u}^{p-1} (\triangle \underline{u} + \underline{D}_f \underline{u}^p) = (1 - \underline{D}_f \varepsilon^2) p \underline{u}^{p-1} v.$$

Also, we have

$$(2.12) v(x,0) = (\triangle f)(x) + \underline{D}_f (f(x) - ||u_0 - f||_C)^p$$

$$\geq -\max_{x \in \overline{\Omega}} |(\triangle f)(x)| + \underline{D}_f \left(\frac{\min_{x \in \overline{\Omega}} f(x)}{2}\right)^p = 0.$$

Because

$$\triangle u + D_f u^p = v \ge 0$$

holds by (2.11) and (2.12), we obtain

$$\varepsilon^2 \triangle \underline{u} + \underline{u}^p - \underline{u}_t = \varepsilon^2 (\triangle \underline{u} + \underline{D}_f \underline{u}^p) \ge 0.$$

Hence, because $\partial \underline{u}/\partial v = 0$ on $\partial \Omega$ and $\underline{u}(x,0) \leq u_0(x)$ also hold, the function $\underline{u}(x,t)$ is a sub-solution of (1.1).

The following gives a estimate of the blow-up time.

Lemma 5. Suppose that a positive function $f \in C^2(\overline{\Omega})$ satisfies $\partial f/\partial v = 0$ on $\partial \Omega$. Let \underline{D}_f be the constant defined by (2.10). Then, for any constant $\varepsilon > 0$ and function $u_0 \in C(\overline{\Omega})$ satisfying $2\underline{D}_f \varepsilon^2 \le 1$ and $2\|u_0 - f\|_C \le \min_{x \in \overline{\Omega}} f(x)$, the blow-up time T of the solution u(x,t) of (1.1) satisfies

$$(p-1)^{-1}(\|f\|_C + \|u_0 - f\|_C)^{-(p-1)} \le T$$

$$\le (p-1)^{-1}(1 - \underline{D}_f \varepsilon^2)^{-1}(\|f\|_C - \|u_0 - f\|_C)^{-(p-1)}.$$

PROOF. Because $\min_{y \in \overline{\Omega}} f(y)/2 \le u_0(x) \le \|f\|_C + \|u_0 - f\|_C$ holds, we have $T \ge (p-1)^{-1} (\|f\|_C + \|u_0 - f\|_C)^{-(p-1)}$. Also, from Lemma 4, $T \le (p-1)^{-1} (1 - \underline{D}_f \varepsilon^2)^{-1} \cdot (\|f\|_C - \|u_0 - f\|_C)^{-(p-1)}$ holds.

3. Proof of Theorem 1.

The following theorem is the main technical result in this paper. In Proofs of not only Theorem 1 but also Theorem 2 of [8], this theorem is made essential use of.

THEOREM 6. Let $f \in C^2(\overline{\Omega})$ be a positive function satisfying $\partial f/\partial v = 0$ on $\partial \Omega$, and let δ and C be positive constants. Then, there exists $\varepsilon_0 > 0$ satisfying the following:

Suppose that a positive constant ε and a function $u_0 \in C(\overline{\Omega})$ satisfy $\varepsilon \leq \varepsilon_0$ and $\|u_0 - f\|_{C(\overline{\Omega})} \leq \varepsilon_0$. If the solution u(x,t) of (1.1) with the blow-up time T satisfies the Type-I estimate $u(x,t) \leq C(T-t)^{-1/(p-1)}$ in $\overline{\Omega} \times [0,T)$, then the blow-up set is contained in the set $S := \{x \in \overline{\Omega} \mid f(x) \geq \max_{y \in \overline{\Omega}} f(y) - \delta\}$ and the blow-up profile $u_*(x)$ satisfies the inequality

$$\left\| u_*(x) - \left(f(x)^{-(p-1)} - \left(\max_{y \in \overline{\Omega}} f(y) \right)^{-(p-1)} \right)^{-1/(p-1)} \right\|_{C(\overline{\Omega} \setminus S)} \le \delta.$$

PROOF. [Step 1] In this step, we take positive constants δ' , α , D, β_0 , β , ε_1 , T_0 and T_1 satisfying Lemma 3 and several inequalities below. Then, we fix these constants through Steps 2 and 3.

