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Abstract. We give sufficient conditions for hypoellipticity of a second order
operator with real-valued infinitely differentiable coefficients whose principal part
is the product of a real-valued infinitely differentiable function ¢(x) and the sum
of squares of first order operators Xi,...,X,. These conditions are related to the
way in which ¢(x) changes its sign, and the rank of the Lie algebra generated by
¢X1,...,6X, and Xo where X is the first order term of the operator. Our result is
an extension of that of [4], and it includes some cases not treated in [1], [5] and [8].

1. Introduction.

Let Xg, X1,...,X, be first order linear partial differential operators with real-valued
O coefficients defined in an open subset © of R™, n > 2, and let ¢(x), ¢(x) be real-valued
C*° functions defined in 2. We consider the second order operator of the form:

L=¢(x) Y X} + Xo+ c(x).
i=1

We say that L is hypoelliptic in € if for any open subset w of Q and any u € 2'(w),
Lu € C*(w) implies u € C*®(w). We also define rank Lie (X, ¢X1,...,¢X,)(x) as
the maximal number of linearly independent operators in the Lie algebra generated by
Xo,0X1,...,¢X, considered at a point z. When ¢(x) = 1 in Q, it is well-known by [6]
that L is hypoelliptic in Q if rank Lie (Xo, X1,...,X,)(z) = n for all z € Q.

In this paper we shall prove the following theorem by using fundamental theorems
on commutators, adjoints, and boundedness of pseudo-differential operators, and estab-
lishing estimates of the subelliptic kind in localized Sobolev spaces.

THEOREM 1.1. Assume that

(H1) X;o(z) =0 (1 <i<r) for all x € Q such that ¢p(z) = 00

(H2) rank Lie (Xo, ¢X1,...,0X,)(z) =n for all x € Q,

(H3) there exist nonempty open sets Qi, Q_ and a relatively closed set T' C  such that
(H3-1) Q=Q, UQ_UT,
(H3-2) Q  NQ_ =g,
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(H3-3) T' = 90 = 9Q_ and T is a C* hypersurface, that is, for any p € T there
exist an open neighborhood wy, of p and a function g(x) € C*(wy,) such that
I'Nw, ={z | g(z) = 0} where grad g(z) #0 (z € wp),

(H3-4) ¢(z) <0 in Q_, ¢(z) >0 in Oy,

(H3-5) (Xo(p),n(p)) > 0 for all p € T, where Xo(p) is the vector defined at p by the
vector field X, and n(p) is the unit normal of T at p towards Q.

Then L is hypoelliptic in €.

Let us consider the case where the coefficients of X; (0 <14 <), ¢(z) and c(x) are
analytic in , and Xg, X1, ..., X, do not vanish simultaneously at any point of Q. It
was proved in Theorem ILI(iii) and (ii) of [10] that (H1) and (H2) are necessary for L
to be hypoelliptic in Q. There are preceding results about the necessity of (H2) for L to
be hypoelliptic in . When ¢(x) = 1 in Q, it was proved in Theorem 2.2 of [3]. When
¢(z) > 0in Q, it was proved in Theorem 2.8.2 of [9]. It was also proved in Theorem
ILI(iv) of [10] that the condition:

Xop(z) >0 forall z € ¢ *(0)

is necessary for hypoellipticity of L. (H3) is a special case of this condition.

Since hypoellipticity is a local property, to prove Theorem 1.1 it is sufficient to show
that L is hypoelliptic in an open neighborhood of any p € 2. Let us write the operator
L in the divergent form:

L= Z*Yk—FYo-FC()

where Yy, Y1,...,Y, are first order operators with coefficients belonging to C*(€2). We
know from Theorem 1.1 of [2] that (H1) and (H2) imply that

rank Lie (Yo, Y1,...,Y,)(x) = n for all z € Q.

Then according to Theorem 2.6.4 of [9], L is hypoelliptic in an open neighborhood of
pif p € QL UQ_. Hence, it only remains to show the hypoellipticity of L in an open
neighborhood of any p € T.

Fix any p € I". Then, by (H3) there exists a diffcomorphism ¥ from an open
neighborhood V,, of p to an open set {(¢/,yn) | |¥'| < T, |ynl < T} ¥ = W15+ YUn—1)s
T > 0, such that

¥(p) = (0,0),
UV, NQ) ={( ) | V| <T, =T < yn < 0},

UV N Q) = {(W yn) [ 1Y <T, 0 <yn <T},

V. (Xo) = ;



Hypoellipticity of a second order operator 1039
Hence we may assume from the beginning that
Q= {(x/,xn) | 2| < T, |zn] < T}, (1.1)

szna(x)ZXf—i—a%—i—c(x), x €, (1.2)
i=1 "

and the following three conditions are satisfied.

Xi(zna(z)) =0 (1 <i<r) for all z € Q such that z,a(x) =0, (1.3)

rank Lie(a,xnaXl, . ,xnaXT> (x) =nforall x € Q, (1.4)
oz,

a(x) > 0 in Q. (1.5)

In the later sections we shall show that under the hypotheses (1.3)—(1.5) the operator L
defined by (1.2) is hypoelliptic in Q defined by (1.1).

REMARK. In case of a(z) > 0 (z € Q), the hypoellipticity of L was proved in [4]
which extended the previous result Theorem IIL.1 of [10]. In case of a(r) = x2A(x)
where A(z) is a non-negative infinitely differentiable function defined in Q, the hypoel-
lipticity of L was proved in Theorem A of [8].

ExaMPLE. Let «a(z1,z2,z3) be a non-negative infinitely differentiable function
which is defined in R3, and not representable in the form of a finite sum of squares of
infinitely differentiable functions in any neighborhood of the origin. The existence of
such a function was proved in Lemma 2.6.5 of [9]. Let n > 4 and put

5?2 82 8 \° d
L:zn(a(xl,zg,x3)+zi) <W++8£E2+<$n&b') >+8x
1 —1 n n

n

Then L does not belong to the classes of operators treated in [1], [4], [5] and [8]. However
the conditions (1.3)-(1.5) are satisfied for L, and so L is hypoelliptic in 2.

2. Notations and elementary lemmas.

We introduce notations and state elementary lemmas which will be used in the later
sections.

NoOTATION 2.1.  Let m be a real number. We say that a C* function p(z, £) defined
on R™ x R™ is a symbol of class S™ if for any multi-indices «, 0 there exists a constant
Cy,p such that ‘%%p(m,&ﬂ < Cop(1+ [€2)m=1al/2 (2, €) € R™ x R". We denote
by Op(S™) the set of all pseudo-differential operators with symbols belonging to S™.

NOTATION 2.2. Let s be a real number and € be a positive number. We denote by
E, the pseudo-differential operator with the symbol (1+£|?)%/2, and by E the pseudo-
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differential operator with the symbol (14 |¢/|? + |€€,|?)*/? where &' = (£1,...,&n_1). We
denote by (, ) the inner product in L?(R"™), and by (, )s and || ||s the inner product
and the norm respectively in the Sobolev space Hy. We also use the notations:

(u,0)5e = (BEu, EEv),  ullse = (w,u)!/2, u,v € H,.

Here we note that the norms ||u||s and ||u||s,. are equivalent for any fixed £ > 0.
NoTATION 2.3. For p € R™ and p > 0 we define B(p,p) = {z | |z — p| < p}.

LEMMA 2.1.  Let s be a real number and Ass € Op(S?*). There exists a constant
C > 0 such that for any § > 0

C o0 n
’(’U,Agsw)‘ < 5”””5 + E”ng’ v, w € Cg°(R™).

LEMMA 2.2. Let mi,mo and s be real numbers such that my + mo = 2s. If
A; € Op(S™i) (i = 1,2), then there exists a constant C' > 0 such that

|(Ayu, Azw)| < Cllull?, w e G (R™).

LEMMA 2.3. Letm; (j=1,...,p) and s be real numbers such that my+---+m, =
2s+1. Let Aj € Op(S™) (j = 1,...,p), and suppose that A; — A} € Op(S™i=1) or
Aj+ A7 € Op(S™i=1) (j =1,...,p). Then for any permutation (j1,...,jp) of (1,...,p)
there exists a constant C > 0 such that

|(A1"'A1U,Al+1"'Ap“)} < ’(Aj1 Ay u A ~-~Ajpu)| +C||u|\§, u e CO(R™).

The following lemma is a generalization of Proposition 3.1 of [8].

LEMMA 2.4. LetY; € Op(S') and Azs € Op(S?*). Suppose that Yi*+Y; € Op(S?)
and As, — Ags € Op(S%5~1). Then there exists a constant C > 0 such that

IRe (Yiu, Agsu)| < Cllull2, ue CSO(R™).

3. Localization.

Let Ag,..., A, be first order operators with real-valued C'*° coeflicients defined in
Q. For every multi-index J = (j1,...,751) (0 < jp < r, 1 <k <) we introduce the
notations:

AJ = [Ajla[Ajm"' a[AjzflvAjz]"'Hv (31)
lo(J) = the number of k such that j, =0, (3.2)
7(J) =27 (DL (3.3)
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We set
0
Yo = —, Y1 =zpaXq, ..., Y, =x,aX,, (3.4)
0z,
0
Zy = Tng s Zy = xpaXy, ..., Z, = vpaX,. (3.5)
LTn

Then we have the following

LEMMA 3.1.  For any multi-index J = (j1,...,51) (0<jr <7, 1<k <I) we have
the expression

(J)YJ ZJ+ZQ]]Z[ ZTLQ (36)
IcJ

where gy1 € C®(Q) (I C J) and I C J means that I = (i1,...,0y) is a multi-index such
that m <1l and i =ji, (1 <k<m, l1 < - <ly).

