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and Siegel modular forms of degree 2 with square-free level
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Abstract. A theory of local old- and newforms for representation&S&4) over ap-adic
field with Iwahori-invariant vectors is developed. The results are applied to Siegel modular forms
of degree 2 with square-free level with respect to various congruence subgroups.

Introduction.

For representations @3L(2) over ap-adic fieldF there is a well-known theory of local
newforms due taCASSELMAN, see Cag. This local theory together with the global strong
multiplicity one theorem for cuspidal automorphic representationslaR) is reflected in the
classical Atkin-Lehner theory for elliptic modular forms. On the other hand, there is currently
no satisfactory theory of local newforms for the graBgd4,F). As a consequence, there is
no analogue of Atkin-Lehner theory for Siegel modular forms of deg@rdeis the goal of this
paper to provide such theories for the “square-free” case. In the local context this means that
the representations in question are assumed to have non-trivial lwahori-invariant vectors. In the
global context it means that we are considering various congruence subgroups of square-free
level.

This paper is organized into three parts. In the first part we shall take Bdhtlje complete
list of irreducible, admissible representationsG {4, F) supported in the minimal parabolic
subgroup and list their basic properties (Table 1). We shall describe the local Langlands corre-
spondence for these representations and give all the local parameters and local factors (Table 2).
Assuming the inducing characters are unramified, we shall compute the dimensions of the spaces
of fixed vectors under any parahoric subgroup for each of these representations (Table 3).

In the second part of this paper we shall define local new- and oldforms with respect to a
parahoric subgroup. Our main local result is Theorem 2.3.1, saying that, with respect to a fixed
parahoric subgroup, a representation has either oldforms or newforms, but never both. In Table
3 the spaces of newforms have been indicated by writing their dimensions in bold face. We see
that in almost all cases the space of newforms (with respect to a fixed parahoric subgroup) is
one-dimensional, but there are two exceptions.

In the third part we will apply the previously obtained local results to prove several theo-
rems on classical Siegel modular forms “of square-free level”. We will need the spin (degree 4)
L-function of GS{4) as a global tool. Even though we only need the usual analytic properties of
thisL-function for global representations whose local components at finite places are all lwahori-
spherical, none of the current results on thikinction seems to satisfy all our needs. We shall
thereforeassumehat anlL-function theory with the desired properties exists. Under this assump-
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tion, we shall prove something similar to a “strong multiplicity one” result for certain cuspidal
automorphic representations®8 [{4), but without actually knowing multiplicity one. We shall
then define old- and newforms for Siegel modular forms with respect to three different congru-
ence subgroups: The “minimal” congruence subgidg(N) (corresponding to the local Iwahori
subgroups), the usual Hecke subgréy(N) (for systematic reasons here callégN)), and the
paramodular groupo2(N). In each case we shall prove several results that would be expected
from any reasonable notion of newforms. For example, if a newform is an eigenfaimast

all good places, then it is an eigenformeditgood places. We shall also describe Euler factors at
bad places and define the completed dpfunction for these modular forms.

We shall now make some more comments on the local data given in Table 3. As mentioned
above, if a dimension in this table is typed in bold face, then the space consists entirely of
newforms, otherwise entirely of oldforms. We see that many representations have newforms
with respect to two different parahoric subgroups. Amongst the unitary representations only
those of type llla have a two-dimensional space of newforms with respdgt the “Hecke”
subgroup. In a sense, this can be naturally repaired in the global theory by considering a certain
Hecke operator,, see section 3.3.

The signs in Table 3 indicate eigenvalues of &tkin-Lehner involutiorwhere this makes
sense, namely for the “symmetric” parahoric subgroups and for representations with trivial cen-
tral character. The columre” gives the value of the-factor of the representation &t2. Inves-
tigating Table 3, we find an interesting relation between Atkin-Lehner eigenvaluesfantbrs.
Roughly speaking, the trace of the Atkin-Lehner involution on the full space of newforms is
closely related to the sign defined by tbdactor. See Proposition 1.3.1 for a more precise
statement.

There have been several attempts in the literature to define a good notion of old and new
Siegel modular forms. The first one seems td bexkivAMA [Ibl], who defines old- and new-
forms for the minimal congruence subgroBfp). Then there isIp2], where definitions for the
paramodular group of prime level are given. In both cases the definitions coincide with ours.
The motivation to single out newforms itbfL] and Ib2] comes from the comparison of global
dimension formulas, providing further evidence that these are the “correct” definitidrs.
DRIANOV [An2] has defined newforms fdfy(N) for any N, not only in the square-free case.
Recently, a definition of newforms fdg(p) that is equivalent to ours has been giverRnsTE-

GAR [Ra] in a more geometric setting.

I would like to thank D. Prasad, B. Roberts and R. Schulze-Pillot for various helpful remarks. Most of
this work was done while | was a research fellow at Rikkyo University, Tokyo, in 2002. | am very grateful
to Rikkyo University for their generous support, and most of all to Tsuneo Arakawa, whose untimely death
does not allow me to thank him personally.

Notation.

We shall realize the algebraic gro@S[4) as the set of matricesc GL(4) that satisfy

tgdg = A(g)J for someA (g) € GL(1),  wherel =
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This defines a homomorphisin: GS4) — GL(1), called themultiplier homomorphispwhose

kernel is by definition the symplectic gro@p(4). As a minimal parabolic subgroup &S{4)

we choose upper triangular matrices. There are two conjugacy classes of maximal parabolic
subgroups, represented by tBiegel parabolic subgrouB, whose Levi factor is

Mp = { (AuA,> L ueGL(1), Ae GL(Z)} ~ GL(1) x GL(2),

whereA' := (; 1) 'A=1 (1), and theKlingen parabolic subgrouf®, whose Levi factor is

Mg = A 1 ueGL(1), Ae GL(2) p ~GL(1) x GL(2).
u~ldetA)

LetF be a non-archimedean local field. We shall employ the notatior&S1gfor representations
of GS{4,F). For characterg1, x» ando of F* let x1 x x2 x o be the representation &f(F) =
GSn4,F) induced from the character

1 = * *
t * *
Tt . | ntixtow
ut;*

of the Borel subgroup. The induction is always normalized, i.e., the standard space pf x o
consists ofC-valued functions oS4, F) with the transformation property

t1 *
f bl%l g | = xa(ty) x2(t2) (W) [Ea] [u] ¥/ (g). (1)

-1
uty

The central character of this representatiofig,0?. Provided thag(x1) > e(x2) > 0, where
e(xi) denotes the real number witly;(x)| = [x|X) (the exponent let L((x1,x2,0)) be the
unique irreducible quotient (tHeanglands quotientof x1 x x> x g (see BT], section 1). Ifrtis
arepresentation @L(2,F) ando a character oF * let 71 x o be the representation &S4,F)

induced from the representation

(A uTN) — a(u)TI(A)

of P(F). The exponeng(1) is the unique real number such that™ rris unitarizable. Provided
thatrris square integrable amdr) > 0, the induced representatien« o has a unique Langlands
quotient, denoted bly((T,0)). Finally, assume that is a character df * ando a representation
of GSH2,F) = GL(2,F). Theny x o denotes the representation®@8 4, F) induced from the
representation
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u *
A * — X (U)o (A)
u~ldetA)

of Q(F). If e(x) > 0, there is a unique Langlands quotiért x,o)). For the familiar induced
representatior( x1, x2) of GL(2,F) we shall use the symbo{; x x2. Note that ifGL(2) is
considered as the group of symplectic similitu@Sg2), thenys x X2 = X1X2 X X2. As in [ST]
we shall writev(x) = |x| for the normalized absolute value on the local fiEld

1. Representations supported in the minimal parabolic subgroup.

By [Bo2], the lwahori-spherical representations we are interested in are precisely the con-
stituents of representations parabolically induced from an unramified character of the minimal
parabolic subgroup. We shall therefore begin by making a complete list of such induced repre-
sentations and document their basic properties. Most results are takenSTgmiii addition
we shall describe the local Langlands correspondence for these representations and compute all
the local factors (Table 2). After that we will compute the dimensions of spaces of fixed vectors
under each parahoric subgroup for each representation in our list. The results are summarized in
Table 3, which is quite important for this paper.

1.1. The list of irreducible representations.

The reducibilities of the representations@$ 4, F) parabolically induced from a charac-
ter of the minimal parabolic subgroup were all determined in the p&¥r [This paper contains
also a complete list of unitary, tempered and square integrable representations supported in the
Borel subgroup. In the following we shall divide the irreducible representatio®Sqf4, F)
supported in the minimal parabolic subgroup into six groups |-VI and briefly describe each
group.
Group t Irreducible representations of the fopm x x2 x @ with charactery, x»2, o of F*.

By [ST], Lemma 3.2, the induced representatjpnx x» x o is irreducible if and only ify; #
vEL xo # vl andx # vELxgT

Group Il Constituents obY/2y x v=12x x g, wherey ¢ {v*1 v+3}.

By [ST], Lemma 3.3 and Lemma 3.7, there are two constituents. The unique irreducible subrep-
resentation i Stg () x 0, and the quotient is isomorphic §dlg 2 x 0.

Group lIl: Constituents of x v x v—1/2g, wherex ¢ {1,v*?}.

By [ST], Lemma 3.4 and Lemma 3.9, there are the two irreducible constityerte Stgs o)
andx x 0lgsyy), the latter one being the quotient.

Group IV: Constituents of/2 x v x v—3/2g.
By [ST], Lemma 3.5, we have (in the Grothendieck group)
V2 x v xv 320 = v3/2Sig ) x v 20 4+ v 2G5 x v 20

=2 v*108h5q2> +v2x V*lﬁles;:(z)-
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Each of the four representations on the right is reducible and has two irreducible constituents as
shown in the following table. The quotients are on the bottom resp. on the right.

V32Stg i x v ¥20 | v¥2g ) xv 320

V2% v 1oStggyp) 0Slgspa) L((v?,vt0Stssy2))) (2)
2

v2xvlolgsgy || L((V¥2Stey),v—%0)) 0lgsya

Group V: Constituents of/&p x &g x v-12g, where&y is a non-trivial quadratic character.

According to BT] Lemma 3.6 we have

1/2

V& x & x v 120 = y/2g, Stoip x vV Y20+ vl/2g, o @ v Y20

sub quot

= V28 Sigz)  &ov Y20+ VY 2E 16 o) % Eov Y20

sub quot

Each of the representations on the right side has two constituents as indicated in the following
table. The quotients appear on the bottom resp. on the right.

