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Abstract. We present explicit models for non-elliptic genus one Shimura curves
X0(D, N) with Γ0(N)-level structure arising from an indefinite quaternion algebra
of reduced discriminant D, and Atkin-Lehner quotients of them. In addition, we
discuss and extend Jordan’s work [10, Ch. III] on points with complex multiplication
on Shimura curves.

1. Introduction.

Let D be the reduced discriminant of an indefinite quaternion algebra B over Q

and let N ≥ 1 be a positive integer coprime to D. Let X0(D, N)/Q be the Shimura
curve over Q of discriminant D and level N attached to an Eichler order of level N in B.
When D = 1 these are the classical modular curves X0(N) which have been extensively
studied. Throughout this article, let us assume D 6= 1.

It follows from the genus formula for X0(D, N) that only for (D, N) with values in
the table below, the genus of X0(D, N) is 1.

(D, N) (14, 1) (15, 1) (21, 1) (33, 1) (34, 1)
(46, 1) (6, 5) (6, 7) (6, 13) (10, 3) (10, 7)

Shimura curves X0(D, N) of genus 1.

By a result of Shimura, X0(D, N)(R) = ∅ and hence these curves are not elliptic
curves over Q.

For trivial level structure N = 1, equations for all these curves have already been
given (cf. [7], [10], [11], [12]) except for D = 34. In some of these cases (especially for
D > 10), the method employed to construct an equation for these curves led to large
ad hoc computations and messy diophantine equations (cf. for instance [10], pp. 57–68
for the curve X0(33, 1)). These computations turn out to be even less feasible to handle
when one attempts to apply the same ideas to the discriminant D = 34.

In Section 2 we present a simple procedure to provide equations for curves of genus
one provided certain initial data is at our disposal. In Section 3 we apply these methods
to write down explicit equations for all the above mentioned curves X0(D, N) of genus
1. Since the genus of X0(D, N) is never 0 nor 2 when N > 1, the present work together
with [9], [10] and [12] completes the full list of curves X0(D, N) of genus g ≤ 2. In
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particular, we prove that Kurihara’s conjectured equation [13] for X0(34, 1) is correct.
Moreover, in Section 4 we show how our procedure allows us also to compute equa-

tions for the seventeen Atkin-Lehner quotients of X0(D, 1) of genus 1 which are non-
elliptic over Q. Our methods also apply to Atkin-Lehner quotients of Shimura curves
X0(D, N) with nontrivial level structure N , but we do not include these computations
here for the sake of brevity.

As in [9], [10], [12] we make a crucial use of the diophantine properties of Shimura
curves: their points of complex multiplication and the class fields generated by them,
the group of Atkin-Lehner involutions acting on X0(D, N) and their fixed points, and
Cerednik-Drinfeld’s description of the special fibres of X0(D, N) at primes p | D of bad
reduction.

However, our approach differs from the previous works in that we take advantage of
an explicit description which goes back to Cassels of the Q-soluble Q-equivalence classes
of an elliptic curve over Q, and has been made explicit by Cremona and Stoll [6], [25].

In [10, Ch. III] Jordan proves fundamental statements on complex multiplication
points on Shimura curves with trivial level structure attached to maximal orders of
imaginary quadratic fields. Since in this note we work in the more general setting of
Γ0(N)-level structure and points with complex multiplication by non maximal imaginary
quadratic orders (which arise in a natural way for instance as fixed points of some Atkin-
Lehner involutions), we extend these statements to this more general context in the
appendix to this note.

Most of Jordan’s arguments in [10, Ch. III] extend in a straightforward way, except
for the local behavior at primes dividing both the level N and the conductor f of the
quadratic order. Indeed, primes p | (N, f) deserve a closer analysis, as the approach
given in [10, Ch. III] does not apply immediately to these (cf. specially Lemma 5.10).
Due to this and the fact that Jordan’s Ph. D. Thesis [10] is unpublished and not easily
available, we present these results in the appendix to this article, including proofs of all
them in full generality.

In the last years there have been interesting explicit and computational approaches
to Shimura curves. As recent contributions let us mention the works of Baba-Granath
[1], Bayer [2] and Elkies [7], [8]. Some of our results may be regarded as progress towards
the open problems posed in [7].

It is a pleasure to thank Anatoli Segura for a careful reading of previous drafts of
this article and valuable comments on it.

2. Explicit models for genus one double coverings of P 1.

Let C be a (projective, nonsingular) curve of genus one over a field K of characteristic
different from 2. Let us denote by I (C) the set of involutions acting on C over a separable
closure K of K, i.e.,

I (C) :=
{
v ∈ AutK(C) : v2 = id

}
.

For i = 0, 1, set

Ii(C) := {v ∈ I (C) : C/〈v〉 has genus i}.
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We recall that I1(C) is a group isomorphic to (Z/2Z)2, whose elements commute
with all involutions of C. For a given v ∈ I (C), set Fv = {P ∈ C(K) : v(P ) = P}
and let Kv denote the field extension of K obtained by adjoining the coordinates of all
P ∈ Fv. For v ∈ I (C), v 6= id, it is well known that Fv 6= ∅ if and only if v ∈ I0(C)
and in this case |Fv| = 4. Moreover, for any two different involutions u, v ∈ I0 we have
Fv ∩Fu =∅, and u, v commute if and only if u · v ∈ I1(C).

The following result is well known.

Lemma 2.1. The following conditions are equivalent :

(i) There exists an involution w ∈ AutK(C) such that C/〈w〉 K' P 1
K .

(ii) There exists P ∈ C(K) such that [K(P ) : K] ≤ 2.
(iii) There exist x, y ∈ K(C) and a polynomial f [X] ∈ K[X] of degree 3 or 4 such that

y2 = f(x) and K(C) = K(x, y).

Assuming (ii), we quickly describe these equivalences. For a point P as in (ii) take
σ ∈ Gal(K/K) such that the divisor D = (P ) + (σP ) is defined over K. By Riemann-
Roch’s Theorem, there exists a nonconstant function x ∈ K(C) such that div x ≥ −D.
Since the field extension K(C)/K(x) has degree 2, the nontrivial involution of K(C) over
K(x) acts on H0(C,Ω1) as multiplication by −1. The functions x and y = dx/ω, where
ω is a nonzero regular differential of C defined over K, satisfy the conditions stated in
(iii) and w acts on K(C) by sending (x, y) to (x,−y) and P to σP . The polynomial f(X)
has degree 3 or 4 depending on whether P ∈ C(K) or not. Finally, for an involution w

as in (i), any P ∈ C(K) which projects to a point in C/〈w〉(Q) satisfies (ii).
Attached to an equation as in (iii) of the above lemma, there are two invariants I

and J defined by:

I = 12a4a0 − 3a3a1 + a2
2 and J = 72a4a2a0 + 9a3a2a1 − 27a4a

2
1 − 27a2

3a0 − 2a3
2,

where f(x) =
∑4

i=0 aix
i (cf. [6]). With this notation, the elliptic curve E/K given by

the equation

v2 = u3 − 27Iu− 27J

is isomorphic over K to the Jacobian Jac(C) of C.
From now on, we also assume that char(K) 6= 2, 3. For a curve C/K of genus one

satisfying the conditions of Lemma 2.1, let π : C → C/〈w〉 ' P 1
K denote the natural

projection. The aim of this section is to present two methods in order to find an equation
describing C/K.