PrROOF. We shall show by induction on ! that there exist hy; € C*(Q) (I C J)
such that

Zy =20V, + 3 hypaleDy;. (3.7)
IcJ

Then (3.6) follows from (3.7) by induction on [. It is obvious that (3.7) holds when [ = 1.
Assume that (3.7) holds when ! = k. Let J = (j1, jo,- .., jk+1) and set J' = (Ja, ..., Jk+1)-
Then we have

Zy = [ZjleJ’] =1|Zj,x n( Y + Z hy [.TZO(I)YI:| (3.8)
IcJ’

First we consider the case of j; = 0. Then Z;, = 2,,0/0xy, lo(J') +1 = ly(J) and
we have by (3.8)

Zy =y, — 2oy, (xn)ai + ()oY,
T,

0
+> {hJ/ 120 Y ) = by gale? )Yl(xn)ax}
cJ "

oh
+ Z ( et +lo( )hJ/7[)(L‘£$(1)Y]. (39)

1cJ’

If Io(J') > 1, then we can write with f; = xﬁi’(‘],)lejr(xn)

! 8 8
335?('] Yy (xn)a = fJ/l‘nﬂ = fJ/lfly?((O))Y(o). (3.10)
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If lg(J') = 0, then js > 1 (2 < s < k+ 1) and we can write with some f; € C*>°(Q)

! a
zloyy, (x")% = [:cnanQ, [naXj,,. .., [TpaX;,, tnaX;, ] ]] (:cn)%
= fralo(©@y,. (3.11)
In the same way we can write with some f; € C°()
0
xi?”)YI(mn)% = fralo @y, 1cJ. (3.12)

n

Since (0) C J and (0,1) C (0,J’) = J, we obtain (3.7) by (3.9)—(3.12).
Next we consider the case of j1 > 1. Then Z;, =Y, = z,aX;,, lo(J') = 1p(J), and
lo(I) =1o((41,1)). Hence we have by (3.8)

Zy :l'ig(J)Y] +ZO(J/)an1 (xn)xﬁg(J/)YJ’ + Z hv]’in?((le))Y'(le)

1cJ’
+ > {znaX;, (hy )zl OY; + lo(Iahy 1 X5, (x,)ale D7}
cJ
Since (j1,1) C (j1,J’) = J, we obtain (3.7) by the above equation. O

Let p be an arbitrary point in Q. It follows from hypothesis (1.4) that there exist an
open neighborhood , C Q of pO multi-indices J1,. .., J, and functions f; € C*(£,)
(j,k=1,...,n) such that

o) = . .
o, = ’; fiYs, inQp, 1< <n. (3.13)
We define
lo = 121];3%(” lo(Jk)~ (3~14)

We note that Iy is a non-negative integer depending on p. Let p € {z | |z| < T, =, = 0}
and suppose that lp = 0. Then lo(Jx) =0 (1 < k <n),and so Yy, (1 <k <n) are
obtained by taking commutators successively starting from x,aXi,...,z,aX,. Hence
Y;, =0 (1 <k <n)at p, which contradicts (3.13). Thus we see that

lo>1lifpe{x||z|<T, z, =0} (3.15)
It follows from (3.13) and Lemma 3.1 that

a n
xi?af =) > guwiZrinQ, 1<j<n, (3.16)
i k=iic,
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where g; 5.1 € C>(Q,) and I C J, means that I C Ji or I = Jj.
We choose an open set w, and a function x(z) so that

P E Wy Cwp CQp, (3.17)

and
x(x) € C5°(Q), x(z)=11in wp. (3.18)

Now we put

a=vxa, X;=xX;(1<i<r), é=xe, (3.19)

and
L =m0 S X2+ xi +é. (3.20)

; Oz,

4. Energy estimates.

In this section we shall fix p € {(2/,z,) | |2'| < T, x, = 0} and establish energy
estimates for the operator L defined by (3.20).

PROPOSITION 4.1. Let s be a real number and let Ag be a pseudo-differential op-
erator belonging to Op(S*®). Assume that

Af— A, € Op(S*™Y) or A*+ A, € Op(S*1).

Then there exists a constant Cy > 0 depending on s such that

Z (z2aAs Xiu, AsXiu) < —Re (v, Lu, ALAu) + Csllul2,  u € C(R™). (4.1)

i=1

PrROOF. We shall denote by C; and C5 positive constants depending on s and
independent of u € C§°(R™). We have by (3.20)

— Re (xnf/u, A Asu)

= — Z Re (xid)?fm A;Asu) — Re (mnxaiu, A:Asu> — Re (xnéu, A:Asu).
i=1 n

We can apply Lemma 2.4 to the second term in the right-hand side of the above equation,
and Lemma 2.2 to the third one. Hence

—Re (¢, Lu, AjAqu) > =Y " Re (27aX7u, A; Aqu) — Chlul|2. (4.2)

=1
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We estimate the first term in the right-hand side of (4.2). We write X} = —X; + fi,
fi € C§°(R™). Then

— Re (xidj(fu, A:Asu)
= (xi&ASXiu, ASXiu) + Re (qu, [As, x%&]*Ainu) + Re (xi&f(iu, [XZ, A:As}u)

—Re (II??L(NZXZ’UJ, flAjAg’U,) —Re ([ZL'EL(NI, Xl]qu, AtAg’U,)

By hypothesis we can apply Lemma 2.4 to the last four terms in the right-hand side of
the above equation. Hence we have

—Re (midf(fu, AL Au) > (midAs)N(im ASXiu) — Oyllull?, 1<i<r (4.3)

Thus we obtain (4.1) by (4.2) and (4.3). O

COROLLARY 4.1. Let As be a pseudo-differential operator as in Proposition 4.1.
Let p;(x) € C§°(R™), i =1,...,r, and suppose that

pi(z)]* < Caha(z), zeR" i=1,...,r
where C > 0 is a constant. Then there exists a constant Cs > 0 such that

S |[AwpiXiu|) < —2CRe (w,Lu, ALAu) + Collul?, we CF(R™),  (4.4)

=1

S lpiXoul? < Co(ILull? + [lul?), we CF(R™). (4.5)
=1

LEMMA 4.1.  There exists a constant M > 0 such that

(@) + > |ao, (@)|° < Ma(z), « € R, (4.6)
k=1
Z | X, (znii(2))|” < Mala(z), =€ R" (4.7)

PROOF. According to Lemma 1.7.1 of [9] there exists a constant C; > 0 such that
e, (@) < Cra(z), z€R", 1<k<n. (4.8)

On the other hand, it follows from (3.19) and hypothesis (1.3) that

Xz(xn)a'(x)lwn:O = X('r)QXi(xna(x)”zn:O =0.

Then there exists o;(z) € CS°(R") such that X;(z,)%a(z) = 22ai(z), because
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X;(z,)2%a(z) > 0 in R™. Hence, taking (4.8) into account we have

| Xi(zna(2))]? < 2X;(20)%a(2)” + 207 Xi(a())?
< CQ.L“,ZEI,(Z‘), reR" 1<i<r. (4.9)
The lemma holds by (4.8) and (4.9). O

Let A; = E in Corollary 4.1. Then Corollary 4.1 and Lemma 4.1 yield immediately
the following corollary.

COROLLARY 4.2.  Let M be the positive constant determined in Lemma 4.1. For any
real number s there exists a constant Cs > 0 depending on s such that for allk =1,...,n

and u € C°(R")
3 X < ~2MRe (s, L), + Colul?,
i [@ndi, Xou||> < —2MRe (2, Lu,u) -+ Cyllull?,
Zi: || Xi (@) Xjul|* < —2MRe (20 Lu, )+ Cyllull?,
S el + 3 onii il + 3 1Kt Kol < CollEl? + ful?).

i=1 =1 i=1

PROPOSITION 4.2.  For any real number s, there exist €5 > 0, ps > 0 and Cs > 0
depending on s such that B(p, ps) C wp and

T ~ B 9 2
3 (aE(FS}X E(gsixiu) + Hu
; 53 53 Oz, 1
i=1 S—35,Es
T T 0 2 o)
< —2Re (znLu,u), + 2Re ( Lu, U + Cyllulls, we C5(B(p,ps)). (4.10)
n /Js—3%.es

PrOOF. In the proof we shall use positive parameters €, p and §. We shall denote
by Cs < s a positive constant depending on s, € and 4, by Cg ¢ and ngg positive constants

depending on s and ¢, and by Cs(,lg,m Cé?;,, and CS,E,p positive constants depending on
s, € and p.
Since by (3.18) x52—u = z2-u for u € C§°(w,), it follows that

9 2 ()
(Lu 8 > . = Z(znaX u, By 1a—u axn

8 o0
( Eés T ), u € C5%(wp). (4.11)

s—3%.e
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We write for 1 <i<r

X;=-Xi+fi, fi€CER). (4.12)
Then we have for 1 <i <r

(mndf(f) —J;naX +2{X Tpd) — flxna}X +9i, 9i € CF(R™). (4.13)

Hence

) B 1 - 0 B
Re (:cnaxf LB o ) = 2<xnaxf B o u) +35 <E§? o rnaX2u )

_ ;({xnaXfaEéi) 185 ]u u> <E§? 1aiu [Ri(20d) — firnd) XU)

1 € 9 oo/ PN
-3 (Eés) 19z, gt > u e C§°(R™). (4.14)

Let X’i(x, , 1 < i < r, be the symbol of X;. Then the principal symbol of

)
[xnd)zf, Eéi)fla%n] is expressed in the form:
A5 (@, ©)na() X, €) +ZB 0 @ )i, () X, )
= (25 = DB (€00 Xi(2,6)° — a(@) By 1 (€ Xi(w, €)%,

where A(i e (x ¢) and Béi’k’s)(x,g) belong to $2%, 1 <i<r,1 <k <n,e>0. Hence
there exists C = Op(S?%), 1 <i<r, e >0, such that

~ 0 i, B i o~
{xnaxf,Egi)_l(%} APy a X + ZB ") g, Xi
" k=1

0 - 0 - i ;
+ (25— 1)528—E§6)1 aX?EY, 5+ X;‘Eii)%dEii)%Xi + ¥ (4.15)

Tn 72 T20%p

Let § > 0. It follows from (4.11), (4.14), (4.15) and Lemma 2.1 that
Re ( Lu iu EZ (aE(E) Xu E(E)lX’ ) + || =—u i
" Oz, 1o 24 s—3 Oxy,

<X2E<s> G O u)‘

3a:n 5=3 Oz,

T

HED

2 -
i=1

T n
=03 (1) Kol + e + 3 i, Kol

=1 k=1

s —

Cocolluls, ue C(wp).
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Now let M be the positive constant determined in Lemma 4.1, and put § = 1/2M (n+2).
Then we have by the above inequality and Corollary 4.2