’ H V28,StgL o) 1 &ov 20 | VY2 1gy ) 0 Eov Y i0 ‘
vl/ZEOSTGL(z) X V71/20' 5([Eo,VEo],Vfl/20') L((Vl/zfost@L(2>,V71/20')) (3)
VY280 1g1 2 x v 120 || L((vY?&0Star (), &ovY20)) L((v&o, & x v~1/20))

Hered([&, v&o],v—Y20) is a square integrable representation.
Group VI: Constituents of/ x 1+ x v—1/2g.
By [ST] Lemma 3.8, we have

1/2

Vx 1gs 1 v Y20 = V2S5 0 3 v Y20+ v 21 5 1 v 20

sub quot

=1+ X US%SF{Z) +1px % alGSF(Z)7

sub quot

and each representation on the right side is again reducible. Their constituents are summarized
in the following table. Again the quotients appear on the bottom resp. on the right.

’ H 1p+ % 0SiGsyp) ‘ 1p % 0lgsyp)
VY2Stg 0 xv Y20 | 1(SvY20) | L((vY/2Stgy ). v Y20)) (4)
vi21g 0 xv Y20 | 1(T,vY20) L((v,1g- x v Y20))

The representationgS, v—2¢) and1(T,v—%/20) are tempered but not square integrable.

Table 1 below summarizes the basic properties of the irreducible representations of
GS4,F) supported in the minimal parabolic subgroup. Complete information on unitariz-
ability can be found in$T], Theorem 4.4. The same paper tells us which of the unitary repre-
sentations are tempered or square-integrable. In the column labeled “g” we have indicated the
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generic representations. If the characters are in the “Langlands position”, then these are always
the subrepresentations, s€S]. The last column of Table 1 indicates tloeal Saito-Kurokawa
liftings. These are certain local functorial liftings froRGL(2) x PGL(2) coming from the stan-

dard embedding df-groups

SL(2,C) x SL(2,C) — Sp4,C).
For the global theory it is interesting to know which local representations are Saito-

Kurokawa lifts, because, as the nhame indicates, these are the local components of the classical
(and some less classical) Saito-Kurokawa liftings. S8 and [Sch4 for more information.

constituent of representation tempered | L?| g |SK
| X1 X X2x 0 (irreducible) Xi,o€(F*) °
! v2x x v Y2x 10 | XSigLz % O Xx,0 € (F*) .
bl (x*¢{vv®}) | Xlgpx0o .
MEIRSE v12g X X 0Sisy2) X,0 € (F*) .
bl (x¢{1v*?}) X X 01gsy)
a 0Stgsya) gc(F*) |e e
\Y; b vZxvxv32g L((VZ,V_lO'StGS[iz)))
c L((v¥/2Stg (), v—3/%0))
d 0lgsya)
a 5([&o, vEo], v 120) oc(F*) |eo|e
v b | véox&xv 20 | L((V/2&Sty ), v Y20)) o
c|(§f=1¢&+#1) L((vY/2&0Stg1(2), Eov—Y/20)) .
d L((véo,&ox V™ 1/20))
a 1(Sv—Y20) oc (F) .
-1/2 *\~
Vi b v x 1ee xv-12g 1(T,v—+<0) e (F °
c L((v¥?StgL(z), v ?0)) o
d L((V 1+ x v 1/20))

Table 1. Irreducible representations@8 4) supported in the minimal parabolic subgroup.

1.2. The local Langlands correspondence.

The dual group of5S{4) is the complex Lie grouS[4,C), see Bol]. Hence, by the
conjectural local Langlands correspondence, there is a parameterization of the set of equivalence
classes of irreducible, admissible representatiorG®f{4, F ) by conjugacy classes of admissi-
ble homomorphisms

¢: W — GS{4,C), (5)
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whereW, = Wk x SL(2,C) is the Weil-Deligne group. To every local paramefeas in (5)
there is associated dnfactorL(s,¢) and ane-factor £(s, ¢, ¢), the latter one also depending
on the choice of an additive charactgrof F, see [ra] (in this paper we shall not consider the
more general factors involving a finite-dimensional representation of the dual group; this finite-
dimensional representation is here always the “standard” represer@8igd,C) — GL(4,C)).

If ¢ corresponds to the representatmof GS{{4,F), then the factors associated foare by
definition L(s, 1) := L(s,¢) and e(s, i, ) := £(s,¢,y). Giving a representatiogp : W —
GSH4,C) is equivalent to giving a paiip,N), wherep : W — GS4,C) is a homomorphism
whose image consists of semisimple elements and wiRerea nilpotent element of the Lie
algebra ofGS{4,C) such thatp(w)N = |w|Np(w) for all w e We. In the analogous situation
for GL(2), the pair(p,N) with

1/2
p(w) = ('W' W1/2>, N= (g é) ©

is the local parameter for the Steinberg representdigp;). Since we shall only consider
representations o6Sy4,F) that are supported in the minimal parabolic subgroup, we shall
be exclusively concerned with parameters of the fgpnN), wherep = (p1,p2,03,p4) is a
guadruple of characters @ (identified with characters @¢¥*). This means that the semisimple
part of the local parameter is given y— diag(p1 (W), p2(W), ps(w), pa(w)). ConjugatingN by
this diagonal matrix must yielpw|N.

The local Langlands correspondence &84, F) remains a conjecture, but for the type
of representations we are interested in (those supported in the minimal parabolic subgroup) it
is easy to “guess” the local parameters. Constituents of the same induced representation should
have the same semisimple part and only differ inkhpart. The parameter witN = 0 should
belong to the Langlands quotient. We have listed the information on local parameters in Table 2
below. The last column of this table shows the resultiffgctors. We note that fayenericrepre-
sentations, thé-factors given in Table 2 coincide with those defined via Novodvorski integrals,
see [fak], Theorem 4.1. All we shall assume in our global applications is that there exikts an
function theory which assigns the lod¢afactors listed in Table 2 in the case of Iwahori-spherical
representations. One can check that for Iwahori-spherical representations the local parameters
listed coincide with the local parameters givenkdL[]; hence it is very likely that th&-factors
in Table 2 are the “correct” factors.

For each representation we have listed the @iN), using the following abbreviations for
the nilpotent part.

0 0 1 0 1
0 1 0 0 1
Nl— 0 5 NZ_ 0 5 N3_ 0 )
0 0 0
0 1 0 1
0 0 1
Na = o _1 | M= 0 -1
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o} N L-factor
I X1X20, X10, X20,0 | O L(s,0)L(s, x10)L(s, x20)L(Ss, x1X20)
e x20, vV/2xa, Ny L(s,0)L(s,vY/2x0)L(s, x?0)
b v 12x0, o 0 L(s,0)L(s,v¥2x0)L(s,vY2x0)L(s x%0)
mE vi2xa v 12xa, | Ny L(s,v¥/20)L(s, xv¥/20)
b| vY20,v 120 0 | L(s,v¥20)L(s,xv Y20)L(s,v¥/20)L(s xv1/?0)
a Ns L(s,v¥20)
L v¥/2g, vl/2g, Ny L(s,v_Y20)L(s v®¥/?0)
c| v¥agv?320 |N L(s,v—320)L(s,v¥20)L(s v®/?0)
d 0| L(sv¥20)L(s,vY20)L(s v¥/?0)L(s,v¥?0)
a N3 L(s,v1/20)L(s, v1/?&y0)
v P v2g vi280, | N L(s,v—Y20)L(s,v¥20)L(s, v¥?&0)
c| v¥2&a, v 0 | N, L(s,v-Y2&0)L(s,v1/20)L(s, vY/2&y0)
d 0 | L(s,vY20)L(s,v Y2&0)L(s,vY/20)L(s, vV/2&y0)
a N3 L(s,v¥/20)2
vi | P vi/2g, vi/2g, Ns L(s,v1/20)2
c| v¥g vg |N L(s,v_120)L(s v1/?0)?
d 0 L(s,v—Y20)2L(s,v¥%0)?

Table 2. Local parameters.

There is one case &findistinguishability in Table 2, namely, the two tempered representations
1(SvY20) and 1(T,v-%20) (Vla and VIb) constitute a 2-elemehtpacket. Regarding the
representatiod([&o, v&o],v—1/20) of type Va, by Pr], Theorem 7.1, there should exist a super-
cuspidal (and non-generic) representatiorG& 4, F) with the same local parametéo, Ng).

This supercuspidal representation should befifaeeype representation considered KHS].

1.3. Iwahori-spherical representations.
Consider the Dynkin diagram of the affine Weyl gratip

————®
S Sl 7

We are going to realize the three generasgrs:, s, for the affine Weyl group as the matrices

(7)
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The elements; ands, generate the usual 8-element Weyl grdvipConsider further the element

1 1

1 1
n= 991 = c GSf4,F). (8)

Since conjugation by this matrix corresponds to classical Atkin-Lehner involutions, weg call
also theAtkin-Lehner elemeniNote that

nson '=s, nsin t=s, nsn'=s,
i.e., n induces the non-trivial automorphism of the Dynkin diagram. phehoric subgroups
Ps correspond to proper subs&sf {sy,s1,}, the correspondence being thgt= Lwe(s W1,
wherel is the lwahori subgroup. We shall briefly describe each parahoric subgroup and introduce
notations.

e S={s;,5}. This is the standard special maximal compact subg®8jg4,0), which
we also denote biK.

o S={5,51} defines the maximal compact subgrd¥pconsisting of matrices of the block
form (; Pgl). We havePy; = nKn 1.

o S={s,s} defines another maximal compact subgréypof smaller volume. It consists
of all g € GS{4,F) such that

p—l

0
0
0

ge and det(g) € o*. 9

T o o o

0
0
0
p

o T T o

This parahoric subgroup is also called th@amodular group In a classical context
this group appears, for instance, iI®[]. The two groupK and Ry, represent the two
conjugacy classes of maximal compact subgrougs®fi4,F).

e S={s1}. This is the Siegel congruence subgrd¥ronsisting of elements of the block
form (; 7). Itis the inverse image of the Siegel parabolic subgroup under the natural map
K — GS{4,k), wherek = o/p is the residue field.

e S={s}. This is the inverse image of the Klingen parabolic subgroup under the natural
mapK — GS{4,k). We denote it byP..

e S= {5} defines a groupy which is conjugate t& by n. It is not contained irK.

o S= @ defines the lwahori subgroup which we denotd bit consists of all matrices that
are upper triangular mag

Let x1, X2, 0 beunramifiedcharacters oF* and consider the representatignx x» x g in its
standard realizatiok'. Table 3 further below lists the dimension of the space of fixed vectors
under each parahoric subgroup in each irreducible constituexi »fy> x 0. Since some of
these groups are conjugate we only have to con¥d&,, P, P> andl.