2.1. First method.
In this subsection we describe an approach in order to find an equation for C/K,

provided one knows (or can compute) the following initial data:

(i1) An element d ∈ K∗ \K∗2 such that π(C(K(
√

d))) ∩ C/〈w〉(K) 6=∅.
(i2) An equation y2 = x3 + Ax + B, A,B ∈ K for the elliptic curve E := Jac C/K,
(i3) The field Kw.
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For any two polynomials f1(x), f2(x) ∈ K[x] of degree 3 or 4 without double roots,
we say that the equations eq1 : y2 = f1(x) and eq2 : y2 = f2(x) are equivalent over K if
there exist

(
α β
γ δ

)
∈ GL(2,K) and λ ∈ K∗

such that

f2(x) = λ2f1

(
αx + β

γx + δ

)
(γx + δ)4.

Let Ci be the curve given by the equation eqi, i ≤ 2. If eq1 and eq2 are equivalent over

K, then C1
K' C2 and the splitting fields of f1 and f2 are equal. However, the converse

is not true.
It is known that for a given elliptic curve E over K, there is a one-to-one correspon-

dence between the set E(K)/2E(K) and the set of K-equivalence classes of equations
y2 = f(x), deg(f) = 3 or 4, such that the corresponding curves given by these ones are
isomorphic to E over K (cf. [6]).

Let C/K be a non-elliptic curve of genus one satisfying the conditions of Lemma
2.1. Assume further that we know the initial data (i1), (i2), (i3).

Since C admits an equation of the form y2 = df(x), where f ∈ K[x] is monic of
degree 4 and the action of w is given by (x, y) 7→ (x,−y), we propose the following
strategy in order to determine f .

Consider the twisted elliptic curve Ed : y2 = x3 + Ad2x + Bd3 of E and determine
a set S = {∞, P1 = (x1, y1), . . . , Pr = (xr, yr)} ⊆ Ed(K) of representative elements of
Ed(K)/2Ed(K). The equations y2 = fi(x), 0 ≤ i ≤ r, where

fi(x) =

{
x3 + Ad2x + Bd3 if i = 0,

x4 − 6xix
2 + 8yix− 3x2

i − 4Ad2 if 1 ≤ i ≤ r,

exhaust all K-equivalence classes of equations attached to Ed (cf. [25, Proposition 2.2]).
Therefore, C must be isomorphic over K to a curve given by one of the equations y2 =
dfi(x) for 1 ≤ i ≤ r, since the equation obtained from ∞, y2 = df0(x), corresponds to an
elliptic curve over K.

Any diophantine information about C at our disposal may serve to pick the correct
equation for our curve. This may be for instance the case if the field Kw agrees with
exactly one of the splitting fields of the polynomials fi. As we show in Sections 3 and
4, this approach always succeeds for all Shimura curves and Shimura curve quotients of
genus one that we deal with. Of course, in general there is no reason to expect that the
initial data (i1), (i2), (i3) suffices to determine C.

2.2. Second method.
Let C/K be a curve of genus one as in Lemma 2.1. In order to describe a second

method to provide an explicit model for C under additional assumptions, we need the
following result.



Non-elliptic Shimura curves of genus one 931

Proposition 2.2. Let C/K be a curve of genus one together with w, u ∈ I0(C)
defined over K such that C/〈w〉 ' P 1

K and that u · w ∈ I1(C).
Let L = K(

√
d) be a quadratic extension of K and σ ∈ Gal(L/K), σ 6= 1, such that

there exists a point P ∈ C(L)\C(K) with w(P ) = σP . We have that

(1) If P ∈ Fu, there exist x, y ∈ K(C) such that K(C) = K(x, y), w(x, y) = (x,−y),
u(x, y) = (−x, y) and

y2 = d(x4 + bx2 + c), b, c ∈ K.

Moreover, Y 2 = d(X3 + bX2 + cX) is an equation for C/〈u · w〉.
(2) If P 6∈ Fu, there exist x, y ∈ K(C) such that K(C) = K(x, y), w(x, y) = (x,−y),

u(x, y) = (ε/x, εy/x2) for some ε ∈ K∗ and

y2 = d(x4 + bx3 + cx2 + bεx + ε2), b, c ∈ K.

Moreover, Y 2 = d(X2 − 4ε)(X2 + bX + c− 2ε) is an equation for C/〈u · w〉.

Proof. Let us first assume that P ∈ Fu. Then Fu = {P, σP, Q, Q′} for some
points Q, Q′ ∈ C(K) such that the divisor D = (Q) + (Q′)− (P )− (σP ) is a K-rational
divisor invariant under w. Thus, there exist x, y ∈ K(C) such that K(C) = K(x, y),

div x = D and y2 = af(x),

where a ∈ K∗ and f(X) ∈ K[X] is a monic polynomial of degree 4 without double roots.
Since the value of the function (y/x2)2 at P and σP is a, it follows that a = da2

0 for
a certain a0 ∈ K∗. Switching y by a0y, we can assume that y2 = df(x). Since D is
also invariant under u, it follows that u maps x to either x or −x. Since u ∈ I0 and
u 6= w, we deduce that u acts on C by mapping (x, y) to (−x, y) and that f is an even
polynomial. The function field of C/〈u · w〉 is generated by the functions X = x2 and
Y = xy, which clearly satisfy the equation claimed in our statement.

Assume now that P /∈ Fu. As before, the divisor D = (u(P ))+(u(σP ))−(P )−(σP )
is rational over K and invariant under w. Since w(P ) = σP and u·w has not fixed points,
it follows that u(P ) 6= σP . Therefore, there exist x, y ∈ K(C) such that

K(C) = K(x, y), w(x, y) = (x,−y), div x = D and y2 = df(x),

where f(X) ∈ K[X] is a monic polynomial of degree 4. Since u(D) = −D, u maps x to
ε/x and y to εy/x2 for some ε ∈ K∗. Thus f(X) = X4 + bX3 + cX2 + εbX + ε2 for some
b, c ∈ K and the function field of C/〈u · w〉 is generated by the functions X = x + ε/x

and Y = y(1− ε/x2), which again satisfy the equation claimed in our statement. ¤

Remark 2.3. Under the assumptions of Proposition 2.2, there exists (in both
cases) a point P ∈ Jac(C)[2](K) such that Jac(C)/〈P 〉 = Jac(C/〈u · w〉). In particular,
it holds that |AutK(C)∩I1| divides | Jac(C)[2](K)|. If K is a number field, this implies
that both Jacobians have the same conductor over K.
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Remark 2.4. Assume that C(K) = ∅. In case (1), C/〈u · w〉 is an elliptic curve
over K. In case (2), if in addition there exists a point P ∈ Fu such that π(P ) ∈ P 1

K ,
then C admits a model as in (1) for a suitable choice of d; otherwise, ε /∈ K2, K(

√
ε) is

a subfield of K(Fu) and C/〈u · w〉 might not be an elliptic curve over K.

In the particular case that C belongs to case (1) of Proposition 2.2, the following
result describes an easier and better procedure to find an equation for C, provided one
knows the initial data (i1), (i2) as above and

(i4) An equation V 2 = U3 + A′U + B′, A′, B′ ∈ K, for the elliptic curve C/〈u · w〉.

Proposition 2.5. Let C/K be as in (1) of Proposition 2.2. Assume that V 2 =
U3 + A′U + B′, A′, B′ ∈ K, is an affine equation over K for the elliptic curve C ′ =
C/〈u · w〉. Then,

y2 = dx4 + 3u0x
2 +

(
A′ + 3u2

0

)
/d

is an equation for C, where u0 ∈ K is the root of the polynomial U3 + A′U + B′ such
that C ′/〈(u0, 0)〉 is isomorphic to Jac C over K.

Proof. By Proposition 2.2, Y 2 = d(X3 + bX2 + cX) is an equation for C ′/K and
it is isomorphic over K to the elliptic curve

V 2 =
(

U − bd

3

)(
U2 +

bd

3
U − d2 2b2 − 9c

9

)
= U3 − d2(b2 − 3c)

3
U +

bd3(2b2 − 9c)
27

.