Put $\delta' = \min\{\delta, \|f\|_C\}$. By α , we denote the positive constant

$$\min \left\{ \frac{\delta}{4} \left(\left(\|f\|_C - \frac{\delta'}{2} \right)^{-(p-1)} - \|f\|_C^{-(p-1)} \right)^{p/(p-1)} \left(\min_{x \in \bar{\Omega}} f(x) \right)^p, \frac{\delta'}{16}, \frac{\min_{x \in \bar{\Omega}} f(x)}{4} \right\}.$$

We take D and $\beta_0 > 0$ such that Lemma 3 holds for f, α and C. We also take $\beta \in (0, \beta_0]$ such that the inequality

$$(3.1) e^{DT_0}\beta^2 \le \frac{\delta}{4}$$

holds, where T_0 is defined by

$$T_0 = (p-1)^{-1} \left(\|f\|_C - \frac{\alpha}{2} \right)^{-(p-1)}.$$

Then, let a constant $\varepsilon_1 > 0$ be sufficiently small such that the inequalities

(3.2) $\varepsilon_1 \leq \min\{\alpha, \beta\},\$

(3.3)
$$\varepsilon_1 \leq \min \left\{ \frac{1}{(2\underline{D}_f)^{1/2}}, \frac{\min_{x \in \overline{\Omega}} f(x)}{2} \right\},$$

 $(3.4) T_1 \leq T_0,$

$$(3.5) \quad T_1 - (p-1)^{-1} \|f\|_C^{-(p-1)} \le \frac{\delta}{4} \left(\left(\|f\|_C - \frac{\delta'}{2} \right)^{-(p-1)} - \left(\|f\|_C - \frac{\delta'}{32} \right)^{-(p-1)} \right)^{p/(p-1)},$$

$$(3.6) \quad 2D\beta^{-(p-1)}\varepsilon_1 T_0^{1/2} \le (\|f\|_C - 4\alpha)^{-(p-1)} - (\|f\|_C - 3\alpha)^{-(p-1)}$$

and

hold, where \underline{D}_f and T_1 are defined by (2.10) and

$$T_1 = (p-1)^{-1} (1 - \underline{D}_f \varepsilon_1^2)^{-1} (\|f\|_C - \varepsilon_1)^{-(p-1)},$$

respectively.

[Step 2] In this step, we show the following.

Let $\varepsilon \in (0, \varepsilon_1]$ and $T \in (0, T_1]$ be constants, and let $g \in C^2(\overline{\Omega})$, $\omega \in C^1([0, T))$ and a positive function $\overline{v}(x, t)$ on the set $\{(x, t) \in \overline{\Omega} \times [0, T) \mid g(x)^{-(p-1)} > \omega(t)\}$ be defined as well as Lemma 3. Then,

$$\bar{v}(x,t) \le (f(x)^{-(p-1)} - ||f||_C^{-(p-1)})^{-1/(p-1)} + \delta$$

holds for all $(x,t) \in (\overline{\Omega} \backslash S) \times [0,T)$.

From (3.4) and (3.1),

$$(3.8) e^{Dt}\beta^2 \le \frac{\delta}{4}$$

holds. Also, from $x \notin S$, we have

(3.9)
$$f(x) \le ||f||_C - \delta'.$$

Because $f(x) \le ||f||_C - 16\alpha$ holds, $\rho((||f||_C - f(x))/\alpha) = 1$ holds. Hence, we have (3.10) $g(x) = f(x) + \alpha.$

From (3.9), we also have

(3.11)
$$g(x) \le ||f||_C - \frac{\delta'}{2}.$$

Because $\omega(t) \le (\|f\|_C - \delta'/4)^{-(p-1)}$ holds by using (3.4) and (3.6), from (3.11) and (3.7),