We shall explain how the dimension information in this table was obtained, starting with
type | representations. These are full induced representations, so the dimensloRs, fiér and
K are obtained by counting Weyl group elements. AsRgrinvariant vectors it is not hard to
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prove that é-invariant functionf in the standard model fgy1 x x2 x 0 is Pog-invariant if and
only if

f(ss1) = xo(w)q Hf(s1) and  f(si51) = x(@)q 2 (1). (10)

Thus we get dimension 2 for th@y-invariant vectors. These arguments hold for every full
induced representation, irreducible or not. The rest comes down to determining how these di-
mensions are distributed amongst the irreducible constituents. The dimensions for llb and Ilib
can also be determined by counting Weyl group elements. Subtracting from the dimensions for
the full induced representations, we get the numbers for lla and llla. For the other representa-
tions we observe the tables (2), (3) and (4), which tell us how the full induced representation
decomposes. What we need is the information for qurepresentation in each table, and the
rest will follow formally. As for type IV, the dimensions farlgsys are 1 for each parahoric
subgroup, and the rest follows. The hardest cases are V and VI, where additional work needs
to be done. But this work was carried out in the paggeh4, where the dimensions for the
Saito-Kurokawa representations Vb,c and VIb,c were determined.

The signs under some of the entries denote Atkin-Lehner eigenvalues, to be explained fur-
ther below. The next-to-last column gives the signs defined-factors, see also below. The
numbers in bold face indicate newforms, to be defined in sections 2.2 and 2.3. The last column
contains the exponent of the conductor of the local parameter (as listed in Table 2).

Atkin-Lehner eigenvalues.

The parahoric subgroups normalized by the Atkin-Lehner elemédgaée (8)) are precisely
the “symmetric” group$, P. andPy,. Therefore, ifH denotes one of these groups, thgacts
on the space dfl-invariant vectors, for any representationV) of GS{4,F). Let us assume in
addition thatrr has trivial central character. Therin) acts as an involution, becaugé = w.
We call these operatorstkin-Lehner involutionsThey split the spacé! of H-invariant vectors
into +-1-eigenspaceg! andVvH. The plus and minus signs under the dimensions of the spaces
VH in Table 3 indicate how these spaces split into Atkin-Lehner eigenspaces (provided the central
character is trivial). The signs listed in Table 3 are correct if one assumes that

e in Group II, where the central character($o?, the charactex o is trivial.
e in Groups IV, V and VI, where the central characteo? the characteo itself is trivial.

If these assumptions are not met, then one has to interchange the plus and minus signs in Table 3
to get the correct dimensions.

Now we shall explain how the information on Atkin-Lehner eigenvalues in Table 3 can be
obtained. In a full induced representation, the distribution of the signs is as given in the type
| row. This follows from direct computations in the standard induced model. If the induced
representation is reducible, we have to see how these signs are distributed amongst irreducible
constituents, for which we observe the tables (2), (3) and (4). The additional information we
require comes from the trivial representation in case IV, and from the Saito-Kurokawa repre-
sentations in cases V and VI. As for the latter, the necessary computations were carried out in
[Sch4.

e-factors.
Let g(s, 11, ) be the locak-factor attached to an irreducible representatioof GS4,F)
and an additive charactédr (and the standard representation of thgroup). Here we mean the
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’ ‘ ‘ representation ‘ K ‘ P2 ‘ P, ‘ Py ‘ | ‘ £ ‘ a‘
I X1XX2x0o (irreducible) | 1| 2 [ 4] 4 8 1 0
T R
" a XSbL(Z) X o 0 1. 2 1— +_4__ —(O'X)((D) 1
b XlGL(Z) X O 1 1 2 3 4 1 0
+ ++— | -+
a| X X 0Slsy) 0| 0|1 2 4 1 2
i +— | -
b XX GlGSF(Z) 1 2 3 2 4 0
+— = |
a | O0Stgspa) 0ojo0|0| O 1 —o(w) |3
b | L((v?,v-'oStgsy2)) olo|1]| 2 3 1 2
v +-— ++—
¢ | L((v¥/?Stgi(p),v-¥%0)) o 1]2] 1] 3 —o(mw) |1
d GlGSF(4) 1 1 1 1 1 1 0
+ + +
a | 8([&,véol,v-*/?0) ojoj1] 0| 2 -1 |2
b | L((vY/2&S v 12g o(w
v ((v=&oStaL(z) Jojop1p1p 1) 2 (@) |1
¢ |L((vY2&SteL &ovY20)) |0 1 | 1| 1 | 2 —o(w) |1
d | L((v&o, & x v Y20)) 1{oj1] 2| 2 1 0
a| 1(SvY2q) ojoj1] 1] 3 1 2
b | 7(T,vY20) o[0 |0 1 1 1 2
VI + T
¢ | L((vM?StgL(), v Y20)) 0O 1]1]| 0 1 —o(w) |1
d | L((v,1e: x v-Y2g)) 1112 2 3 1 0
+ +— ++—

Table 3. Invariant vectors.

local factors defined via the local Langlands correspondence and representations of the Weil-
Deligne group, but these factors should coincide with the ones defindt5i@ Yia local zeta
integrals. We have the general relation

(s, Y)e(l—s TY) = wn(-1), (11)

whereit is the contragredient representation anglis the central character af. It is known
that if wy is trivial, thenm~ 7. In this case it follows from (11) that(1/2, m, ) € {+1}. By
general properties of-factors, this sign is independent of the choiceyof Hence there is a
sign&(1/2, m) canonicallyattached to any irreducible, admissible representatid?G$ ({4, F )
(provided we know the local Langlands correspondence).

If Tis not square integrable, then the image of the local paraiter GS4,C) lies in
a Levi component of a proper parabolic subgroup ancetfector is easy to determine since it
factorizes. For example, if = x1 x X2 x o is irreducible, then
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Provided all the characters are unramified gng.0? = 1, it follows thate(1/2, 1) = 1. Using
the information from Table 2 it is thus easy to compute the signs for most of the representations
in our list. For the square-integrable representation of type Va, note that the image of the local
parameter is not contained in a proper Levi subgrou@®f{4,C). It is however contained in a
Levi subgroup of5L(4,C), and hence the-factor still factorizes. The only representation in our
list where this is not the case is the Steinberg representation (and its unramified quadratic twist).
But there we can use the formula in section (4.1.6)fal,[which tells us that the sign isg(m).

In the next-to-last column of Table 3 we have listed the signs definegifagtors under
the assumption that the central character is trivial and all inducing characters are unramified.
The numbei in the last column contains the exponent of the conductor of the local parameter
(this number is denoted (V) in section (4.1.6) ofTal). Its relevance is that the-factor is a
constant multiple of—2s.

In the next section we will defineewformswith respect to a fixed parahoric subgrdeplf
a representation contains such newforms with respet tee have indicated this in Table 3 by
writing the corresponding dimension in bold face. For example, Illa contains a one-dimensional
space of newforms with respect®p, and a two-dimensional space of newforms with respect to
P1. Note that if there are newforms with respecBo(resp. P;2), then there are also newforms
with respect to the conjugate groBp (resp.Py1) which are not listed in the table.

For irreducible representations®BGL(2, F) the sign defined by the-factor coincides with
the eigenvalue of the Atkin-Lehner involution on the one-dimensional space of local newforms;
see section 3.2 ofch1. We can observe a similar phenomenon in the present situation. We have
distinguished 17 types of representations supported in the minimal parabolic subgroup. Types
Vla and VIb constitute ah-packet, so let us instead talk about 16 typels-pfickets that contain
Iwahori-invariant vectors. Then we observe:

ProOPOSITION1.3.1. The following are equivalent for aln-packetrr of PGSg4, F) con-
taining lwahori-fixed vectors.

i) The exponerda of the conductor of the-packetrris even.
i) Thee-factor does not change when the representations ame twisted withég, the non-
trivial unramified quadratic character df*.
iii) 7T contains newforms with respect to one of the “non-symmetric” gratps P..
iv) The trace of the Atkin-Lehner involution on the full space of newforids is

If these conditions are nofulfilled, then every local newform irr is an eigenvector for the
Atkin-Lehner involution, and the eigenvalue coincides witty2, r).

PrROOF.  Everything follows by examining Table 3. The equivalence of i) and ii) also
follows from the definitions o& ande(s, ). O

2. Local newforms.

We shall now define local old- and newforms for the Iwahori-spherical representations. Our
main tool is the Iwahori-Hecke algebrd. Once we have chosen a suitable basis ofghe
dimensional space of lwahori-fixed vectors of a full induced representation, we can compute the
action of.# explicitly. Then all our results follow essentially from elementary linear algebra.
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2.1. The lwahori-Hecke algebra.

The Iwahori-Hecke algebra? of GSf4,F) is the convolution algebra of left and right
I-invariant functions orGS[4,F). It acts on the space dfinvariant vectors/' of any irre-
ducible, admissible representatiomn,V) of GS4,F). If V! £ 0, then this finite-dimensional
representation determines the isomorphism clags sée Bo2].

The structure of7 is as follows. The identity elememtis the characteristic function of
Forj =0,1,2letg be the characteristic function &1 (see (7)). Ifn is as in (8), we denote the
characteristic function ofjl again byn. Then.# is generated by, €1, e, andn, and we have
the following relations.

e &€= (q—1)g+qe fori=0,1,2
e nepn =6, nenl=e, nenl=e.
o E1E0E] = E160E16), E1EE16) = &E168], €& = &EY.

All of this follows from general structure theory. There are other relations, but we will not need
them.

Let x1, X2, 0 be unramified characters Bf*, and letV be the standard space of the induced
representatiory; x x2 x o. We shall now explicitly compute the action of onV'. This 8-
dimensional space has the basis w € W, where f, is the uniqud -invariant function with
fw(w) =1 andfy (W) =0forw € W, w # w. Itis convenient to order the basis as follows:

fe, f1, T2, fa1r, fi21, f1o, fr21,  fo1o (12)

where we have abbreviated = fs; and so on. Having fixed this basis, the operat®e;, e
andn onV' becomeB x 8-matrices. These are given in the following lemma.

LEMMA 2.1.1. Let notations be as above. With respect to the bd¥of V', the action
of the elements; ande; onV' is given by the following matrices.

