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Abstract. Let L be a very ample line bundle on a smooth complex projective
variety X of dimension ≥ 7. We classify the polarized manifolds (X, L) such that
there exists a smooth member A of |L| endowed with a branched covering of degree
five π : A → Pn. The cases of deg π = 2 and 3 are already studied by Lanteri-
Palleschi-Sommese.

1. Introduction.

Let X be an (n + 1)-dimensional smooth complex projective variety and L a very
ample line bundle on X. Consider the following condition:

(∗) There exists a smooth member A ∈ |L| such that there exists a branched covering
π : A → P n of degree d.

Needless to say, the following “obvious” pairs (X, L) satisfy (∗): (P n+1,OP n+1(d)) and
(Hn+1

d ,OHn+1
d

(1)), where Hn+1
d is a smooth hypersurface of degree d in P n+2.

The study of (X, L) satisfying (∗) is a natural generalization of a classical problem
of Castelnuovo [C]. The classical problem is to classify the pairs (X, L) satisfying (∗)
when n = 1 and d = 2, and was solved by Serrano [Se], Sommese-Van de Ven [S-V],
independently. When n = 1 and d = 3, Fania [Fa] studied the pairs (X, L). In cases
n ≥ d = 2 [L-P-S 1], n > d = 3 [L-P-S 2], Lanteri-Palleschi-Sommese classified the
pairs.

Surprisingly, in case n > d ∈ {2, 3}, it turns out that the results of the classifications
are simple; this relies on topological restrictions imposed X by A. In fact, in case d = 2,
the “non-obvious” pairs never arise in the classification. In case d = 3, the “non-obvious”
pair is only (Y, 3L ), where (Y,L ) is a Del Pezzo manifold of degree 1, i.e., a polarized
manifold satisfying −KY = nL and L n+1 = 1.

So, what kind of “non-obvious” pairs (X, L) arise in case n > d > 3 ?
The purpose of this paper is to give a complete classification of the pairs (X, L) that

satisfy (∗) under the condition n > d = 5. Our result is as follows:

Theorem 1.1. Let X be a smooth projective variety with dimX = n + 1 > 6.
Then there exists a very ample line bundle L on X that satisfies the condition (∗) and
d = 5 if and only if (X, L) is one of the following :
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(1) (P n+1,OP n+1(5));
(2) (Hn+1

5 ,OHn+1
5

(1));
(3) (Y, 5L );
(4) (V10,OV10(5)), where V10 is a smooth weighted hypersurface of degree 10 in the

weighted projective space P (5, 2, 1n+1); or
(5) (W20,OW20(5)), where W20 is a smooth weighted hypersurface of degree 20 in

P (5, 4, 1n+1).

No less than three “non-obvious” pairs (3)–(5) show up.
Lanteri-Palleschi-Sommese [L-P-S 1], [L-P-S 2] in cases n > d ∈ {2, 3} use the

classification theory of polarized varieties via sectional genus.
The difficulty in our study is that a polarized manifold (X, H ) with ∆(X, H ) =

d(X, H ) = 1 and sectional genus ≥ 3 arises; the classification problem of polarized
manifolds with these invariants is yet to be solved completely (cf. [Fu 3, (6.18)]).

Our study involves a new strategy although the starting point of the proof is inspired
by the ideas of Lanteri-Palleschi-Sommese. The keys of the proof are as follows:

(i) To show the very ampleness of OW20(5). (Proposition 3.3)
(ii) To characterize (X, H ) with ∆(X, H ) = H n+1 = 1 and large sectional genus

that satisfies the assumption of Theorem 1.1. (Theorem 6.2)

For (i), after finding a basis of H0(OW20(5)), we check that the freeness, the separation
of points and the separation of tangent vectors for |OW20(5)|.
For (ii), our strategy is to find the generators of the graded ring of (X, H )

R(X, H ) :=
∞⊕

l=0

H0(X, lH ),

and the relations among them. Using the ladder method, we reduce this to describing the
structure of R(X1,HX1) in terms of generators and relations, where X1 is a smooth curve
section of X that is an intersection of n-general members of |H |. By the Riemann-Roch
theorem and some ring-theoretic arguments, we can describe the structure of R(X, H )
successfully.