;o0 LN~ (25© %0 5© % o |
Re (Lu7 3$nu>51 ] > 3 Z (aEs_%Xiu, E Xm) + a—xnu
3

! ope) O pe 9
s EE:(XE $ 9o o) %axnuﬂ
+Re (zpLu,u)  — COlu)2, ueCq®(w,) (4.16)

Xi:ZEik(x)i, 1<i<r. (4.17)

Then we have

ol (cw2pm0) O o) O
- X;E s —u, B —
s c (a "T85 0z, 5730z, u) ’
2 n 2 2
0? 0 1
< drls — 4,2 2: GCin s E(E) CA|lul?,
s en el acire lal‘kaiﬂl s—3 oxy, 4r aﬂCnu s—3. * e Hu”S

ue CP(R™). (4.18)

Now we choose p > 0 so small that B(p, p) C wp. Let 9,(x) be a function belonging to

C3°(B(p,3p)) such that 0 < 9,(x) < 1in R™ and ¢,(x) = 1 in B(p,2p). Then it follows
that

0 po_ 9,

2
5
Oxp0x; 5—35 0xy,

n
>

k,i=1

ac;kCyl

0

4 - G 0 © 0 ’ (1) 2
<e kgl ,aC;Cig 020 -3 or. U . + C¢ 2 llullg
~ 2
<et { sup [, (a)a(x) i (a)ca(x)| }(277 /‘fk&E( 5 (§)Enu(§)| d
k=1 - TER"
+CIull2,  we C5(B(p, p))- (4.19)

First we consider the case of k = n or | = n. Since &y, (z) = X;(z,) by (4.17), it

follows from (4.7) that a(z)én(2)|s,—0 = 0, 1 < i < r. Hence there exists a constant
M’ > 0 such that
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|a(2)é (2)éu(x)|” < M'|e,)?, z€ R, 1<i<r k=norl=n. (4.20)

Then we have

{ sup |wp<x>a<z>em<z>aﬂ<x>|2}|skaE<f§<f>|2

TER™
2
< M'(3p)2{(2[¢']? + 216, )) B9 (6)}
<M'(3p)?, ¢€R", 0<e<1,1<i<r k=norl=n. (4.21)

Next we consider the case of 1 < k, [ <n —1. We put

PN _ 2
M — 1§i§r?§l§lgn—1xsél£n ’a(m)cik(x)cil(xﬂ i (4.22)

Then we have

{ sup |wp<x>a<m>éik<x>eﬂ<w>12}\@@ES O < M"e?,

TER™
EER", e>0,1<i<r, 1<k I<n-—1. (4.23)

It follows from (4.21) and (4.23) that

2

ey { sup |wp<x>a<x>am<x>eﬂ<x>12}<2w>” / 6B, (©)ni(©)| de

bi—1 TER"™

2

<O +eY)||=—u u€CP(R"), 0<e<1,1<i<r, (4.24)

oz,

1
ST 248,

where C' = 9n?(M’ + M") and C is independent of s, € and p. We have by (4.18), (4.19)
and (4.24)

1 _ S 0 0
2 2 1 9 2
< 4 - 20 2 4 i | 0(2) 2
e (p=+ %) axn“ S,;E—'— 4r 8xnu 57%5—'— eplll
2 )

ueCP(B(p,p), 0<e<1, 1<i<r (4.25)

It follows from (4.16) and (4.25) that
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Re (Eu, 8u>
8$n s—1 ¢
3

1 e /. 5 ~ 3 ,
= ; (a8, Xiu, B9, Xu) + {4 42

s — =
2

+Re (z,Lu,u) — CE) Jlul2, e C§(B(p,p), 0<e<L.

5,E,p

Now we choose €5, ps > 0 so small that 0 < e5 < 1, B(p, ps) C wp and 3/4 — 472|s —
1/2>n2C (p? + €*) > 1/2. Then we obtain (4.10). O

COROLLARY 4.3.  For any real number s, let ps > 0 be the radius determined in
Proposition 4.2. There exists Cs > 0 depending on s such that

2

9 T 00
I <c0maz ). wecEBEa). @)
2 ~
mosou| <MDl ), we CF(BR.p). (42D

5. An estimate of the subelliptic kind.

In this section we shall fix p € {(2/,2,,) | [#'| < T, x, = 0} and establish an estimate
of the subelliptic kind for the operator L defined by (3.20).

LEMMA 5.1. Let s be a real number such that s < 1/2. Let R be a first order
operator with real-valued coefficients belonging to C§°(R™). Then there exists a constant
Cs > 0 depending on s such that for alli=1,...,r

5 2 ~ 0o/ T
|[znaXi, Rlul|. | < Cs([ILull§ + llully + | Rull5,—,), € CG(R™). (5.1)
Proor. Weput Qos_1 = EQS,Q[anLXi, R]. Then Q2,1 € Op(S?*~1) and we have

H[and)zi,R]UHi,l = (xndXiRu;QQS—lu) - (Rﬂ?n&f(iu’ Qas—1u)
= (QESAR“» (:EndX'z)*u) + ([stfl,xndXi]Ru,u)
— ((EnaXZU, Qgs,lR*u) — (.’EndXZ’U,7 [R*7 stfl]u)

< C(llwnaXsullg + | Rull3s—y + lull§ + llull3s 1), ue C5(R),

where C' is a positive constant depending on s. We note that 2s — 1 < 0 by hypothesis,
and so ||ull2s—1 < |Jullo. Then we obtain (5.1) by Corollary 4.2. O

LEMMA 5.2.  Let t be a real number and let Ay € Op(S*). We have the expression
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[22aX2, A = B w,aX; + > O Mayan, X+ DY, 1<i<, (5.2)
k=1

where B, ¢ DY e Op(st) (1<i<r, 1<k<n).

PROOF. We denote by X;(x,€) the symbol of X; and by A.(x,&) the symbol of
A;. Then the principal symbol of [z2aX2, A,] is equal to B\ (z, &)ana(z)Xi(x, &) +
Sy O (@, )it () Xi(2, €) where

B (@,6) = 3 2= lau{ (Xi(e,0),, (Au(a.€)),, — (Au(a€), (Ki(.0)),, |
k=1
+2V1 (A2, ), Xi(x,8),
C't(““) (x,€) = mxn(At(x,S))EkXi($a§)~
Let B! and /" (1 <i <r, 1 <k < n) be the pseudo-differential operators with

the symbols Bf” (z,€) and C{""(z,€) (1 < i <7, 1 < k < n) respectively. Then B{",
Céz,k) c Op(St) (1 <i<r, 1<k< n) and

n
[zna X7, Af] = Bgl)xndf(i + Z C’t(l’ k)acndmkf(i (mod Op(SY)).
k=1

Thus the lemma has been proved. O

LEMMA 5.3. Lett be a real number and let Ay € Op(S?). There exists a constant
C > 0 such that for alli=1,...,r

|(Aew, afaXPu)| < C(I1Lull§ + lullf + | Avull§ + [|Aeul?), we CE(R™).  (5.3)

PrOOF. We shall denote by Ci,Cs,... positive constants independent of u €
C§°(R™). We write X} = =X, + f;, fi € C§°(R™). Then

where

We note that (4.7) and Corollary 4.1 with s = 0 imply that

1hiXiully < Cr (I1Zull§ + ul3)- (5.6)
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Then we have

|(Atu,x%d)zi2u)| =|- (22 aX; Ay, Xiu) + (A, hiX'iu)|
< |(.’E72,LC~1X7;AtU,XiU)’ + || Agullf + Cl(||iu||(2) + [Jull§). (5.7)
We choose 9(z) € C§°(R™) such that 0 < +(z) <1 (z € R") and ¢(z) =1 (z € Q).
Then we see from (3.18)—(3.20) that X;v = X;(¢v) and Lv = L(yw) (v € C®(R")).
Hence it follows from Proposition 4.1 with A; = 1 that
’(xidf(iAtu, Xlu)‘ = ‘(m%df(ﬂbAtu, Xlu)‘

< (mi&f(iwAtu, XiwAtu) + (mi&f(iu,f(iu)

IA

—Re (xn&bAtu, VYAwu) + Col[p Agul|§ — Re (xn[N/u, u) + Colull}

IN

— Re (zn LA, pAwu) + Cs ([ Avullg + [ Lull§ + [[ull3). (5-8)
By definition (3.20) of L and Lemma 5.2 we have

(anAtu, ’(/)Atu)

= (Atxniu, wAtu) + <[9:nxai + ., ¢, At] u, 1/1Atu> + Z ([xi&f(f, Aylu, wAtu)
" i=1

+ x,¢C, At} z/JAtu) + Z (xnd)zi% Bt(i)*¢Atu)

i=1

- 0
= (:anu7A;KwAtu) + (u, [xnxaxn

+ Z Z (xndxkf(iu, C’t(i’ k)*¢Atu) + Z (u, Dt(i)*wAtu).

1=1 k=1 =1

Hence it follows from Corollary 4.2 with s = 0 that
|(@n LAy, Agu)| < Ca(||Lullf + | Avull? + Jull3)- (5.9)

In virtue of (5.7), (5.8) and (5.9) we obtain (5.3). O

LEMMA 54. Let s be a real number such that 0 < s < 1/2. Let R be a first
order operator with real-valued coefficients belonging to C§°(R™). There exists a constant
Cs > 0 depending on s such that

0
\ {aR}

PrOOF. We shall denote by Ci,Cs,... positive constants depending on s and
independent of u € C§°(wp). We remember that the function x(z) was determined by
(3.18) so that x(z) € C§°(£2,) and x(z) =1 in w,. Hence

2

< Cs (I Lull + lullf + [ Rullf—1),  u € C5°(wp)- (5.10)
s—1
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9 Rlu=e;x-2>.R € C5°(wy) (5.11)
T oz, U = :I:nxaxn, U, U o (Wp)- .