(3.12)
$$\varepsilon^{2/(p-1)} (g(x)^{-(p-1)} - \omega(t))^{-2/(p-1)} \le \frac{\delta}{4}$$

holds. Also, because

$$(g(x)^{-(p-1)} - (a+b))^{-1/(p-1)} - (g(x)^{-(p-1)} - a)^{-1/(p-1)}$$

$$= \int_0^1 (p-1)^{-1} (g(x)^{-(p-1)} - (a+\sigma b))^{-p/(p-1)} b \, d\sigma$$

$$\leq (p-1)^{-1} (g(x)^{-(p-1)} - (a+b))^{-p/(p-1)} b$$

holds, from (3.11), (3.4) and (3.5), we have

$$(3.13) (g(x)^{-(p-1)} - (p-1)t)^{-1/(p-1)} - (g(x)^{-(p-1)} - ||f||_{C}^{-(p-1)})^{-1/(p-1)}$$

$$\leq (g(x)^{-(p-1)} - (p-1)T_{1})^{-1/(p-1)} - (g(x)^{-(p-1)} - ||f||_{C}^{-(p-1)})^{-1/(p-1)}$$

$$\leq (g(x)^{-(p-1)} - (p-1)T_{1})^{-p/(p-1)} (T_{1} - (p-1)^{-1}||f||_{C}^{-(p-1)})$$

$$\leq \left(\left(||f||_{C} - \frac{\delta'}{2} \right)^{-(p-1)} - \left(||f||_{C} - \frac{\delta'}{32} \right)^{-(p-1)} \right)^{-p/(p-1)}$$

$$\times (T_{1} - (p-1)^{-1}||f||_{C}^{-(p-1)})$$

$$\leq \frac{\delta}{4}.$$

By (3.10) and (3.9), we also have

$$(3.14) (g(x)^{-(p-1)} - ||f||_{C}^{-(p-1)})^{-1/(p-1)} - (f(x)^{-(p-1)} - ||f||_{C}^{-(p-1)})^{-1/(p-1)}$$

$$= \int_{0}^{1} ((f(x) + \sigma \alpha)^{-(p-1)} - ||f||_{C}^{-(p-1)})^{-p/(p-1)} (f(x) + \sigma \alpha)^{-p} \alpha d\sigma$$

$$\leq \left(\left(||f||_{C} - \frac{\delta'}{2} \right)^{-(p-1)} - ||f||_{C}^{-(p-1)} \right)^{-p/(p-1)} \left(\min_{x \in \overline{\Omega}} f(x) \right)^{-p} \alpha$$

$$\leq \frac{\delta}{4}.$$

From (3.13), (3.14), (3.12) and (3.8), we obtain the conclusion of Step 2. [Step 3] In this step, we show the following by Steps 1 and 2.

Let $\varepsilon \in (0, \varepsilon_1]$ be a constant, and let $u_0 \in C(\overline{\Omega})$ satisfy $||u_0 - f||_{C(\overline{\Omega})} \le \varepsilon_1$. Suppose that the solution u(x,t) of (1.1) with the blow-up time T satisfies $u(x,t) \le C(T-t)^{-1/(p-1)}$ in $\overline{\Omega} \times [0,T)$. Then,

$$u(x,t) \le (f(x)^{-(p-1)} - ||f||_C^{-(p-1)})^{-1/(p-1)} + \delta$$

holds for all $(x, t) \in (\overline{\Omega} \backslash S) \times [0, T)$.

By Lemma 5 and (3.3), we see

$$(3.15) T \leq T_1.$$

We take a cutoff function $\chi \in C^{\infty}(\mathbf{R})$ satisfying $\chi(z) = 1/4$ $(z \le 0)$, $\chi(z) = z$ $(1/2 \le z)$ and $0 \le \chi'(z) \le 1$. Let $g \in C^2(\overline{\Omega})$, $\omega \in C^1([0,T))$ and a positive function $\overline{v}(x,t)$ on the set $\{(x,t) \in \overline{\Omega} \times [0,T) \mid g(x)^{-(p-1)} > \omega(t)\}$ be defined as well as Lemma 3. Also, by $\overline{u}(x,t)$, we denote the positive function

$$(g(x)^{-(p-1)} - (p-1)t)^{-1/(p-1)} + C(T-t)^{-1/(p-1)}\chi \left(\frac{g(x)^{-(p-1)} - \omega(t)}{C^{-(p-1)/2}(T-t)^{1/2}\varepsilon}\right)^{-2/(p-1)} + e^{Dt}\beta^2$$

in $(x,t) \in \overline{\Omega} \times [0,T)$. Then, we show that the inequality

$$(3.16) u(x,t) \le \bar{u}(x,t)$$

holds for all $(x, t) \in \overline{\Omega} \times [0, T)$.