The paper is organized as follows. In Section 2, we give some notation, definitions
and general facts. In Section 3, we prove (i), consequently the ‘if’ part in Theorem 1.1
is proved. From Section 4, we concentrate on proving the ‘only if’ part. In Section 4, we
prove a basic result on h0(A, π∗OP n(1)). Section 5 is devoted to the cases (1) and (2) of
Theorem 1.1. Section 6 is devoted to the proof of (ii) (Theorem 6.2), as a consequence
we see that the polarized manifolds (3)–(5) actually show up.

After submitting the paper, the author was informed about a paper of Lanteri [Lan]
by the referee. Lanteri has given a classification of the pairs (X, L) in question [Lan,
Theorem 3.5]. However, his classification result contains one doubtful case: in fact, his
result says that the cases (1)–(4) in our main theorem (Theorem 1.1) arise. But he
gave only a numerical characterization and invariants for the case (5). In contrast, this
paper determines the structure of a unique polarized manifold appearing in that case,
completely.
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2. Notation and background.

In this paper, we work over the complex number field C. We use the standard
notation from algebraic geometry as in [H]. The words “Cartier divisors”, “line bundles”
and “invertible sheaves” are used interchangeably, and “vector bundles” and “locally free
sheaves”, too. The tensor products of line bundles are denoted additively, while we use
multiplicative notation for intersection products in Chow rings.

A branched covering of degree d means a finite surjective morphism of degree d. A
manifold means a smooth variety. A line bundle on a variety is said to be spanned if it
is generated by global sections.

A polarized variety means a pair (V, L ) where V is a projective variety and L is an
ample line bundle on V . Set m = dim V .

A member of |L | is called a rung of (V, L ) if it is an irreducible and reduced
subscheme of V . A rung D of (V, L ) is said to be regular if the restriction map
H0(V, L ) → H0(D, LD) is surjective. A sequence V = Vm ⊃ Vm−1 ⊃ · · · ⊃ V1 of
subvarieties of V is called a ladder of (V, L ) if each Vj is a rung of (Vj+1,Lj+1) for
j ≥ 1, where Lj is the restriction of L to Vj .

The ∆-genus of (V, L ) is defined as ∆(V, L ) = m + d(V, L ) − h0(V, L ), where
d(V, L ) := L m is the degree of (V, L ). For a manifold V , the sectional genus of (V, L ),
denoted by g(V, L ), is defined by the formula

2g(V, L )− 2 = (KV + (m− 1)L )L m−1.

A polarized variety (V, L ) is called a scroll over a smooth curve C if it is of the form
(P (E ),H(E )) for some locally free sheaf E on C, where H(E ) denotes the tautological
line bundle of P (E ).

For an integer r ≥ 1, a line bundle L on V is said to be r-generated if the graded
ring R(V, L ) =

⊕∞
i=0 H0(V, iL ) is generated by the global sections of L , . . . , rL . In

particular L is said to be simply generated if it is one-generated.
The following is used in the study of polarized manifolds with small ∆-genera:

Proposition 2.1 (Fujita). Let (M, L ) be an m-dimensional polarized manifold
having a ladder. Assume that g := g(M, L ) ≥ ∆(M, L ) =: ∆ and L m ≥ 2∆ + 1. Then
L is simply generated, g = ∆ and Hq(M, tL ) = 0 for any integers t, q with 0 < q < m.

For the proof, we refer to [Fu 3, Chapter I (3.5)].
The following lemma is trivial but useful in studying the structure of graded rings:

Lemma 2.2. Let (V, L ) be a polarized variety, D a rung of (V, L ) defined by
δ ∈ H0(V, L ), and ρt : H0(V, tL ) → H0(D, tLD) the restriction map. Then Ker(ρt) =
δH0(V, (t− 1)L ).

A weighted projective space P (e0, . . . , eN ) is defined to be Proj(C[s0, . . . , sN ]), where
wt(s0, . . . , sN ) = (e0, . . . , eN ) ∈ N⊕(N+1). A projective variety W is called a weighted
complete intersection of type (a1, . . . , ac) in P (e0, . . . , eN ) (w.c.i., for short) if the follow-
ing two conditions are satisfied:
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(1) W ∼= Proj(C[s0, . . . , sN ]/(F1, . . . , Fc)), where (F1, . . . , Fc) is a regular sequence
and each Fi is a homogeneous polynomial of degree ai > 0;

(2) V+(F1, . . . , Fc) ∩ (
⋃

1<k(sj = 0 | k - ej)) =∅ in P (e0, . . . , eN ).