Computing the I and J invariants attached to the equation y2 = d(x4 + bx2 + c), it can
be checked that the quotient curve C ′/〈(bd/3, 0)〉 is isomorphic over K to the elliptic
curve v2 = u3 − 27Iu− 27J , which is isomorphic over K to Jac C/K.

Since the K-equivalence class of the equation y2 = dx4 + 3u0x
2 + (A′ + 3u2

0)/d does
not depend on the chosen equation

V 2 = U3 + A′U + B′ = (U − u0)
(
U2 + u0U + (A′ + u2

0)
)

for C ′/K, we can assume the following equalities

db

3
= u0, −d2 2b2 − 9c

9
= A′ + u2

0.

It follows that db = 3u0 and dc = (A′ + 3u2
0)/d. ¤

3. Genus one Shimura curves.

Let D = p1 · · · p2r, r > 0, be the product of an even number of distinct prime
numbers and let N ≥ 1, (D, N) = 1 be an integer. Let X0(D, N)/Q be the
canonical model over Q of the Shimura curve of discriminant D and level N . Let
WD,N = {ωm : m | D · N, (m,D · N/m) = 1} ' (Z/2Z)]{p|D·N} be the group of
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Atkin-Lehner involutions on X0(D, N). All these involutions are defined over Q and we
let πm : X0(D, N)→X0(D, N)/〈ωm〉 the natural projection (cf. the Appendix for more
details). We shall also let Km = Kwm

denote the field extension over K obtained by
adjoining the coordinates of the fixed points of wm.

The aim of this section is to provide equations for these curves when their genera
are 1. Note that these are never elliptic curves over Q because they fail to have real
points (cf. [23]).

Lemma 3.1. The Shimura curve X0(D, N) has genus one exactly for the following
values of (D, N): (14, 1), (15, 1), (21, 1), (33, 1), (34, 1), (46, 1), (6, 5), (6, 7), (6, 13),
(10, 3), (10, 7).

Proof. It readily follows from a close inspection to the genus formula for
X0(D, N) given in Proposition 5.2. ¤

In order to apply the methods indicated in the previous section, let us mention what
are the key ingredients we use about (genus one) Shimura curves:

• The determination of the isogeny class of the elliptic curve Jac(X0(D, N)) over Q

can be carried out from Ribet’s isogeny theorem (cf. Theorem 5.4). In all cases
of Lemma 3.1, it turns out that Jac(X0(D, N)) lies in the single isogeny class of
conductor D ·N .

• When the genera of X0(D, N) and X0(D, N)/〈ωm〉 are 1, their Jacobians are isoge-
nous over Q and their Q-isomorphism classes are determined by the computation
of the Kodaira symbols of the reduction of both curves at primes p | D by us-
ing Cerednik-Drinfeld’s Theory ([3, Section 1.7], [11], [12]), combined with Table
1 of [5]. David Kohel’s Brandt modules package implemented in Magma [14] is
very practical to determine Cerednik-Drinfeld’s dual graphs of X0(D, N) at primes
p | D.

• For all curves in Lemma 3.1, there exists an imaginary quadratic field K =
Q(
√

d) of class number 1 and a point P ∈ X0(D, N)(K) such that πD·N (P ) ∈
X0(D, N)/〈ωD·N 〉(Q). The explicit computation of d follows from Corollary 5.14.
In particular, it turns out that

X0(D, N)/〈ωD·N 〉 ' P 1
Q

for all these curves, since their genera are always 0.
• For every m|D ·N , the number field Km can be determined by using Proposition

5.7, Theorem 5.12 and Remark 5.11. These numbers fields are displayed in the
next Lemma.

Lemma 3.2. The set of Atkin-Lehner involutions ωm ∈ I0(X0(D, N)) for the
Shimura curves of Lemma 3.1 just as the field of definition of their fixed points are
collected in the following tables:
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(14, 1), {ω14, ω2} (15, 1), {ω15, ω3} (21, 1), {ω21, ω3}
K14 = Q(

√
−1±√−7) K15 = Q(

√−3) K21 = Q(
√−3,

√−7)
K2 = Q(

√−1,
√−2) K3 = Q(

√−3) K7 = Q(
√−7)

(33, 1), {ω33, ω3} (34, 1), {ω34, ω17} (46, 1), {ω46, ω2}
K33 = Q(

√−3,
√−11) K34 = Q(

√
3± 2

√−2) K46 = Q(
√
−3±√−23)

K3 = Q(
√−3) K17 = Q(

√
−1± 4

√−1) K2 = Q(
√−1,

√−2)

(6, 5), {ω30, ω2, ω6, ω10} (6, 7), {ω42, ω3, ω6, ω21} (6, 13), {ω78, ω2, ω3, ω13}
K30 = Q(

√−3,
√

5) K42 = Q(
√−2,

√−3) K78 = Q(
√−3,

√
13)

K2 = Q(
√−1) K3 = Q(

√−3) K2 = Q(
√−1)

K6 = Q(
√

2,
√−3) K6 = Q(

√
2,
√−3) K3 = Q(

√−3)
K10 = Q(

√−2,
√

5) K21 = Q(
√

3,
√−3) K13 = Q(

√
13,

√−1)

(10, 3), {ω30, ω2, ω3, ω5} (10, 7), {ω70, ω5, ω10, ω35}
K30 = Q(

√−6,
√

10) K70 = Q(
√−14,

√
10)

K2 = Q(
√−2) K5 = Q(

√−1,
√

5)
K3 = Q(

√−3) K10 = Q(
√−2,

√
5)

K5 = Q(
√−1,

√
5) K35 = Q(

√
5,
√−7)

Remark 3.3. When K2 = Q(
√−1,

√−2), two fixed points of ω2 are rational over
Q(
√−1) while the coordinates of the other two lie in Q(

√−2). In the remaining cases,
the Galois closure of the field of definition of every P ∈ Fωm

is equal to Km. The notation
Q(

√
a±

√
b) means that the field of definition of each P ∈ Fωm

is either Q(
√

a +
√

b)
or Q(

√
a−

√
b).

Theorem 3.4. Equations for the eleven Shimura curves of genus one and the
action of their Atkin-Lehner involutions are collected in the following tables:

(D, N) y2 = f(x)
(14, 1) y2 = −x4 + 13x2 − 128
(15, 1) y2 = −3x4 − 82x2 − 27
(21, 1) y2 = −7x4 + 94x2 − 343
(33, 1) y2 = −3x4 − 10x2 − 243
(34, 1) y2 = −3x4 + 26x3 − 53x2 − 26x− 3
(46, 1) y2 = −x4 + 45x2 − 512
(6, 5) y2 = −x4 + 61x2 − 1024
(6, 7) y2 = −3x4 − 34x2 − 2187
(6, 13) y2 = −x4 − 115x2 − 4096
(10, 3) y2 = −2x4 − 11x2 − 32
(10, 7) y2 = −27x4 − 40x3 + 6x2 + 40x− 27

Table 1. Equations for Shimura curves of genus one.
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The involution ωD·N maps (x, y) to (x,−y). The action of the remaining Atkin-
Lehner involutions in I0(X0(D, N)) which together with ωD·N generate WD,N are:

14 15 21 33 34 46
ω2(x, y) ω3(x, y) ω7(x, y) ω3(x, y) ω17(x, y) ω2(x, y)
(−x, y) (−x, y) (−x, y) (−x, y) (−1/x,−y/x2) (−x, y)

(6, 5) (6, 7) (6, 13) (10, 3) (10, 7)
ω2(x, y) ω3(x, y) ω2(x, y) ω2(x, y) ω15(x, y)
(−x, y) (−x, y) (−x, y) (−x, y)

(−1
x , −y

x2

)

ω6(x, y) ω6(x, y) ω3(x, y) ω3(x, y) ω10(x, y)(
32
x , 32y

x2

) (−27
x , −27y

x2

) (
64
x , 64y

x2

) (
4
x , 4y

x2

) (
2x−1
x−2 , 5y

(x−2)2

)

Proof. For X0(D, N) as in Lemma 3.1, set w = ωD·N and let d < 0 be an integer
such that there exists P ∈ X0(D, N)(Q(

√
d)), πDN (P ) ∈ X0(D, N)/〈w〉(Q).