0 q 00 g 00 O 0 0
1 q-1 00 0O 00 q 0 0
0 q 10 9g-1 00 O 0 0
1 g-1 00 0 00 O 0 g
TTl = TT =
(e1) 0 q ) TI(&) 00 0 0O O q O
1 g-1 01 0 0 0g-1 0 0
0 q 00 0 01 0 g-1 0
1 g-1 00 0 10 0 0 g-1
The action ofj is given by
Vo2
yq3/2
Byql/Z
Byql/z
T[(r’): —1/2
ayq
ayq*l/z
aByq—B/Z

GB yq—3/’2
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The action ofy is given by the matrixt(n)m(ep) i(n) L.

PROOF. A standard system of representativesifat is given by

S, Xe 0/pa (13)

and similarly forls,l. Using these representatives and the identity

=) e

our claims follow by straightforward computations which are left to the reader. O

Let us introduce a partial ordering on the set of standard parahoric subgroups as follows:

NS

Groups on a higher level have a bigger volume. On top we have the special maximal compact
subgroupK = Py, and itsn-conjugate. For parahoric subgrouRandR let us writeR' - Rif
there is an arrow fron® to R.

ProOPOSITION2.1.2. Let (11,V) be an lwahori-spherical unitary representation of
GSH4,F). Let(,) be aGS{4,F)-invariant scalar product olv. Then the elementy, e, e,
of the Iwahori-Hecke algebra act as self-adjoint operatora/énlif 1rhas central charactedy,
then we further have

(r(n)v,w) = wr(@)(v, i(n)w) forall v,weV. (16)

PROOF. The last assertion is obvious singé = wl. As for e;, let us abbreviate the
4 x 4-matrix in (13) byn(x). Then, since the scalar producsinvariant,

(me)v,w) = 3 (m(n(X¥)s)v,w) = 3 (v, m(sin(=x))W).

Xeo/p Xeo/p

If wis l-invariant, we can eliminate th& —x) in the last expression. If is alsol-invariant, we
can insert arr(n(—x)) in front of thev. We can then use thi€-invariance again and arrive at
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3 (v, m(n(x)s1)w) = (v, 11(e1)w). The proof fore; is similar. The assertion faa follows using
nexn—1=e and (16). O

REMARK 2.1.3. Even if the induced representation x % x g is not unitary, it will be
useful to consider thK-invariant scalar product

/ f1(9)T2(g) dg (17)
K

on the standard space of this representation. If the measure is normalized tovgluene 1,
then the matrix of this scalar product restricted to the spaterfariant vectors with respect to
the basis (12) isliag(1, g, 9, ¢?,¢%,¢%,q%, %) (the exponents are the lengths of the Wey! group
elements). The argument in the proof of Proposition 2.1.2 showsgtlaaide, act as self-adjoint
operators with respect to this scalar product.

Special elements in the lwahori-Hecke algebra argtbgection operators

1
ds= char(R 18
S VOI(PS) I( S)a ( )
where “char” stands for characteristic function. H&® a subset of so,51,%} andPs is the
corresponding subgroup. The measure is normalized sd thed volume 1. In particular, we
havedg = chatl) = eandd, = (1/(q+1))(e+#&) fori = 0,1,2. Since the projection operators
satisfyd2 = ds, we have

V! =im(m(ds)) @ ker(1(ds)) (19)

for any representatio(vt,V), wherer(ds) is considered as an endomorphismvéf Thus the
space ofPs-fixed vectorsv™ = im(r(ds)) always has a natural complementvih. It follows
from Proposition 2.1.2 that ift is aunitary representation, theker(r(ds)) coincides with the
orthogonalcomplement o¥/Ps in V',

2.2. Newforms forl.

Let (1,V) be an irreducible, admissible representatio®&d4,F). For any of the para-
horic subgroup® of GS{{4, F) we shall give a separate definition of “local newform with respect
to R’. The idea is that if there is a “bigger” parahoric subgrdRisuch that/R # 0, then cer-
tain elements o/ R will be “old” since they can be obtained in a simple way frofR. More
precisely, we shall do the following.

e WhenevelR -~ R (see diagram (15)), we shall define natural linear operators\‘/rgrm
VR If R O R, then one such operator is the identity.

e The image of all these operators for &1~ R is by definition the space afldforms
with respect taR. If mTis unitary, we can define the spacengwformsas the orthogonal
complement of the space of oldforms.

e By Proposition 2.1.2, newforms can also be characterized as the kernel of certain linear
operators. This leads to a definition of newforms that does not require unitarity.

o We shall prove that if there exists &with R = RandVR = 0, thenVR consists entirely
of oldforms. Otherwise, by definitioV,R consists entirely of newforms.
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e If VR consists of newforms, then its dimensionlior 2. The second case can only
happen foR = P, and in this case, ift has trivial central character, there are two linearly
independent newforms that can be distinguished by their Atkin-Lehner eigenvalue.

As an illustration, let us define local newforms with respect to the lwahori subdro8imcel

is minimal parahoric, it is natural to consider kinvariant vector “old” if it is invariant under
some bigger parahoric subgroup. In other words, the subsflageV't +V'2 of V! constitutes

the space of oldforms, andfis a unitary representation, we define its orthogonal complement
as the space of newforms. In this case, by (19) and the remarks thereafter,

V! = (Vo + V't 4 v'2) g (ker(mi(do)) Nker(m(dy)) Nker(mi(dy))) (20)

(orthogonal decomposition). Thus, newforms with respettdan be characterized as the com-
mon kernel of the projection operataig d;,d»>. The following proposition shows that this leads
to a very restricted set of representations containing local newforms with respect to

PrROPOSITION2.2.1. The following three conditions are equivalent for an irreducible,
admissible representatiofir,V) of GS{4,F).

i) mris an unramified twist of the Steinberg representation.
ii) There exists a non-zemoc V' such that

do(V) = d]_(V) = dz(v) =0.
i) VP 4+VP VP s a proper subspace df'.

PrROOF.  For unitary representations, ii) and iii) are equivalent by (20). In general it can
be checked case by case using Table 3. Statement ii) says that the lwahori-Hecke algebra acts by
the sign charactersending eacle, to —1. It is well known that this characterizes the Steinberg
representation, se®2] (it also follows by examining Table 3). O

The proposition says that it is only the unramified twists of the Steinberg representation
that admitlocal newformswith respect td. If we restrict to representations with trivial central
character, then there are precisely two such representa8@iigys) and §o Stgsy4), Whereéo
is the non-trivial unramified quadratic character. These two representations can be distinguished
by the eigenvalue of the Atkin-Lehner involution on the local newform. Hence the situation
is completely analogous t8L(2). We note that condition ii) in Proposition 2.2.1 leads to a
characterization of classical newforms in terms of Fourier coefficients, see section 3.3.

2.3. Newforms forPq, P> and Pg,.

Let (11,V) be an irreducible, admissible representatios8f{4,F). We consider the fol-
lowing natural linear operators between spaces of vectors fixed under parahoric subgroups. Their
images will define oldforms.

e WhenevelR O R, we have an inclusionR c VR,

e There is a natural operator frowX to V™2 provided by the elemembe; ey of the lwahori-
Hecke algebra. Note that this element commutes withSymmetrically, we have the
operatorese; e from VP to VP,

e Since the elemerg; ee; commutes withey, it provides a natural operator froufb2 to
VP2, Similarly, e;ege; defines an operatétfoz — VP,
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e FromVX to VP2 we have the “trace operatod. Similarly we haved, : V1 — VP,

Now if R is any of the standard parahoric subgroups, we define the spadefofms (VR)'d

with respect toR as the space spanned by the image of all these operators fr-alR (see
diagram (15)). Founitary representations, the spacenaiwforms(VR)"®" with respect taR is

defined as the orthogonal complement\s®)°!d within VR. By Proposition 2.1.2, this orthogo-

nal complement can be described as the intersection of the kernels of the operators given in the
last column of table (21) below. It is this description as a common kernel that we take as our
definitionof (VR)"®¥ for an arbitrary representation.

THEOREM2.3.1. Let(m, V) be an irreducible, admissible representation@bf4,F).
Let R be one of the parahoric subgroupsPy, P, or Py,. We define subspacggR)?d and
(VR)"eW of the spaca&/R as in the following table.

’ R ‘ (VRyold — (VR)NeW — common kernel oﬁ
I \VACNRVI RV do, dq, da
PL | VP epe VP01 4+ VK + eperegVX | dos, doreserer, diz, dizeneren (21)
P VK VP24 erere VP2 di2, do2, do2€162€1
Po2 daV P14 doV K doada, d12do

Then exactly one of the following alternatives is true.

i) There exists a parahoric subgro@such thatR = 0 and such thaR - R (see diagram
(15)). In this case/R = (VR)?d and (VR)"ew = .
i)y There exists no parahoric subgro&as in i). In this cas&/ R = (VR)"®Wand (VR)ld = 0

PrRoOF. The lwahori subgroup has already been treated in the previous section. We shall
deal withR = Py, the other cases being similar. We may realizas a subrepresentation of an
induced representatign x x2 x 0. Let us definen, B,y € C* by

a= Xl(w)’ B= XZ(ID), y= G(W) (22)

Using the basis (12), we identify the spacd -@fivariant vectors irxy x x» x o with C8. TheK-
spherical vector is given byy = (1,1,1,1,1,1,1,1). Using Lemma 2.1.1, it is easy to compute
the action of the lwahori-Hecke algebra uh The result is thatV™)°!d is spanned by the first
four columns of the following matrix.