In order to show (3.16), we first define $G \in C(\overline{\Omega} \times [0, T))$ by

$$G(x,t) = \bar{u}_t(x,t) - (\varepsilon^2 \triangle \bar{u}(x,t) + \bar{u}(x,t)^p).$$

Then, because $\rho(u^{p-1}/(C^{p-1}(T-t)^{-1})) = -1$ holds from $u(x,t) \le C(T-t)^{-1/(p-1)}$,

(3.17)
$$u_{t} = \varepsilon^{2} \triangle u + u^{p} + \frac{1}{2} \left(\rho \left(\frac{u^{p-1}}{C^{p-1} (T-t)^{-1}} \right) + 1 \right) G(x,t)$$

holds. Also, in the region where $g(x)^{-(p-1)} - \omega(t) \ge (1/2)C^{-(p-1)/2}(T-t)^{1/2}\varepsilon$, because $\bar{u} = \bar{v}$ holds and $T \le T_0$ and $\varepsilon \le \beta$ hold from (3.15), (3.4) and (3.2), by virtue of Lemma 3,

$$\bar{u}_t \geq \varepsilon^2 \triangle \bar{u} + \bar{u}^p$$

holds. In the region where $g(x)^{-(p-1)} - \omega(t) \le (1/2)C^{-(p-1)/2}(T-t)^{1/2}\varepsilon$, because $\bar{u} \ge 4^{1/(p-1)}C(T-t)^{-1/(p-1)}$ holds from $\chi((g(x)^{-(p-1)}-\omega(t))/(C^{-(p-1)/2}(T-t)^{1/2}\varepsilon)) \le 1/2$, we also have

$$\rho\left(\frac{\bar{u}^{p-1}}{C^{p-1}(T-t)^{-1}}\right) = 1.$$

Therefore, we obtain

$$(3.18) -\bar{u}_{t} + \varepsilon^{2} \triangle \bar{u} + \bar{u}^{p} + \frac{1}{2} \left(\rho \left(\frac{\bar{u}^{p-1}}{C^{p-1} (T-t)^{-1}} \right) + 1 \right) G(x,t)$$

$$= \frac{1}{2} \left(1 - \rho \left(\frac{\bar{u}^{p-1}}{C^{p-1} (T-t)^{-1}} \right) \right) (-\bar{u}_{t} + \varepsilon^{2} \triangle \bar{u} + \bar{u}^{p}) \le 0.$$

In the region where $f(x) \ge ||f||_C - 4\alpha$, because $g(x)^{-(p-1)} \le \omega(0)$ holds by

$$g(x) \ge (\|f\|_C - 4\alpha) + \alpha \rho \left(\frac{\|f\|_C - (\|f\|_C - 4\alpha)}{\alpha}\right) = \|g\|_C - 2\alpha,$$

we have

$$\bar{u}(x,0) \ge CT^{-1/(p-1)} \chi \left(\frac{g(x)^{-(p-1)} - \omega(0)}{C^{-(p-1)/2} T^{1/2} \varepsilon} \right)^{-2/(p-1)}$$
$$= 16^{1/(p-1)} CT^{-1/(p-1)} \ge CT^{-1/(p-1)} \ge u_0(x).$$

In the region where $f(x) \le ||f||_C - 4\alpha$, because $\rho((||f||_C - f(x))/\alpha) = 1$ holds and $||u_0 - f||_C \le \alpha$ holds from (3.2), we also have

$$\bar{u}(x,0) \ge g(x) = f(x) + \alpha \ge u_0(x).$$

Therefore, we obtain

$$u_0(x) \leq \bar{u}(x,0).$$

Hence, because we also see $\partial \bar{u}/\partial v = 0$ on $\partial \Omega$, working the comparison theorem by (3.17) and (3.18), we eventually get (3.16), i.e., the inequality

$$u(x,t) \le \bar{u}(x,t)$$

holds for all $(x,t) \in \overline{\Omega} \times [0,T)$.