We put

0
Pgsfl = EQS,Q |:.’EHX(%,R:| . (512)

Then Py, 1 € Op(S?*~1) and it follows from definition (3.20) of L that

2

{xna, R} U
8xn s—1

0 0
= ( [xnxax + x,C, P2*81R] u, u) + ( [PQ*S17 TnX g~ + xné} Ru, u)

- ([(En57 R]’U/7 P2571u)

= (wnf/PQ*sflRu,u) — (mniu,R*Pgs,w)

+ Z {(xi&)zfu, R*Pys_qu) — (z2aX?Py,_ | Ru, u)}
i=1

0
+ ([P;S_l,xnxax + xné] Ru,u) - ([xné, R]u, Pgs_lu)

< Re (2,LP;5, Ru,u) + Z {Re (22aX}u, R* Pos_1u) — Re (v2aX?P;,_ Ru,u)}

i=1

1B Pas vy + Co (1Zuld + | Rul3,—y + [[uld + [ul3,—)- (5.13)

We estimate the first term in the right-hand side of (5.13). We see that with some
G €CPR") 1<i<r)

(22aX?)" = 22aX? - 20X, +qi, 1<i<r, (5.14)

where h; (1 < i < r) are the functions defined by (5.5). Hence by using the relation:
—xn,x0/0xy, = —xn L+ Y, x2aX? + x,¢, we have with some g € C§°(R"™)

(2nl)" = —anL+2)> 22aX? -2) hXi+q. (5.15)
i=1 1=1
Hence

s T
’(xnins_lRu, u)| <2 Z |(Ps,_1 Ru, xi&f(?uﬂ + Z th)N(luHi
i=1

i=1

+ Co (| Lul§ + [lullf + [ Rull3, ).



Hypoellipticity of a second order operator 1053

We apply Lemma 5.3 with A; = P, R to the first term in the right-hand side of the
above inequality, and (5.6) to the second one. Then we have

|(@nLP3, g Ru,uw)| < Co ([ Lulld + [lull§ + | Rull3,y + | Rullf, 1) (5.16)

We estimate the second term in the right-hand side of (5.13). By (5.12) there exists
Nag_1 € Op(S?*~1) such that P}, R = R*Py,_1 + Nas_1. Then it follows from (5.14)
that

(midX?PgsflRm u) = (P3,_, Ru, 22aX?u — 2h; X;u + qiw)
= (R*Pgs,lu,xi&f(fu) + (R*Pgs,lw —2h; X;u + qiu)
+ (Ngs,lm xi&X?u — 2h; Xu + qiu). (5.17)

Hence, noting that Re (v, w) = Re (w, v), we have by (5.17)

.
Z {Re (z2aX?u, R* Pys_1u) — Re (z2aX?Py, | Ru, u)}

=1

= Z Re (R*P2sflu + N2571u7 2hZXZ’U, — qzu) — Z Re (Ngsfl’ul, LL’?LCNT/XZQ’U/)
i=1 i=1

S 2THR*PQS_1UH(2) + 22 HhZXluHi - ZRQ (N2s—lu7xidXi2u)

i=1 =1

+ Ca(llullg + ull3-1)-

We apply (5.6) to the second term in the right-hand side of the above inequality, and
Lemma 5.3 with A; = Nas_1 to the third one. Then we have

s
Z {Re (z2aX?u, R* Pyy_yu) — Re (z2aX?P5, | Ru, u)}

i=1

* 2 T
< 2r||R* Pos—ul|, + Cs (1 Lull§ + [Jullg + l[ullZe—1 + lulls—2)- (5.18)
Now we have

2
||R*P25—1UH0 + |Rull3s—1 + lull3s—s + llullZs—s
* * 2
< ||Pos—1 R u + [R*, Pas1lul|, + [[Rullfs_y + 2[|ullg

< Co (|| Rullfe—y + llul3), (5.19)

because 0 < s < 1/2 by hypothesis. In virtue of (5.13), (5.16), (5.18) and (5.19) we
obtain (5.10). O
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We define

5 9 _ 5 -
Zy = xna—, 71 =xpaXy, ..., Zp = zpaX,. (5.20)
x'n,

Let [ be a positive integer. For every multi-index J = (j1,...,71) (0<jx <r, 1 <k <)
we define

Z;1=12,,1Zjr,-.\|Zjy . Z5) .. )] (5.21)
Let po > 0 be the radius determined in Proposition 4.2 with s = 0. We recall that
B(p, po) C wp. Then we have the following

LEMMA 5.5.  For any multi-index J = (j1,...,51) (0 < jp <r, 1 <k <1), there
exists a constant C'; > 0 such that

2

|Zsul )0 < Co ULl + uld), € C3=(B(p, po)), (5.22)

where T(J) is the number defined by (3.3).

PrOOF. We shall prove the lemma by induction on . When [ =1 it follows from
(3.3) that 7(J) =1 (1 < j; < r) and 7(J) = 1/2 (j1 = 0). Hence (5.22) holds by
Corollary 4.2 and Corollary 4.3 respectively.

Let m be a positive integer and assume that the lemma is valid for I = m. Let
J = (J1,J2,- -+, Jm+1) be any multi-index such that 0 < ji, <r (1 <k <m+1). We
put J' = (j2,...,Jm+1), and choose a function ¢(z) € C§°(R") such that ¢¥(z) = 1 in
B(p, po). Then

HZJUHT(.])—l = H[ijwZJ/]uHT(J)_p u € C(CJX)(B(paPO)) (523)

First we consider the case of 1 < j; < r. In this case Z;, = z,aX;,, 0 < 7(J) < 1/2 and
27(J) = 7(J'). Hence we have (5.22) by (5.23), Lemma 5.1 and hypothesis of induction.
Next we consider the case of j; = 0. In this case Zj, = £,0/0x,, 0 < 7(J) < 1/2 and
47(J) = 7(J'). Hence we have (5.22) by (5.23), Lemma 5.4 and hypothesis of induction.

O

LEMMA 5.6.  Let lg be the positive integer defined by (3.14). There exist constants
0<7<1/2 and C > 0 such that

2
1, Ou

Rl S CULuli+ul),  we (B, po)), 1<5<n.
J

T—1

PrOOF. It follows from (5.20), (3.5), (3.18) and (3.19) that Z; = Z; in w,, 1 <
Jj < r. We note that B(p, po) C wp by definition of py in Proposition 4.2 with s = 0.
Then we have by (3.16) and (3.17)
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-3 Y iz we CE B 15 <0, (5.24)

633] k=11ICJy
In view of (3.3) we put

7= min 7(Jg). (5.25)

1<k<n

Then 0 < 7 < 1/2 by (3.3), (3.14) and (3.15), and the lemma follows from (5.24) and
Lemma 5.5. g

Let Iy be the positive integer defined by (3.14) and 7 be the positive number deter-
mined in Lemma 5.6. We put

o=—. (5.26)
Here

(5.27)

0| =

O0<o<

because 0 < 7 < 1/2 by Lemma 5.6, and Iy > 1 by (3.15). Then we have the following

PROPOSITION 5.1 (estimate of the subelliptic kind).  Let py be the radius deter-
mined in Proposition 4.2 with s = 0. There exists a constant C > 0 such that

~ oo 1
Jull2 < COLulE + ulf). v e &5 (B(rg0m )

Proor. To prove the proposition it is sufficient to show that

~ 1
o scquup+ 1), wecs(B(rgm)) 1<isa G2
8m] o—1 2
For non-negative integers ¢ = lp,lop — 1,...,0 we put
T
%4 = Jlo—q- (5.29)
We shall show by induction on ¢ that for non-negative integers ¢ = lg,lo — 1,...,0 there

exist constants Cyq > 0 such that

Then (5.28) follows from (5.30) with ¢ = 0. We know from Lemma 5.6 that (5.30) is

g Ou

6

- 1 .
<C(Luli+ ). we o (B(ngn)) 1<isn (630

-1
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valid when ¢ = ly. Let g be any integer such that 1 < ¢ < Iy, and assume that (5.30)
holds. In the rest of the proof we shall show that

< (Bl + i), we C(B(pgm)) 155 <0 631
og—1—1
Let s = 0 in Corollary 4.3. Then we see that (5.31) holds for j = n, because
0q—1 = T/4l~9t1 < 1/8 by definition of 7 in Lemma 5.6. Hence it remains to prove
(5.31) for j =1,...,n — 1. From now on we shall fix j (1 < j <n — 1), and denote by
Cy,Cy,. .. positive constants independent of u € C5°(B(p, po/2)).
We put

9,
s=04-1, R= me%, (5.32)
J

where x is the function defined by (3.18) in order to localize X; (1 < i <r) and L. We
see that

0 = < L 5.33
Since x(z) = 1 in w, and B(p7 %po) C wp, it follows that x%a‘% = Ru, u €
C5°(B(p, 3po)). Hence we have by (5.30)

1 RulF,—1 < Cq (I Lull§ + [lullf)- (5.34)

Taking into account that 2s — 1 < 4s — 1 < 0, we have also
1Rul3o—y + llull3s—1 < Cr(IILulf + llullf)- (5.35)

Now we put
_, 0

TQSfl = EQS,QXSL';]L - (536)

81‘]'

Then Tps—1 € Op(S?*~1), and by using the relations:

0 0 1
qg—1_~ — q—1_% in B _
Ln, axj XZn axj m (pa 2p0>a
0 11 o 0 1 0 1
-1 =7 _ 2|2 q_Z | — 2|\ - in B -
n ox; q{@xn’wné)%} q{xaxn’R] o (p,2p0>,
0 i N~ a2 s
Xa—:L—anaXi —cC
Ln

i=1
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we have

|-

2
) )
gu — Re (;«g;laq‘,Egs_gxxg*“)
i =1 €5 (‘hj

< %Re ([f/, R]u, Tgs,lu) — EZ Re ([xnd)zf, R]u, Tgs,lu)
i=1

+ Ca([[ul§ + [lull3,-1)- (5.37)

We estimate the first term in the right-hand side of (5.37). We have by (5.35)

Re ([i, R]u, Tgs_lu) = Re (iRu, Tgs_lu) —Re (Eu, R*Tgs_lu)

<Re (ERU,TQS_lu) + C3(|\iu||% + [Jull§). (5.38)

It remains to estimate the first term in the right-hand side of (5.38). By using (4.13) we
can write with some 5 € C§°(R")

L= ; rnaX? + ; a; X; — Xain + 8, (5.39)
where
o = 2X,(zna) — 2fizpa, 1<i<r. (5.40)
Hence we have
(f/Ru, Tgs,lu) = i (Ru, xnd)N(ngsflu) + i (Ru, aiXiTgs,lu)
i=1 i=1

0 0
- (Ru,Tgs_lxaxu> - <Ru, |:Xax,T25_1:| u) + (Ru, BTos—1u).

