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A remark on Schubert cells and the duality of orbits on flag manifolds
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Abstract. It is known that the closure of an arbitrag-orbit on a flag manifold is ex-
pressed as a product of a clodégtorbit and a Schubert cellNf2], [Sp]). We already applied this
fact to the duality of orbits on flag manifoldsGM]). We refine here this result and give its new
applications to the study of domains arising from the duality.

1. Duality of orbits on flag manifolds.

Let G¢ be a connected complex semisimple Lie group @gdh connected real form @c.
Let K¢ be the complexification iG¢ of a maximal compact subgrodpof Gr. Let X = G¢ /P
be a flag manifold of5¢c whereP is an arbitrary parabolic subgroup @g. Then there exists a
natural one-to-one correspondence between the $&t-ofbits Sand the set 0Gr-orbits S on
X given by the condition:

S« S <= SN S is non-empty and compact (A)

(IM3]). In the following, we will identify orbitsS with Kc-P double cosets anfl with Gg-P
cosets.
We defined inGM] a subseC(S) of G¢ by

C(S) = {x € G¢ | xSN S is non-empty and compact K= G¢/P}

whereS is theGg-orbit onX given by (A).
If Sis closed, ther8 is open (M1]) and so the condition

xSN S is non-empty and compact B¢ /P
implies
xScC S.

Hence the seE(S)o is the cycle domain (cycle space) 8 ([WW]) whereC(S)o denotes the
connected component G{S) containing the identity.

On the other hand, ek, denote the unique opefc-B double coset irGec whereB is a
Borel subgroup ofs¢ contained irP. (We will keep this notation for the whole note.) Thaﬂ,
is the unique close@gr-B double coset ifi5c and the condition

XSpN Ky is non-empty and compact Bc/B

implies
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XSp D Sp:

Let{S; | j € J} be the set oKc-B double cosets i¢ of codimension one antj = SJ-C' denote
the closure of5;. The setdl; will play an important role in our constructions.
The complement 0%y in G¢ is written as

UT

jed
(by Theorem 2 in Section 2). So the $&(Sp) is the complement of the infinite family of
complex hypersurfaces

gT7t (i€, 9€8y)

and hence the connected compor@{t,p)o is Stein.

This domain is sometimes called the “lwasawa domain” since it is a maximal domain where
all Iwasawa decompositions can be holomorphically extended @gm

In [GM], we defined

c=(Cc(

where we take the intersection for &g-orbits S on X on all flag manifoldsX = G¢/P of G¢
and conjectured

C=DoZ

(Conjecture 1.3) wher®q = DNO/KC is the domain introduced byA[G] (which is sometimes
denoted a25c) andZ is the center o65¢. For connected components, it means

Co = Do. (B)

This conjecture (B) was solved recently as follows. It is proved in Proposition 8@GMf [
that

Co =C(Sop)o-

In other wordsC(S)o is minimal whenS= &,,. We believe that it is one of central facts of this
theory since it gives a very strong estimate ofG{l5) throughC(Sp) only. So (B) is equivalent
to the equality

C(Sop)o=Do ©

which was recently established by many people’s contributions as follows.

The domainC(Syp)o Was considered inHGW] for SU(p,q) (under the name “polar set”)
and for general cases i5]. In [G] was conjectured (C) as well as the coincidenc®gfwith
the universal domain of all analytic extensions from the Riemann symmetric spaces.

In 1999, J. Faraut and T. Kobayashi constructed some Hermitian symmetric dofains
containingGgr/K in the classical case and gave a proof#grC C(Sp)o in an unpublished note.
Using this inclusive relation, they also showed that all the joint eigenfunctiorGggiK with
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respect taGr-invariant differential operators oBgr/K can be holomorphically extended to the
domains=y. It is known that=y are subdomains dﬁ) and that they coincide in some cases
including Hermitian cases (c.fBHH], [KS2]).

Later, Krotz and Stanton proved the inclusion

Do C C(Sop)o (D)

for all classical cases irK[S1] and also applied it to holomorphic extension of solutions of
invariant differential operators. Independentl@M ] proved the equality (C) for all classical
cases and exceptional Hermitian cases. Huckleberry gave a general proof of the inclusion (D) in
[H] using the strictly plurisubharmonicness of a funtjprvhich is proved in BHH]. Recently,
the second author gave a general proof of (D) without complex analy# X[

On the other hand, Barchini proved the opposite inclusitfyp)o C Do by a general argu-
ment in B].

REMARK 1. In [FH], the authors deduce the equal®y = Do from their result about
C(9) for closedSand Proposition 8.1 inGM]. As we showed above, this equality is already the
consequence of Proposition 8.3 l@N1] and the equality (C). So it does not need the results in
[FH].