We put S(e0, . . . , eN ) :=
⋃

1<k(sj = 0 | k - ej).

Proposition 2.3 (Mori). Let D be an effective ample divisor of an m-dimensional
projective manifold M . Assume D is a w.c.i. of type (a1, . . . , ac) in P (e0, . . . , eN ). Then
the following hold.

(1) If m ≥ 4, M is a w.c.i. of type (a1, . . . , ac) in P (e0, . . . , eN , a) for some integer
a > 0.

(2) If m = 3 and there exists a positive integer a such that OM (D) ⊗ OD
∼= OD(a),

then M satisfies the same conclusion of (1) for such a > 0.

For the proof, see [M, Corollary 3.8 and Proposition 3.10].

3. Some special examples: the ‘if ’ part of the Theorem.

In this section we consider the three special classes (3)–(5) of polarized manifolds ap-
pearing in Theorem 1.1. These classes are constructed from polarized manifolds (M, L )
with ∆(M, L ) = d(M, L ) = 1.

We begin with the following fact:

Fact 3.1. Let (M, L ) be an m-dimensional polarized manifold with ∆(M, L ) =
L m = 1, and let H1, . . . , Hm−1 be general members of |L |. For each integer 1 ≤ k ≤
m− 1, we put Xk :=

⋂
k≤i≤m−1 Hi. Then the following hold.

(1) The base locus Bs|L | consists of a single point.
(2) The linear system |b∗L − E| defines a flat surjective morphism f : M̃ → P m−1,

where b : M̃ → M is the blowing up at Bs|L | and E is the exceptional divisor
lying over Bs|L |. The set E is a section of f , and every fiber of f is an integral
curve of arithmetic genus g(M, L ) ≥ 1.

(3) Xk is a k-dimensional submanifold of M , and X1 ⊂ · · · ⊂ Xm−1 ⊂ M is a regular
ladder of (M, L ).

For the proof, we refer to [Fu 2, Section 13].

Proposition 3.2. Let (M, L ) be as in Fact 3.1, and let d ≥ 2 be an integer such
that L := dL is spanned. Then there exists a smooth member A of |L| with a finite
surjective morphism of degree d,

π : A −→ P m−1.

Proof. From Fact 3.1 (2), we obtain the flat surjective morphism f : M̃ → P m−1.
Now, since L is spanned, there exists a smooth member A of |L| not passing through
Bs|L |. Since Hi(M, (1 − d)L ) = 0 for i = 0, 1 by the Kodaira vanishing theorem,
we see that h0(A,LA) = m, especially |LA| = |L |A. Therefore, combining these and
L m−1

A = d, we see that |LA| gives a branched covering of degree d from A to P m−1. ¤
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Example 1. Let (X, L) = (Y, 5L ), where (Y,L ) is an (n + 1)-dimensional Del
Pezzo manifold of degree 1, i.e., −KY = nL with L n+1 = 1. We see ∆(Y,L ) = 1. The
very ampleness of 5L follows from the facts that 2L is spanned [Fu 2, Section 14]
and that 3L is very ample [L-P-S 2, (1.2)]. Hence, by Proposition 3.2, there exists a
smooth five-sheeted cover of P n that is a member of |5L |.

Example 2. Let (X, L) = (V10,O10(5)), where V10 is an (n + 1)-dimensional
smooth weighted hypersurface of degree 10 in P (5, 2, 1n+1). We see that
∆(V10,OV10(1)) = OV10(1)n+1 = 1. Moreover, it follows from g(V10,OV10(1)) = 2 that
(V10,OV10(1)) is a sectionally hyperelliptic polarized manifold of type (−) [Fu 2, Sections
15 and 16]. Therefore OV10(5) is very ample due to [Laf, Theorem 3.3]. Consequently
we obtain a smooth five-sheeted cover of P n in |OV10(5)|.