We apply the relation: x8/0x, = L—3 \_, 2,aX? —¢ to the third term in the right-hand
side of the above equation and we rewrite (LRu,Ths—1u) as follows.

(iRu, Tgs_lu) =2 Z (Ru, Tgs_lxndf(fu) + Z (Ru, [xndf(iz, Tgs_l]u)
i=1 i=1

r
+ Z (RU,, Tgs_laif(iu) — (Ru, Tgs_liu) + (Ru, 1425_1’LL)7 (541)

i=1

where Ay, 1 € Op(S?*~1). We have
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T

Z }(Ru,Tgs_laiXiuﬂ + ’(RU,T25_1EU)| + ‘(R’LL, A25_1U)|

i=1

< 04(||Ru||§s_1 + 3 lleaXaul§ + [ Lull§ + IUII3>- (5.42)

i=1

It follows from (5.40) and (4.7) that there exists a constant M’ > 0 such that |a;(x)|* <
M'z%a(x), z € R" (1 <i <r). Hence we have by Corollary 4.1

S o Xeul? < s (IEull3 + ). (5.43)
i=1
Combining (5.41)—(5.43) we have

Re (iRu, Tgs,lu) <2 Z Re (Ru7 Tgs,lxndf(?u) + Z Re (Ru7 [a:ndj(ig, Tgs,l]u)

i=1 i=1

+ Co ([ Lullf + lullf + || Rul3,—,)- (5.44)

We estimate the first term in the right-hand side~0f (5.44). Since j # n, it follows
from (5.36) and (5.32) that Ths_12,aX? = Eas_oRaX? (1 < i < 7). Then we have by
(4.12)

(Ru, Tos—12,a X} u)
= (Es_1Ru,aX?Es_1Ru) + (Es_1Ru, [Es_1 R,aX?]u)
= —(X;Es_1Ru,aX;E,_1Ru) + (Es_1 Ru, f;aX;Es_1 Ru)
—(Es—1Ru, X;(@)X;Es_1Ru) + (Es_1Ru, [Es_1R,aX?]u). (5.45)
We note that
—(X;Es_1Ru,aX;FEs_1Ru) < 0. (5.46)

Since R = xx20/0x; by (5.32) and q is a positive integer, there exist Fs(i), Ggi’k), qY e
Op(S?) (1 <i<r, 1<k<n)such that

fiaX;Es_1R — X;(@)X;Es_1 R+ [Es_1R,aX?]

n
= FP2,aX; + Y GUMana,, Xi + HYXi(2na)X;  (mod Op(S*)). (5.47)
k=1

It follows from (5.45)—(5.47) and Corollary 4.2 that

Re (Ru, Tys—10,aX7u) < Cr (|| Lull§ + [lull§ + || Rul3,_,). (5.48)
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We estimate the second term in the right-hand side of (5.44). In the same way as
the proof of Lemma 5.2 we can write

(2,0 X2, Tog 1] = IS0 wnaX; +ZK25 ) g, Xi + Mos_0a X2 + N,

k=1
where J2(i)_1, Kz(s )1, NQ(S) L €O0p(SE ) 1 <i<r,1<k<n)and Mygy 5 €
Op(S5?~2). Hence it follows from Corollary 4.2 that
Re (Ru, [xndf(f,Tgs_l]u)
< Cs(||l~/uH(2J + [|ull§ + | Rull35_1) + Re (Ru, Mos_2aX2u). (5.49)

Let 9 be the positive number determined in Proposition 4.2 with s = 0, and let ¥ be a
function belonging to C§°(B(p, po)) such that ¢(z) =1 in B(p, 2p0) We put Pos_1 =

Moy QE( ) Then Py, 1 € Op(S?*~1) and we can write with some QQS L € Op(S%~1)
Moo 2aX?u = Myy opaX?u = —Pae 19X EE? <;)Xu+Q29 X
Hence we have
Re (Ru, Mas 23 X2u) < (aEf?Xin;S,lRu, E(_?XWP;S,IRU)
+ (B Xiu, B Xiu) + Co(|lully + | Rull3, ). (5.50)

We apply Proposition 4.2 to the first two terms in the right-hand side of (5.50). Then
we have

Re (1‘?,’(1,7 MQS,Q&XZZ’LL)
- - 0
< —2Re (@, Ly P3,_ Ru, ¥ P5,_ Ru) + 2Re (LwPQ*S_lRu, axsz;S_lRu)

1
—325€0

+ Cm(||l~/uH(2) + lullg + 1 Rul3,-1)
= Re (EUQS,lRu, ‘/vQS,lRU) + Clo(HEUH(Q) + HUH% + ||R’LLH%S,1), (551)

where Ups 1 = ¢P§, |, and Vaos 1 = —22,¢P5, | + ZEff)%z/;P;;_l. Then Uss_1,
Vas—1 € Op(S%¢~1) and it follows that

(LU3s—1 Ru, Vag—1 Ru) = (Lu, (Uzs—1 R) Vas—1Ru) + ([L, Uss—1 Rlu, Vag—1 Ru).

Let Uss—1(z,§) be the symbol of Uss—;. Since the principal symbol of Uss_1 R is equal
to v—1x(z)xl&;Uss—1(z,§) and ¢ is a positive integer, it follows that
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[L,Use1R) = > WilanaXi + 3N Wit ayae, X + Xo,
i=1 i=1 k=1

where Wz(?, Wz(z’k), X, € Op(S?®) (1 <i <7, 1<k <n). Hence we have by Corollary
4.2

|(LU2s-1Ru, Vas—1 Ru)| < Cuy (| Lul§ + ullg + || Rul3, ). (5.52)

It follows from (5.49), (5.51) and (5.52) that

T
> " Re (Ru, [2,aX2, Tas-1]u) < Cro(|Lulld + lulld + | Rull3,_, + | Rul?, ). (5.53)

i=1

In virtue of (5.38), (5.44), (5.48) and (5.53) we obtain

1 - -
gRe (IL, Rlu, Tos—1u) < Cra (|| Lullg + [[ull§ + [ Rull3s—1 + [|RullZ,—1)- (5.54)

We estimate the second term in the right-hand side of (5.37). By definition (5.36)
of Tos_1 we can write

Ty, = —Tae 1+ Yas—a, Yas—p € Op(S*72). (5.55)
We write R* = =R+ f, f € C§°(R"). Then we have by (4.13)
[2,aX?, R]" = [2,aX2, R] + [, Xi, R] + [fownaXP] + iy 1<i<r,  (5.56)

where «; is the function defined by (5.40), and h; € C§°(R™). It follows from (5.55) and
(5.56) that

2Re ([0, X7, Rlu, Tos_1u) = J\) + I8, we CF(RY), 1<i<r, (5.57)
where

I = (Vowmon [ %2, BJu) + (0 [203X2, B], T 1), (5.58)

5 = (u, [ Xi, R)Tos—1u) + (u, [f, 206 X7 T2s—1u) + (u, hiTos—1u). (5.:59)

We fix i (1 <14 <r) and estimate Jl(i). We recall that R = x220/0x; by (5.32), ¢ is
a positive integer, and X;(x,)a(z)|., —o = 0 by (4.7). Then we have

[2,aX2, R] = L 22t X, + M, (5.60)
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where L(li) and Ml(i) are first order linear partial differential operators with coefficients
belonging to C§°(R™). Hence there exist Bé?fl, Céls)fl, Dgs)q € Op(5%~1) such that

[[€0aX?, R), Tas 1] = BS) (20t X, + ) 24 L + DY) . (5.61)
It follows from (5.58), (5.60) and (5.61) that
i S 2 i 2
7] < Cua([let Kully,_, + oL Pully,y + lull + lul3ey )

Since 2s —1 < 4s —1 =0, — 1 by (5.32) and (5.29), it follows from hypothesis (5.30) of
induction that

7171 < Cus (1Zullf + llulg + ljull3,-1)- (5.62)
We fix i (1 <i <r) and estimate JQ(i). We can write with some p;, q; € C§°(R")
[f, xndf(iz] = piznaX; + q;.
Hence it follows from (5.59) that
Jg(i) = ((aiX’i)*u,Tgs_lRu) + ((ai)zi)*u, (R, Tgs_l]u) — (R*u,Tgs_laiX}u)
— (R*u, [aiXi,Tgs,l]u) + ((pixndXi)*u,Tgs,lu) + (u, (¢ + hi)Tgs,lu).
Then we have by (5.43) and Corollary 4.2
5] < Cuo (o Kol + | Rulyy + ool + sy + )
< O (|ILullf + Il + ull3e—y + | Rul3,—1)- (5.63)

Combining (5.57), (5.62) and (5.63) we have

1 — s B
—521’& ([ena X7, Rlu, Tos—1u) < Cis(|Lullg + [lullg + l|ull3s_1 + [|Rull3,_,). (5.64)
=1

In virtue of (5.37), (5.54), (5.64), (5.34) and (5.35) we obtain (5.31) for j =1,...,n—1.
O

6. Estimate of the subelliptic kind in H'°¢ space.

In this section we shall fix p € {(2/,2,,) | [#'| < T, 2, = 0} and extend Proposition
5.1 to H!¢ space. To this end we introduce smoothing operators as follows. For every
positive number 0 < k < 1 we define T as the pseudo-differential operator with the
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symbol:
T (¢) = e~ Ixél, (6.1)

and for every positive numbers 0 < k, v < 1 and 0 < & < 1 we define T("7%) as the
pseudo-differential operator with the symbol:

1

T(ﬂ,’y,s)(g) e~ |RE P~ |regnl? ( + v )? + |yetanl ) e (6.2)

where & = (&1,...,&,_1). Then T € Op(S~°) for any fixed 0 < s < 1, and T ¢
Op(S—2°) for any fixed 0 < k, ¥ < 1 and 0 < € < 1. Now we define T(*%) and E(") as
the pseudo-differential operators with the symbols:

T8 (£) = e In€/ 1= Inetal® (6.3)

1

EO(&) = (1+ [v¢* + |ye&?) 2 (6.4)

respectively. Then T(%) € Op(S~>°) and E(%) € Op(S~1) for any fixed 0 < s, vy < 1
and 0 <e <1, and T(5:75) g decomposed to

T(r:6) — lr.e) p(v.e) (6.5)

Here we summarize well-known facts about uniform boundedness of families of
pseudo-differential operators. Let m be a real number and let {AS,){)} reA be a family of
pseudo-differential operators belonging to Op(S™). We say that the family of the symbols
{Agf[) (x,&)}ren of {Ag,){)})\e/\ is bounded in S™ if for any multi-indices & = (s, ..., o)
and § = (f1,...,0n) there exists a constant Cy, g > 0 independent of A € A such that

8 8 1
()\) < 2\ 5 (m—|8]) n n

For real numbers s and t, let B(Hg, H:) be the space of all bounded linear operators
from Hg to Hy. Tt is known that if {Ag,)[)(x,g)he/\ is bounded in S™, then {AS,?)}AE,\ is
uniformly bounded in B(Hgqm, Hs) for any fixed s € R. For the proof see Theorem 2.7
in Chapter 3 of [7]. In addition, Corollary 2 of Lemma 2.3, Theorem 3.1 and Lemma 2.4
in Chapter 2 of [7] imply the following

LEMMA 6.1.  For real numbers myi and meo, let {A%‘l) (,8)}rea and
{B (m &) }uem be bounded families in S™' and S™2 respectively. Then the symbol of the
operator A( )Bf#g is of the form:

o (2, ) BY) (2,€) +

1 AL (2,€) OBW) (2,€)
mi Ly mao \ &Ly +C JHL)
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where {C’ﬁi‘l"j_)mz 2(@,8) Y weaxar is bounded in S22,

The above lemma yields the following corollary.

COROLLARY 6.1. For real numbers m; and mo, let {A (,8)}ren and
{B (m E)}uem  be bounded families in S™' and S™2 respectively. Then,
{[AS,Q\I),B,(nZ]}(A7,L)€AxM is uniformly bounded in B(Hsim,+my—1, Hs) for any fized s.

Concerning the boundedness of the families {709 (£)}o<pet, {T) (€)}o<r<1 and
{E09)(€)}o<y<1 with fixed £ (0 < & < 1), the following two lemmas hold.

LEMMA 6.2.  {T") (&)} o< is bounded in S°.

LEMMA 6.3. Fizanye, 0 <e <1. Then

{T(“vs)(g)}0<ﬁ<1 is bounded in S°, (6.6)
{K2T2(€)} .y is bounded in S2, (6.7)
{E(%s)(f)}oqd is bounded in S°, (6.8)
{vEC(€)} ., s bounded in ST, (6.9)
{T('@,W,E)(g)}k’m<1 is bounded in S°. (6.10)

Proor. We put E(§) = e~I€*. Then T(%) (&) = E(k&, ke&,), and we have for
any multi-index a = (aq,...,Qp—1, )

1+l [ 2o %)\ (14l F rloleon| T8 (o1 nee)

‘aga

aE
ol |0°F
< (1+ |kgf? )T Bga (k€' ke&n)
< el (1 + k€ P + ket |?) . 83@ (k€' Kkep)

<elelo,, €eR,
where C, is a positive constant depending only on «. Thus (6.6) has been proved. In a

similar way we can prove (6.7), (6.8) and (6.9). Since T(%7:)(¢) = T(#)(£) E(2)(€) by
(6.2), (6.3) and (6.4), (6.10) follows from (6.6) and (6.8). O

NOTATION 6.1. For a real number s and a positive number § we define
HY(B(p,8); L) = {u | u e H*(B(p,6)) and Lu € H*(B(p,?))}.

NOTATION 6.2. Let ¢(x), ¥(z) € C§°(R™). We write ¢ CC ¢ if 0 < ¢p(z) <1 and
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¥(x) =1 in a neighborhood of supp ¢.

LEMMA 6.4. Let A(x) € C§°(R™) and assume that

|A(z)|? < Ka(x), =€ R™, (6.11)

where K > 0 is a constant. For any real number s, any positive number 6, and any ¢(x),
P(x) € CF(B(p,0)), ¢ CC 1, there exists a constant C = C(s,0,¢,1) > 0 such that

S enAeXiul|2 < C(IwLull? + [Yull?), we H(B(p,s);L).

i=1

ProOOF. We shall denote by C7, Cs, ... positive constants depending on s, 4, ¢ and
v, and independent of x (0 < k < 1), and u € H'*(B(p,d); L). Let T™"), 0 < k < 1, be
the pseudo-differential operator with the symbol T(%)(¢) defined by (6.1). Since ¢pX;u =
®X,;u, we have

Z ||an¢)~(Zqu = K]iIEOZ ||T(”)Esan¢)~(ﬂ/JuH3. (6.12)
i=1 i=1
It follows from Lemmm 6.2, Corollary 6.1 and (6.11) that

ST B, ApXpu, < 2| wn AEX 6T W ypul|; + C:||vu)?
=1
<2K Y (22aB X; T pu, B, X; T pu) + C1||youl|2.

=1
(6.13)

Since ¢T " pu € C§°(R™), we can apply Proposition 4.1 to the first term in the right-
hand side of (6.13) and we have by Lemma 6.2

T

Z (IEL&ESXM)T(”W)U’ ESXngT(H)QZJU)

i=1

< —Re (2 LT pu, By pu) + G| 6T pu;
< —Re (T gwy Lipu, Byo 6T ™ pu) — Re ([6, Ty Libu, Bpe¢T"tbu)

—Re ([xn L, TP, Bog T ypu) + Col[tpul2. (6.14)

We note that ¢z, Liu = $x,vLu, because ¥(z) = 1 in a neighborhood of supp ¢ by
hypothesis. Then we have

(T by Lipu, Bas T pu)| < Cs (| Lul? + [lvul?). (6.15)
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It follows from Lemma 6.1 and Lemma 6.2 that [¢, 7)) = 3"}, AL k)gbxk B(NQ), where
{AYHR) () }ocper is bounded in S~ for any k (1 < k < n), and {BY)(2,&)}ocrer is
bounded in S~2. Hence, taking into account that gbzk:vnfﬂpu = gbzkxnwLu we have

(16, TN Lipu, BT pu)|
<3 [(A% b0 L, Ban 7)) | + | (B Lipu, EaodT )|
k=1
< Ca(lwLull?y + lwul?). (6.16)

In the same way as the proof of Lemma 5.2 we have by Lemma 6.1 and Lemma 6.2

[2n L, T )] Z wnaX; Dy + Z Z nii, X B 4 B,
i=1 k=1

where {D(()H’i)(xa §)Yo<n<11<i<r {E(()H’i’k)(x, ) Yo<r<1,1<i<r1<k<n and {Fén) (2, ) o<n<t
are bounded in S°. Hence we have for any € > 0

|([wnL, oT pu, BT 1pur) |

1
< Z | 2na B X T pul|; + ZZ i, By X Tl + (505 + CG) l9ull3-
i=1 k=1 (617)

Let M > 0 be the constant determined in Lemma 4.1. Now we put e = 1/2M (1 + n).
Then it follows from (6.17) that

|([zn L, 9T, Eas T 1) |
< eM(1+n) Y (2268, X, 0T®pu, B, X, 6T® ) + Colul >

i=1

1 . -
=3 > (w2aBXi¢T W pu, B X;¢T ™ pu) + Cr||vull2. (6.18)
i=1
In virtue of (6.14), (6.15), (6.16) and (6.18) we obtain

T

> (22aB X T pu, B, Xi¢T ™) < Cs ([ Lul? + [[pul?).

i=1

Hence we have by (6.13)

ST Eswn ApXivulg < Co (Il Lull? + |[ull?). (6.19)

i=1
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Thus the lemma follows from (6.19) and (6.12). O

COROLLARY 6.2. Let A(z) € C°(R™) and assume that

|A(2)|? < Ka(x), =€ R™,

where K > 0 is a constant. For any real number s, any positive number &, and any
o(x),P(r) € C§°(B(p,9)), ¢ CC 1, there exists a constant C = C(s,0,¢,v¥) > 0 such
that

S [enAZi(6w)|> < CLul? + wul?), u e H(B(p,6); L).
=1

PrROOF. Since ¢ CC 1, it follows that :L'nAXi(¢’LL) = 2, AdX;u + anXi(qS)wu.
Then the corollary follows from Lemma 6.4. g

COROLLARY 6.3.  For any real number s, any positive number 6, and any ¢(z),
Y(x) € C(B(p,0)), ¢ CC 1, there exists a constant C = C(s,0,¢,1) > 0 such that

Lo < C(lLull? + [dul?), ue H(B(p,d); L).

PrROOF. Since ¢ CC 1, it follows that

B - T _ 5 T _ a
L(gu) = ¢ppLu+23 " wnaXi(9) Xou + [Z ena X2 () + x87¢ Y.
i=1 i=1 n
Then the corollary follows from Lemma 6.4, because Xi((b) CC . O

For a real number s, let ps be the radius determined in Proposition 4.2. On the
other hand, let M > 0 and C > 0 be the constants determined in Lemma 4.1 and (4.24)
respectively. We define another radius d5 by

65 = min (ps, ps_%,271p0, 27 5(nr) Y (M + 1)*50*%). (6.20)

Then the following Lemma 6.5, Lemma 6.6 and Proposition 6.1 hold.

LEMMA 6.5.  For any real number s, any positive number § (0 < & < §,), and any
o(x),¥(x) € C§°(B(p,d)), ¢ CC 1, there exists a constant C = C(s,0,¢,v¥) > 0 such
that

2

T B 8 ~
S lagiolly. + |mon] < cOuLul+ ).
i=1 "

1
5—135,€s

u € HéOC(B(p, 5);l~/)7
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where £, is the positive number determined in Proposition 4.2.