1 ?Ba-D+a(d+B)(a—1)+q)/aB yo¥2 aByq®/? 0 0 0 -g
1 Ba-D+adl+B)(a—1)+q)/apB yo®/2 aByq®/? 0 0 0 1
1 d(a(1+B)(a—1)+Ba)/a Byq'/? ayqY2(B(q—1)+q) 0 0 —-gqg O
1 d(a(1+B)(a—1)+Ba)/a ByqY/? ayqY2(B(q—1)+q) 0o 0 1 o0
1 a(@—1+qg8™ 1) ayq /2 ya/2(a(1+B)(q— 1)+ Ba) o 1 o0 o0
1 a(@—1+qg8™1) ayq/? ya/2(a(1+ B)(q— 1)+ Ba) 0 —-g 0 O
1 ap aByq?  yg*((@aB+a+B)a-)+9 1 0 0 O
1 ap aByq¥?  yg'2((aB+a+B)g-1)+9) -g O 0 O



276 R. SCHMIDT

The last four columns span the intersection of the kerneld/bmf the operators defining
(VPHnew - All of this is easily computed using Lemma 2.1.1 and a computer algebra program.
We see that the intersection 6f™)"®" and (V)0 is always trivial. In fact, we observe that
these two spaces acethogonalwith respect to the scalar product introduced in Remark 2.1.3.
The determinant of the above matrix is givendy*B—1y2q1(1+q)*(a — q)%(B — q)(aB —

g)(a — Bqg). This determinant vanishes only at points of reducibility, proving our assertion in
case thaji x x2 x o is irreducible. Each of the remaining cases is also easily checked.J

REMARKS 2.3.2.

i) ObservingthagKn—1 = Py, andnP.n—1 = Ry, we have similar statements for the groups
Po1 andPy which we shall not state explicitly.

i) Fixing a parahoric subgroup, the theorem says that a given representation has either
newforms or oldforms with respect R) or none of them, but never both.

iii) A given representation may have newforms for two different groups. For example, repre-
sentations of type Ila have newforms for b&thandPy,, and representations of type llla
have newforms for botR; andP..

iv) Our definition of old- and newforms fdR), coincides with the one given inl2], §1,
since the “trace operators” considered there coincide with our opedatargdd,.

v) As mentioned in the proof of Theorem 2.3(¥,"1)°!d and (V™ )"e" are orthogonal with
respect to the scalar product introduced in Remark 2.1.3. This is also true for the groups
I, P, andPy,, as explicit calculations show.

REMARK 2.3.3. We consider the analogous situation for the grdsip(2,F). Here
we have the standard maximal compact subgrdup P, := GL(2,0) and its conjugaté, :=
nPn—1, wheren = (w l). The Iwahori subgroup is= PyN Py. Given a representatigfi, V),
the subspac®¥™ 4 VP of V! constitutes the space of oldforms with respect.tdn a unitary
representation its orthogonal complement can be described as the common kdgnelest ey
andd; = e+e. In a classical language, a modular fofne S¢(Mo(N)) is a newform if and only

if for eachp|N both f andn,f are annihilated by the trace operatopateren; is the classical
Atkin-Lehner involution atp.

REMARK 2.3.4. Instead of the operatad : VP — VP which we considered when defin-
ing oldforms forPy, we can as well takg : VK — VL. Similarly, instead ofsere; : V1 — VP
we may takexeieon : VK — VP, Sincelsysisl /I ~ Piss15P1 /Py, it is easy to see that this
latter operator is given by

meeen)\Vo= ) T Vo

MK, XE0 /p

— S 1(g) Vo (voe V). (23)
ger (Pt )PP

We see from (23) thad,e eon corresponds to a Hecke operator which is sometimes used in the
classical theory of Siegel modular forms. For our global applications we shall therefore list in
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the following table the eigenvalues efe;e,n) onV™: for those representations that contain new-
forms. We shall also list the eigenvalues of the operdids, on (V)" and the eigenvalues
of do2d; on (VP2)"eW. \When represented &@sx 8-matrices, the two operatodido, anddyzd;
turn out to have a surprisingly simple description (which we shall not state explicitly).

’ ‘ exerepn onVh ‘ (14 0)2d1do2 onVP: (1+q)2dg2d; onV P2
lla q(x0)(w) q—z(crl/z —a)(qY2—a™h) q—z(Q‘“Z —a)(gY2—a™)
q+1 q+1

Ma | q(xo)(w), go(w) 0,0 —

Vb | ¢?0(w), o(w) 0,0 —

Ve qo(w) —(q-1)? —(q-1)?

Vb —qo(w) 2q 2q

Ve qo(m) 2q 2q

Via qo(w) 0 —

Vib qo(w) —

Vic — — 0

(24)

The number in the first row of the table abbreviatggw). Sincea? is not allowed to take

the valuesy™ or g*3, we can see from the last column that one can distinguish newforms for
Py2 by their eigenvalues undég,d; and under the Atkin-Lehner involution. Moreover, knowing
nothing more than these two numbers, one can write down the carfector. Similarly, for

a newform with respect tB;, knowledge of the eigenvalues undee;e;n andd;dy, allows to
determine thd_-packet and thé&-factor (but we cannot distinguish types Vla and VIb). These
facts will be exploited in our global applications, see Theorem 3.3.9.

We note that, given a representation in the above list with trivial central character, one can
tell if the representation is of type Illa or not by knowing the eigenvalues us@ge,n. This is
because all the other representations have eigenvaliiesq or +¢2, while these values do not
occur for llla (we haveyo? = 1 andx ¢ {1,v*2}). This observation will be used in the proof
of Theorem 3.3.7.

3. Global newforms.

We shall now apply the previously obtained local results to classical Siegel modular forms
of degree2. Assuming the existence of a suitalldunction theory, we will first prove a strong
multiplicity one result for certain cusp forms with Iwahori-spherical local components. After
recalling several basic facts on the relation between classical modular forms and automorphic
representations adS{4), we will define classical newforms for various congruence subgroups
of square-free level. Our local and global representation-theoretic results will yield a number of
theorems on the newforms thus defined.
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3.1. Strong multiplicity one results.

In this section we shall prove results of the following kind. Ilet= @7 , andme = ®71m , be
two cuspidal automorphic representation&S& 4, A) of a certain kind. Assume that , ~ 1% ,,
for almost allv. Thenmg ~ . It is presently not known in generalif, ~ & impliesm = ™ as
spaces of automorphic forms, but if this weak multiplicity one is true, then our results are special
cases of what is called strong multiplicity one.

LEmmMA 3.1.1. LetShbe a finite set. For eache Slet g; be a positive power of some
prime numberp;. We assume thas # p; for i # j. LetR € C(X) be rational functions such

that
I_LRi (@) =1 forall se C. (25)
le

Then all theR; are constant.
PrOOF. Leftto the reader. O

LEMMA 3.1.2. LetF be a non-archimedean local field, and gtand & be irreducible,
unitary representations d6Sg4,F) with non-zero lwahori-fixed vectors. Assume that there
existsc € C* and an integem such that

L(S, Tl'l)
L(s )

L(1—s )

= asr)

(26)

whereL (s, 1) are the localL-factors as listed in Table 2. Assume also tha@&nd » have the
same central character. Them and & are constituents of the same induced representation
(from an unramified character of the Borel subgrpup

PrROOF. This can be checked case by case, going through all the possibilities &rd
% that are listed in Table 2. Note that we can count out representations of type 1Vb and IVc,
since by BT], Theorem 4.4, they are not unitary. As an example we will treat the case that both
representations are of type |, where we have to showrthat 7o.

By our hypothesis that both representations have non-trivial lwahori-fixed vectors, all the
characters used for the induction are unramified. Hence them ddiey; € C* such that

L(s7) = (1— a1 - iy ) (1 Bya %) (1-aifiyg ) "

It follows from (26) that there is an equality of rational functions

(1—1pX) (1= a26X) (1= BoyoX) (1 — a2B)5X)
(1-yX)(1— a1y X)(1- I31V1X)(1 a1fiyiX)
m(1— Vzl 71X Hl-a g XY (A-B g X (1-ay 1Byt 71X71)
(1- X H(1—atyy lg XN (1-Btyy 71 XD (1-a Bty g XY

Eliminating denominators and comparing zeros on both sides, we find that

(
(

cxm

{yi,a1v1, Biya, a1Bayi, ¥2Q, a2y20, Bz2Y20, Q2B2-0}
= {y2, @2y, B2Yo, 022V, V10, a1Y10, B1y1Q, A1PB1Y10},
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where these are multisets, meaning elements are allowed to appear more than once. First con-
sider the tempered case, meaning all the constants have absolute value 1 (see Table 1). Then
necessarily

v, auna, Biva, aaBivi} = {1, 2¥s, BaYe, Q22Y5}-

Again considering several cases, one can easily check that this condition, together with the equal-
ity a1B1Y7 = a232y5, which is equivalent to the equality of the central characters, imply 7e.
In the non-tempered case one argues similarly, but uses estimates on the absolute values of the
inducing characters taken fror8T], Theorem 4.4 (this is where the unitarity condition is used).

O

REMARK 3.1.3. The statement of the lemma would be false without the hypothesis on
the central character, as the following examples showég.be a non-trivial quadratic character
of F*.

e The representationgy x x x o and & x éox x o, if irreducible, have the samk-
functions, but are not isomorphic.

e 70 is a constituent ofy x v x v—1/2g (type Ill) and 7 is a constituent of/& x &y x
v—Y2g (type V).

In the following we shall utilize the spih-function for cuspidal automorphic representations of
GSH4) as a global tool. Any-function theory that has the following properties would suffice.

3.1.4 L-Function Theory for GSp(4).

i) To every cuspidal automorphic representatimof PGS4,A) is associated a globdl-
functionL(s, 1) and a globale-factor (s, 1), both defined as Euler products, such that
L(s, m) has meromorphic continuation to all € and such that a functional equation

L(s,m) =¢(s,mL(1—sm)

of the standard kind holds.

ii) For lwahori-spherical representations, the local factdrgs, 11,) coincide with the spin
local factors as given in Tabl2, and the factorg, (s, 1, {,) coincide with thee-factors
as given in Tabl&.

Of course such ah-function theory is predicted by general conjectures over any number
field. For our classical applications we shall only need it d@erurthermore, we can restrict
to the archimedean component being a lowest weight representation with scalar niirtiypal
(a discrete series representation if the weight i8). All we need to know about-factors is in
fact that they are of the forrop™s with a constant € C* and an integem. Unfortunately, none
of the current results on the spinfunction (see o], [PS3 or [An1]) fully serves our needs;
hence, in what follows, we have to make assumptions.

THEOREM3.1.5. Letrm = ®m, andm = @78, be two cuspidal automorphic represen-
tations ofGS4,A), whereA is the ring of adeles of some number fi€ldLet Sbe a finite set
of finite places ofF. Assume the following holds

i) Different elements dddivide different places dQ.
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i) m,~rm,foreachv¢ S
iif) For eachv e S, bothm , and s, possess non-trivial lwahori-invariant vectors.
iv) The central characters af; and 1@ coincide.

Assume also that aix-function theory as i8.1.4 exists? Then, for eactv € S, the representa-
tionsm , andp, are constituents of the same induced representation.

ProoF. LetL(s, 1) =[]yLv(s 75) be the global-function of 5. By our L-function
theory, we have meromorphic continuation to al®énd a functional equation

L(s,7%) = &(s, 7)L(1~s 7).