Example 3. Let (X, L) = (W20,OW20(5)), where W20 is an (n + 1)-dimensional
smooth weighted hypersurface of degree 20 in P (5, 4, 1n+1). Since we have
∆(W20,OW20(1)) = OW20(1)n+1 = 1, we get a five-sheeted cover of P n in |OW20(5)|
from the following

Proposition 3.3. The line bundle OW20(5) is very ample.

Proof. We prove the conclusion with the following steps:

(a) Bs|OW20(5)| =∅;
(b) The morphism ϕ associated with |OW20(5)| is injective;
(c) The linear system |OW20(5)| separates the tangent vectors.

By combining 5-generatedness of OW20(1) and [Laf, Theorem 2.2], the rational map
ϕ is an embedding outside the single point p := Bs|OW20(1)|.

Let x, y, z0, . . . , zn generate the graded ring R(W20,OW20(1)), where
deg(x, y, z0, . . . , zn) = (5, 4, 1, . . . , 1).

(a) We see that H0(OW20(5)) is generated by the sections

x, yz0, . . . , yzn, zj1 · · · zj5 , with 0 ≤ j1 ≤ · · · ≤ j5 ≤ n.

Therefore it follows that

Bs|OW20(5)| = (x = 0) ∩
( ⋂

0≤i≤n

(zi = 0)
)

,

which is empty since W20 does not meet the locus S(5, 4, 1n+1).
(b) Suppose that ϕ(p) = ϕ(q) for some q ∈ W20. Then we see that zi(q) = 0 for

any 0 ≤ i ≤ n, which implies q ∈ Bs|OW20(1)|. Therefore p = q.
(c) Let τ be a non-zero tangent vector in Tp(W20). We need to show that there

exists a section σ ∈ H0(OW20(5)) satisfying the following conditions:

σ(p) = 0 and dσ(τ) 6= 0.
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We claim that σi := yzi satisfies the above conditions for some 0 ≤ i ≤ n. The
former condition is satisfied for all σi since zi(p) = 0. We prove that the latter holds.
Suppose that there exists non-zero τ ∈ Tp(W20) such that dσi(τ) = 0 for all i. Since
dσi(τ) = y(p)dzi(τ) and y(p) 6= 0, we see that dzi(τ) = 0 for all i. Hence it follows that

τ ∈ Tp(Γ), where Γ :=
⋂

1≤i≤n

(zi = 0).

From dz0(τ) = 0, we have Γ · OW20(1) ≥ 2, which contradicts OW20(1)n+1 = 1. This
concludes the proof. ¤

4. The ‘only if ’ part.

We are now going to classify the polarized manifolds in question.
Suppose that (X, L) satsifies (∗) and n > d = 5. Let π : A → P n denote the

finite morphism of degree 5. Then a Barth-type theorem of Lazarsfeld [Laz, Theorem 1]
implies that H2(A,Z) ∼= H2(P n,Z) ∼= Z and H1(A,OA) = 0. Therefore Pic(A) ∼= Z,
generated by π∗OP n(1). The Lefschetz hyperplane section theorem implies Pic(X) ∼= Z.
We denote by H the ample generator of Pic(X); we have HA = π∗OP n(1). Combining
the ampleness of HA and the fact that ∆-genus is non-negative for every polarized
manifold [Fu 3, Chapter I (4.2)], we see

n + 1 ≤ h0(A,HA) ≤ n + 5.

In fact, we have the following

Proposition 4.1. h0(A,HA) = n + 1 or n + 2.

Proof. At first, suppose h0(A,HA) = n+5. Then we have ∆(A,HA) = 0. There-
fore, by [Fu 3, Chapter I (5.10)], (A,HA) is either (i) (P n,OP n(1)), (ii) (Qn,OQn(1))
or (iii) a scroll over P 1. Cases (i), (ii) cannot occur by H n

A = 5. Case (iii) also cannot
occur because of Pic(A) ∼= Z.

Secondly, suppose h0(A,HA) = n + 4. Then we obtain ∆(A,HA) = 1. By Propo-
sition 2.1, we have g(A,HA) = 1. Therefore it follows from [Fu 3, (12.3)] that (A,HA)
is either a Del Pezzo manifold or a scroll over an elliptic curve. The latter case is ruled
out because of Pic(A) ∼= Z. The former case is also ruled out by the following reason:
if (A,HA) is a Del Pezzo manifold of degree 5, then we see that A is the Grassmann
variety parametrizing lines in P 4, Gr(5, 2), by combining the result of [Fu 3, (8.11)] and
our assumption n > 5. But Gr(5, 2) cannot be ample divisors on X by virtue of [Fu 1,
(5.2)].