Assume first that N = 1. Then, there exists a single Atkin-Lehner involution
u 6= w, u ∈ I0(X0(D, 1)). Next table collects Cremona’s labels for the elliptic curves
Jac(X0(D, 1)) and Jac(X0(D, 1)/〈u · w〉) together with some possible values for d:

D d Jac(X0(D, 1)) Jac(X0(D, 1)/〈u · w〉)
14 −1,−2 A2 A1
15 −3 A1 A2
21 −7 A2 A6
33 −3 A1 A4
34 −3 A3 A4
46 −1,−2 A2 A1

Comparing the above table with the fields Km of Lemma 3.2, we obtain that X0(D, 1)
for D = 14, 15, 21, 33 and 46 correspond to case (1) of Proposition 2.2. Corresponding
equations as collected in Table 1 are automatically obtained by applying Proposition
2.5.1

Let us now consider separately the exceptional case C = X0(34, 1), to which we
apply the first method outlined in Section 2.1. As it follows from the table above, C can
be described by an affine equation of the form

y2 = −3f(x),

for some monic polynomial f(x) ∈ Q[x] of degree 4. Moreover, its Jacobian is the elliptic
curve 34A3 given by the equation

E : y2 = x3 − 4945
3

x− 695374
27

.

1Note that equations for these five curves were already obtained in [10], [11] and [12]. Some of the

models proposed there are different but correspond to equations which are equivalent over Q to ours.
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Consider the twisted curve of C:

C−3 : y2 = f(x),

which is isomorphic over Q to the elliptic curve 306B3:

E−3 : y2 = x3 − 14835x + 695374.

By means of [14] we obtain that E−3(Q) = 〈P1, P2〉 ' Z/6Z×Z, where P1 = (143, 1224),
P2 = (63, 104) and ord(P1) = 6. Thus, since |E−3(Q)/2E−3(Q)| = 4, the Q-equivalence
class of y2 = f(x) must agree with one of the following three Q-equivalence classes
attached to E−3:

case P ∈ E−3(Q)/2E−3(Q) y2 = f(x)
(i) 3P1 = (71, 0) y2 = x4 − 426x2 + 44217
(ii) P2 = (63, 104) y2 = x4 − 378x2 + 832x + 47433
(iii) 3P1 + P2 = (35,−468) y2 = x4 − 210x2 − 3744x + 5565

Since (ii) is the single case such that the splitting field of the polynomial f(x) is Kw,
we conclude that for f(x) as in (ii), y2 = −3f(x) is an equation for X0(34, 1). The map
(x, y) 7→ (6x− 13, 12y) transforms it into the model proposed in Table 1.

Let us consider now the cases for which N > 1. In all of them, the conductor of
Jac(X0(D, N)) is D ·N and, moreover, Jac(X0(D, N))[2](Q) ' (Z/2Z)2 since (Z/2Z)3

is a subgroup of AutQ(X0(D, N)).
For (D, N) = (6, 5), (6, 7), (6, 13) and (10, 3) there exists an Atkin-Lehner involution

ωm such that Km = Q(
√

d) and m 6= D ·N . More precisely, these are

(D, N) m d Jac(X0(D, N)) Jac(X0(D, N)/〈ωD·N/m〉)
(6, 5) 2 −1 30A6 30A3
(6, 7) 3 −3 42A3 42A6
(6, 13) 2 −1 78A2 78A1
(10, 3) 2 −2 30A2 30A1

Equations as claimed in Table 1 are immediately obtained by applying again Propo-
sition 2.5.

As for (D, N) = (10, 7) we proceed similarly as we did for (34, 1). We have that
E := Jac(X0(10, 7)) is the elliptic curve 70A2, because this is the single isomorphism class
of conductor 70 with all its 2-torsion points rational over Q and we take the following
equation y2 = x3 − 283x − 1482 for E. In this case, we can take d = −3 and we have
E−3 : y2 = x3−2547x+40014, which is the elliptic curve 630E2. In addition, E−3(Q) =
〈P1, P2, P3〉 ' (Z/2Z)2 × Z, where P1 = (18, 0), P2 = (39, 0) and P3 = (−17, 280).
Hence we must check the following seven Q-equivalence classes of equations attached to
E−3:
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case P ∈ E−3(Q)/2E−3(Q) y2 = f(x)
(i) P1 = (18, 0) y2 = x4 − 108x2 + 9216
(ii) P2 = (39, 0) y2 = x4 − 234x2 + 5625
(iii) P1 + P2 = (−57, 0) y2 = x4 + 342x2 + 441
(iv) P3 = (−17, 280) y2 = x4 + 102x2 + 2240x + 9321
(v) P1 + P3 = (63, 360) y2 = x4 − 378x2 + 2880x− 1719
(vi) P2 + P3 = (3,−180) y2 = x4 − 18x2 − 1440x + 10161
(vii) P1 + P2 + P3 = (123,−1260) y2 = x4 − 738x2 − 10080x− 35199

Only for case (iv) the splitting field of f(x) agrees with K70 given in Lemma 3.1.
Thus, y2 = −3(x4 + 102x2 + 2240x + 9321) is an equation for X0(10, 7). The transfor-
mation (x, y) 7→ ((11x + 1)/(−x + 1), 36y/(−x + 1)2) yields the model collected in Table
1.

Finally, for each of the equations in Table 1, we can compute all their involutions over
Q which commute with ωD·N . The explicit expression of the Atkin-Lehner involutions
acting on each of these models is determined by comparing these computations with the
fields Km as in Lemma 3.2. ¤

Remark 3.5. Kurihara conjectured in [13] the following equation for X0(34, 1):

{
z2 + 44u2 − 68u + 27 = 0,

w2 − (u2 + 1) = 0.

It is checked that the map

(u,w, z) =
(
− 2x

x2 − 1
,−1 + x2

x2 − 1
,

9y

x2 − 1

)

transforms it into

−3y2 = x4 + 136/27x3 + 122/27x2 − 136/27x + 1.

In turn, the transformation (x, y) 7→ (−5x+3
3x+5 , 68y

9(3x+5)2

)
shows that Kurihara’s conjectured

curve coincides with ours collected in Table 1. See [4] for an application of the explicit
knowledge of an equation for X0(34, 1).

4. Genus one Atkin-Lehner quotients of Shimura curves.

Let D = p1 · · · p2r, r > 0, be the product of an even number of distinct prime
numbers and let XD = X0(D, 1). For a positive divisor m | D, m > 1, let us denote
by X

(m)
D the Atkin-Lehner quotient XD/〈ωm〉. Note that despite XD(R) = ∅, it might

(and does in several cases) happen that X
(m)
D (Q) 6=∅.

The complete list of values of (D, m) for which X
(m)
D has genus one, together with

Weierstrass models for those X
(m)
D which are elliptic curves over Q, can be found in
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[18]2. In this section we provide explicit equations for the remaining genus one curves,
that is, those that fail to have rational points over Q.