Because $\bar{u} \leq \bar{v}$ holds, we obtain the conclusion of Step 3 by Step 2, (3.15) and (3.16).

[Step 4] In this step, we prove Theorem 6.

We take a constant $\varepsilon_1 > 0$ as in Step 3. Then, let a constant $\varepsilon_0 \in (0, \varepsilon_1]$ be sufficiently small such that

(3.19)
$$\varepsilon_0 \le \min \left\{ \frac{1}{(2\underline{D}_f)^{1/2}}, \frac{\min_{x \in \overline{\Omega}} f(x)}{2} \right\},$$

(3.20)
$$\varepsilon_0 \le \frac{\delta}{2} ((\|f\|_C - \delta)^{-(p-1)} - \|f\|_C^{-(p-1)})^{p/(p-1)} \left(\frac{\min_{x \in \overline{\Omega}} f(x)}{2}\right)^p$$

and

hold, where \underline{D}_f is defined by (2.10).

Because $f(x) \le ||f||_C - \delta$ holds from $x \notin S$ and $\min_{y \in \overline{\Omega}} f(y)/2 \le f(x) - \varepsilon_0$ holds from (3.19), by (3.20),

$$(3.22) (f(x)^{-(p-1)} - ||f||_{C}^{-(p-1)})^{-1/(p-1)} - ((f(x) - \varepsilon_{0})^{-(p-1)} - ||f||_{C}^{-(p-1)})^{-1/(p-1)}$$

$$= \int_{0}^{1} ((f(x) - \sigma \varepsilon_{0})^{-(p-1)} - ||f||_{C}^{-(p-1)})^{-p/(p-1)} (f(x) - \sigma \varepsilon_{0})^{-p} \varepsilon_{0} d\sigma$$

$$\leq ((||f||_{C} - \delta)^{-(p-1)} - ||f||_{C}^{-(p-1)})^{-p/(p-1)} \left(\frac{\min_{x \in \overline{\Omega}} f(x)}{2}\right)^{-p} \varepsilon_{0}$$

$$\leq \frac{\delta}{2}$$

holds. Because $f(x) - \varepsilon_0 \le ||f||_C - \delta$ holds from $x \notin S$, by (3.21), we have

$$(3.23) \qquad ((f(x) - \varepsilon_0)^{-(p-1)} - ||f||_C^{-(p-1)})^{-1/(p-1)}$$

$$- ((f(x) - \varepsilon_0)^{-(p-1)} - (1 - \underline{D}_f \varepsilon_0^2) (||f||_C + \varepsilon_0)^{-(p-1)})^{-1/(p-1)}$$

$$\leq (p-1)^{-1} ((||f||_C - \delta)^{-(p-1)} - ||f||_C^{-(p-1)})^{-p/(p-1)}$$

$$\times (||f||_C^{-(p-1)} - (1 - \underline{D}_f \varepsilon_0^2) (||f||_C + \varepsilon_0)^{-(p-1)})$$

$$\leq \frac{\delta}{2}.$$

Also, because $T \ge (p-1)^{-1} (\|f\|_C + \varepsilon_0)^{-(p-1)}$ holds from Lemma 5 and (3.19), by Lemma 4 and (3.19), we see

$$u_*(x) \ge ((f(x) - \varepsilon_0)^{-(p-1)} - (1 - \underline{D}_f \varepsilon_0^2) (\|f\|_C + \varepsilon_0)^{-(p-1)})^{-1/(p-1)}.$$

Hence, from (3.22) and (3.23),

$$u_*(x) \ge (f(x)^{-(p-1)} - ||f||_C^{-(p-1)})^{-1/(p-1)} - \delta$$

holds for all $x \in \overline{\Omega} \setminus S$. Therefore, we obtain the conclusion of Theorem 6 by Step 3.

According to Friedman and McLeod [3] and Chen [1], we prove that there exists a constant C > 0 such that if $\varepsilon > 0$ is sufficiently small, then the solution u of (1.1) satisfies the Type-I estimate $u(x,t) \le C(T-t)^{-1/(p-1)}$.