Lastly, we suppose h0(A,HA) = n + 3. By Proposition 2.1, we see that g(A,HA) =
∆(A,HA) = 2 and that HA is simply generated, hence very ample. According to [I], we
have dim A ≤ 4, which contradicts our assumption. ¤

From now on, we will discuss the case h0(A,HA) = n + 2 in Section 5 and the case
h0(A,HA) = n + 1 in Section 6.
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5. Case where h0(A, H A) = n + 2.

In this section we treat the case h0(A,HA) = n + 2. The aim of this section is to
prove the following

Proposition 5.1. If h0(A,HA) = n + 2, then (X, L) is either (P n+1,OP n+1(5))
or (Hn+1

5 ,OHn+1
5

(1)).

The following lemma is a special case of [L-P-S 1, (1.3)]:

Lemma 5.2 (Lanteri-Palleschi-Sommese). If h0(A,HA) = n+2, then the morphism
q : A → P n+1 associated to |HA| is birational and its image q(A) is a hypersurface
(possibly singular ) of degree 5 in P n+1.

Remark 5.3. By virtue of the Bertini theorem, we obtain a smooth k-dimensional
rung Ak of (Ak+1,HAk+1) inductively, with An := A. Put C := A1. Then one can easily
obtain an inequality

g(C, HC) ≥ ∆(C,HC). (?)

Lemma 5.4. The ladder C ⊂ A2 ⊂ · · · ⊂ An is regular.

Proof. It suffices to prove H1(Ak,OAk
) = 0 for all k ≥ 2. By the Lefschetz

hyperplane section theorem [Fu 3, (7.1.4)], we have H1(Ak,OAk
) ∼= H1(Ak−1,OAk−1)

for all k ≥ 3. Combining these and H1(A,OA) = 0, we obtain the assertion. ¤

By Lemma 5.2, the smooth curve C is the normalization of q(C), which is a plane
quintic curve of arithmetic genus 6. Since h0(Ak+1,HAk+1) = k + 3 for all k by virtue of
Lemma 5.4, we have ∆(C, HC) = 3.

Lemma 5.5. The line bundle HC is simply generated.

Proof. We prove that g(C, HC) = 6 as follows. We have inequalities

3 ≤ g(C, HC) ≤ 6.

Indeed, the right inequality is obvious and the left is obtained by combining (?) and
∆(C,HC) = 3. We have KA = rHA for some integer r due to Pic(A) ∼= Z. By the
sectional genus formula

2g(A,HA)− 2 =
(
KA + (n− 1)HA

)
H n−1

A = 5(r + n− 1),

we see that g(A,HA)− 1 is divisible by 5. Combining this and the above inequlities, we
obtain g(C,HC) = 6.

It follows from g(C, HC) = 6 = pa(q(C)) that HC is very ample, i.e., C ∼= q(C).
Moreover q(C) is a smooth plane curve. Therefore HC is simply generated. ¤

Proof of Proposition 5.1. By combining Lemma 5.4, 5.5 and [Fu 3, Chapter
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I (2.5)], we see that HA is very ample. Thus

(A,HA) ∼=
(
Hn

5 ,OHn
5
(1)

)
.

We can write L = lH with some integer l ≥ 1. It follows from 5 = H n
A = lH n+1 that

(l, H n+1) is either (1, 5) or (5, 1).

The case (l, H n+1) = (1, 5). The ladder C ⊂ · · · ⊂ A ⊂ X is regular, hence
∆(X, L) = 3. Therefore, from h0(X, L) = n + 3, it follows (X, L) ∼= (Hn+1

5 ,OHn+1
5

(1)).

The case (l, H n+1) = (5, 1). Since Hi(X,−4H ) = 0 for i = 0, 1 due to the
Kodaira vanishing theorem, we see that h0(X, H ) = n+2, hence we have ∆(X, H ) = 0.
Since H n+1 = 1, we obtain (X, L) ∼= (P n+1,OP n+1(5)). ¤

6. Case where h0(A, H A) = n + 1.

In this section, we deal with the case h0(A,HA) = n + 1. The heart of this section
is to prove Theorem 6.2.