Lemma 4.1 ([18]). The curve X
(m)
D is a non-elliptic curve of genus one over

Q exactly for the following values of (D, m): (39, 13), (55, 5), (62, 2), (69, 3), (77, 11),
(85, 17), (94, 2), (178, 89), (210, 30), (210, 42), (210, 70), (210, 105), (330, 3), (330, 22),
(330, 33), (330, 165), (462, 154).

Let us mention which are the main tools we use in order to apply the methods
exposed in Section 2:

• Similarly as in Section 3, the isogeny class of the Jacobian of X
(m)
D can be de-

termined by combining Theorem 5.4 with Table 3 of [5]. The isomorphism class
is obtained by comparing Table 1 of [5] with the Kodaira symbols of the special
fibres at primes p | D, which can be computed by means of Cerednik-Drinfeld’s
Theory.

• For any m′ | D, the Atkin-Lehner involution ωm′ on XD induces an involution
on X

(m)
D that we shall denote ω̃m′ . Then Fω̃m′ = πm(Fωm′ ) ∪ πm(Fωm·ωm′ ). In

all cases of Lemma 4.1 it turns out that Fω̃D
= πm(FωD

). The number field
generated by the coordinates of the fixed points of ω̃m′ on X

(m)
D can be computed

by means of Proposition 5.7, Corollary 5.14 and Remark 5.11.
• For all curves X

(m)
D in Lemma 4.1, X

(m)
D /〈ω̃D〉 = XD/〈ωm, ωD〉 ' P 1

Q. This can
be deduced from the following two general results: Firstly, the set of fixed points
of ωD is nonempty (cf. Proposition 5.6 and 5.7) and thus X

(m)
D /〈ω̃D〉 has genus 0.

Secondly, XD/〈ωD〉 has points everywhere locally by [21, Theorem 3.1]. By the
Hasse principle this implies that X

(m)
D /〈ω̃D〉 ' P 1

Q.
• There always exists an imaginary quadratic field K = Q(

√
d) such that h(K) = 1

and π(XD(K)) ∩ (X(m)
D /〈ω̃D〉(Q)) 6= ∅, where now we let π : XD → X

(m)
D /〈ω̃D〉

denote the natural projection of degree 4. The computation of d follows from
Corollary 5.14.

Theorem 4.2. Equations for the Atkin-Lehner quotients X
(m)
D listed in Lemma

4.1 together with Cremona’s label for their Jacobians are collected in Table 2 where ω̃D

acts as (x, y) 7→ (x,−y).

Proof. The equations in Table 2 are obtained by applying the first procedure
described in Section 2. For every pair (D, m) we take as d the leading coefficient of the
polynomial f(x) in Table 2. In all these cases there is a single element in Ed(Q)/2Ed(Q)
such that the splitting field of its attached equivalent class agrees with the field Kω̃D

.
We summarize the computations in Table 3.

2In Table 2 of [18], we claimed that the genus one curves X
(m)
D for (D, m) = (35, 7), (51, 3) and

(115, 23) fail to have rational points over the local fields Q5, Q17 and Q5, respectively. This is wrong:

these curves admit rational points everywhere locally. In fact, both three curves are elliptic curves over

Q, since in each case h(Q(
√−D)) = 2 and there exists a point P ∈ CM

`
Z[ 1+

√−D
2

]
´

on XD that

projects onto a rational point on X
(m)
D . Namely, these three elliptic curves are, in Cremona notation,

35A1, 51A2 and 115A1. Finally, let us also note in passing that Table 3 of [18] should read (26, ω26)

instead of (26, ω13).



Non-elliptic Shimura curves of genus one 939

(D, m) y2 = f(x) Jac
(
X

(m)
D

)

(39, 13) y2 = −7x4 − 24x3 − 34x2 + 24x− 7 39A1
(55, 5) y2 = −3x4 − 2x3 − 9x2 + 2x− 3 55A1
(62, 2) y2 = −x4 − 8x3 − 78x2 + 248x− 961 62A3
(69, 3) y2 = −3(x4 − 156x2 + 6912) 69A2
(77, 11) y2 = −11x4 − 19x2 − 16 77C2
(85, 17) y2 = −3x4 + 10x3 − x2 − 10x− 3 85A1
(94, 2) y2 = −x4 + 9x2 − 32 94A2

(178, 89) y2 = −12x4 + 4x3 − 19x2 − 4x− 12 178B1
(210, 30) y2 = −43x4 − 686x3 − 2915x2 − 1372x− 172 210E5
(210, 42) y2 = −43x4 + 600x3 − 986x2 − 600x− 43 210A6
(210, 70) y2 = −43x4 + 256x3 − 130x2 − 768x− 387 210C3
(210, 105) y2 = −43x4 + 2x3 + 505x2 + 12x− 1548 210B6
(330, 3) y2 = −3x4 − 22x3 − 125x2 − 66x− 27 330B3
(330, 22) y2 = −3x4 + 1358x2 − 177147 330C3
(330, 33) y2 = −3x4 + 2846x2 − 2381643 330D2
(330, 165) y2 = −3x4 + 614x2 − 19683 330A2
(462, 154) y2 = −x4 − 283x2 − 16384 462B2

Table 2. Equations for non-elliptic Atkin-Lehner quotients of genus one.

(D, m) (A,B) P

(39, 13) (−217/3,−5510/27) (−11/3, 288)
(55, 5) (−67, 126) (−17, 44)
(62, 2) (−491,−154) (−9, 62)
(69, 3) (−2235, 40534) (26, 0)
(77, 11) (−2473/3, 227050/27) (−418/3, 0)
(85, 17) (−409/3,−16454/27) (23, 20)
(94, 2) (−155,−714) (6, 0)

(178, 89) (−2137/3, 170170/27) (−37,−128)
(210, 30) (−5762401/3,−27665272798/27) (102257/3, 102900)
(210, 42) (−129649/3,−90882286/27) (46301/3, 1646400)
(210, 70) (−50401/3,−22628702/27) (9493/3,−4800)
(210, 105) (−1053721/3,−2163135238/27) (43433/3,−43904)
(330, 3) (−12241/3,−2249422/27) (−129,−2200)
(330, 22) (−513841/3,−733647278/27) (679, 0)
(330, 33) (−5864929/3,−22155907934/27) (1423, 0)
(330, 165) (−67849/3,−33554486/27) (307, 0)
(462, 154) (−276697/3, 288510010/27) (−566/3, 0)

Table 3.

Here, E = Jac
(
X

(m)
D

)
: y2 = x3 + Ax + B and P ∈ Ed(Q) lies in the class of

Ed(Q)/2Ed(Q) which provides the single Q-equivalence class dy2 = f(x) isomorphic to
Ed such that the splitting field of f is Kω̃D

. ¤
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Remark 4.3. For all these curves, there is at the least one involution u ∈ I0

defined over Q commuting with w (though in some cases u does not arise from any
Atkin-Lehner involution on X0(D, 1)). The equations obtained from the point P in Table
3 have been replaced in Table 2 by equivalent equations as in (1) or (2) of Proposition
2.2 depending on whether there exists an involution u with a fixed point that projects
onto a rational point on X

(m)
D /〈ω̃D〉 or not.

Remark 4.4. Kurihara conjecured in [13] equations for the genus three curves
X39, X55, X62, X69 and X94. For (D, m) = (39, 13), (55, 5), (62, 2), (69, 3), (94, 2), our
theorem above proves that Kurihara’s conjectural equations for these genus one quotients
are correct.

5. Appendix: Shimura curves and their points of complex multiplica-
tion.

Let B be an indefinite division quaternion algebra of discriminant D = p1 · · · p2r,
D ≥ 1. For any integer N ≥ 1 coprime to D, Shimura introduced a projective smooth
algebraic curve X0(D, N)/Q which can be described as follows.