Herefj is the contragredient of, ande(s, 75) = [, &v(S, %, Y ) is the globak-factor. Dividing
the two functional equations and observing hypothesis ii), we obtain a relation

L(Sa nl-,V) L(l =S, 7’:[2.,V) E(Sa 7T2.,V7 LpV)
106 72 LT=5 70 £(5 1m0 )

Note that each quotient on the left side is a rational functiogiinvhereq, is the number of
elements of the residue field &f. Hypothesis i) and Lemma 3.1.1 therefore imply that each
factor in the product is constant. This shows that for eaelSthere is a relation

=1

L(S, nl,v) - mvsL(lf S, 7AT17V)

Lise,) ' L(1-sTBy) (27)

with a constant, € C* and an integem,. Sincer is cuspidal, each of the local representations
is unitary. Furthermore, the central characterszaf and s, coincide by hypothesis. The result
therefore follows from Lemma 3.1.2. O

COROLLARY 3.1.6. Letrm = ®mm p and e = ®7b p be two cuspidal automorphic rep-
resentations o0PGS4,A), whereA is the ring of adeles 0Q. LetSbe a finite set of prime
numbers such that

i) ™ p~TB,foreachp¢ S
ii) Foreachpe S, bothrm , and s , are generic representations with non-trivial lwahori-
invariant vectors.

Assume also that ao-function theory as ir8.1.4exists. Thenq ~ 1.

PROOF. Hypothesis i) of Theorem 3.1.5 is fulfilled because we are QueBoth represen-
tations are assumed to have trivial central character, so hypothesis iv) of Theorem 3.1.5 is also
fulfilled. Hence we can apply this Theorem and obtain that for geel$the representatiors
andrp  are constituents of the same induced representation. But each induced representation
has only one generic constituent, so necessaiily~ 1o p. O

COROLLARY 3.1.7. Letrm = ®m p and e = ®7b p be two cuspidal automorphic rep-
resentations o0PGS[4,A), whereA is the ring of adeles 0Q. Let Sbe a finite set of prime
numbers such that

1For this theorem and its corollaries we do not need the assertion affactors in 3.1.4 ii).



Iwahori-spherical representations &Sp4) and Siegel modular forms of degree 2 with square-free leve281

i) ™ p~TB,foreachp¢ S
ii) Foreachp € S, the representatiom ,, is K-spherical if and only ifrp , is K-spherical.
iii) For eachp e Ssuch thatm and 75 are notK-spherical, the representation p (i = 1,2)
contains a non-zero vectay , invariant under the local paramodular grou, at p.
iv) For eachp € Ssuch thatrg and 7 are notK-spherical, the vectors; , and v, , are
eigenvectors for the Atkin-Lehner involutigg with the same eigenvalue.

Assume also that ao-function theory as ir8.1.4exists. Thenq ~ 7b.

PROOF. The hypotheses of Theorem 3.1.5 are fulfilled, /89 and s , are constituents
of the same induced representation. But a look at Table 3 shows that two representations with
Pyo-invariant vectors in the same group can be distinguished by their Atkin-Lehner eigenvalues.
O

3.2. Classical modular forms.

This section is to collect several definitions and conventions on classical Siegel modular
forms. We shall only treat holomorphic scalar-valued modular forms, but since all our ma-
nipulations will be done at finite places, everything we are saying in the following generalizes
immediately to vector-valued modular forms. Also, for the sake of simplicity, we refrain from
considering modular forms with character (these could be considered except when we are talking
about Atkin-Lehner involutions).

When speaking about classical modular forms, it is more convenient to realize symplectic
groups using the symplectic forr@_1 1), which we shall do from now on. Fd¥ a positive
integer, global analogues of the local parahoric subgroups are defined as follows (notations as in

[HID).

Z N zZ 2z
Z zZ zZ Z
BN :=Sp4.2n| & & 7 7 |°
NZ NZ Nz Z
Z Z Z 2Z
_ z z z 2z
VN =SEAZN| 0 o 7 7 |
NZ Nz Z Z
Z N2 Z Z
_ z z z 2z
U(N)=Sp4z)n| 5 & 5 7 |
NZ NZ Nz Z
Z Nz Zz Y4
_ Z Z Z N1z

NZ NZ Nz 2Z
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Z Nz z 1z
Z Z Z N'z
zZ Nz z z
NZ NZ Nz Z

Uoz(N) = Sq4, Q) N

The grougJ;(N) is usually denotediy(N). The groudJoz(N) is theparamodular groupf level
N and corresponds to the local maximal compact subgRapipNote that

nnU2(N) gt = Uo(N), where nn = (28)

N

while B(N), U1(N) andUp,(N) are normalized byy. If I’ is one of the above groups, we define
S(r’) to be the space of Siegel modular forms of de@raad weighk with respect to the group

['’. This space is a hermitian vector space with respect to the Petersson scalar product. In this
paper we shall not consider non-cuspidal modular forms.

Generalities on lifting modular forms.

Let G = GSy4). For each prime numbaey let K, be an open compact subgroup®@fzZ )
such that the multiplier maldp, — Z is surjective. Then it follows from strong approximation
for Sp(4) that

G(Aq) = G(Q)G(R) K, Kt = [ K, (29)

p<o

whereG(R)™ is the group of elements &(R) with positive multiplier. Now letf € S(I"’) be a
modular form for a subgroup’. We assume that

r'=G(Q) NG(R)Ks, Ki = 7 Kp.

p<e

with local subgroup&, for which the above hypothesis on the multiplier map holds. We define
a function®@s : G(Aq) — C as follows. By (29), it is possible to write a givenc G(A) as
g = Pg.hwith p € G(Q), g, € G(R)™, h € K;. Then we put

ch(g):)‘(gm)kj(gooal)ikf(gooon' (30)

HereA denotes the multiplier map and= (i i). The symbolj(g.,,!) stands for the usual mod-
ular factor, andZ — g,,(Z) is the action ofG(R)™ on the Siegel upper half platd,. Using the
transformation property of the modular forfn one checks easily tha®; is well-defined. The
factorA (g.,) ensures that

Dt (gz) = D5 (g) forallg e G(A), ze Z(A) ~ A". (31)

Here Z denotes the center db. Since f is a cuspform, the functiom; is an element of
L?(G(Q)\G(A)/Z(A)). Let tbe the automorphic representatiorGifA) generated byps inside
this L2-space. It decomposes into a finite direct sum of irreducible representatieng); 7.
Let us write eaclts as a tensor product of local representations,
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= ® T% p, TG p an irreducible representation G(Qp).
p<e

Sincef is a modular form of weighk, all the archimedean components, are isomorphic to

a representatiom of G(R) that has a lowest weight vector of weigtt k) (it belongs to the
discrete series ik > 3, see AS] for more details). Let us now assume thats a common
eigenfunction for almost all the local (commutative) Hecke algebfgs Then it follows easily
that for all suchp and alli, j we haverg , ~ 1 . In theGL(2)-case we could now conclude by
strong multiplicity one thatt must be irreducible. Unfortunately, strong multiplicity one or even
multiplicity one is currently not available fa8S{4).

But assume now that is a square-free number and that the subgrmbupontainsB(N).
Then eachr  for p|N has non-zero Iwahori-fixed vectors, and we can use the results of section
3.1 to show in several cases that all there globally isomorphic (see the next section). In these
cases we can therefore associate a unique equivalenceglasautomorphic representations
with the modular formf.

Atkin-Lehner involutions.

LetN be an integer anfi’ one of the groupB, U; or Ug,. We shall define the Atkin-Lehner
involutions on the spac&(I"'(N)). For a primep dividing N let p! be the exact power gb
dividing N. Choose a matriy, € Sp(4,Z) such that

Vo = . ! modp/  and y, mod Np~J,

[

A different choice ofy, results in multiplyingup from the left with an element of the principal
congruence subgroup(N). Therefore the action afi, on modular forms for™ (N) is unam-
biguously defined. One can check thgtnormalizes”'(N). Consequently the map — F |up
defines an endomorphism 8f("'(N)), which is an involution since? € p!I" (N). This is the
Atkin-Lehner involutiorat p. We also denote it by — n, f. A straightforward calculation shows
that thesey, on classical modular forms are compatible with the local Atkin-Lehner involutions
of the same name defined in section 1.3. More precisely, we have

Pn,i(g) = Pi(gnp) (32)

for the associated adelic functions, where ffyeon the right is the local element as defined in
(8) at the placep.
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Some trace operators.

We have defined the local projection operatdrsit the end of section 2.1. We will now
introduce analogous operators of the same name on global modular formN. Heet square-
free positive integer and a prime dividingN. Let f € S(B(N)). Then

(di(p)f)(2) = — (flh)(2) (33)
' p+1 heB<N>\<B<NZp—1>mu1<p>> ‘
and
1
(d2(p)F)(2) := il > (flh)(2). (34)

heB(N)\(B(Np~1)NUz(p))

Here | is the usual classical operator. We further heyep) f := ngldz(p) nef, wherenp is

the Atkin-Lehner involution. Note that since the definitiondofp) also depends on the levid|

it should more precisely be denoted 8yN, p). Instead, to ease notation, we will sometimes

also drop thep and simply writed;, hoping thatN and p are clear from the context. It is easily
checked that these operators are compatible with the associated adelic functions in the sense that

Py (pyt = di(P) Ps fori=0,1,2. (35)

On the right side of each equation we have the local operators at theptifned in section
2.1, acting on the adelic function in the obvious way. Let

f(z) = Zc(T)ezm”(Tz) (36)

be the usual Fourier expansion fafwhereT runs over positive definite, half-integral matrices,
and let

z7

f(2) = i (T, 2) 2T i (T Z), 37)

be the Fourier-Jacobi expansionfofHere fy, is a Jacobi form of inder and levelN (meaning
for the subgroufo(N) of SL(2,Z)). Then easy calculations show

(dl(p>f><2>:Zf:(T)ez’"'”“Z) with &T)= 5  cTly)  (38)
yelo(N)\lo(Np~1)

and

(d(p)D)@2) = fn(r, €™ with fin= ) frnlky- (39)
m=1 yefo(N)\lo(Np~t)

In both equationgy(N) andlo(N p~t) mean subgroups &L(2, Z) (not of Sp(4,Z)). In equation
(39), the symboff |y denotes the usual action of an elemenBtf2,Z) on a Jacobi form, as in
[EZ].

In a similar way we can also define operatdgp) (or dij (N, p), or simplyd;j) onS(B(N))
that are compatible with the local operatdrsdefined in (18) and used in section 2.3. We shall
refrain from giving explicit formulas here, but these operators will have some significance for
the newform theory with respect td (N) andUgz(N) in the next section.
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3.3. Classical newforms.