Lemma 6.1. If h0(A,HA) = n + 1, then we have L = 5H , H n+1 = 1 and
∆(X, H ) = 1.

Proof. We see that L = lH for l 6= 1 as follows. Suppose l = 1. Then |HA|
gives an embedding of A into P n, which contradicts deg π = 5. From this, we see l 6= 1.

Therefore we have (l, H n+1) = (5, 1). Furthermore, from the Kodaira vanishing
theorem, it follows h0(X, H ) = h0(A,HA) = n + 1. Hence we obtain ∆(X, H ) = 1. ¤

Let H1, . . . , Hn be general members of |H |, and put Xk :=
⋂

k≤i≤n Hi for all 1 ≤
k ≤ n. Recalling Fact 3.1 (3), we see that Xk is a k-dimensional manifold. We put
p := Bs|H |.

We now consider the morphism associated to |L|

ϕL : X −→ P (|L|),

which is an embedding of X, and ϕL(X1) is a smooth curve of degree 5. Then we obtain
g(X, H ) = g(ϕL(X1)) = 0, 1, 2 or 6 (see [H, p. 354]).

The case g(X, H ) = 0. From [Fu 3, (12.1)], we see ∆(X, H ) = 0, which is
absurd.

The case g(X, H ) = 1. By virtue of a result of Fujita [Fu 3, (6.5)], we see that
(X, H ) is a Del Pezzo manifold of degree 1, hence we are in the case of (3) in Theorem
1.1.

The case g(X, H ) = 2. From [Fu 2, Section 15 and Appendix 1] and n ≥ 6,
(X, H ) is a sectionally hyperelliptic polarized manifold of type (−), which is also classi-
fied by Fujita. We are in the case (4).
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The case g(X, H ) = 6. Then we see that X1 is isomorphic to a smooth plane
quintic curve. What we are going to prove is the following

Theorem 6.2. If h0(A,HA) = n + 1 and g(X, H ) = 6, then

(X, H ) ∼=
(
W20,OW20(1)

)
.

We will use the ladder method to prove this, where the key is to describe the structure
of R(X2,HX2) explicitly. In fact, in order to get the conclusion, we need the description
of the structure of R(X1,HX1) and the surjectivity of the restriction map

ρ : R
(
X2,HX2

) −→ R
(
X1,HX1

)
.

We first describe the structure of R(X1,HX1):

Proposition 6.3. Under the assumption of Theorem 6.2, there exists an isomor-
phism

R
(
X1,HX1

) ∼= C[x, y, z]/(F20),

where wt(x, y, z) = (5, 4, 1) and F20 is an irreducible weighted homogeneous polynomial
of degree 20.

Proof. Using the Riemann-Roch theorem for X1, we find the generators of
R(X1,HX1) and the relations among them. We proceed in three steps.

Step 1. We show that the dimension of H0(lHX1) for l ≥ 1 is as follows:

l h0(lHX1) l h0(lHX1)
1 1 6 3
2 1 7 3
3 1 8 4
4 2 9 5
5 3 10 6

and h0(lHX1) = l − 5 for all l ≥ 11. Indeed, by the Riemann-Roch theorem, we obtain

h0
(
lHX1

)
= h0

(
(10− l)HX1

)
+ l − 5,

which implies the latter assertion. We prove the former. Note that h0(5HX1) = 3
since |LX1 | gives an embedding of X1 into P 2. By Fact 3.1 (3), we see h0(HXk

) = k

in particular h0(HX1) = 1, thus h0(9HX1) = 5. From the well-known fact that a
smooth plane quintic curve has neither g1

2 nor g1
3 , we have h0(2HX1) = h0(3HX1) = 1,

thus h0(8HX2) = 4, h0(7HX1) = 3. Then we see h0(6HX1) = 3 and h0(4HX1) = 2.
Therefore the former assertion is proved.

Let z be a basis of H0(HX1). Choose y ∈ H0(4HX1) such that H0(4HX1) = 〈y, z4〉.
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Moreover, choose x ∈ H0(5HX1) such that H0(5HX1) = 〈x, yz, z5〉.