Let OD,N be an Eichler order of level N in B. Let n : B→Q denote the reduced
norm on B and let B∗

+ be the subgroup of elements of B∗ of positive reduced norm. Let
O1

D,N = {γ ∈ OD,N : n(γ) = 1}, which we regard as a discrete subgroup of SL2(R)
through a fixed isomorphism Ψ : B ⊗ R ' M2(R). Let H denote Poincaré’s upper
half-plane. Then

O1
D,N\H

is a Riemann surface which is compact unless D = 1. We let Φ : H → O1
D,N\H denote

the natural uniformization map.
The following fundamental result is due to Shimura.

Theorem 5.1 ([22, Main Theorem I], [24, Theorem 2.5]). Let D = p1 · · · p2r ≥ 1
be a square-free integer and let N be a positive integer coprime to D. There is a projec-
tive algebraic curve X0(D, N)/Q such that there exists an open immersion of Riemann
surfaces

O1
D,N\H ↪→ X0(D, N)(C).

When D > 1, this is a biregular isomorphism.

In the theorem, X0(D, N)/Q denotes Shimura’s canonical model over Q as in [22,
Section 3]. When D = 1, X0(N) := X0(1, N) stands for the classical elliptic modular
curve.

Proposition 5.2 ([15, p. 280, 301]). For D 6= 1, the genus of X0(D, N) is

g = 1 +
DN

12
·
∏

p|D

(
1− 1

p

)
·
∏

p|N

(
1 +

1
p

)
− e3

3
− e4

4
,
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where for k = 3, 4:

ek =
∏

p|D

(
1−

(−k

p

))
·
∏

p‖N

(
1 +

(−k

p

)) ∏

p2|N
νp(k), νp(k) =

{
2 if

(−k
p

)
= 1

0 otherwise.

Here ( ·· ) stands for the Kronecker quadratic symbol.

Proposition 5.3 ([23, Proposition 4.4]). Let D > 1, N ≥ 1, (D, N) = 1. Then

X0(D, N)(R) =∅.

A fortiori, curves X0(D, N) fail to have rational points over Q when D > 1.
Assume for the rest of this appendix that N is square-free. As a natural subgroup

of the group of automorphisms of X0(D, N) over Q there is the Atkin-Lehner group of
involutions

W (D, N) = NormalizerB∗+(O1
D,N )/(Q∗ · O1

D,N ).

Its elements can be labelled as W (D, N) = {ωm(D, N) : m | D · N, m > 0}, where
ωm(D, N) ∈ OD,N can be taken to be any generator of the only two-sided ideal of reduced
norm m of OD,N . When no confusion on the choices of D and N can arise, we will simply
denote ωm = ωm(D, N). The Atkin-Lehner group is abelian, W (D, N) ' (Z/2Z)]p|DN

and ωm · ωn = ωm·n/(m,n)2 for any pair of divisors n,m | DN .
Let J0(D, N)/Q denote the Jacobian variety of X0(D, N). In particular, J0(N) =

J0(1, N) stands for the Jacobian variety of X0(N). By the universal property of J0(D, N),
we can regard W (D, N) as a subgroup of AutQ(J0(D, N)).

For any integer M ≥ 1 and a positive divisor d | M , let J0(M)d−new/Q denote the
optimal quotient variety of J0(M) which is d-new with respect to the action of the Hecke
algebra in the sense of [3, Section 1.7] and [17]. The action of the group W (1,M) on
J0(M) restricts to a well-defined action on J0(M)d−new.

Theorem 5.4 ([16], [3, Sections 1.3–1.8]). There exists an isogeny defined over Q

ψ : J0(D ·N)D−new −→ J0(D, N)

such that, for each ωm(D, N) ∈ W (D, N), we have

ψ∗(ωm(D, N)) = (−1)]{p|(D,m)}ωm(1, D ·N) ∈ AutQ(J0(D ·N)).

Note that when the genus g(X0(D, N)) = 1 and D > 1, X0(D, N) is a non-elliptic
genus one curve, which becomes isomorphic over Q̄ to the elliptic curve J0(D, N). The
above result shows that in this case the conductor of J0(D, N) is D ·N0 for some positive
divisor N0 | N . It turns out that for all these cases (cf. Lemma 3.1) dimJ0(D ·N)new = 1
and thus cond(J0(D, N)) = D ·N .
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5.1. CM-points and their fields of definition.
Let K be an imaginary quadratic field and let R ⊂ K be an order of K. Following

Eichler, we say that an embedding q : R ↪→ OD,N is optimal if q(K)∩OD,N = q(R). Via
Ψ ◦ q, R \ {0} embeds in GL+

2 (R) = {A ∈ GL2(R) : det(A) > 0} and there is a single
point xq ∈ H which is fixed by the action of R \ {0} on H . We say that q is normalized
if for any a ∈ K∗, Ψ ◦ q(a) · ( xq

1

)
= a · ( xq

1

)
.

Definition 5.5. The set CM(R) of complex multiplication (CM) points by R on
X0(D, N) is the set {Φ(xq) ∈ X0(D, N)(C)}, where q : R ↪→ OD,N is any normalized
optimal embedding of R into OD,N .

As it follows from the definition, a point x ∈ H has complex multiplication by R if
and only if the stabilizer

StabO+
D,N

(x) :=
{
α ∈ OD,N ∩B∗

+ : Ψ(α) · x = x
}

is R \ {0}. Indeed, if we let Φ(xq) ∈ CM(R) for some optimal embedding q : R↪→OD,N ,
we have StabO+

D,N
(xq) = q(R) \ {0}. Otherwise, if x ∈ H is not a CM-point, then

StabO+
D,N

(x) = Z \ {0}.
From now on, we fix the following notation.

• p denotes an integer prime.
• K = Q(

√−s) is a quadratic imaginary field.
• R is an order in K.
• f is the conductor of R.
• (

K
p

)
is the Kronecker symbol.

• (
R
p

)
=

{(
K
p

)
if p - f

1 if p | f is the Eichler symbol.

• I(R) is the group of fractional invertible ideals of R.
• a, b, . . . are elements in I(R).
• NK/Q(a) = |R/a|.
• HR is the ring class field of R, that is, the abelian extension of K unramified

outside c such that Gal(HR/K) ' Pic(R).
• h(R) = [HR : K].
• σa is the element in Gal(HR/K) attached to a by the Artin symbol.

Attached to the quadratic order R, the discriminant D and the level N , let us define

D(R) =
∏

p|D,
(

R
p

)
=−1

p, N(R) =
∏

p|N,
(

R
p

)
=1

p, N∗(R) =
∏

p|N,p-f,
(

R
p

)
=1

p,

and W (R) = {ωm ∈ W : m | D(R)N(R)}. Note that

gcd(D(R)N∗(R),disc(R)) = 1 and gcd(D(R)N(R),disc(R)) = gcd(N, f).
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Proposition 5.6 ([15, Section 1], [10], [3, Lemma 2.5]). The set CM(R) is
nonempty if and only if DN

D(R)N∗(R) divides disc(R). Moreover, in this case we have
that W (R)×Gal(HR/K) acts freely and transitively on CM(R), and thus

]CM(R) = 2]{p|D(R)N(R)} · h(R).

Let E(R, OD,N ) denote the set of normalized optimal embeddings q : R ↪→ OD,N .
The unit group O1

D,N acts on E(R, OD,N ) by conjugation and there is a one-to-one
correspondence between O1

D,N\E(R, OD,N ) and CM(R). Proposition 5.6 above follows
from this correspondence and Eichler’s theory on optimal embeddings.