2. Schubert cells in the category oK¢-B double cosets.

The principal idea of our considerations BY1] was thaiC(S) will be essentially indepen-
dent of neitheSnor the flag manifol = G¢ /P. To justify it, we need to build bridges between
C(S) for differentSand for it we need to see connections between diffeékgnorbits. It turns
out that Schubert cells are very efficient tool for such considerations as in Section 2 and Section
8 in [GM]. They give a possibility to obtain an important information about ger@{&) from
a consideration of simple§ Here we refine connections betwe&g -orbits and Schubert cells
and give more examples of applications.
For a simple rootr in the root system with respect to the order definedpye can define
a parabolic subgroup

Pa - BU BWaB
of G¢ such thadimg Py, = dimegB+ 1.

LEMMA 1. LetS be aKe-B double coset. Then we have

(i) If dimg¢ SiPy = dimc Sy, thenSHP, = S

(i) If dimgc S Py =dime S + 1, then there exists ¢-B double cose§, such tha1SfI Py, =
S

ProOOF. Though this lemma follows easily fronM2] Lemma 3, we will give a proof for
the sake of completeness. WrBg= KcgB. Then we have a natural bijection

(9~ *KcgNPa)\Pa /B2 Kc\KegPa /B = Kc\SiPy /B

by the mapx— gx.
(i) If dimg SiPy = dimg Sy, then(g~*Kcg N Py )B/B is Zariski open irP, /B = P1(C) and
hence it is dense. So we have
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S = (KegB) 5 SiPy O S

and thereforsst! = S¢'P, .

(i) Supposedimc SiPy = dime¢S; + 1. Then there exists p € Py such that(g~*Keg N
P, )pB/B is Zariski open inP, /B = P%(C) since the number okc-B double cosets iS¢ is
finite. If we write S, = KcgpB, then we have

(S)"oSP DS
and therefores§! = S¢'P, O

THEOREM1. LetS be aKc-B double coset itGe andw an element of the Weyl group
W. Then we have

(i) S¢'(BwB)® = S5 for someKc-B double coses,.

(i) (minimal expressionThere exists &/ € W such thatw < w (Bruhat orde), ¢(W) =
dimec S —dime S; and that

SHET )RR
Here (W) = dimg BWB — dim¢ B is the length ofv'.
PROOF. (i) This follows from Lemma 1 because every Schubert @@#WB)° is written as
(BWB)® = Py, Py,

wherew = Wy, - - - Wg, is a minimal expression af € W.
(i) By Lemma 1, we can choose a subsequefice. .,y (g = dim¢S — dimc §;) of
asi,...,ay such that

dime S{'Pg, - - Pg, = dim¢ S{'Pg, - Pg, , +1
fork=1,...,gand that
S§' = S{'(BwB)® = S{'Py, --- Py, = S'Pg, -+ Pg, = Sf (BWB)®
WithV\/:W131~~~Wﬁq. O

REMARK 2. SY/(BwB)® = S§! implies S{!  S§!. But S{! c S§! does not always imply
S¢(BwB)® = S for somew (c.f. [M2]).

DEFINITION 1. For everyKe-B double cosef, we can define, by Theorem 1, a subset
J(S) of J by

J(S) = {j €J| s (BwWB =T, for somew € W}.

LEMMA 2. LetSbe a non-opeikc-B double coset. Then there exists a simple mstuch
that

dimc SR, =dime S+ 1.

PROOF. Write G¢ = (vaoB)C' = Py, - - - Pay,, With the longest elementy in W. If
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dimc SR, =dimc S
for all simple rootsx, then we have, by Lemma 1,
Ge = S%Ge = SUPy, -+ Py = S7,
a contradiction. O
THEOREM 2. If £(w) < codimeS, then
s'BwB c T,
for somej € J(S).

PROOF. SincecodimeS® (BwB)® =d > 0, we can choose simple roats, ..., aq_1 such
that

- | |
codimeS® (BWB)“Py, -+ Py, , =1
by Lemma 2. SincéBwB)®'Py, - - Py, , = (BWB)® for somew’ € W, we have
s¥(BwB)® c SY(BWB)® =T,

for somej € J(S). .

3. Applications.

DEFINITION 2. For every subset’ in J, we define a domai® (J') in G¢ by
Q) ={xeGc |xTiNg,=Bforall j € I}o.

We can prove the following corollary:

COROLLARY. LetSbe a closedc-P double coset irGe. Write S= Sf' with the dense
Kc-B double cose§; in S. Then we have

C(So =Q(S)).

REMARK 3. (i) We can se€(Sp)o = Q(J). By the same argument as f6(Syp)o in
Section 1, we can prov@ (J') is Stein for every subsét in J. So the Steinness @{(S)o ([W1])
becomes a corollary of this equivaler@és)o = Q(J(S)) (c.f. [HW]).