Step 2. We claim that the graded ring R(X1,HX1) is generated by x, y, z. Indeed,
it suffices to prove that there exist some monomials in x, y, z which form a basis of
H0(lHX1) for each l. Note that

h0
(
lHX1

)− h0
(
(l − 1)HX1

)
= δ ∈ {0, 1}.

The cases 6 ≤ l ≤ 11. We may assume δ = 1: otherwise, we have H0(lHX1) =
zH0((l − 1)HX1). Therefore we only consider the cases l = 8, 9, 10. Each monomial in
x, y contained in H0(lHX1) has a pole of order exactly l at p. Comparing their orders of
poles, we see from Step 1 that the following monomials are linearly independent for each
8 ≤ l ≤ 10, hence form a basis for H0(lHX1):

l monomials in H0(lHX1)
8 y2, xz3, yz4, z8

9 xy, y2z, xz4, yz5, z9

10 x2, xyz, y2z2, xz5, yz6, z10.

Therefore the assertion holds in these cases.

The cases l ≥ 12. We see δ = 1 from Step 1. We prove the assertion by induction.
When l = 12, it is easy to see that the following monomials are linearly independent as
before, hence form a basis of H0(12HX1):

y3, x2z2, xyz3, y2z4, xz7, yz8, z12.

Suppose l > 12 and that the assertion holds for l − 1. It is easily shown that

for two coprime positive integers a, b and an integer l with l ≥ (a− 1)(b− 1), the
equation ai + bj = l has at least one solution (i, j) of non-negative integers.

Set (a, b) = (5, 4). Then, since l > 12, there exists at least one section written as
xiyj (i, j ≥ 0) in H0(lHX1), not contained in zH0((l − 1)HX1). Hence H0(lHX1) =
Cxiyj

⊕
zH0((l− 1)HX1). From the assumption of induction, the assertion holds. This

proves our claim.

By Step 2, there exists a surjective homomorphism of graded rings

Φ : C[x, y, z] −→ R
(
X1,HX1

)
.

Step 3. We show that there exists an irreducible homogeneous polynomial F20

of degree 20 in C[x, y, z] such that Ker(Φ) = (F20). Indeed, there exist no relations
of degree l < 20 because the equation 5i + 4j = l has at most one solution (i, j) of
non-negative integers. For l = 20, there are exactly 16 monomials in x, y, z contained in
H0(20HX1). On the other hand, h0(20HX1) = 15. Hence there exists one relation F20
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of degree 20, which is written as

F20 = x4 + y5 + zψ19(x, y, z)

after we replace x and y by suitable scalar multiples, where ψ19 is a homogeneous poly-
nomial in x, y, z of degree 19. The irreducibility of F20 is proved as follows. One can
easily show that x4 + y5 is irreducible. Write F20(x, y, z) = P1(x, y, z)P2(x, y, z) with
some P1, P2 ∈ C[x, y, z]. Then we may assume P1(x, y, 0) = 1 without loss of generality.
Hence P1(x, y, z) = 1+zξ1 and P2 = x4 +y5 +zξ2, where ξ1, ξ2 are polynomials in x, y, z.
We obtain that

ψ19(x, y, z) = ξ1

(
x4 + y5 + zξ2

)
+ ξ2.

It follows that ξ1 = 0. Indeed, otherwise, the highest term of the right-hand side has
degree ≥ 20, which is absurd. Therefore F20 is irreducible. Furthermore, combining this
and the fact that ht(Ker(Φ)) ≤ dimC[x, y, z] − dimR(X1,HX1) = 1, we see Ker(Φ) =
(F20). ¤

Next we will show the surjectivity of the restriction map ρ. Let s = {s0, . . . , sN} be
a minimal set of generators of R(X2,HX2). Then there exists an isomorphism

R
(
X2,HX2

) ∼= C[s0, . . . , sN ]/(F1, . . . , Fh),

where F1, . . . , Fh are homogeneous polynomials in C[s0, . . . , sN ]. Put Is := (F1, . . . , Fh).
It follows from Fact 3.1 (3) that the vector space H0(HX2) is of dimension 2, hence

has a basis {s, t} such that ρ(s) = z and (t)0 = X1. We may assume that s contains
these two elements.

Lemma 6.4. The sequence t, s contained in m := R(X2,HX2)+ is regular.