In this section we will use our previous representation-theoretic results to develop a theory
of old- and newforms for Siegel cusp forms of degree 2 with square-free level. We will obtain
different theories for the “minimal” subgro®(N), the Hecke subgroug (N) and the parahoric
subgrougJoz(N).

Newforms for B(N).

Let N be a positive integer, decomposed\as- N3N, with coprimeNz, N,. ThenB(N) C
B(N1) NU1(N2), s0S((B(N1) NU1(Np)) is a subspace & (B(N)). Similarly we have the sub-
spacesS (B(N1) NU2(Nz)) andS¢(B(N1) NUo(N2)). The definition of newforms foB(N) we
shall now give is designed to be compatible with the local definition given in section 2.2. It is
also the same definition as given in the pap#y&]and [HI].

DerINITION 3.3.1. Let N be a square-free positive integer. 3(B(N)) we define the
subspace obldformsS(B(N))°' to be the sum of the spaces

S (B(N1) NUo(N2)) + Sc(B(N1) NU1(N2)) + Sc(B(N1) NU2(N2)),

whereNz, N, run through all positive integers such tH&N, = N, (N;,N>) =1 andN, > 1.
The subspace afewformsS(B(N))"®" is defined as the orthogonal complement of the space
S«(B(N))?insideS(B(N)) with respect to the Petersson scalar product.

Thus, a modular form foB(N) is considered to beld if it is invariant under™’ ( p) for some
p|N and somd™’ defined atp by a parahoric subgroup different from the minimal one.

THEOREM3.3.2. LetN be a square-free positive integer, and ke S(B(N))™Y. We
assume that is an eigenform for the local Hecke algebr##, for almost all primeg. Assuming
that anL-function theory as ir8.1.4exists? the following holds.

i) The corresponding adelic functiah; as defined i{30) generates a multiple of an auto-
morphic representation; of PGS{4,Aq).
ii) fisan eigenfunction for the local Hecke algebr#$, for all primesp{ N.
i) LetW; be the subspace &(B(N))"™" spanned by all eigenforms that have the same
Satake parameters dsfor almost allp. Then

dime (W) = mult(rz ), (40)

where the right side denotes the multiplicity of the automorphic representatidefined
in i) within the space of all cusp forms. In particular, if multiplicity one holds, then a
newform is determined, up to multiples, by almost all of its Satake parameters.

iv) fisan eigenform for the Atkin-Lehner involutigr for eachp|N.

v) For eachp|N, the local component af; at p is given by

o — ) Sesag) ot =—1,
P $oStesyaqy) if npf = 1.

2We need to assume 3.1.4 ii) only for the Steinberg representation. We also need to assumé thataiion theory
produces the Langlands local factors at the archimedean place, since otherwise the factor given in (42) would not be the
correct one.
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Here & is the unique non-trivial unramified quadratic characte@ﬁ.
vi) For primesp{ N we define local spih-factors as usual. Witla, being the Atkin-Lehner
eigenvalue ap|N, we further define

Lp(s, f) = (1+&p 329" for p|N, (41)
3 1
_ —2s+1-k v -

Lo (s, f) = 4(2m) r (s+ k 2) r <s+ 2). (42)

Then the spit-functionL(s, f) = [p<w Lp(S, f) has meromorphic continuation to all of
C and satisfies the functional equation

L(s,f)=¢e(s FL(1—sf)  with &(s f) = (_1)'<( M sp)N3<1/2*S>. (43)
pIN

If N> 1, thenL(s, f) is holomorphic.

PROOF. i) As explained abovep; generates a representatmmvhich we decompose into
irreduciblesrs. If we decompose eacti into a tensor produckri p of local representations,
then all therg . will be isomorphic. Moreover, by hypothesis, there is a finiteSef primes
(containing the primes dividindJ) such that for eachp ¢ Sall the 75 , are isomorphic. It follows
from the definition of newforms and Proposition 2.2.1 thgg is an unramified twist of the
Steinberg representation, for eapliN and each. In particular, the local components of at
everyfinite place are generic. We can therefore apply Corollary 3.1.6 to conclude that &l the
are isomorphic.

i) follows immediately from i).

iii) The dimension dim(W;) is obviously the number of linearly independegte
S(B(N))"™" that can be extracted from the direct sum of all cuspidal automorphic representa-
tions that are isomorphic t . Equation (40) therefore is equivalent to the fact that in each local
representatioms , there is exactly one linearly independémtal newform But this is obvious,
since the space of lwahori-invariant vectors of the Steinberg representation is one-dimensional;
see Table 3. (We are also using the fact that in the lowest weight representaticatsthe
archimedean place the space of lowest weight vectors is one-dimensional.)

iv) and v) We already saw that; , is an unramified twist of the Steinberg representation.
Since the central character is trivial, there are only the two possibilities listed in v). In either case
we have a one-dimensional space of Iwahori-invariant vectors, proving iv). Which of the two
representations actually appears is decided by the Atkin-Lehner eigenvalue, see Table 3.

vi) A look at Table 2 shows that fop|N the L-factor is given as in (41). The-factor of
0Sigsya) for unramifiedo (and choice of a suitable unramified additive charagters given
by —o(w)q®1/2-9, as can be determined fromd]. Thuse(s, 1 p, ) = gpp>2~9 for p|N.

The archimedean factor in (42) is, up to a constant and up to a shift in the argument, just the
usual Andrianovl -factor (which in degree 2 coincides with the archimedean Langlénds
factor, see $chd). Since the archimedeasfactor is (—1)X, the globale-factor is given by
(—=D*(Mpn £)N3Y/279. Now all the claimed analytic properties bfs, f) follow from our L-
function theory and fromRS2, Theorem 5.3 (ifN = 1 thenf may be a Saito-Kurokawa lifting

in which case (s, f) would have poles). O

REMARK. It was mentioned inHll], p. 38, that (for any degree) the local components at
p|N of the automorphic representations associated to newforrf§§B(N)) are special repre-
sentations.



Iwahori-spherical representations &S4) and Siegel modular forms of degree 2 with square-free leve287

In view of (38) and (39), the next result shows that newform®idt) can be characterized
in terms of their Fourier and Fourier-Jacobi expansions.

CoOROLLARY 3.3.3. Anelementf € §(B(N)) is a newform if and only if
di(p)(f) = da(p)(f) = d2(p)(Npf) =0 for all p|N,
whered; (p) anddy(p) are the operators defined {{33) resp.(34).
ProoOF. This follows from Theorem 3.3.2 iv), Proposition 2.2.1 and equation (35)C

COROLLARY 3.3.4. |If a cusp formf € S(Sp4,2)) is an eigenfunction for almost all
Hecke algebrasr#y, then it is an eigenfunction for athose Hecke algebras.

PROOF. Theorem 3.3.2 applies witk = 1. O

Newforms for U1 (N).

LetN be a square-free positive integer. To describe newforms for the Hecke subg(@p
(usually calleds(N)) we shall begin by describing, f@|N, four endomorphism$y(p), T1(p),
To(p), Ts(p) of S(U1(N)) which are analogous to some of the local operators considered in
section 2.3. The operatdg(p) is simply the identity. We defin® (p) := np, the Atkin-Lehner
involution. Note that iff € S(U1(N)) happens to be a modular form fdg(N p~1), then

(Tu(p)f)(2) = P*f(p2) (Z€Hy).
We defineT,(p) by
1 1 X M
(Tz<p)f)(z)=X’“7ng/pz f|, ! . ! @
p 1
= Yy (f® (44)

geP\Pr (1 pl)Pl
(cf. Remark 2.3.4). In terms of Fourier expansionsg) = ¥, mA(n,r, m)e?i(M+1z4m) ‘then
(R(p)H)Z)= 5 Anprp. mp)e?m Tz z- (; :,) . (45)
Finally, we defin€lz(p) := npo T2(p). Itis easy to check that with these definitions
Pry(p)t = €Ps, byt = NP, Pryp)f = 261621 Py, Pry(p)t = €0€160Ps (46)

holds for the associated adelic functions. On the right side of each equation we have elements of
the local lwahori-Hecke algebra acting on the adelic functions in the obvious way.

3In this completely unramified case we can work with the Andriabdunction and need not make any additional
assumptions on the existence of a suitdbfenction theory.
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DEFINITION 3.3.5. Let N be a square-free positive integer. 3g(U1(N)) we define the
subspace ofldformsS(U1(N))° to be the sum of the spaces

Ti(p)S(Ur(Np ™)), i=0,1,23, pN.

We define the subspaceméwformsS(U;(N))"®"to be the orthogonal complement of the space
S(U1(N))?insideS(U1(N)) with respect to the Petersson scalar product.

We remark that, for this congruence subgroup, the same definition of the space of oldforms
as the image of four linear operators has been giveRaj.[

REMARK 3.3.6. It follows from Theorem 2.3.1 that the spa8gU;(N))"®" can be char-
acterized as the common kernel of the operatigssd;seper o, di2n anddionexere for all p|N
insideS((U1(N)). This is analogous to Corollary 3.3.3.

Some attempts to definefunctions for modular formg € S(U1(N)) are based on eigen-
functions forT,(p) at the placep|N (see An3]). Along these lines we can prove the following
result.

THEOREM3.3.7. LetN be a square-free positive integer and fe€ S(U1(N))"". We
assume thaf is an eigenform for the local Hecke algebra#, for almost all primesp. We
further assume that

To(p)f = Apf with A, # £p for all p|N. (47)

Then

i) The corresponding adelic functiah; as defined i{30) generates a multiple of an auto-
morphic representation; of PGS[4,Aq).
i) fisan eigenfunction for the local Hecke algebr#, for all primesp{ N.
iii) For primesp4{ N we define local spih-factors as usual. We further define

Lp(s, f) = (1—App ¥Z %) (1- A, 1pY29)) for p|N, (48)

and the archimedean factor as #2).* Then the spih.-functionL(s, f) = Mp<e Lp(s, )
has meromorphic continuation to all 6fand satisfies the functional equation

L(s, f)=¢&(s f)L(1—s f)  with g(s, f):= (—1)KN12s (49)
If N > 1, thenL(s, f) is holomorphic.

PROOF. We argue essentially as in Theorem 3.3.2. Sihdée a newform, everys , for
p|N must contain local newvectors with respecPtan the sense of Theorem 2.3.1. The operator
T, corresponds to the elemesi; e;n of the local Iwahori-Hecke algebra pt see (46). In view
of table (24) and the remarks following it, the hypothesis (47) impliesfats of type Illa. In
particular it is generic. We can therefore invoke Corollary 3.1.6 to prove i) (and ii).