For any prime p, let Ep(R, OD,N ) := {q : R ⊗ Zp↪→OD,N ⊗ Zp} be the set of local
optimal embeddings3 at p. The coset (OD,N ⊗ Zp)∗\Ep(R, OD,N ) has cardinality 1 or
2, and it is 2 if and only if p | D(R) · N(R). For any such prime p, there is a natural
orientation map

op : O1
D,N\E(R, OD,N ) −→ (OD,N ⊗Zp)∗\Ep(R, OD,N ) = {±1}.

Proposition 5.6 can be refined to claim that for any v ∈ {±1}]{p|D(R)N(R)}, the cardinality
of the fibre at v of

∏
p|D(R)N(R) op is h(R). We say that two points P, P ′ ∈ CM(R) lie in

the same branch if the corresponding normalized optimal embeddings q, q′ ∈ E(R, OD,N )
are locally equivalent, that is, have the same orientation at all p | D(R)N(R). The set
CM(R) is the disjoint union of 2]{p|D(R)N(R)} branches, consisting of h(R) points each
(cf. [15, Section 1]).

More precisely, Galois elements σ ∈ Gal(HR/K) preserve all local orientations of
points in CM(R). For p | D(R)N(R), Atkin-Lehner involutions ωp switch the local
orientation at p and preserve the remaining ones ([3, Lemmas 2.4 and 2.5]).

Fixed points of Atkin-Lehner involutions acting on Shimura curves are points of
complex multiplication, sometimes by a non-maximal quadratic order:

Proposition 5.7 ([15, Section 1]). Let m | D ·N , m > 0. The set of fixed points
of the Atkin-Lehner involution ωm acting on X0(D, N) is

Fωm
=





CM
(
Z[
√−1]

) ∪ CM
(
Z[
√−2]

)
if m = 2

CM
(
Z[
√−m]

) ∪ CM
(
Z

[
1+
√−m
2

])
if m ≡ 3 mod 4

CM
(
Z[
√−m]

)
otherwise.

For the rest of this section, let R ⊂ K = Q(
√−s), s > 0, be an imaginary quadratic

order such that CM(R) 6=∅.

Theorem 5.8 ([22, Main Theorem II], [24]). Let P ∈ CM(R) and Q(P ) be the

3There is not a natural notion of normalized embeddings into OD,N ⊗ Zp. Note also that the coset

O1
D,N\E(R, OD,N ) is in one-to-one correspondence with the set of (non necessarily normalized) optimal

embeddings q : R↪→OD,N up to conjugation by O∗D,N .
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number field generated by the coordinates of P on X0(D, N). Then

(1) HR = K ·Q(P ).
(2) (Shimura’s reciprocity law) Let q : R ↪→ OD,N be a normalized optimal embedding

such that P = Φ(xq) and let a ∈ I(R). There exists β ∈ OD,N , n(β) > 0, such that
q(a)OD,N = βOD,N and for any such β we have

Pσa = Φ
(
β−1xq

)
.

By part (1) of the above Theorem, we know that HR is an extension of Q(P ) of degree at
most 2. The determination of this subfield of HR is the main result of this section, which
is contained in Theorem 5.12. In order to obtain this, we need some previous lemmas.

Lemma 5.9. Let m | D · N and P ∈ CM(R). Then ωm(P ) = Pσ for some
σ ∈ Gal(HR/K) if and only if m | DN

D(R)N(R) . If this is the case, σ = σb for the ideal
b ∈ I(R) such that NK/Q(b) = m.

Proof. If p | D(R)N(R) then ωp switches the local orientation of P at p, whereas
any σ ∈ Gal(HR/K) preserves it and hence ωp(P ) 6∈ Gal(HR/K) · P .

Let p | DN
D(R)N(R) . By Proposition 5.6, p is a ramified prime of R which does not

divide the conductor f and thus there exists p ∈ I(R) such that NK/Q(p) = p. Let
β ∈ OD,N , n(β) > 0, be such that q(p)OD,N = βOD,N . Since NK/Q(p) = p we have
n(β) = p.

Let P = Φ(xq) for some optimal embedding q : R ↪→ OD,N . By Theorem 5.8, we
have Pσp = Φ(β−1xq). Let us show that ωp(P ) = Φ(βxq) = Φ(β−1xq) as well. In order
to prove this, it follows from the definition and properties of the Atkin-Lehner group that
it suffices to show that OD,N · β is a two-sided ideal.

For p | D
D(R) this is immediate, as there exists a unique ideal of norm p in OD,N ,

which is two-sided. Assume now that p | N
N(R) . The question is local and for all primes

` 6= p, OD,N ⊗ Z` · β = OD,N ⊗ Z`. Locally at p, the Eichler order OD,N ⊗ Zp can
be described as OD,N ⊗ Zp =

{(
a b
cp d

)
: a, b, c, d ∈ Zp

}
. Since p2 = (p) it follows that

OD,N⊗Zp ·β2 = p·OD,N⊗Zp and it is elementary to check that β ∈ (OD,N⊗Zp)∗ ·
(

0 1
p 0

)
and hence normalizes OD,N . ¤

We next describe the action of complex conjugation on points of complex multipli-
cation on X0(D, N). This shall serve us in the next section to exhibit rational points on
the quotient curves X0(D, N)/〈ωm〉.

Lemma 5.10. Let P 7→ P̄ denote the complex conjugation on X0(D, N)(Q̄). Then

(1) CM(R) = CM(R).
(2) For every P ∈ CM(R) there exist m | D(R)N(R) and a ∈ I(R) such that

P̄ = ωm(Pσa).

Moreover, the integer m and the class [a] ∈ Pic(R)/Pic(R)2 do not depend on P .
More precisely, m = D(R)N∗(R), a satisfies
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BD '
(−s,D(R)N∗(R)NK/Q(a)

Q

)
,

and for all b ∈ [a] there exists Q ∈ Gal(HR/K) · P such that Q̄ = ωm(Qσb).

Proof. Let P = Φ(xq) for some normalized optimal embedding q : R ↪→ OD,N .
Let ε ∈ OD,N be of reduced norm n(ε) = −1. By [23], [15], P̄ = Φ(εx̄q).

(1) We have P̄ = Φ(εx̄q) = Φ(xq·ε−1). The embedding a 7→ εq(ā)ε−1 is a normalized
optimal embedding of R into OD,N and hence P̄ is also a point of complex multiplication
by R.

(2) Let P ∈ CM(R). By Proposition 5.6, P̄ = ωmP
(PσaP ) for some mP | D(R)N(R)

and aP ∈ I(R). For a fixed P , the integer mP and the class of the ideal aP in Pic(R) are
unique, but may depend on P .

Let Q ∈ CM(R) be any other point with complex multiplication by R. By Propo-
sition 5.6, Q = ωd(Pσb) for some d | D(R)N(R) and b ∈ I(R). Thus Q̄ = ωd(Pσb) =
ωd(P̄ )σ−1

b = ωd(ωmP
(PσaP ))σ−1

b = ωmP
(Qσab−2 ). Hence, mP = mQ and [aP ] = [aQ] in

Pic(R)/Pic(R)2 for any two points P, Q ∈ CM(R).
Let m = mP and a = aP . Changing, if necessary, a by an ideal in the same class in

Pic(R), we can assume that q(a−1) ⊂ OD,N and (NK/Q(a−1), DN) = 1. For this choice,
let β ∈ OD,N be such that q(a−1)OD,N = βOD,N . Let i = q(

√−s) ∈ OD,N . We first
show the following

Claim. There exists j ∈ OD,N such that j2 = mNK/Q(a−1), ij = −ji.

We have that P̄ = ωm(Pσa). Since P̄ = Φ(εx̄q), by Theorem 5.8

Φ(εx̄q) = Φ(γβxq)

for some γ ∈ OD,N , n(γ) = m. Thus αεx̄q = γβxq for some α ∈ O1
D,N . If we write

η = αε, this reads

ηx̄q = γβxq, with n(η) = −1.