Proof. Let m be a homogeneous element of degree a in R(X2,HX2) such that
tm = 0. We see that R(X2,HX2)+ has no zero-divisors since X2

∼= Proj(R(X2,HX2))
is integral. Hence, if a > 0, then we obtain m = 0. If a = 0, then the minimality of
s implies that Is has no generators of degree one. Thus we have m = 0. Therefore t

is R(X2,HX2)-regular. By the same argument, we see that s is R(X2,HX2)/(t)-regular
since X1

∼= Proj(R(X2,HX2)/(t)) is integral. As a consequence, the assertion follows. ¤

In order to prove Proposition 6.6, we need some information about generators of Is.
Let

ρl : H0
(
lHX2

)
³ H0

(
lHX2

)
/〈t〉 ↪→ H0

(
lHX1

)

denote the restriction map. Here we show the following lemma:

Lemma 6.5. The ideal Is has no generators in degrees ≤ 5.

Proof. We first prove that
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Im(ρ5) = H0
(
5HX1

)
. (†)

It follows that rank(ρ5) ≥ 3. Indeed, the morphism ϕL|X1 : X1 → P (Im(ρ5)) is an
embedding of a curve of genus 6. Consequently (†) holds by virtue of Step 1 in the proof
of Proposition 6.3.

Subsequently, we find a basis of H0(lHX2) for 1 ≤ l ≤ 5 by using Lemma 2.2.
For l = 1, there exist no relations in H0(HX2) because of the minimality of s.
For l = 2, there exist no relations. In fact, it follows H0(2HX2) = 〈s2, st, t2〉. Indeed,

let η ∈ H0(2HX2). We can write ρ2(η) = cz2 with some c ∈ C. Then, from Lemma 2.2,
it follows that η is a linear combination of s2, st, t2. These three monomials are linearly
independent because each order of pole along X1 differs from that of the others.

For l = 3, there are no relations: we see that H0(3HX2) = 〈s3, s2t, st2, t3〉 by the
same argument as in the case l = 2.

For l = 4. Note that 1 ≤ rank(ρ4) ≤ h0(4HX1) = 2. We first suppose rank(ρ4) = 1.
Then H0(4HX2) = 〈s4, s3t, s2t2, st3, t4〉 holds, which implies that there exist no relations.
By (†), there exist sections u, v ∈ H0(5HX2) such that ρ5(u) = x, ρ5(v) = yz. Since it
follows from Lemma 2.2 that

H0
(
5HX2

)
= 〈u, v, s5, s4t, s3t2, s2t3, st4, t5〉,

there exist no relations in H0(5HX2).
Next we suppose rank(ρ4) = 2. Let w denote a section such that ρ4(w) = y. Then

we see

H0
(
4HX2

)
= 〈w, s4, s3t, s2t2, st3, t4〉,

H0
(
5HX2

)
= 〈u, sw, tw, s5, s4t, s3t2, s2t3, st4, t5〉,

where u is a section such that ρ5(u) = x. Therefore there exist no relations. ¤

Proposition 6.6. The restriction map

ρ : R
(
X2,HX2

) −→ R
(
X1,HX1

)

is surjective.

Proof. It suffices to prove that H1(lHX2) = 0 for every l ≥ 0, which is equivalent
to showing that R(X2,HX2) is a Cohen-Macaulay ring (see [W, (2.4)]).

We find a regular sequence of length 3 contained in m. The sequence t, s is regular
by Lemma 6.4. Let u ∈ H0(5HX2) denote a section such that ρ5(u) = x. We assert that
u is R(X2,HX2)/(t, s)-regular. Indeed, Proj(R(X2,HX2)/(t, s)) is an integral scheme p

because of H 2
X2

= 1. Thus we see that (R(X2,HX2)/(t, s))+ has no zero-divisors. Let m

be a homogeneous element of degree a in R(X2,HX2)/(t, s) such that um = 0. If a > 0,
then we have m = 0 obviously. If a = 0, then we have m = 0 by Lemma 6.5. Therefore
t, s, u form a regular sequence. ¤
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At last, we can prove Theorem 6.2 as follows.

Proof of Theorem 6.2. Combining Proposition 6.3 and 6.6, we see that X2 is
a weighted hypersurface of degree 20 in P (5, 4, 12). Furthermore, the assertion follows
from Proposition 2.3. ¤
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