PRrOOF. We shall denote by Cl(s), C’ég), ... positive constants depending on & (0 <
e <1),s,6, ¢ and ¢, and independent of x,v (0 < x,v < 1), and u € H*(B(p, 6);[:).
Since {T79)(€)}o<p,y<1 is bounded in SO for any e (0 < ¢ < 1) by (6.10), it follows
from Corollary 6.1 and (4.6) that

. 2
5 X 0
S e r9aki ()|, . + HT(H’”’”(W)
j 20" 0xy, L
i=1 s—Lle,
. ~ 2 ) 2
= Z HE(ESET(H,W,E)&?in((ﬁu)H + HT(n,fy,s)w((bu)
i=1 Tz 0 0z, —le,
~lag@) % : |8 2 .
<2 H~E‘ =) X, (K75 H ol| Ly (re) ol 9
< ; ab " Xiy (¢u) o axnw (¢u) . +C17 |l pull?_,
<2M Y (B 9 (gu), B} KT gu)
2 2
i=1
O ppiee) i () 2
81'71 57%)55 3
Now we put
w= YT (Gu). (6.22)

Since w € C§°(B(p,d)) C C§°(B(p,ds)) C C5°(B(p, ps)) by (6.20), it follows from Propo-
sition 4.2, (6.22) and (6.10) that

T 2

> (aB) Xiw, BS) Xaw) +
2 2

i=1

—_—w
H@xn s—%,as

8 .9 .
< —2Re (znLw,w) + 2Re (Lw, mw) + CQ( )||¢UH§
n 1

5—35,€s

=1 + I, + CS7 | pul % (6.23)

First we estimate I;. In virtue of Lemma 5.2 and Lemma 6.1, we can write

[wn L, pT*19)] = Z Oy a,a X, + i i DY g, X+ B,
i=1 i=1 k=1

where {57 (2,€) Yo 1, {05 (@,)Y0cry<1 and {EG™ (2,€)Yocnr<1 ave
bounded in S° for any fixed ¢ (0 < e <1),i(1<i<r)and k (1 <k <mn). Hence we
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have by (6.22), (6.10), Corollary 6.2 and Corollary 6.3

11| < 2|(znLw, w),]
<2| YT g T (gbu |+2‘ :an YT ’75}(¢u) )|

< O (I L2 + woul|? + [|gpul2). (6.24)

Next we estimate Io. It follows from Lemma 6.1 and (6.10) that

(£, T2 = ZF“E%naX +ZZG(M“M%%X
i=1 k=1

+ VIR 4 O, (6.25)

where Py is the principal part of @Y, X7, Té:’v’e) is the pseudo-differential operator
with the symbol (T("7)(€))e, , and {F\" " (2, €)bocrmets {GS7 (2, 6) bocrmet,
and {H(()H’%E)(J;,f)}kmﬂd are bounded in S° for any fixed e (0 <e <1),i (1 <i<r)

and k (1 < k < n). Hence, taking (6.22) into account we have by Crollary 6.2 and
Corollary 6.3

~ < a
I,| = Q‘Re (ngsz(W@L((]ﬁu), Egjf&vw)

e (B LT 0, B2 5w )

E RyvsE 0
L (I Laall? + [l + fdull? + e 3) + 2\ (szTéﬁ’ (u), aﬂ’)

s—1.es
N g |?
<O (Ll + o2 + 9ul?) + 8| Po7e 0 B (9u)| + ] vl
n —5,€s-
(6.26)
Combining (6.23), (6.24) and (6.26) we have
T B B 1 a 2
> (aBE) K, B Kyw) + 5| -2 w
X S732 ST3 2 81.77, 1
i=1 S—3,Es
~ e 2
< CO (W Lul? + [ull2 + loul?) + 8[wRT DB (gul| - (627)

We estimate the last term in the right-hand side of (6.27). Since P; is the principal part
of ay i, X7, we see from (4.17) that Py = a ) i, >} _; Cikci0”/0xdx;. Hence
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K € € 2 n2(r . = ~ ~ ~
[opsrle B || < G 22 D { sup W@a@es@e@)l}
i=1 k=1 T

Here we have by (6.2) and (6.4)

1
VA EP + [elal?

< {200+ [58[P + [metal’) + eI PP BE ()76, EO) (¢)

(=), | = (262 + Jertere gm0

< 3EY)(£)€2(6,] EC9)(€).

We note that p € {(2/,x,) | @, = 0}, ¢¥(z) € C§°(B(p,d)) and 0 < ¢(x) < 1 in R™.
Then, using the same method as the proof of (4.24) we have

K g g 8 2
Hw T B ﬁ(a;u)H < n?r?0(8 44 |B0D) = (gu) (6.28)
2 n s—1 ¢
2:8s)
where C' is the positive constant determined in (4.24). Here we note that
”EW £ (¢u) < 00, (6.29)
0z, o1,
2:€s
because ¢pu € Hy and E(%) 52— € Op(S°) by (6.4).
In virtue of (6.21), (6.22), (6.27) and (6.28) we obtain
r 5 9 2
Sl a2y + 7079 5 o
i=1 2 5—%,€s
< O (Ll + lull? + liul?)
9 2
+32(M + 1)n*r2C(8% + ) || EV f> (qSu) (6.30)
s—f,es
Let kK — 40 in (6.30). Then we have by (6.2) and (6.4)
T B 5 2
S et onl, -+ |0 5 o
i=1 S-*,EQ
< O (W Lul? + [[gull3 + dul)
2
+ 32(M + 1)n*r2C (6% + ) ||[EOe) — a (pu) (6.31)
1

S5—5€s-
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We see from (6.20) that 32(M + 1)n?r?2C4?% < 32(M +1)n?r2C62 < 1/4. Now we choose
£ (0 < e <1) so small that 32(M + 1)n?r2Ce* < 1/4. Then we have by (6.31) and (6.29)

2

3| B0z (gu)|, < O3 (I Lull2+lul2 + I gull2).-

5:€s
i=1

1 0
e 2
+ 5 HE oz, (ou)

1
S§—35:€s

Let v — 40 in the above inequality. Then we have by (6.4)

T . 9 1 a 2 B
> llaXiow|_y ., + 2Ha,cwu) < 7 (Ipull? + [0 Zull? + ll6ulf?).
i=1 " 8= 385
Since ¢u = ¢pu, the lemma follows from the above inequality. O

LEMMA 6.6.  For any real number s, any positive number § (0 < § < d), and any
o(z),¥(x) € C(B(p,9d)), ¢ CC 9, there exists a constant C = C(s,0,¢,¥) > 0 such
that

T

D

=1

2

i?@(m)

- < Okl + lpull?), we H(B(p,6); ),

871,557%

where €51 is the positive number determined in Proposition 4.2 with s replaced by s — %

PrOOF. It is sufficient to show that for any ¢ (1 <¢ <r)

0 _ 5 2 - .
| m-aiton < C(wLul +|wul?). we H(B(p,o):L).  (632)
n 571,65_%
From now on we shall fix i and denote by C§6)7 02(5)’ ..., positive constants depending

one (0 <e<1),s, 0, ¢ and ¢, and independent of x,vy (0 < K,y < 1), and u €
H¢(B(p,d); L). Since {T"7)(&)}g<p<1 is bounded in S° for any ¢ (0 < ¢ < 1) by
(6.10), it follows from Corollary 6.1 that

2 2

Hﬂmﬂéjﬂqm)

0 _ ~
:Hﬂm@&ﬁmmwm

s—le__ s—1,e

1 —1
2 2

9 2
< G X oy T (R :€)
< 2” oz, aX;yT (pu)

+ O pull2.
s—le 1

: (6.33)
Now we put

w = YT (pu). (6.34)

Since aX;w € C§°(B(p,d)) C C§°(B(p,ds)) C C5°(B(p, ps—1)) by (6.20), it follows from
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Proposition 4.2 with « and s repalced by aX;w and s — 1 /2 respectively that

9 2
5 X T (F>7-€)
Ha$n aX; YT (ou)

8—17657%

< —2Re (xnf/d)ziw, df(iw)s_l + 2Re (Ii&f(iw’ 88&)21-111)
2 Tn s—le, _

[N

+ Oy llaZiwl;_, (6.35)

1
2

On the other hand, since the norms |- |[,_1 and |- ||
(6.10) and Corollary 6.1 that

+_1 . are equivalent, it follows from
RN

laXiw||?_, = [[WT®79aX(¢u) + [aX;, T (Gu)|_,
<o (JlaXiow)l2, ., +llgul’_y)-
Hence we have by Lemma 6.5
a2, < O (lwLull + |pul2 + oul_, ). (6.36)

Combining (6.33), (6.35) and (6.36) we have

2
HT(“"Y’E)ai&f(i(qﬁu)

s—1,e
s—

1
2

.. - .- o
< —4Re (andXiw, &Xiw) 1 +4Re (L&Xiw, 8&Xiw)
ST3 Ty

sfl,ss_%

+ O (Il L)) + wu)? + [lou)?)