(ii) Itis clear thatQ(J') D Q(J) for every subsed’ in J. So we have

C(S)o O C(Sp)o-

But this inclusion was already proved in Proposition 8.3@M]. This is natural because
the way of proof of the corollary below is essentially the same as that of Proposition &Blih [
So the above corollary may be considered as its refinement.

PROOF OFCOROLLARY. Letxbe an element on the boundary@(S)e. Then
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XSNS,P # @

for someGgr-P double cose8,P in the boundary o8. Here we také; as the denskc-B double
coset contained ifP. SinceSis right P-invariant, we have

xSNS, #@ and dimgS, >dimcS

Applying Theorem 1 (ii) to the paifSS', Gc), we can take av € W such that/(w) =
codime S and that

' (BwB)® = Ge.
So we haves;(BwB)® 5 S, and hence
S, c S,(BW 'B)%.
SincexSN'S, # @, we have
XSNS,,(BW 'B)° # @.
Hence
xSBWB) NS, # @

which impliesxT; NS, # @ for somej € J(S1) by Theorem 2. Thug ¢ Q(J(S1)).
Conversely, suppose

XTjNSp # B

for someT; = S(BwB)® = SY/(BwB)®. Note thatj € J(S;) by Definition 1 and that we may
assumé(w) = codime S— 1 = codimg S; — 1 by Theorem 1 (ii). Then we have

XSN S,,(BW 'B)% £ @
and hence

XSNS; # @

for someKc-B double cose§; such thass; C S,p(BvrlB)C'. HenceS;(BWB)® > S, and there-
foredime S3 > dime Ge — ¢(w) > dimg S So we have

SNS =0
because is the union ofGg-B double coset§, satisfyingSs C S. Hence we have
XS¢ S
and therefore

x¢ C(S). H
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REMARK 4. (i) The condition/(w) = codimcS— 1 does “not always” imply
codime S¥(BwB)® = 1.

Counter examples exist already 8g = SU(2,1).

(i) The construction of the domaif2 (J(S;)) is essentially equivalent to the construction
of “Schubert domain” inlHW]. We can see that the proof of our corollary using the results in
Section 2 is extremely simple. Let us explain the connection between these two constructions
introducing notations inHW1.

Take a Borel subgrouBg of G¢ so thatGrBy is closed inGe. A Borel subgrouB of G¢
is called an “Iwasawa Borel subgroup” if

B=goBogy® for someg, € Gg.

LetZ = G¢/Q be a flag manifold. Then we can tageso thatQ > By. Every Schubert cel in
Z for B is written as

Y = (BgowQ)® = (goBowQ)®

with somew € W. Let Sbe a close&Kc-Q double coset. (They use the symialfor S) The
“incidence varietyHy is written as

Hy = {g|gSNY # @} =Y S ' = (9oBwQ)”'S ™ = (S(Qw 'Bo)%gy ) ",
If codimHy =1, then

HY71 — S(QwilBO)Clgal — Tj gal

for somej € J = J(S) (where$; is the dens&¢-Bp double coset irf) andg, € Gr by our
notation.
They defined

2(S) ={Y = (goBowQ)® | codimHy = 1}.

(They use the symbdd for S. Note that the conditioly € Z\ S follows from codimHy = 1
because

YNS =@« SY 1=S(Qw !By,  # e
= S(Qw 'Bo)” # g9
<« S(QW By)* NGrBy = @
< S(QW !By)Y NKcBy = @

> codimS(Qw !Bg) > 1.)

The Schubert domain is defined as
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Qs(S)=¢Gec\( U Hv
Ye# (S) 0

This definition is equivalent to our definition 6f(J’) because

g¢ |J Hy<=g 1¢Tgy forall jeJ andgy € Gr
Yez/(3)

<« g GRBoNTj =@forall jcJ
<= GrBpNgTj =Bforall jeJ.

REMARK 5. The problem of the description of the domain of cyc®$), for groups
Gr of Hermitian type is simpler than the general case. Firstly, in this dage; f)vo/Kc has a
very simple descriptionDg = Ggr/K x Gr/K (Proposition 2.2 inGM]). As usual, the equality
C(So = Do for S (« S) of nonholomorphic type is reduced to two inclusions. The proof of
C(SpC Do in [WZ1] had a mistake which was corrected WZ2]. The opposite inclusion was
checked in YWZ1] for classical Hermitian groups. In Proposition 2.4 &N1], we gave a very
simple proof of this inclusion for arbitrary groups of Hermitian type which is free of case-by-
case considerations: the use of Schubert cells makes this fact almost trivial. Th&zétg [
also contains this fact with a proof referred /] but without an appropriate reference on the
preceding proof inGM]. Moreover it asserts a misleading statement that the p&dr [does
not contain a direct proof.
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