4We need to assume that olsfunction theory really assigns this (Langlands) lotéhctor to the discrete series
representation at the archimedean place.
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We now know forp|N that i p = x x 0Stgsy2) With unramified characterg ando of Qj,
such thatyo? = 1. By table (24) we hava, = o(p) or A, = o(p)~1. Hence a look at Table 2
shows that th&-factor is given as in (48). The-factor atp|N is given by

€(S,X X 0Sigsy2), ¥) = £(S,0SlGL2), Y) (S, XTSteL(2), ¥)
= (—a(p) P> ) (—(x0)(p)p"> %) = p= >

(choosing some unramified additive charaatgr Here we have used the fact (see, e §cH1])
thate(s, oSt (2), §) = —0() pl/2-s for an unramified local character. Including the archi-
medean place, the globalfactor is therefore given bf—1)“N'~25. Now the analytic properties
of L(s, f) follow from our L-function theory and fromRS2, Theorem 5.3. The conditioN > 1
ensures that is not a Saito-Kurokawa lifting. O

If one of theT,(p) eigenvalues ig-p, then the situation becomes more complicated because
we cannot distinguish representations of type lla, Vb,c and Vla,b (representations of type I1Vb,c
are irrelevant since they are not unitary I31], Theorem 4.4, the trivial representation does also
not appear as a local component of a global cuspidal automorphic representation, which follows
from the existence of global generalized Whittaker models,R8d]. In this case we need more
information to determine the type of local representation. Such information can be obtained by
requiring that our modular form is also an eigenfunction for the operator

T4(p) := (1+ p)da(p)doz(p) (50)

for eachp|N. Investigating table (24) we find that knowing the eigenvalues uffiglgs) and
T4(p) we can determine the local representation, except that we cannot distinguish types Vla
and VIb. But Vla and VIb constitute alb-packet, so for defining the correkctfactor it is not
necessary to distinguish these two representations.

Unfortunately, we cannot see an easy description for the Hecke op@sétrin (50) in
terms of Fourier coefficients, in contrast to the simple formula (45)T§¢p). However, as
already mentioned towards the end of section 2.3, the corresponding local operator is represented
by a surprisingly simpl& x 8-matrix.

ProPOSITION3.3.8. LetN be square-free. The spag(U1(N))"" has a basis consist-
ing of common eigenfunctions for the operatdsép) andT4(p), all p|N, and for the unramified
Hecke algebras at all good places N.

PROOF. The assertion follows from the fact that for each local representétiovi) con-
taining newforms with respect 8 the spacé/™ has a common eigenbasis fere;e;n and
di1dp2. This in turn is evident from a look at table (24). O

THEOREM3.3.9. LetN be a square-free positive integer and et S((U1(N))"W. We
assume thaf is an eigenform for the local Hecke algebrag, for almost all primesp. We
further assume that is an eigenfunction fof,(p) andTa(p) for all p|N,

T2(p)f =Apf,  Ta(p)f = pipf for p|N. (51)
Assuming that ah-function theory as ir8.1.4exists, the following holds.

i) fis an eigenfunction for the local Hecke algebré#s, for all primesp{ N.
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ii) Only the combinations of, and 1 as given in the following table can occur. Heggs

+1.
’ A ‘ u ‘ rep. ‘ Lp(s, f)~t ‘ ep(s ) ‘
—ep | ¢{0.2p} | lla | (L+e(p+1)(p—p)p > °+p *)(L+ep V> %) | ept/?s
#xp 0 lla (1—Ap3/25)(1—A-1pl/2s) pl-2s
—ep | 2p | Vbc (1-ep/>9)(1-p V&9 (1+p 1/ epl/2s
—£&p 0 Vlia,b (1_|_gp*1/2*5)2 pl-2s

(52)

(We skipped some indicey

iii) We define the archimedearfactor as in(42) and the archimedeas-factor by(—1). We
further define the unramified spin Euler factors fof N as usual, and the-factors to be
1. For placesp|N we define_- and e-factors according to tabl€52). Then the resulting
L-function has meromorphic continuation to the whole complex plane and satisfies the
functional equation

L(s f)=¢(s f)L(1-s,f), (53)

whereL(s, f) = [p<w Lp(s, f) ande(s, ) = (=1 [ pn &p(s. ).
iv) L(s, f) has at most two simple polessit 3/2ands= —1/2. If A; # £por pp ¢ {0,2p}
for somep|N, thenL(s, f) is holomorphic everywhere.

PROOF. i) We argue as before, considering the global representatica ®15. Sincef
is a newform, everys , for p|N must contain local newvectors with respectoin the sense
of Theorem 2.3.1. In the present case we cannot conclude that all the irreducible components
75 must be isomorphic, because, as mentioned above, the eigenvalues in (51) cannot tell apart
local representations Vla and VIb. This is however the only ambiguity, so that we can at least
associate global L-packetwith f. In particular, we obtain i) by a familiar reasoning.

i) The possible combinations far and ut follow immediately from the data given in table
(24).

iii) The L-factors can be easily determined from Table 2 and the values given in table (24).
Theeg-factors are also easily computed from the local parameters given in Table 2. The functional
equation then follows from out-function theory.

iv) By [PS3, theL-functionL(s, f) has at most two simple polesst 3/2ands= —1/2. If
Ap# £porup ¢ {0,2p} for somep|N, then, according to table (52), we have a local component
of type lla or llla, hence a generic representation. In particular, our representations are not Saito-
Kurokawa liftings, which implied_(s, f) is holomorphic (see also part 4) d?$4, Theorem
5.3). O

Newforms for Ugz(N).

We have defined trace operataksdi,d; in section 3.2, and we shall use these to define
newforms for the paramodular grollgz(N) of levelN. We remark that in cadé = pis a prime
the same definition has already been givenlirX2]. The trace operators used there essentially
coincide with ourd operators.
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DEFINITION 3.3.10. LetN be a square-free positive integer.3f(Uo2(N)) we define the
subspace obldformsS,(Up2(N))°! to be the sum of the spaces

do(P)Sc(Uo2(Np ™)) + da(p)npSc(Uo2(Np2)), pIN.

The subspace afewformsS,(Up2(N))""is defined as the orthogonal complement of the space
Sc(Uo2(N))? inside S (Ug2(N)) with respect to the Petersson scalar product.

REMARK 3.3.11. Justas in the previous cases we can characterize newforms as the kernel
of certain operators. In fact, by Theorem 2.3.1 an elenfientS(Uo2(N)) is a newform if and
only if it is annihilated by the operatods»n andd;2ndzn for all p|N.

In the following theorem we will make use of the Hecke operators

Ts(p) 1= (14 p)®doz(p)ch(p) (54)

on S(Uo2(N))"" for p|N (the theorem will show that global newforms are composed of local
newforms at every place, so it is obvious tAgfp) acts onS(Up2(N))"®%). This operator is
analogous tal4(p) introduced in (54) and serves a similar purpose. Again, we did not find a
simple description in terms of Fourier coefficients, but the local representati®s( jof as an

8 x 8-matrix has a simple shape.

THEOREM3.3.12. LetN be a square-free positive integer, afice S(Uga(N))™W. We
assume thaf is an eigenform for the local Hecke algebra#, for almost all primesp and for
the Atkin-Lehner involutions, for all p|N. Assuming that ah-function theory as i13.1.4exists,
the following holds.

i) The corresponding adelic functiab; as defined ir{30) generates a multiple of an auto-
morphic representation; of PGS[4,Aq).
ii) fisan eigenfunction for the local Hecke algebr#, for all primespt N.
i) LetW; be the subspace &(B(N))"™" spanned by all eigenforms that have the same
Satake parameters asfor almost all p, and the same Atkin-Lehner eigenvalue for all
p|N. Then

dime (W) = mult(rt ), (55)

where the right side denotes the multiplicity of the automorphic representatidefined
in i) within the space of all cuspforms.

iv) fisan eigenfunction for the Hecke operai@( p), for eachp|N. Letp, be the eigenvalue.

v) For eachp|N, the local component aft; at p is one of the unitary representations of
PGS(4,Qy) listed in the following table. Which type of representation it is can be de-
cided by the value dfp,.

Up rep. Lp(s f)~1 &p(s, f)
¢{0,2p} | lla | (1+&(p+1)(p—Hp)p ¥* 5+ p *)(1+5p 1> (56)

2p | Vb (1—gpp?9)(1-p V> 9)(1+p /29 gpp/2s

0 Vic (1+&ppY?75)(1+ gop~Y/279)

In this tableg; is the eigenvalue of the Atkin-Lehner involutionpat
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vi) If we define spirk-factors for p|N as in table(56), then the global-functionL(s, f) =
[Mp<e Lp(S, f) has meromorphic continuation to all Gfand satisfies the functional equa-
tion

L(s f)=e(s Ll—-sf),  with g(sf)=(-D*([Te)N">>  (67)
pIN

Herel. (s, f) is defined as ir§42), and the unramified spin Euler factors fpg N are the
usual ones.

vii) L(s, f) has at most two simple polesst= 3/2 ands= —1/2. If u, ¢ {0,2p} for some
p|N, thenL(s, f) is holomorphic everywhere.

PROOF. The argument for i), ii) and iii) is similar to the one in the proof of Theorem 3.3.2.
Instead of Corollary 3.1.6 we are using Corollary 3.1.7. The factftlif newform assures that
hypothesis ii) of Corollary 3.1.7 is satisfied.

iv) and v) A look at Table 3 shows that only the representations listed in (56) are unitary
and have newforms with respectRgy. In each case the dimension of the spacBygfinvariant
vectors is one-dimensional, proving iv). The data given in the last column of table (24) shows
the relation between the eigenvalugand the type of representation.

vi) and vii) TheL-factors forp|N can be read off from Table 2, and thdactors are easily
seen to bep p'/2-Sin each case. Now we can refer to dufunction theory and®SJ, Theorem
5.3, again. Ifup ¢ {0,2p}, thenrt p is of type lla, hence generic, and the holomorphy follows
sincert; is not a Saito-Kurokawa representation. O

REMARK 3.3.13. For simplicity assumé\ = p is a prime and consider the following
linear maps:

do2
Sc(U1(p)™” — Sc(Uoz(p))"™" (58)

We see from Table 3 that the occurrence of representations of type llla accounts for the kernel of
do2(p), and the occurrence of representations of type Vic accounts for the kertiglf The
composite mapd; o dg2 anddpz o d; are, up to normalization, the Hecke operafbyaindTs we

used in the newform theory fai; resp.Ugp.
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