= Ju+ T+ CF ([0 Lull3 + ul? + loul?). (6.37)
We estimate J;. We have by (6.34), Corollary 6.2 and Corollary 6.3

| J1| = 4|Re (2, LaX T ($u), Bas_1aX;w)|
S 4|(¢T(H’7’€)E(¢u), (InaXi)*Egs_lfLX,’w)|

€
s

( ,%) -~ (5726) (ES,%) -
+4‘(Es—1 (L, aX;pT "9 (u), B_g . § an2s—1aXiw)‘

< O (I E(@u)|2 + lenaXi(du)2 + lloull2)

(e,_1)
2

_1) - - (e,_1) o~
+4‘(ES_1 (L, aX T (gu), B4 1 angs_laXiw)‘
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< C¢ (I Lull? + [ull? + llgull?)
(e,_1) ~ _ ~ (85,;)
+ 4‘ (Es_1 YIL, aX T ") (Gu), B} wn Bae 10X w)‘ (6.38)
Now it follows that
[L,aX T "] = [L,aX;|pT"7) + aX,; [L,pT79)]
Z — aX (zna) X + z,a [X?,df(i]}wT(“”’E)
O L saxlortne & % 1F wrsme
+ Xa .~ +C7aXi d)T i +G/Xi [LawT 7’77 ]7
0xy,
where X; ()]s, —o = 0 by (4.7). Hence we have by (6.25) and (6.10)
[L,aXpTe9)] = 3" By 2,aX; + V-1 RIS )aX, + ¢, (6.39)

Jj=1

where {Bg””y’g’j)(x,f)}kmyd and {C§H77’E)(x,€)}o<n77<1 are bounded in S! for any
fixede (0 <e<1)and j (1 <j<r). It follows from (6.38) and (6.39) that

e (e.-1)
1] <O (IWEull + ull + loul?) + [P BT aXi(ou)||

r . (e,_1) s 2
OO (S ey + B v o rafon) + oul? ).
Jj=1

Hence we have by (6.34), (6.10) and Corollary 6.2

(e,_1) _ ~ 2
] < O (e Bull? + Iagull2 + lgul?) + [P BT aXitou)||

In the same way as the proof of (6.28) we have

(e,_1) _ ~ 2 ~
g &Xl-(gzbu)” < n2r20(5% + %) E(%E)aidXi(qSu)
0 a

n

(6.40)

Here we note that

HEWf)a‘ZaXi((pu) < o0, (6.41)

371,55_%

because ¢u € Hg and E(”Y’E)%df(i € Op(S*t) by (6.4). Hence
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71] < C (| Lull? + [[vu? + | dul?)
2

+ 0220 (6% + &%) Eﬁvf)%a&(m) (6.42)

s—1l,e

1
2

We estimate Jo. We have by (6.34), Corollary 6.3, (6.39), Corollary 6.2, and (6.40)

oz,
1) 0 _ ~

(a_1) - .1 & _
|J2:4‘Re (E Y LaXapT e (gu), B, dXiw>’
(S,,>
<4|( B, ? aX; T 9 Ligu), E
(ca_1) <:,,,> .
(B Lagwrt o). 57T k)|

ngi’LU

< O (b Lul)? + [vou])? + | gull?) +

1
81| 0z,
(e4-1) ,.; (e,_1) -
+4‘( SRR a K (pu), B, aaXiw>'
X

< C (Il Lull? + [[wu))? + | dull?) + <

o) 2
+256H¢PT mrE g aXi(gbu)HO
2

< O ([ Lul)? + [[vu])? + |gull?) + aXw

1”

4| Oxy, ey
2
E(%s)aidj(i(qm)

Tn

+ 256n2r2C(62 + &%) (6.43)

s—1l,e__

1
2

Here it follows from (6.34) and the equality: ¥ ¢u = ¢u that

In virtue of (6.43) and (6.44) we obtain

2

aXw 9| pul 2. (6.44)

2
< 2HT<W)£aXi(¢u)

oz,

871,65_% 71,55

1
2

2
i&)h((ﬁu)

(72| < O3 (I Zull? + lwull? + oull?) + 5

1 T(K"\ﬁg)
2

s—1,e_
s

[N

2
E(e) %sz(i(dm

n

+ 256n2r2C(62 + %) (6.45)

8—1,657%
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Combining (6.37), (6.42) and (6.45) we obtain

2
<8 (Il Lul? + [dul)? + || dul?)

1
2

1 0 .-
— (”7778)7'* .
5 HT oz, aX;(opu)

s—le__
2
+ 257Tn2r2C(6% 4 &%)

EWE)a%af(i(qau)

s—1,e
s—

1
2

Let k — +0 in the above inequality. Then we have by (6.2) and (6.4)

1 9 ? .
QHEM 2% (ou) <O (I Lul2 + wull2 + l¢ul)
n s—1,e 7%
o - 2
+257n2r2C(6° + &%) E(W)aTdXi(qbu)
n s—le . 1.
h 2
(6.46)

We see from (6.20) that 257n?r?C§? < 257Tn?r2C6% < 1/8. Now we choose € (0 < & < 1)
so small that 257n272Ce* < 1/8. Then we have by (6.46)

1 o - 2
—|E(re) —_GX,
2” axna (¢U) s—le. 1
ool
() ) 2 2 1 (7,€) 0 .5 2
< Oy (I Lulls + lbulls + lloulls) + 7| B 5y AXi(ou)
n s—le,_1
2

Hence we have by (6.41)

€ 9 s ? € T
|50 5o < 405 (0 Lul? + w2 + loul?).

Tn

s—l,e, %

Let v — +0 in the above inequality. Then we have by (6.4)

2

0 .- c ~
Jom-a%ion < 405 (0 Lul? + w2 + oul?).
n 571,65_%
Since ¢u = ¢hu, we obtain (6.32) by the above inequality. O

PROPOSITION 6.1 (estimate of the subelliptic kind in H!°® space). For any real
number s, any positive number § (0 < & < &), and any ¢(z),¥(z) € C§(B(p,9d)),
¢ CC 1, there exists a constant C' = C(s,, ¢, ¥) > 0 such that

loull2, < C(IWLull? + |Yul?), we HY(B(p,6);L).
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PROOF. In the proof we shall denote by C4,Cs, ..., positive constants depending
on s, §, ¢ and v, and independent of k (0 < x < 1) and u € H*¢(B(p,d); L). It follows
from (6.1) that

loullfso = lim |7 By o ($u)]]5- (6.47)
Since s + 0 — 1 < s by (5.27) and ¢u = Y¢u, we have by Lemma 6.2
T By o ($u) |2 = || BT Ey(u) + [T E,, E, ) (¢u)]|2
< Q[T Eu(u)|2 + Culgul2. (6.48)
Since T € Op(S~) for any fixed x (0 < & < 1) and § < J, < po/2 by (6.20), we see

that YT E,(¢pu) € C(B(p,d)) C C(B(p,po/2)). Hence we can apply Proposition
5.1 to YT E,(¢u) and we have by Lemma 6.2

16T Ey(¢u)|> < Co (1ET® By (6u) |2 + |67 B, (u)]|2)
< Cs (| EpT® EL(¢u)|2 + [[6ul]?). (6.49)

It follows from (6.48), (6.49), Lemma 6.2 and Corollary 6.3 that

T Byy o (gu)||o < Ca(lwT™ B L(gw) |3 + [I[L, oT® E,)(¢u) |3 + | éull?)

< Os (Il Lull2 + lldull? + llgul? + |[L, oT™ B (¢u)lI3).  (6.50)

In the same way as the proof of (6.25) we have by Lemma 6.1 and Lemma 6.2

[ ZF’“mnaX —ﬁ—ZZG’“km amk

i=1 k=1

+V-1YP(TWE,), +H",

where {F) (2, }ocrer, {GEM (2,6)ocrer and {HI (z,€)}o<rer are bounded in
S® forany i (1 < i <r)and k (1 <k <n), and (T"Ej)e, is the pseudo-differential
operator with the symbol: (T")(£)E,(€))e, = (s(1+ [€]2)™ — 262)e~ 15 B, (€)€,. We
see from Lemma 6.2 and (6.7) with & = 1 that {(s(1 + |¢[2)~! — 262)e 15" Yo oy is
bounded in S~2. Hence we have

[L, 4T E,] ZF“ 2 aX; +ZZG<“’C)%% X; —i—ZI’“ aX + I,
i=1 k=1

where {Iﬁf’f)(x,g)}o<ﬁ<1 is bounded in S*~! for any fixed i (1 < i < 7), and
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{Jgﬁ)($7 &) }o<r<1 is bounded in S®. Hence we have by Corollary 6.2 and Lemma 6.6

1, 67 B, (6 <cﬁ(zuxnax G2+ 33 nie, Ku(ow)|

i=1 k=1

’LL

K ||¢u||§)
< C7(||¢EU||§ + [loull? + ||¢u||§)~ (6.51)
It follows from (6.50) and (6.51) that
170 B, o (G| < O Lul? + bul + ul?).

Letting k — 40 in the above inequality we have by (6.47)

loullZy o < Cs(leLull? + lvul? + ful?).

Since ¢u = ¢rpu, the proposition follows from the above inequality. O

7. Proof of the hypoellipticity of L.

Let w be an open subset of Q. Suppose that u € 9’'(w) and Lu € C*°(w). We shall
prove that v € C*®°(w). We put

wr={rew|z,>0}, w_={zcwl|z, <0}, wo={zcw|z, =0}

Then zpa(z) > 0in wy and z,a(xr) < 0 in w_. We write the operator L in the divergent
form:

"9
L= —Yi + Yo + c(x),
1 al‘k

where Y, (1 < k < n) and Y| are first order operators with coefficients belonging to
C*(w). Then by the hypotheses (1.3), (1.4) and Theorem 1.1 of [2],

rank Lie (Yo, Y1,...,Yo)(@)=n, z€wyUw_.
Hence L is hypoelliptic in wy Uw_ by Theorem 2.6.4 of [9], and so
u€ C®wy Uw_). (7.1)

Let j be an arbitrary positive integer. We shall show that
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u is j-times continuously differentiable in an open neighborhood of wy. (7.2)

Let p be an arbitrary point of wy. We choose a positive number rg so that B(p,rg) C
wp Nw, where w,, is the open neighborhood of p defined by (3.17). Then there exists a real
number so such that u € H°°(B(p,r)). On the other hand, we see from (3.18)—(3.20)
that Lu = Lu € C™(B(p,7)). Let o be the positive number defined by (5.26), and
let d5, be the radius defined by (6.20) with s replaced by sg. We put 71 = min(rg, ds,)-
Then u € H*(B(p,m); L) and it follows from Proposition 6.1 that u € HY (B(p,m1)).
Repeating this argument we see that u € Higikd(B(p, Tk)), Th = MIN(TE_1, 054+ (k—1)0 ),
k =1,2,.... Now we take k so large that sy + ko > n/2 + j. Then it follows from
Sobolev’s imbedding theorem that u € C7(B(p,ry)). Thus (7.2) has been proved.

It follows from (7.1) and (7.2) that u € C7(w) for any positive integer j. Hence

u € C®(w).
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