Let j = η−1γβ ∈ OD,N . As it is checked, j(H ) = H̄ and j(H̄ ) = H ; with
j(x̄q) = xq and j(x̄q) = xq. Hence j has no fixed points on H ∪H̄ whereas j2 fixes xq and
x̄q. By [23, Proposition 1.2] we obtain that j2 ∈ Q∗. Since n(j) = −mNK/Q(a−1) ∈ Z,
j2 = mNK/Q(a−1).

Moreover, the single fixed point of jqj−1 : R ↪→ OD,N on H is j(x̄q) = xq. Hence,
either jq(

√−s)j−1 = q(
√−s) or −q(

√−s). In the first case, it implies that j ∈ q(K)
and this can not be possible, since n(j) < 0. Hence, ij = −ji. This proves our claim.

Let us now show that m = D(R)N∗(R). By the discussion following Proposition
5.6, it suffices to show that for p | D(R)N(R), we have op(P ) = −op(P̄ ) if and only if
p | D(R)N∗(R). In other words, for p | D(R)N(R), there exists α ∈ (OD,N ⊗Zp)∗ such
that q̄ = αqα−1 if and only if p | (N, f).

Let p | D(R). Then B ⊗ Qp = q(K ⊗ Qp) ⊕ q(K ⊗ Qp) · π, where π2 = p and
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a · π = π · ā for any a ∈ K. For any α ∈ Bp, we have αq(
√−s)α−1 = −q(

√−s) if
and only if α ∈ q(K ⊗ Qp) · π, but none of these elements is an integral unit. Thus
op(P ) = −op(P̄ ).

Let p | N(R) = N∗(R) · (N, f). Then Bp ' M2(Qp) and we may assume that
OD,N ⊗ Zp =

{(
a b
pc d

)
: a, b, c, d ∈ Zp} ⊂ M2(Qp). Assume now that p | N∗(R). Then

q : K ⊗ Qp ' Qp × Qp→M2(Qp), (a, d) 7→ (
a 0
0 d

)
. Since q̄(a, d) = q(d, a), we have

αqα−1 = q̄ if and only if α =
(

0 b
pc 0

)
. None of these elements are units of OD,N ⊗ Zp,

hence op(P ) = −op(P̄ ).
On the other hand, if p | (N, f) we have (unless p 6= 2 and s ≡ 3mod 4) R ⊗

Zp ' Zp + pkZp

√−s, where pk ‖ f , k ≥ 1. We can write q : R ⊗ Zp→OD,N ⊗ Zp,
q(pk

√−s) 7→ ( 0 1
−p2ks 0

)
. Since

( 0 −1

p2ks 0

)
=

(
1 0
0 −1

)( 0 1
−p2ks 0

)(
1 0
0 −1

)−1, we deduce
that op(P ) = op(P̄ ).

Similarly, if p = 2 | (N, f) and s ≡ 3 mod 4, we have R ⊗ Z2 ' Z2 + 2k−1Z2

√−s,
where 2k ‖ f , k ≥ 1, and q(2k−1

√−s) 7→
(

2k−1 −2k−2(s+1)

2k −2k−1

)
. As before, conjugating

by
(

1 0
0 −1

)
we obtain that op(P ) = op(P̄ ). Summing up, we have shown that m =

D(R)N∗(R).

For the ideal a, we have BD = Q(i, j) =
(−s,mNK/Q(a−1)

Q

) ' (−s,mNK/Q(a)

Q

)
.

Finally, let τ = σa ·σ−2
0 with σ0 ∈ Gal(HR/K). Then, Q̄ = ωm(Qτ ), where Q = Pσ0 .

¤

Remark 5.11. If a ∈ I(R) satisfies BD ' (−s,m NK/Q(a)

Q

)
, then any other ideal in

the class of [a] ∈ Pic(R)/Pic(R)2 also satisfies this isomorphism. In general, the converse
is not true, but if HR is the Hilbert class field of K, then [a] ∈ Pic(R)/Pic(R)2 is
uniquely determined. Indeed, the isomorphism

(−s,m NK/Q(a)

Q

) ' (−s,m NK/Q(b)

Q

)
implies

that NK/Q(a · b−1) = NormK/Q(α) for some α ∈ K∗. Then the value NormK/Q(α)
(mod disc(R)) is represented by a quadratic form of the principal genus of discriminant
disc(R) and by genus theory [a] = [b].

As a consequence of Theorem 5.8 and Lemma 5.10, we obtain the following result.

Theorem 5.12. Let P ∈ CM(R). We have that

(1) If D(R)N∗(R) 6= 1 then Q(P ) = HR.
(2) If D(R)N∗(R) = 1 then [HR : Q(P )] = 2 and Q(P ) ⊂ HR is the subfield fixed by

σ = c · σa ∈ Gal(HR/Q) for some a ∈ I(R) such that BD ' (−s,NK/Q(a)

Q

)
, where c

denotes the complex conjugation.

Proof. Let P ∈ CM(R). By Lemma 5.10 (2),

Gal(HR/Q) · P =
(
Gal(HR/K) · P ) ∪ (

Gal(HR/K) · ωD(R)N∗(R)(P )
)
.

Assume first that D(R)N∗(R) 6= 1. Then

(
Gal(HR/K) · P ) ∩ (

Gal(HR/K) · ωD(R)N∗(R)(P )
)

=∅
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because the action of W (R) × Pic(R) on CM(R) is free by Proposition 5.6. Hence
] Gal(HR/Q) ·P = 2h(R) = [HR : Q]. Since K(P ) ⊆ HR by Theorem 5.8, it follows that
Q(P ) = HR.

Assume now that D(R)N∗(R) = 1. By Lemma 5.10 (2), ] Gal(HR/Q) · P = h(R)
and Q(P ) ⊂ HR must be a subfield of index 2 of HR. Again, by Lemma 5.10 (2),
Q(P ) is the subfield of HR fixed by c · σa ∈ Gal(HR/Q) for some a ∈ I(R) such that
BD ' (−s,NK/Q(a)

Q

)
. ¤

Corollary 5.13. Assume that either h(R) = 1 or h(R) = 2 and D(R)N∗(R) = 1.
Then X0(D, N)(K) 6=∅.

Let m|D ·N and let πm : X0(D, N)→X0(D, N)/〈ωm〉 denote the natural projection
map. We say that a point Q ∈ X0(D, N)/〈ωm〉(Q̄) is a CM point if π−1

m (Q) is a pair of
CM points on X0(D, N).

Corollary 5.14. Let P ∈ CM(R) ⊂ X0(D, N)(Q̄) and Q = πm(P ) for some
m | DN . Set mr = gcd

(
m, DN

D(R)N(R)

)
= gcd(m,disc(R)/ gcd(N, f)) and let b be the

invertible ideal of R such that NK/Q(b) = mr.

(1) Assume D(R)N∗(R) 6= 1. Then Q(Q) is





Hσb

R if m/mr = 1,

Hσba·c
R for some a such that BD '

(−s,NK/Q(a)

Q

)
if m/mr = D(R)N∗(R),

HR otherwise.

(2) Assume D(R)N∗(R) = 1. Then

Q(Q) =

{
H
〈c·σa,σb〉
R if m/mr = 1,

Hc·σa

R otherwise,

for some a ∈ Pic(R) such that BD ' (−s,NK/Q(a)

Q

)
.
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Boston, Boston, MA, 1983, 277–307.
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[26] M. F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Math., 800, Springer,

1980.

Josep González
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Departament de Matemàtica Aplicada IV (EPSEVG)

Av. Victor Balaguer s/n

08800 Vilanova i la Geltrú
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