PROPOSITION 7. Let $u_0 \in C^2(\overline{\Omega})$ be a positive function satisfying $\partial u_0/\partial v = 0$ on $\partial \Omega$. Then, there exist C > 0 and $\varepsilon_0 > 0$ such that for any $\varepsilon \in (0, \varepsilon_0]$, the solution u(x, t) of (1.1) with the blow-up time T satisfies $u(x, t) \leq C(T - t)^{-1/(p-1)}$ in $\overline{\Omega} \times [0, T)$.

PROOF. We define C>0 by $C=((p-1)/2)^{-1/(p-1)}$. We also define $\varepsilon_0>0$ by $\varepsilon_0^2=\min_{x\in \bar\Omega}u_0(x)^p/2|\triangle u_0(x)|$. Let v(x,t) denote the function $2\varepsilon^2\triangle u(x,t)+u(x,t)^p$. Then, we have

$$(3.24) v(x,0) \ge 0.$$

Because of $v = 2u_t - u^p$,

$$\frac{\partial v}{\partial v} = 0$$

holds on $\partial \Omega$. Also, because $u_t = (v + u^p)/2$ and $\triangle u^p \ge pu^{p-1} \triangle u$ hold, we have

$$(3.26) v_t = \varepsilon^2 \triangle (v + u^p) + \frac{p}{2} u^{p-1} (v + u^p)$$

$$\geq \varepsilon^2 \triangle v + \frac{p}{2} u^{p-1} v + \frac{p}{2} u^{p-1} (2\varepsilon^2 \triangle u + u^p)$$

$$= \varepsilon^2 \triangle v + p u^{p-1} v.$$

Because $2u_t - u^p = v \ge 0$ holds from (3.24), (3.25) and (3.26), $1/2 \le u_t/u^p$ holds. Hence, we have

$$\frac{T-t}{2} = \int_{t}^{T} \frac{ds}{2} \le \int_{u(x,t)}^{u(x,T)} \frac{du}{u^{p}} \le \frac{u(x,t)^{-(p-1)}}{p-1}.$$

Therefore, $u(x,t) \le C(T-t)^{-1/(p-1)}$ holds.

Now, we prove Theorem 1.

PROOF OF THEOREM 1. We fix a constant C>0 such that Proposition 7 holds for u_0 . Let a constant $\varepsilon_0>0$ be sufficiently small. Then, by Proposition 7, for any $\varepsilon\in(0,\varepsilon_0]$, the solution u of (1.1) satisfies $u(x,t)\leq C(T-t)^{-1/(p-1)}$. Hence, by Theorem 6 with $f:=u_0$, we obtain the conclusion of Theorem 1.

ACKNOWLEDGMENTS. I wish to thank Professors Eiji Yanagida and Kazuhiro Ishige for helpful discussions. I also thank the referee for useful comments.

References

- [1] Y.-G. Chen, Blow-up solutions of a semilinear parabolic equation with the Neumann and Robin boundary conditions, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 37 (1990), 537–574.
- [2] A. Friedman and A. A. Lacey, The blow-up time for solutions of nonlinear heat equations with small diffusion, SIAM J. Math. Anal., 18 (1987), 711–721.
- [3] A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425–447.
- [4] A. Friedman and L. Oswald, The blow-up time for higher order semilinear parabolic equations with small leading coefficients, J. Differential Equations, 75 (1988), 239–263.
- [5] M. A. Herrero and J. J. L. Velázquez, Asymptotic properties of a semilinear heat equation with strong absorption and small diffusion, Math. Ann., 288 (1990), 675–695.
- [6] N. Mizoguchi, Location of blowup points of solutions for a semilinear parabolic equation, preprint.
- [7] N. Mizoguchi and E. Yanagida, Life span of solutions for a semilinear parabolic problem with small diffusion, J. Math. Anal. Appl., **261** (2001), 350–368.
- [8] H. Yagisita, Variable instability of a constant blow-up solution in a nonlinear heat equation, J. Math. Soc. Japan, 56 (2004), 1007–1017.

Hiroki Yagisita

Department of Mathematics Faculty of Science and Technology Tokyo University of Science Noda 278-8510 Japan